ARITHMETICAL PROPERTIES AT THE LEVEL OF IDEMPOTENCE

FETHI BOUZEFFOUR A , WISSEM JEDIDI B

Abstract. In this paper we give an attempt to extend some arithmetic properties such as multiplicativity, convolution products to the setting of operators theory. We provide a significant examples which are of interest in number theory. We also give a representation of the Euler differential operator by means of the Euler totient arithmetic function and idempotent elements of some associative unital algebra.

1. Introduction

In number theory, an arithmetical, or number-theoretic function is a function $\alpha : \mathbb{N} \to$ C. Their various properties were investigated by several authors and they represent an important research topic up to now. An important property shared by many numbertheoretic functions is multiplicativity: an arithmetical function α is said to be multiplicative, if for all relatively prime positive integers n, m , we have

$$
\alpha(nm) = \alpha(n)\alpha(m).
$$

Examples of important arithmetical functions include: the Euler totient function, denoted φ , and defined as the number of positive integers less than and relatively prime to n. The Möbius function given by

$$
\mu(n) = \begin{cases}\n(-1)^{\omega(n)} & \text{if } n \text{ is a square-free integer} \\
0 & \text{otherwise}\n\end{cases}
$$

where $\omega(n)$ is the number of prime factors of n is also a multiplicative functions. Another important multiplicative function is the Ramanujan sum's, which is defined by [\[8\]](#page-12-0)

$$
c_n(j) := \sum_{\substack{\gcd(k,n)=1\\1\leq k\leq n}} \varepsilon_n^{jk},
$$

where ε_n denotes a primitive *n*-th root of unity and $gcd(k, n)$ to denote the greatest common divisor of the positive integers k and n . These sums fit naturally with other number-theoretic functions. For instance, one has

(1.1)
$$
c_n(1) = \mu(n), \quad c_n(n) = \varphi(n),
$$

For a more elaborate account on the multiplicative functions, we refer the reader to the texts [\[1,](#page-11-0) [2\]](#page-11-1) and the survey articles [\[6\]](#page-12-1).

In this work we suggest to extend the rang of the number-theoretic function and consider functions f such that:

- their domain are the positive integers and whose range is a subset of an unital associative algebra A over \mathbb{C} ;

²⁰¹⁰ Mathematics Subject Classification. Primary 16U99; Secondary 11A05.

Key words and phrases. Arithmetic functions, convolution products, idempotent.

- they satisfy the property

(1.2)
$$
f(nm) = f(n)f(m)
$$
, when $gcd(n, m) = 1$.

Our first objective is to give a variety of significant examples, which are of interest in number theory. Notice that if A is an unital algebra then every number-theoretic function $\alpha : \mathbb{N} \to \mathbb{C}$ can be identified with the function $n \to \alpha(n) e$ (e is the unit of A).

Recall that an element $P \in \mathcal{A}$ such that $P^2 = P$ is called idempotent. A set of idempotent elements P_1, \ldots, P_n is called orthogonal if,

$$
P_i P_j = \delta_{ij} P_i
$$
 and $\sum_{i=1}^n P_i = e$.

In this paper, we consider a set of orthogonal idempotent $P_i(n)$, indexed by two integers $n \geq 1$ and $j \geq 0$, satisfying:

- for every fixed integer n, the sequence $j \to P_j(n)$ is periodic with period n;

- for every arithmetic progression $j + n, \ldots, j + rn$, we have

$$
P_j(n) = \sum_{k=1}^r P_{j+kn}(nr).
$$

Under these conditions and for every fixed $j \geq 0$, the function $n \to P_j(n)$ is multiplicative. Another example considered in this note, consists to replace the root of unity in the Ramanujan sum's by an element s of A satisfying $s^n = e$. Then, the following sum

$$
\sum_{\substack{\gcd(k,n)=1\\1\leq k\leq n}} s^k
$$

is a multiplicative function.

2. Arithmetic properties of Idempotents

2.1. **Multiplicative functions.** Throughout, \mathcal{A} will be an associative unital algebra over C. We recall the following definitions and basic facts

Definition 2.1. A function $f : \mathbb{N} \to \mathcal{A}$ is called multiplicative if

$$
f(nm) = f(n)f(m), \text{ when } \gcd(n, m) = 1.
$$

Lemma 2.1. *If* $f : \mathbb{N} \to \mathcal{A}$ *is multiplicative, then* $f(1)$ *is idempotent.*

Proof. Taking $n = m = 1$, we have $f(1) = f(1.1) = f(1)f(1)$. So, $f(1)$ is idempotent. \Box

The following proposition is a characterization of multiplicative functions.

Proposition 2.2. For an arithmetical function $f : \mathbb{N} \to \mathcal{A}$, the following are equivalent: *1.* f *is multiplicative,*

2. for all $n = p_1^{\alpha_1}$ $\frac{\alpha_1}{1} \ldots p_k^{\alpha_k}$ $\frac{\alpha_k}{k}$ *(the standard form factorization of n), we have*

$$
f(n) = f(p_1^{\alpha_1}) \dots f(p_k^{\alpha_k}).
$$

We naturally extend the convolution product such as Drichlet product, lcm product and unitary product (see, $[1, 14, 12]$ $[1, 14, 12]$ $[1, 14, 12]$) as follows:

(2.1)
$$
(f * g)(n) = \sum_{kl=n} f(k)g(l) \text{ (Dirichlet product)}.
$$

(2.2)
$$
(f \Box g)(n) = \sum_{\text{lcm}(k,l)=n} f(k)g(l) \text{ (lcm-product)}.
$$

(2.3)
$$
(f \cup g)(n) = \sum_{kl=n \gcd(k,l)=1} f(k)g(l) \text{ (unitary product)}.
$$

where $f, g : \mathbb{N} \to \mathcal{A}$.

The convolution products defined in (2.1) , (2.2) and (2.3) are associative but not commutative in general. If, in addition, if for all integers n, m , and every prime numbers p and q, $f(p^n)$ commutes with $g(q^m)$, then we have

$$
f * g = g * f
$$
, $f \Box g = g \Box f$, $f \Box g = g \Box f$.

The following propositions are easy to prove.

Proposition 2.3. *1) If* f *is an arithmetic function on* A*, then*

$$
f * I = I * f = f
$$
, $f \Box I = I \Box f = f$, $f \Box I = I \Box f = f$,

where

$$
I(n) = \begin{cases} e & \text{if } n = 1 \\ 0 & \text{otherwise.} \end{cases}
$$

2) If f *is an arithmetical function such that* f(1) *is invertible element in* A*, then* f *has a unique inverse with respect to the Dirichlet product.*

3) If f is a multiplicative function on A and $b \in A$ invertible element, then the function $n \mapsto bf(n)b^{-1}$ *is multiplicative.*

4) If f *and* g *are multiplicative functions, then* f ∗ g *is also a multiplicative function.*

Proposition 2.4. 1)If A is equipped with a norm ||.|| and f a multiplicative function on A, then $n \to ||f(n)||$ is a multiplicative function. 2)If A is the algebra of $N \times N$ -matrix and f is multiplicative on \mathbb{C}^N , then function $n \mapsto \det(f(n))$ *is multiplicative.*

2.2. Idempotents.

Definition 2.2. Let A be an algebra with unity e. We say that a collection $\{P_j(n)\}_{j=0,n=1}^{\infty}$ is an arithmetic system of idempotent if the following conditions are satisfied:

I) for all i, $j = 1, 2, ...,$ we have $P_i(n)P_j(n) = \delta_{ij}P_i(n)$,

II) for all $n, j = 1, 2, ...,$ we have $P_{j+n}(n) = P_j(n)$,

III) for every arithmetic progression $\{j + n, \ldots, j + nr\}$ we have

$$
P_j(n) = \sum_{k=1}^r P_{j+kn}(nr).
$$

The integer n in $P_i(n)$ is called level of the idempotence.

Theorem 2.5. Let ${P_j(n)}_{j=0,n=1}^{\infty}$ be an arithmetic system of idempotents of A. Then *for arbitrary positive integers* n*,* m k *and* l*, we have*

(2.4)
$$
P_k(n)P_l(m) = \begin{cases} P_j(\text{lcm}(n,m)) & \text{if } \gcd(n,m) \mid l-k\\ 0 & \text{otherwise.} \end{cases}
$$

where j is the unique solution mod $(\text{lcm}(n, m))$ *of the system of congruences*

(2.5)
$$
\begin{cases} j \equiv k \mod(n) \\ j \equiv l \mod(m). \end{cases}
$$

Here $lcm(n, m)$ *is the least common multiple of the integer* n, m.

Lemma 2.6. *(The Chinese Remainder Theorem) The system of congruences*

(2.6)
$$
\begin{cases} x \equiv a \mod(n) \\ x \equiv b \mod(m). \end{cases}
$$

is solvable if, and only if gcd(n, m)|a−b, *any two solutions of the system are incongruent* $mod \operatorname{lcm}(n, m)$.

Proof. From condition III) we can write

$$
P_k(n)P_l(m) = \sum_{s=0}^{m-1} \sum_{r=0}^{n-1} P_{k+sn}(nm)P_{l+rm}(nm).
$$

If $\gcd(n, m) \nmid l - k$, then $k + sn \neq l + rm$ and $P_k(n)P_l(m) = 0$. If $gcd(n, m) \mid l - k$, then by Chinese remainder theorem there exist unique integer j mod $(\text{lcm}(n, m))$ such that

(2.7)
$$
\begin{cases} j \equiv k \mod(n) \\ j \equiv l \mod(m). \end{cases}
$$

Then from II) we get

$$
P_k(n)P_l(m) = \sum_{s=0}^{m-1} \sum_{r=0}^{n-1} P_{j+sn}(nm)P_{j+rm}(nm).
$$

On the other hand, from I) we see that for $0 \le r \le n-1$ and $0 \le s \le m-1$ the term $P_{j+rn}(nm)P_{j+sm}(nm)$ is different from zero, if and only if $rn = sm$, which is equivalent to $r = r' \frac{\dot{n}}{\gcd(n)}$ $\frac{n}{\gcd(n,m)}$ and $s = r' \frac{m}{\gcd(n)}$ $\frac{m}{\gcd(n,m)}$, with $0 \leq r' \leq \gcd(n,m) - 1$. Then

$$
P_k(n)P_l(m) = \sum_{r'=0}^{\gcd(n,m)-1} P_{j+r'\operatorname{lcm}(n,m)}(nm) = P_j(\operatorname{lcm}(n,m)).
$$

Therefore

$$
P_k(n)P_l(m) = \begin{cases} P_j(\text{lcm}(n,m)) & \text{if } \gcd(n,m) \mid l-k\\ 0 & \text{otherwise} \end{cases}
$$

where j is the unique integer $mod (lcm(n, m))$ such that

(2.8)
$$
\begin{cases} j \equiv l \mod(n) \\ j \equiv k \mod(m). \end{cases}
$$

 \Box

Corollary 2.7. *The following hold*

1. If n *and* m *are relatively prime, we have*

$$
P_j(n)P_j(m) = P_j(nm).
$$

2. If n | m*, we have*

$$
P_j(n)P_k(m) = \begin{cases} P_k(m) & \text{if } k \equiv j \mod(n) \\ 0 & \text{otherwise.} \end{cases}
$$

Proposition 2.8. Let α , β : $\mathbb{N} \to \mathbb{C}$ *two arithmetic functions and* $j = 0, 1, \ldots$, we have

(2.9)
$$
\alpha P_j \Box \beta P_j = (\alpha \Box \beta) P_j,
$$

(2.10)
$$
\alpha P_j \sqcup \beta P_j = (\alpha \sqcup \beta) P_j,
$$

(2.11)
$$
\nu_0 * (\alpha \Box \beta) P_j = (\nu_0 * \alpha P_j) (\nu_0 * \beta P_j).
$$

In particular,

(2.12)
$$
P_j \Box P_j(n) = M_2(n) P_j(n), \quad P_j \Box P_j(n) = 2^{\omega(n)} P_j(n)
$$

where

(2.13)
$$
M_s(n) = \begin{cases} 1 & \text{if } n = 1, \\ \prod_{k=1}^r ((a_s + 1)^s - a_k^s) & \text{if } n = \prod_{k=1}^r p_k^{a_k}, \end{cases}
$$

and $\nu_0(n) = 1$.

Proof. Let *n* be a positive integer, we have

$$
\alpha P_j \Box \beta P_j(n) = \sum_{\substack{\text{lem}(k,l)=n}} \alpha(k)\beta(l) P_j(k) P_j(l)
$$

$$
= \sum_{\substack{\text{lem}(k,l)=n}} \alpha(k)\beta(l) P_j(\text{lcm}(k,l))
$$

$$
= (\alpha \Box \beta)(n) P_j(n).
$$

To prove (2.10)

$$
\alpha P_j \sqcup \beta P_j(n) = \sum_{kl=n, \text{gcd}(k,l)=1} \alpha(k)\beta(l) P_j(k) P_j(l)
$$

$$
= \sum_{kl=n, \text{gcd}(k,l)=1} \alpha(k)\beta(l) P_j(n)
$$

$$
= (\alpha \sqcup \beta)(n) P_j(n).
$$

The equation [\(2.11\)](#page-4-1) follows from the following identity [\[9\]](#page-12-4) (2.14) $(\nu_0 * \alpha)(\nu_0 * \alpha) = \nu_0 * (\alpha \Box \beta).$

 \Box

3. Ramanujan sum's

The function $\alpha : \mathbb{N} \to \mathbb{C}$ is called even function (mod d) if $\alpha(n) = \alpha(\gcd(n, d))$ for all n, that is if the value $\alpha(n)$ depends only on the $gcd(n, d)$. Hence if α is even(mod d), then it is sufficient to know the values $f(r)$, where $r \mid d$.

The Ramanujan sum's

(3.1)
$$
c_n(j) := \sum_{\substack{\gcd(k,n)=1\\1\leq k\leq n}} \varepsilon_n^{jk}.
$$

If α is even (mod d), then it has a Ramanujan-Fourier expansion of the form

$$
\alpha(n) = \sum_{r|d} (\mathcal{R}_{\alpha})(r)c_r(n) \qquad (n \in \mathbb{N}),
$$

where the (Ramanujan-)Fourier coefficients $(\mathcal{R}_{\alpha})(r)$ are uniquely determined and given by

$$
(\mathcal{R}_\alpha)(r) = \sum_{\delta \mid d} \alpha(\tfrac{d}{\delta}) c_\delta(\tfrac{d}{r}).
$$

Definition 3.1. We say that a set $\{P_j(n): n \geq 1, j \geq 0\}$ is an arithmetic system of orthogonal idempotent, if

1. ${P_j(n)}_{j,n=1}^{\infty}$ is an arithmetic system of idempotent, 2. for every n

(3.2)
$$
\sum_{j=0}^{n-1} P_j(n) = e.
$$

Consider the sum

(3.3)
$$
C_j(n) = \sum_{\substack{\gcd(k,n)=1\\1\leq k\leq n}} \varepsilon_n^{-jk} S^k(n), \quad j = 0, 1, ...,
$$

where $S(n) = \sum_{j=1}^{n} \varepsilon_n^j P_j(n)$. For every divisor r of n , we denote by

(3.4)
$$
T_{r,j}(n) = \sum_{\substack{\gcd(k,n)=\frac{n}{r} \\ 1 \le k \le n}} P_{k+j}(n).
$$

Note that $T_{n,j}(n)$ is denoted simply by $T_j(n)$.

Proposition 3.1. *The following properties hold*

$$
C_j(n) = \mu * \nu_1 P_j(n), \& T_j(n) = \nu_0 * \mu P_j(n),
$$

where $\nu_k(n) = n^k$.

Proof. We have

$$
\mu * \nu_1 P_j(n) = \sum_{d|n} \mu(d) \frac{n}{d} P_j(\frac{n}{d})
$$

$$
= \sum_{d|n} \mu(d) \sum_{k=1}^{\frac{n}{d}} \varepsilon_n^{-jkd} S_n^{kd}
$$

$$
= \sum_{k=1}^n \varepsilon_n^{-jk} S_n^k \sum_{\substack{d|n \ d|k}} \mu(d)
$$

$$
= \sum_{k=1}^n \varepsilon_n^{-jk} S_n^k \sum_{\substack{d|gcd(k,n) \ d|gcd(k,n)}} \mu(d).
$$

From Theorem 2.1 in [\[1\]](#page-11-0) we have

(3.5)
$$
\sum_{d|\gcd(k,n)} \mu(r) = \begin{cases} 1 & \text{if } \gcd(k,n) = 1, \\ 0 & \text{if } \gcd(k,n) > 1. \end{cases}
$$

Hence

(3.6)
$$
C_j(n) = \mu * \nu_1 P_j(n).
$$

To prove 2)

$$
T_j(n) = \sum_{\substack{\gcd(k,n)=1\\1\leq k\leq n}} P_{j+k}(n)
$$

=
$$
\sum_{k=1}^n \sum_{\delta|\gcd(k,n)} \mu(\delta) P_{j+k}(n)
$$

=
$$
\sum_{\delta|n} \mu(\delta) \sum_{k=1}^n P_{j+k\delta}(n)
$$

=
$$
\sum_{\delta|n} \mu(\delta) P_j(\delta)
$$

Corollary 3.2.

$$
C_j(n) = n \prod_{l=1}^{N} (P_j(p^{\alpha_l}) - \frac{1}{p} P_j(p^{\alpha_l-1}),
$$

\n
$$
T_j(n) = \prod_{\substack{p|n \ p \text{ prime}}} (e - P_j(p)).
$$

Proof. The functions $C_j(n)$ and T_j are multiplicative. So it suffice to compute $C_j(p^k)$ and $T_j(p^k)$ where p is prime number. Form proposition 4.1, we have

$$
C_j(p^k) = \sum_{l=0}^k \mu(p^l) p^{k-l} P_j(p^{k-l})
$$

= $p^k P_j(p^k) - p^{k-1} P_j(p^{k-l})$
= $p^k (P_j(p^k) - p^{-1} P_j(p^{k-1})),$

and

$$
T_j(p^k) = \begin{cases} e - P_j(p) & \text{if } k = 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Since C_j is multiplicative we have

$$
C_j(n) = \prod_{l=1}^N C_j(p^{\alpha_l}) = n \prod_{l=1}^N (P_j(p^{\alpha_l}) - \frac{1}{p} P_j(p^{\alpha_l-1}).
$$

Similarly,

$$
T_j(n) = \prod_{\substack{p|n \ p \text{ prime}}} (e - P_j(p))
$$

 \Box

Theorem 3.3. For fixed integers n and j, $\{T_{r,j}(n) : r | n\}$ is a set of $\tau(n)$ orthgonal *idempotent:*

(3.7)
$$
\sum_{r|n} T_{r,j}(n) = e \text{ and } T_{r,j}(n)T_{r',j}(n) = \delta_{r,r'} T_{r,j}(n)
$$

where $\tau(n)$ *is the number of divisor of n*.

Lemma 3.4. *The operators* $T_j(n)$ *and* $C_j(n)$ *are related by*

$$
C_j(n) = \sum_{r|n} c_n(n/r) T_{r,j}(n), \quad T_{n,j}(n) = \frac{1}{n} \sum_{r|n} c_n(n/r) C_j(r).
$$

Proof.

(3.8)
$$
\sum_{r|n} c_n(n/r) T_{r,j}(n) = \sum_{r|n} c_n(n/r) \sum_{\gcd(k,n)=\frac{n}{r}} P_{k+j}(n)
$$

(3.9)
$$
= \sum_{l=1}^{n} \sum_{r|n} c_n(n/r) \sum_{\gcd(k,n)=\frac{n}{r}} \varepsilon_n^{-(k+j)l} S_n^l
$$

(3.10)
$$
= \frac{1}{n} \sum_{l=1}^{n} \varepsilon_n^{-lj} \sum_{r|n} c_n(n/r) c_r(l) S_n^l
$$

From formula Exercise 2.23 in [\[3\]](#page-11-2), we have

(3.11)
$$
\sum_{r|n} c_n(n/r) c_r(l) = \begin{cases} n & \text{if } \gcd(l,n) = 1, \\ 0 & \text{if } \gcd(l,n) > 1. \end{cases}
$$

Hence

(3.12)
$$
\sum_{r|n} c_n(n/r) T_{r,j}(r) = \sum_{\gcd(l,n)=1} \varepsilon_n^{-lj} S_n^l = C_j(n).
$$

Similarly,

(3.13)
$$
\sum_{r|n} c_n(n/r) C_j(r) = \sum_{r|n} c_n(n/r) \sum_{\gcd(k,n)=\frac{n}{r}} \varepsilon_n^{-jk} S_n^k
$$

(3.14)
$$
= \sum_{l=1}^{n} \sum_{r|n} c_n(n/r) c_r(l-j) P_l(n)
$$

(3.15)
$$
= \sum_{l=1}^{n} \sum_{r|n} c_n(n/r) c_r(l) P_{l+j}(n)
$$

The result follows from formula (see, Exercise 2.23 [\[3\]](#page-11-2))

(3.16)
$$
\sum_{r|n} c_n(\frac{n}{r})c_r(k) = \begin{cases} n & \text{if } \gcd(k,n) = 1, \\ 0 & \text{if } \gcd(k,n) > 1. \end{cases}
$$

Hence

(3.17)
$$
\sum_{r|n} c_n(n/r) C_j(r) = n \sum_{\gcd(k,n)=1} P_{k+j}(n) = n T_{n,j}(n).
$$

 \Box

Theorem 3.5. Let $\alpha : \mathbb{N} \to \mathbb{C}$ be even function (mod n), then for all $j = 0, 1, \ldots, w$ e *have*

(3.18)
$$
\sum_{r|n} \alpha(n/r) C_j(r) = \sum_{r|n} \mathcal{R}(\alpha)(r) T_{r,j}(n).
$$

Proof.

$$
\sum_{r|n} \alpha(r)C_j(r) = \sum_{r|n} \sum_{\delta|r} c_r(r/\delta)T_{\delta,j}(r) \alpha(n/r)
$$

$$
= \sum_{r|n} \sum_{\delta|r} c_r(r/\delta) \sum_{\substack{\gcd(k,r)=\frac{r}{\delta} \\ 1 \le k \le r}} P_{k+j}(r) \alpha(n/r)
$$

$$
= \sum_{r|n} \alpha(n/r) \sum_{k=1}^r c_r(k)P_{k+j}(r)
$$

The Ramanujan sum c_r is periodic function with period equal to r, then from condition III) of the Definition 2.2, we can write

$$
\sum_{k=1}^{r} c_r(k) P_{k+j}(r) = \sum_{k=1}^{r} \sum_{l=0}^{n/r-1} c_r(k + lr) P_{k+lr+j}(r)
$$

=
$$
\sum_{k=1}^{n} c_r(k) P_{k+j}(n)
$$

=
$$
\sum_{\delta|n} c_r(n/\delta) \sum_{\substack{\gcd(k,n) = \frac{n}{\delta} \\ 1 \le k \le k}} P_{k+j}(n)
$$

=
$$
\sum_{\delta|n} c_r(n/\delta) T_{\delta,j}(n).
$$

Hence

$$
\sum_{r|n} \alpha(r) C_j(r) = \sum_{\delta|n} \sum_{r|n} c_r(n/\delta) \alpha(n/r) T_{\delta,j}(n)
$$

$$
= \sum_{\delta|n} \mathcal{R}(\alpha)(\delta) T_{\delta,j}(n).
$$

 \Box

4. Example

We denote by H_R the vector space of all analytic functions on the open ball $B(0, R)$ in complex plane \mathbb{C} . H_R endowed with the topology of compact convergence, it is a complete locally convex topological vector spaces.

For $n = 2, 3, \ldots$, we denote by $S(n)$ the diagonal operator acting on monomials $e_k(z) =$ z^k , $(k = 0, 1, ...)$ as follows

$$
S(n)e_k = \varepsilon_n^k e_k, \quad \varepsilon_n = e^{\frac{2i\pi}{n}}.
$$

Its clearly that $S(n)$ is a continuous map from H_R into its self satisfying $S^n(n) = i_{H_R}$. The primitive idempotents $P_1(n), \ldots, P_n(n)$ related to $S(n)$ are given by

(4.1)
$$
P_j(n) = \frac{1}{n} \sum_{l=0}^{n-1} \varepsilon_n^{-lj} S^l(n).
$$

These obey at the following relations

(4.2)
$$
i_{H_R} = \sum_{j=1}^n P_j(n), \quad P_i(n)P_j(n) = \delta_{ij}P_j(n).
$$

The set ${P_j(n)}_{j,n=1}^{\infty}$ is an arithmetic system of orthogonal idempotent on the algebra $L(H_R)$ of all continuous linear maps of the space H_R . To see this it suffice to prove for all positive integers n and m such that n divide m the following identity

$$
P_j(n) = \sum_{k=1}^{m/n} P_{j+kn}(m).
$$

Indeed, from [\(4.1\)](#page-9-0) and the following formula

(4.3)
$$
\sum_{k=1}^{r} \varepsilon_r^{-lk} = \begin{cases} r, & \text{if } r \mid l \\ 0, & \text{otherwise,} \end{cases}
$$

we can write

$$
\sum_{k=1}^{m/n} P_{j+kr}(m) = \frac{1}{m} \sum_{k=1}^{m/n} \sum_{l=1}^{m} \varepsilon_m^{-l(j+kr)} S^l(m)
$$

=
$$
\frac{1}{m} \sum_{l=1}^d \varepsilon_m^{-lj} S^l(m) \sum_{k=1}^{m/n} \varepsilon_m^{-lkr}
$$

=
$$
\frac{1}{n} \sum_{l=1}^r \varepsilon_n^{-lj} S^l(n)
$$

=
$$
P_j(n).
$$

The operators $C_0(n)$ and $T_0(n)$ acting on the basis $\{e_k\}$ as follows

$$
(4.4) \tC0(n)em = cn(m)em,
$$

(4.5)
$$
T_0(n)e_m = \begin{cases} e_m & \text{if } \gcd(n,m) = 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Indeed, from Proposition 3.1, we have

$$
T_0(n)e_m = \sum_{d|n} \mu(d) P_0(d)e_m
$$

=
$$
\sum_{d|\gcd(n,m)} \mu(d) e_m
$$

=
$$
\begin{cases} e_m & \text{if } \gcd(n,m) = 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Now, if we compare the trace and the determinant of the matrix $[T_0(n)]_N$ (resp. $[C_0(n)]_N$) of the restriction of $C_0(n)$ (resp. $T_0(n)$) to the subspace generated by $\{e_1, \ldots e_N\}$, we get

(4.6)
$$
\prod_{k=1}^{N} c_n(k) = \begin{cases} \prod_{p|n \text{ prime}} (1-p)^{\left[\frac{N}{p}\right]} & \text{if } n \text{ is squarefree,} \\ 0 & \text{if } \text{otherwise.} \end{cases}
$$

(4.7)
$$
\sum_{\substack{\gcd(k,n)=1\\1\leq k\leq n}}\left[\frac{N-k}{n}\right] = N\omega(n) - \sum_{p|n \text{ prime}}\left[\frac{N}{p}\right] = \sum_{r|n} \mu(r)\left[\frac{N}{r}\right],
$$

and

(4.8)
$$
\sum_{k=1}^{N} c_n(k) = \sum_{l=1}^{k} \left(p_l^{\alpha_l} \left[\frac{N}{p_l^{\alpha_l}} \right] - p_l^{\alpha_l - 1} \left[\frac{N}{p_l^{\alpha_l - 1}} \right] \right) = \sum_{d|n} d\mu(n/d) \left[\frac{N}{d} \right].
$$

Let H_0 the subspace of all function $f \in H_R$ such that $f(0) = 0$ and let $\alpha : \mathbb{N} \to \mathbb{C}$. For $f \in H_0$, we put

(4.9)
$$
\mathcal{P}(\alpha)f = \sum_{n=1}^{\infty} \alpha(n) P_0(n) f.
$$

Proposition 4.1. Let α be an arithmetic function. Then $\mathcal{P}(\alpha)$ defines a continuous *diagonal map form* H_0 *into itself, if and only if* $\limsup_{m\to\infty} |(\nu_0 * \alpha)(m)|^{1/m} \leq 1$. *Furthermore,*

(4.10)
$$
\mathcal{P}(\epsilon) = i_{H_0}, \quad \mathcal{P}(\alpha \Box \beta) = \mathcal{P}(\alpha)\mathcal{P}(\beta).
$$

where

(4.11)
$$
\epsilon(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{otherwise.} \end{cases}
$$

Proof. The operator $\mathcal{P}(\alpha)$ acts on monomials z^m as follows

(4.12)
$$
\mathcal{P}(\alpha)z^{m} = \begin{cases} \sum_{n=1}^{\infty} \alpha(n) & \text{if } m = 0, \\ (\nu_{0} * \alpha)(m)z^{m} & \text{otherwise.} \end{cases}
$$

Suppose $\mathcal{P}(\alpha)$ defines a continuous linear map on H_0 . It is well-known that

$$
f(z) = \sum_{m=1}^{\infty} a_m z^m \in H_R \quad \text{iff} \quad \limsup_{m \to \infty} |a_m|^{1/m} \le R.
$$

Hence,

$$
\sum_{m=1}^{\infty} (\nu_0 * \alpha)(m) a_m z^m \in H_R \quad \Leftrightarrow \quad \limsup_{m \to \infty} |a_m (\nu_0 * \alpha)(m)|^{1/m} \le R
$$

$$
\Leftrightarrow \quad \limsup_{m \to \infty} |(\nu_0 * \alpha)(m)|^{1/m} \le 1.
$$

This show that

$$
\limsup_{m \to \infty} |\nu_0 * \alpha)(m)|^{1/m} \le 1.
$$

The converse follows from the Closed Graph Theorem (see, [\[10\]](#page-12-5) Theorem 2.15, p. 51]). To prove (4.10) , we use equation (2.9)

$$
\mathcal{P}(\alpha \Box \beta) = \sum_{n=1}^{\infty} (\alpha \Box \beta)(n) P_0(n)
$$

=
$$
\sum_{n=1}^{\infty} (\alpha P_0 \Box \beta P_0)(n)
$$

=
$$
\sum_{n=1}^{\infty} \alpha(n) P_0(n) \sum_{n=1}^{\infty} \beta(n) P_0(n)
$$

=
$$
\mathcal{P}(\alpha) \mathcal{P}(\beta)
$$

 \Box

Many examples of operators acting on the space H_0 such as the Euler operator, the integration operator, the shift operator and the backward shift operator given by

$$
(\theta f)(z) = z f'(z), \quad (If)(z) = \int_0^z f(t) dt, \quad (Uf) = z f(z), \quad (U^* f)(z) = \frac{f(z) - f(0)}{z},
$$

can be represented by means of the map $\mathcal{P}(\alpha)$ for suitable arithmetic function α . For $\alpha = \varphi$ (where φ is the Euler's totient function), we have

(4.13)
$$
\mathcal{P}(\varphi)e_m = \nu_0 * (\mu * \nu_1)(m)e_m = \nu_1(m)e_m = me_m.
$$

On the other hand, we have

$$
\limsup_{m \to \infty} |\nu_0 * \varphi)(m)|^{1/m} = \limsup_{m \to \infty} m^{1/m} = 1.
$$

Then, $\mathcal{P}(\varphi)$ is a continuous map on H_0 . From [\(4.13\)](#page-11-3), the mapping $\mathcal{P}(\varphi)$ coincides with the Euler operator $\theta = z \frac{d}{dz}$ on the monomials, hence

(4.14) $\mathcal{P}(\varphi) = \theta$.

Moreover, from Proposition 4.1 and the following identity [\[3\]](#page-11-2)

$$
J_r = \underbrace{\varphi \square \ldots \square \varphi}_{r \text{-times}},
$$

we get

$$
\mathcal{P}(J_r)=\mathcal{P}(\varphi)\ldots\mathcal{P}(\varphi)=\theta^r.
$$

 $(J_r \text{ called Jordan function})$

A similarly arguments show that

$$
\mathcal{P}(\mu) = e_1 \otimes e_1, \quad \mathcal{P}(\mu * v_1) = I U^*
$$

.

REFERENCES

- [1] T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976.
- [2] E. Cohen, Representations of even functions (mod r), II. Cauchy products, *Duke Math.* J. **26** (1959), 165–182.
- [3] P. J. McCarthy, Introduction to Arithmetical Functions, Universitext, Springer, 1986.
- [4] N.I. Nagnibida, P.P. Nastasiev, Strongly cyclic elements of the diagonal operator and completeness of one system of analytic functions, Dokl. Akad. Nauk Ukraine SSR Ser. A (1983) 5–8.
- [5] M. B. Nathanson, Additive Number Theory. The Classical Bases, Graduate Texts in Mathematics 164, Springer, 1996.
- [6] I. Niven, H. S. Zuckerman, H. L. Montgomery An Introduction to the Theory of Numbers, 5th edition, John Wiley & Sons, 1991.
- [7] Ø. Ore, Number Theory and Its History, Dover Publications, 1988.
- [8] S. Ramanujan, On certain trigonometrical sums and their applications in the theory of numbers, Trans. Cambridge Philos. Soc. 22 (1918), 259–276 (Collected Papers, Cambridge 1927, No. 21).
- [9] D. H. Lehmer, On a theorem of von Sterneck, Bull. Amer. Math. Soc., 37 (1931), no. 10, 723–726.
- [10] W. Rudin, Functional Analysis, McGraw–Hill, 1991.
- [11] W. Schwarz, J. Spilker, Arithmetical Functions, London Mathematical Society Lecture Note Series, 184, Cambridge University Press, 1994.
- [12] R. Sivaramakrishnan, Classical Theory of Arithmetic Functions, in Monographs and Textbooks in Pure and Applied Mathematics, Vol. 126, Marcel Dekker, 1989.
- [13] L. Tóth, P. Haukkanen, The discrete Fourier transform of r-even functions, Acta Univ. Sapientiae, Mathematica **3**, no. 1 (2011), 5-25.
- [14] R. Vaidyanathaswamy, The theory of multiplicative arithmetic functions, Trans. Amer. Math. Soc. 33 (1931), 579–662.

^a Department of mathematics, College of Sciences, King Saud University, P. O Box 2455 Riyadh 11451, Saudi Arabia.

E-mail address: fbouzaffour@ksu.edu.sa, wissem−jedidi@yahoo.fr

 b DEPARTMENT OF STATISTICS & OR, KING SAUD UNIVERSITY, P.O. BOX 2455, RIYADH 11451,</sup> SAUDI ARABIA AND UNIVERSITÉ DE TUNIS EL MANAR, FACULTÉ DES SCIENCES DE TUNIS, LR11ES11 LABORATOIRE D'ANALYSE MATHÉMATIQUES ET APPLICATIONS, 2092, TUNIS, TUNISIA