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ARITHMETICAL PROPERTIES AT THE LEVEL OF IDEMPOTENCE

FETHI BOUZEFFOUR A, WISSEM JEDIDI B

Abstract. In this paper we give an attempt to extend some arithmetic properties such
as multiplicativity, convolution products to the setting of operators theory. We provide a
significant examples which are of interest in number theory. We also give a representation
of the Euler differential operator by means of the Euler totient arithmetic function and
idempotent elements of some associative unital algebra.

1. Introduction

In number theory, an arithmetical, or number-theoretic function is a function α : N →
C. Their various properties were investigated by several authors and they represent an
important research topic up to now. An important property shared by many number-
theoretic functions is multiplicativity: an arithmetical function α is said to be multiplica-
tive, if for all relatively prime positive integers n, m, we have

α(nm) = α(n)α(m).

Examples of important arithmetical functions include: the Euler totient function, denoted
ϕ, and defined as the number of positive integers less than and relatively prime to n. The
Möbius function given by

µ(n) =

{

(−1)ω(n) if n is a square-free integer

0 otherwise ,

where ω(n) is the number of prime factors of n is also a multiplicative functions. Another
important multiplicative function is the Ramanujan sum’s, which is defined by [8]

cn(j) :=
∑

gcd(k,n)=1
1≤k≤n

εjkn ,

where εn denotes a primitive n-th root of unity and gcd(k, n) to denote the greatest
common divisor of the positive integers k and n. These sums fit naturally with other
number-theoretic functions. For instance, one has

(1.1) cn(1) = µ(n), cn(n) = ϕ(n),

For a more elaborate account on the multiplicative functions, we refer the reader to the
texts [1, 2] and the survey articles [6].

In this work we suggest to extend the rang of the number-theoretic function and consider
functions f such that:
- their domain are the positive integers and whose range is a subset of an unital associative
algebra A over C;
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- they satisfy the property

(1.2) f(nm) = f(n)f(m), when gcd(n,m) = 1.

Our first objective is to give a variety of significant examples, which are of interest in
number theory. Notice that if A is an unital algebra then every number-theoretic function
α : N → C can be identified with the function n → α(n) e (e is the unit of A).

Recall that an element P ∈ A such that P 2 = P is called idempotent. A set of
idempotent elements P1, . . . , Pn is called orthogonal if,

Pi Pj = δijPi and

n∑

i=1

Pi = e.

In this paper, we consider a set of orthogonal idempotent Pj(n), indexed by two integers
n ≥ 1 and j ≥ 0, satisfying:
- for every fixed integer n, the sequence j → Pj(n) is periodic with period n;
- for every arithmetic progression j + n, . . . j + rn, we have

Pj(n) =

r∑

k=1

Pj+kn(nr).

Under these conditions and for every fixed j ≥ 0, the function n → Pj(n) is multiplicative.
Another example considered in this note, consists to replace the root of unity in the
Ramanujan sum’s by an element s of A satisfying sn = e. Then, the following sum

∑

gcd(k,n)=1
1≤k≤n

sk(1.3)

is a multiplicative function.

2. Arithmetic properties of Idempotents

2.1. Multiplicative functions. Throughout, A will be an associative unital algebra
over C. We recall the following definitions and basic facts

Definition 2.1. A function f : N → A is called multiplicative if

f(nm) = f(n)f(m), when gcd(n,m) = 1.

Lemma 2.1. If f : N → A is multiplicative, then f(1) is idempotent.

Proof. Taking n = m = 1, we have f(1) = f(1.1) = f(1)f(1). So, f(1) is idempotent. �

The following proposition is a characterization of multiplicative functions.

Proposition 2.2. For an arithmetical function f : N → A, the following are equivalent:
1. f is multiplicative,
2. for all n = pα1

1 . . . pαk

k (the standard form factorization of n), we have

f(n) = f(pα1

1 ) . . . f(pαk

k ).
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We naturally extend the convolution product such as Drichlet product, lcm product
and unitary product (see, [1, 14, 12]) as follows:

(f ∗ g)(n) =
∑

kl=n

f(k)g(l) (Dirichlet product).(2.1)

(f � g)(n) =
∑

lcm(k,l)=n

f(k)g(l) (lcm-product).(2.2)

(f ⊔ g)(n) =
∑

kl=n gcd(k,l)=1

f(k)g(l) (unitary product).(2.3)

where f, g : N → A.

The convolution products defined in (2.1), (2.2) and (2.3) are associative but not com-
mutative in general. If, in addition, if for all integers n,m, and every prime numbers p
and q, f(pn) commutes with g(qm), then we have

f ∗ g = g ∗ f, f � g = g� f, f ⊔ g = g ⊔ f.

The following propositions are easy to prove.

Proposition 2.3. 1) If f is an arithmetic function on A, then

f ∗ I = I ∗ f = f, f � I = I � f = f, f ⊔ I = I ⊔ f = f,

where

I(n) =

{
e if n = 1
0 otherwise.

2) If f is an arithmetical function such that f(1) is invertible element in A, then f has
a unique inverse with respect to the Dirichlet product.

3) If f is a multiplicative function on A and b ∈ A invertible element , then the function
n 7→ bf(n)b−1 is multiplicative.

4) If f and g are multiplicative functions, then f ∗ g is also a multiplicative function.

Proposition 2.4. 1)If A is equipped with a norm ‖.‖ and f a multiplicative function on
A, then n → ‖f(n)‖ is a multiplicative function.
2)If A is the algebra of N × N-matrix and f is multiplicative on CN , then function
n 7→ det(f(n)) is multiplicative.

2.2. Idempotents.

Definition 2.2. LetA be an algebra with unity e. We say that a collection {Pj(n)}
∞
j=0,n=1

is an arithmetic system of idempotent if the following conditions are satisfied:

I) for all i, j = 1, 2, . . . , we have Pi(n)Pj(n) = δijPi(n),

II) for all n, j = 1, 2, . . . , we have Pj+n(n) = Pj(n),

III) for every arithmetic progression {j + n, . . . , j + nr} we have

Pj(n) =
r∑

k=1

Pj+kn(nr).

The integer n in Pj(n) is called level of the idempotence.
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Theorem 2.5. Let {Pj(n)}
∞
j=0,n=1 be an arithmetic system of idempotents of A. Then

for arbitrary positive integers n, m k and l, we have

(2.4) Pk(n)Pl(m) =

{
Pj(lcm(n,m)) if gcd(n,m) | l − k
0 otherwise.

where j is the unique solution mod (lcm(n,m)) of the system of congruences

(2.5)

{
j ≡ k mod (n)
j ≡ l mod (m).

Here lcm(n,m) is the least common multiple of the integer n, m.

Lemma 2.6. (The Chinese Remainder Theorem)
The system of congruences

(2.6)

{
x ≡ a mod (n)
x ≡ b mod (m).

is solvable if, and only if gcd(n,m)|a− b, any two solutions of the system are incongruent
mod lcm(n,m).

Proof. From condition III) we can write

Pk(n)Pl(m) =
m−1∑

s=0

n−1∑

r=0

Pk+sn(nm)Pl+rm(nm).

If gcd(n,m) ∤ l − k, then k + sn 6= l + rm and Pk(n)Pl(m) = 0.
If gcd(n,m) | l − k, then by Chinese remainder theorem there exist unique integer j
mod (lcm(n,m)) such that

(2.7)

{
j ≡ k mod (n)
j ≡ l mod (m).

Then from II) we get

Pk(n)Pl(m) =

m−1∑

s=0

n−1∑

r=0

Pj+sn(nm)Pj+rm(nm).

On the other hand, from I) we see that for 0 ≤ r ≤ n − 1 and 0 ≤ s ≤ m − 1 the term
Pj+rn(nm)Pj+sm(nm) is different from zero, if and only if rn = sm, which is equivalent
to r = r′ n

gcd(n,m)
and s = r′ m

gcd(n,m)
, with 0 ≤ r′ ≤ gcd(n,m)− 1.

Then

Pk(n)Pl(m) =

gcd(n,m)−1
∑

r′=0

Pj+r′ lcm(n,m)(nm) = Pj(lcm(n,m)).

Therefore

Pk(n)Pl(m) =

{
Pj(lcm(n,m)) if gcd(n,m) | l − k
0 otherwise

where j is the unique integer mod (lcm(n,m)) such that

(2.8)

{
j ≡ l mod (n)
j ≡ k mod (m).

�
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Corollary 2.7. The following hold
1. If n and m are relatively prime, we have

Pj(n)Pj(m) = Pj(nm).

2. If n | m, we have

Pj(n)Pk(m) =

{
Pk(m) if k ≡ j mod (n)
0 otherwise.

Proposition 2.8. Let α, β : N → C two arithmetic functions and j = 0, 1 . . . , we have

αPj � βPj = (α�β)Pj,(2.9)

αPj ⊔ βPj = (α ⊔ β)Pj,(2.10)

ν0 ∗ (α�β)Pj = (ν0 ∗ αPj) (ν0 ∗ βPj).(2.11)

In particular,

Pj �Pj(n) = M2(n)Pj(n), Pj ⊔ Pj(n) = 2ω(n)Pj(n)(2.12)

where

(2.13) Ms(n) =

{
1 if n = 1,
∏r

k=1

(
(as + 1)s − ask

)
if n =

∏r
k=1 p

ak
k ,

and ν0(n) = 1.

Proof. Let n be a positive integer, we have

αPj � βPj(n) =
∑

lcm(k,l)=n

α(k)β(l)Pj(k)Pj(l)

=
∑

lcm(k,l)=n

α(k)β(l)Pj(lcm(k, l))

= (α� β)(n)Pj(n).

To prove (2.10)

αPj ⊔ βPj(n) =
∑

kl=n,gcd(k,l)=1

α(k)β(l)Pj(k)Pj(l)

=
∑

kl=n,gcd(k,l)=1

α(k)β(l)Pj(n)

= (α ⊔ β)(n)Pj(n).

The equation (2.11) follows from the following identity [9]

(2.14) (ν0 ∗ α)(ν0 ∗ α) = ν0 ∗ (α�β).

�

3. Ramanujan sum’s

The function α : N → C is called even function ( mod d ) if α(n) = α(gcd(n, d)) for
all n, that is if the value α(n) depends only on the gcd(n, d). Hence if α is even( mod d
), then it is sufficient to know the values f(r), where r | d.
The Ramanujan sum’s

(3.1) cn(j) :=
∑

gcd(k,n)=1
1≤k≤n

εjkn .
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If α is even ( mod d ), then it has a Ramanujan-Fourier expansion of the form

α(n) =
∑

r|d

(Rα)(r)cr(n) (n ∈ N),

where the (Ramanujan-)Fourier coefficients (Rα)(r) are uniquely determined and given
by

(Rα)(r) =
∑

δ|d

α(d
δ
)cδ(

d
r
).

Definition 3.1. We say that a set {Pj(n) : n ≥ 1, j ≥ 0} is an arithmetic system of
orthogonal idempotent, if
1. {Pj(n)}

∞
j,n=1 is an arithmetic system of idempotent,

2. for every n

(3.2)
n−1∑

j=0

Pj(n) = e.

Consider the sum

Cj(n) =
∑

gcd(k,n)=1
1≤k≤n

ε−jk
n Sk(n), j = 0, 1, . . . ,(3.3)

where S(n) =
∑n

j=1 ε
j
nPj(n).

For every divisor r of n, we denote by

Tr,j(n) =
∑

gcd(k,n)=
n
r

1≤k≤n

Pk+j(n).(3.4)

Note that Tn,j(n) is denoted simply by Tj(n).

Proposition 3.1. The following properties hold

Cj(n) = µ ∗ ν1Pj(n), & Tj(n) = ν0 ∗ µPj(n),

where νk(n) = nk.

Proof. We have

µ ∗ ν1Pj(n) =
∑

d|n

µ(d)n
d
Pj(

n
d
)

=
∑

d|n

µ(d)

n
d∑

k=1

ε−jkd
n Skd

n

=
n∑

k=1

ε−jk
n Sk

n

∑

d|n
d|k

µ(d)

=

n∑

k=1

ε−jk
n Sk

n

∑

d|gcd(k,n)

µ(d).

From Theorem 2.1 in [1] we have

(3.5)
∑

d|gcd(k,n)

µ(r) =

{
1 if gcd(k, n) = 1,
0 if gcd(k, n) > 1.
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Hence

(3.6) Cj(n) = µ ∗ ν1Pj(n).

To prove 2)

Tj(n) =
∑

gcd(k,n)=1
1≤k≤n

Pj+k(n)

=

n∑

k=1

∑

δ|gcd(k,n)

µ(δ)Pj+k(n)

=
∑

δ|n

µ(δ)

n
δ∑

k=1

Pj+kδ(n)

=
∑

δ|n

µ(δ)Pj(δ)

�

Corollary 3.2.

Cj(n) = n
N∏

l=1

(
Pj(p

αl)−
1

p
Pj(p

αl−1),

Tj(n) =
∏

p|n
p prime

(e− Pj(p)).

Proof. The functions Cj(n) and Tj are multiplicative. So it suffice to compute Cj(p
k) and

Tj(p
k) where p is prime number. Form proposition 4.1, we have

Cj(p
k) =

k∑

l=0

µ(pl)pk−lPj(p
k−l)

= pkPj(p
k)− pk−1Pj(p

k−l)

= pk
(
Pj(p

k)− p−1Pj(p
k−1)

)
,

and

Tj(p
k) =

{
e− Pj(p) if k = 1,
0 otherwise.

Since Cj is multiplicative we have

Cj(n) =
N∏

l=1

Cj(p
αl) = n

N∏

l=1

(
Pj(p

αl)−
1

p
Pj(p

αl−1).

Similarly,

Tj(n) =
∏

p|n
p prime

(e− Pj(p))

�
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Theorem 3.3. For fixed integers n and j, {Tr,j(n) : r | n} is a set of τ(n) orthgonal
idempotent:

(3.7)
∑

r|n

Tr,j(n) = e and Tr,j(n)Tr′,j(n) = δr,r′Tr,j(n)

where τ(n) is the number of divisor of n.

Lemma 3.4. The operators Tj(n) and Cj(n) are related by

Cj(n) =
∑

r|n

cn(n/r)Tr,j(n), Tn,j(n) =
1

n

∑

r|n

cn(n/r)Cj(r).

Proof.
∑

r|n

cn(n/r)Tr,j(n) =
∑

r|n

cn(n/r)
∑

gcd(k,n)=
n
r

Pk+j(n)(3.8)

=
n∑

l=1

∑

r|n

cn(n/r)
∑

gcd(k,n)=
n
r

ε−(k+j)l
n Sl

n(3.9)

=
1

n

n∑

l=1

ε−lj
n

∑

r|n

cn(n/r)cr(l)S
l
n(3.10)

From formula Exercise 2.23 in [3], we have

(3.11)
∑

r|n

cn(n/r)cr(l) =

{
n if gcd(l, n) = 1,
0 if gcd(l, n) > 1.

Hence
∑

r|n

cn(n/r)Tr,j(r) =
∑

gcd(l,n)=1

ε−lj
n Sl

n = Cj(n).(3.12)

Similarly,
∑

r|n

cn(n/r)Cj(r) =
∑

r|n

cn(n/r)
∑

gcd(k,n)=n

r

ε−jk
n Sk

n(3.13)

=

n∑

l=1

∑

r|n

cn(n/r)cr(l − j)Pl(n)(3.14)

=

n∑

l=1

∑

r|n

cn(n/r)cr(l)Pl+j(n)(3.15)

The result follows from formula (see, Exercise 2.23 [3])

(3.16)
∑

r|n

cn(
n
r
)cr(k) =

{
n if gcd(k, n) = 1,
0 if gcd(k, n) > 1.

Hence
∑

r|n

cn(n/r)Cj(r) = n
∑

gcd(k,n)=1

Pk+j(n) = nTn,j(n).(3.17)

�
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Theorem 3.5. Let α : N → C be even function (mod n), then for all j = 0, 1, . . . ,, we
have

(3.18)
∑

r|n

α(n/r)Cj(r) =
∑

r|n

R(α)(r)Tr,j(n).

Proof.
∑

r|n

α(r)Cj(r) =
∑

r|n

∑

δ|r

cr(r/δ)Tδ,j(r)α(n/r)

=
∑

r|n

∑

δ|r

cr(r/δ)
∑

gcd(k,r)=
r
δ

1≤k≤r

Pk+j(r)α(n/r)

=
∑

r|n

α(n/r)

r∑

k=1

cr(k)Pk+j(r)

The Ramanujan sum cr is periodic function with period equal to r, then from condition
III) of the Definition 2.2, we can write

r∑

k=1

cr(k)Pk+j(r) =

r∑

k=1

n/r−1
∑

l=0

cr(k + lr)Pk+lr+j(r)

=
n∑

k=1

cr(k)Pk+j(n)

=
∑

δ|n

cr(n/δ)
∑

gcd(k,n)=
n
δ

1≤k≤k

Pk+j(n)

=
∑

δ|n

cr(n/δ)Tδ,j(n).

Hence
∑

r|n

α(r)Cj(r) =
∑

δ|n

∑

r|n

cr(n/δ)α(n/r)Tδ,j(n)

=
∑

δ|n

R(α)(δ)Tδ,j(n).

�

4. Example

We denote by HR the vector space of all analytic functions on the open ball B(0, R) in
complex plane C. HR endowed with the topology of compact convergence, it is a complete
locally convex topological vector spaces.
For n = 2, 3, . . . , we denote by S(n) the diagonal operator acting on monomials ek(z) =
zk, (k = 0, 1, . . . ) as follows

S(n)ek = εknek, εn = e
2iπ
n .
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Its clearly that S(n) is a continuous map from HR into its self satisfying Sn(n) = iHR
.

The primitive idempotents P1(n), . . . Pn(n) related to S(n) are given by

(4.1) Pj(n) =
1

n

n−1∑

l=0

ε−lj
n Sl(n).

These obey at the following relations

(4.2) iHR
=

n∑

j=1

Pj(n), Pi(n)Pj(n) = δijPj(n).

The set {Pj(n)}
∞
j,n=1 is an arithmetic system of orthogonal idempotent on the algebra

L(HR) of all continuous linear maps of the space HR. To see this it suffice to prove for all
positive integers n and m such that n divide m the following identity

Pj(n) =

m/n
∑

k=1

Pj+kn(m).

Indeed, from (4.1) and the following formula

(4.3)

r∑

k=1

ε−lk
r =

{
r, if r|l
0, otherwise,

we can write

m/n
∑

k=1

Pj+kr(m) =
1

m

m/n
∑

k=1

m∑

l=1

ε−l(j+kr)
m Sl(m)

=
1

m

d∑

l=1

ε−lj
m Sl(m)

m/n
∑

k=1

ε−lkr
m

=
1

n

r∑

l=1

ε−lj
n Sl(n)

= Pj(n).

The operators C0(n) and T0(n) acting on the basis {ek} as follows

C0(n)em = cn(m)em,(4.4)

T0(n)em =

{
em if gcd(n,m) = 1,
0 otherwise .

(4.5)

Indeed, from Proposition 3.1, we have

T0(n)em =
∑

d|n

µ(d)P0(d)em

=
∑

d|gcd(n,m)

µ(d) em

=

{
em if gcd(n,m) = 1,
0 otherwise .
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Now, if we compare the trace and the determinant of the matrix [T0(n)]N (resp. [C0(n)]N )
of the restriction of C0(n) (resp. T0(n)) to the subspace generated by {e1, . . . eN}, we get

(4.6)

N∏

k=1

cn(k) =

{
∏

p|nprime(1− p)
[
N
p
]

if n is squarefree,

0 if otherwise.

(4.7)
∑

gcd(k,n)=1
1≤k≤n

[N−k
n

] = Nω(n)−
∑

p|n prime

[N
p
] =

∑

r|n

µ(r)[N
r
],

and

(4.8)

N∑

k=1

cn(k) =

k∑

l=1

(
pαl

l [ N
p
αl

l

]− pαl−1
l [ N

p
αl−1

l

]
)
=

∑

d|n

dµ(n/d)[N
d
].

Let H0 the subspace of all function f ∈ HR such that f(0) = 0 and let α : N → C. For
f ∈ H0, we put

(4.9) P(α)f =

∞∑

n=1

α(n)P0(n)f.

Proposition 4.1. Let α be an arithmetic function. Then P(α) defines a continuous
diagonal map form H0 into itself, if and only if lim supm→∞ |(ν0 ∗ α)(m)|1/m ≤ 1.
Furthermore,

P(ǫ) = iH0
, P(α�β) = P(α)P(β).(4.10)

where

(4.11) ǫ(n) =

{
1 if n = 1
0 otherwise.

Proof. The operator P(α) acts on monomials zm as follows

(4.12) P(α)zm =

{ ∑∞
n=1 α(n) if m = 0,

(ν0 ∗ α)(m)zm otherwise.

Suppose P(α) defines a continuous linear map on H0. It is well-known that

f(z) =

∞∑

m=1

amz
m ∈ HR iff lim sup

m→∞
|am|

1/m ≤ R.

Hence,

∞∑

m=1

(ν0 ∗ α)(m)amz
m ∈ HR ⇔ lim sup

m→∞
|am(ν0 ∗ α)(m)|1/m ≤ R

⇔ lim sup
m→∞

|(ν0 ∗ α)(m)|1/m ≤ 1.

This show that

lim sup
m→∞

|ν0 ∗ α)(m)|1/m ≤ 1.
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The converse follows from the Closed Graph Theorem (see, [10] Theorem 2.15, p. 51]).
To prove (4.10), we use equation (2.9)

P(α�β) =

∞∑

n=1

(α�β)(n)P0(n)

=

∞∑

n=1

(αP0�βP0)(n)

=

∞∑

n=1

α(n)P0(n)

∞∑

n=1

β(n)P0(n)

= P(α)P(β)

�

Many examples of operators acting on the space H0 such as the Euler operator, the
integration operator, the shift operator and the backward shift operator given by

(θf)(z) = zf ′(z), (If)(z) =

∫ z

0

f(t) dt, (Uf) = zf(z), (U∗f)(z) =
f(z)− f(0)

z
,

can be represented by means of the map P(α) for suitable arithmetic function α. For
α = ϕ (where ϕ is the Euler’s totient function), we have

P(ϕ)em = ν0 ∗ (µ ∗ ν1)(m)em = ν1(m)em = mem.(4.13)

On the other hand, we have

lim sup
m→∞

|ν0 ∗ ϕ)(m)|1/m = lim sup
m→∞

m1/m = 1.

Then, P(ϕ) is a continuous map on H0. From (4.13), the mapping P(ϕ) coincides with
the Euler operator θ = z d

dz
on the monomials, hence

(4.14) P(ϕ) = θ.

Moreover, from Proposition 4.1 and the following identity [3]

Jr = ϕ� . . . �ϕ
︸ ︷︷ ︸

r-times

,

we get

P(Jr) = P(ϕ) . . .P(ϕ) = θr.

(Jr called Jordan function)
A similarly arguments show that

P(µ) = e1 ⊗ e1, P(µ ∗ v1) = IU∗.
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