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PURELY INSEPARABLE EXTENSIONS AND RAMIFICATION FILTRATIONS
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ABsTrRACT. In this article, we investigate the shift of Abbes and Saito’s ramification filtrations
of the absolute Galois group of a complete discrete valuation field of positive characteristic under
a purely inseparable extension. We also study a functoriality property for characteristic forms.
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1. INTRODUCTION

1.1. In this article, K denotes a discrete valuation field, Ok the integer ring of K, F' the residue
field of K, K& an algebraic closure of K, K the separable closure of K in K&, v : K8 - Q
a valuation normalized by v (K) = Z and Gk the Galois group of K5 over K. We assume that
the characteristic of the residue field F' is p > 0.

1.2.  Assume that O is henselian or complete. When F' is perfect, a classical upper numbering
ramification filtration {G' . }req., on Gk has been known for a long time [14]. This filtration gives
a delicate description of the wild inertia subgroup of G and has many applications in arithmetic
geometry. For instance, this filtration contributes a local invariant called the Swan conductor to
the Grothendieck-Ogg-Shafarevich formula that computes the Euler-Poincaré characteristic of an
{-adic sheaf on a smooth and projective curve over an algebraically closed field of charateristic
p >0 (p # ¢) [8]. In higher dimensional situations, the ramification phenomena involving purely
inseparable residue extension is the main difficulty to generalize the upper numbering ramification
filtration. In [1, 2], Abbes and Saito overcame this difficulty using rigid geometry and defined two
decreasing filtrations {G'}req., and {G ,4}reqs, on Gk called the ramification filtration and
the logarithmic ramification filtration, respectively.
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1.3.  In [1], many properties for the two ramification filtrations are provided. For any r € Qx(, we
have G;;fﬁ)g c G;(“ c G%)log. If F' is perfect, for any r € Qso, we have G;(“ = G%)log = G% -
Let K’ be a finite separable extension of K contained in K*°P of ramification index e. We identify
G = Gal(K®P/K') as a subgroup of Gx. Then we have G¥, € G’ with an equality when K'/K
is unramified, and G, |, G 1, With an equality when K /K is tamely ramified.

1.4. We further assume that K is equal characteristic. Let K’ be a finite and purely inseparable
extension of K contained in K®%#. The homomorphism v : Gx = Gal(K*#/K’) — G is an
isomorphism and we identify G, and Gk by «. If the residue field F' is perfect, we see that
Gy = G for any 7 > 0 by considering the lower numbering filtration and the Herbrand
function (cf. [16, Lemma 2.3.1]). It is nature to ask: is this equality valid for Abbes and Saito’s
two ramification filtrations? If not, what is the shift of the two ramification filtrations under a
purely inseparable extension? In the first half of this article, we answer these questions by the
following theorem, which supplements a property for Abbes and Saito’s ramification theory.

Theorem 1.5 (Theorem 4.8 and 4.7). We denote by e the ramification index of K'/K and by f
the dual ramification index of K'/K (see 2.5). Then we have the following inclusions:
(i) For any r € Qx1,
G c Gy and GI < G
(ii) For any r € Qso,

er r fr T
K’ log o GK,lOg and GK,log o= GK’,log'

When the residue field F' is not perfect, the shifts e and f in the above theorem is optimal in
general (Example 4.11 and 4.12). The proof of the theorem relies on a mimic of the shift property
for separable extensions as in 1.3 and the fact that the Frobenius map induces the identity of
absolute Galois groups.

1.6. In the rest of the introduction, we assume that K is geometric, i.e., there exists a smooth
variety X over a perfect field k of characteristic p > 0, and a generic point £ of an irreducible Cartier

divisor of X such that 0 — ﬁ;’m. For each r € Q=1, we put Ght = Ub>r GZ}(. For any r € Q~1,
the graded piece G/ G;;’ is abelian and p-torsion, and we have an injective homomorphism, called
the characteristic form [11, Proposition 2.28§]

char : Homp (G /G Fp) — Qp, ®oy N,
where N denotes the 1-dimensional F-vector space (F denotes the residue field of Opcsen)
Ny ={ze K*; vi(z) > —r}/{x e K*P; vg(z) > —r}.

Let K'/K be a finite and purely inseparable extension, e the ramification index of K’/K and f the
dual ramification index of K’/K (2.5). By Theorem 1.5, we have canonical maps of graded pieces

(1.6.1) v GG - G /GRE, and AT G /G — G /G

In the second part of this article, we show a functoriality property for characteristic forms (Theorem
7.4). Apply it to the extension K’/K, we obtain the following proposition that describes images
of (1.6.1).
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Proposition 1.7 (Proposition 7.5). Letn be the integer satisfying ef = p™. Then, for anyr € Qs1,
we have the following commutative diagrams

How, (G /G, Fy) — 22> QL @0, Ny

g :

w5 €r

er har
HOm]FP (G%//GK/+7 ]Fp) ; Qlﬁ?l{’ ®67K, NK/

s T+ char 1 VA
HOm]FP( K//GK/7]FP) —— QﬁK’ ®ﬁK, NK/

(v hY l l"
Hom, (G /G ) <225 0L @0, Ni'"

where 0 (resp. o) denotes the canonical map of differentials induced by the inclusion K < K’ (resp.
K — K,z —a™").

There is an analogue of characteristic forms for graded pieces of the logarithmic ramification
filtration, called the refined Swan conductor (cf. [10, Corollary 1.25]). We expect a functorial
property for the refined Swan conductor similar to Proposition 1.7.

1.8. To measure the ramification of an f-adic sheaf on normal varieties of positive characteristic
along a Cartier divisor, Deligne proposed a method by restricting the sheaf to smooth curves.
Later, Abbes and Saito’s ramification theory allows us to study the ramification of the sheaf at
generic points of the divisor. In [7], Esnault and Kerz predicted that the sharp ramification bound
of the sheaf along the divisor by Deligne’s approach coincides with that by Abbes and Saito’s
logarithmic ramification filtrations. In [5], the prediction was rigorously formulated and proved
for rank 1 sheaves on smooth varieties. For any sheaves on smooth varieties, the prediction was
proved in [9]. By Temkin’s result [15], normal varieties has an inseparable local alteration that kills
singularities. We hope that, by applying Temkin’s local alteration and the result in this article,
we may reduce Esnault and Kerz’s prediction for normal varieties to the known smooth situation.

1.9. This article has two parts. The first part is §2 —§4. After preliminaries on fields, we review
Abbes and Saito’s ramification filtrations in §3 and we prove Theorem 1.5 in §4. The second part
is §5-87. We introduce the geometric notation in §5. In §6, we recall the geometric ramification
and characteristic forms for étale covers in [11] and prove the functoriality of characteristic forms.
At last, we apply a functoriality property to fields and give a proof of Proposition 1.7.

2. ALGEBRAIC PRELIMILARIES

2.1. In this article, k denotes a field, k*# an algebraical closure of k, k*P the separable closure
of k contained in k*'® and G}, the Galois group of kP over k. We denote by FE/;C the category
of finite and étale k-schemes and by Fj the functor from FE/, to the category of finite sets that
maps Spec(l) to Homy (I, k*8). The functor Fj, makes FE/k a Galois category of group Gj. For
simplicity, we always put F(I) = Fi(Spec(l)) for an object Spec(l) in FE/;.

Lemma 2.2. Assume that the characteristic of k is p > 0 and let k' be a purely inseparable

extension of k.

(1) Let ! be a finite separable extension of k. Then, the tensor product k' ® 1 is a field and,
after taking embeddings of k' and | into k™€, we have k' @ | = k'l
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(2) Letl' be a finite separable extension of k' and we denote by | the separable closure of k in
U'. Then we have k' @i 1 = k'l =1'.

(3) The functor T : FE’/k — FE’/;C/ sending X to X ®y k' is an equivalence of categories.

(4) For any finite Galois extension l/k, the canonical map Gal(k'l/k") — Gal(l/k) is an iso-
morphism. Taking an embedding of kP in k™8, we have k5P ®j k' = K'k*°P = k'SP,
The canonical map v : Gy — Gy induced by the inclusion k S k' is an isomorphism of
topological groups.

Proof. This proposition is a standard result. When [k’ : k] < 400, (1) and (2) are corollaries of [6,
V, §7, Prop 15 and 16]. In general, k¥’ is a direct limit of finite purely inseparable extensions of k
contained in k’. By a passage to the limit argument, we can reduce (1) and (2) to the case where
[k : k] < +00. By (1) and (2), for any object Spec(A’) of FE/, the functor S : FE/, — FE
sending Spec(A’) to the spectrum of the étale closure of k in A’ is a quasi-inverse of T'. Hence, we
obtain (3). Part (4) is deduced by (1), (2) and [6, V, §10, Théorém 5]. O

Lemma 2.3. Assume that the characteristic of k is p > 0 and let F' : k — k,z — P be the
Frobenius map. Then, the isomorphism v : G — Gy induced by F is the identity map.

Proof. We decompose F : k — k as the isomorphism F’ : k = kP, x ~ 2P and the canonical
inclusion F” : kP — k. Let [ be a finite Galois extension of k. We see that I? is a finite Galois
extension of kP and [ = ki?. We denote by ¥ : Gal(I?/kP) — Gal(l/k) and 7" : Gal(l/k) —
Gal(I?/kP) isomorphisms induced by F’ and F”, respectively. Let o be an element of Gal(l/k). For
any x € [, we have

(FF) ) (@) = (FF")0)(2") = 7' (0))(a") = o(a”) = o(x)" €

ie., (77")(0))(xz) = o(x). Hence, the isomorphism 575" : Gal(l/k) — Gal(l/k) induced by F is
the identity. Hence, v is also an identity. 0

2.4. Assume that the characteristic of k is p > 0 and let k&’ be a purely inseparable extension of k.
For an integer m > 0, we denote by kP the field {x € k'8 |2P" € k}, which is purely inseparable
over k. We say that k'/k is untwisted if k &€ k'P. We say that k'/k has finite exponent if there exists
an integer n > 0 such that k" < k. We say k//k has ezponent n € N if n is the smallest integer
such that k7" < k.

2.5.  We continue the notation of 1.1. For an extension L of K which is a discrete valuation field
with finite ramification index, we denote by O, its integer ring, by m the maximal ideal of &, and
by 71 a uniformizer of L. Assuming that L is contained in K®% we denote by vy the valuation
of K normalized by v (7) = 1. We define an ultra-metric norm on K& by |z|, = p~ V@),
for any z € K2, We have v;, = evik and |- |1 = (| - |k)¢, where e denotes the ramification index
of L/K. If 0y, is complete, for a positive integer n, we denote by D7 the n-dimensional closed
poly-disc of radius 1 over L.

Assume that the characteristic of K is p > 0 and let K’ be a discrete valuation field contained
in K& purely inseparable over K. Let t > 0 be an integer number such that K " < K’ and
K? "' & K'. We call the ramification index of K’/KP? ' the strict ramification index of K'/K.
Assume that K’/K has exponent n > 1. We call the ramification index of K? " /K’ the dual
ramification index of K'/K.
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3. ABBES AND SAITO’S RAMIFICATION FILTRATIONS

3.1. In this section, we assume that O is complete. let A be a finite and flat Ox-algebra,

Z ={z1,...,2n} a finite set of elements generating A over O,
ﬁK[xl,...,:vn]/IZl»A, €Ty — Z;
a presentation of A associated with Z and {fi,..., fi} a finite set of generators of the ideal I.

For any rational number a > 0, we define an affinoid subdomain X of D7 by
X% ={z € Di; vi(f(z)) = aforall f eIz}
={z e Di; vk (fi(z)) =aforalli=1,--- ,m}.

The collection of affinoid domains {X g}  form a projective system when Z goes through all finite
sets of elements generating A over 0. We denote by 7§ ™ (X%) the set of the geometric connected
components of X¢ with respect to either the weak or the strong G-topology. The projective system
76" " (X%)}, when Z goes through all finite sets of generators of A is constant (|1, Lemma 3.1]).
Let Spec(L) be an object of FE x and A = & the normalization of O in L. We define a
functor F& from FE,k to the category of finite sets by sending Spec(L) to m§*™ (X %). We simply

put F% (L) = F(Spec(L)). The canonical injection

(3.1.1) A :Hompg (L, K*8) — X2(K*8)  (¢: L — K&) s (¢(21),...,0(2n)).
induces a surjective map
(3.1.2) X Fi(L) — F(L),

compatible with the continuous G k-actions. For any rational number b > a, the canonical inclusion
XY < X2 induces a surjective map F4 (L) — F&(L) that factors through A : Fr (L) — F&(L).
In summary, we have natural transformations Fr — F¢& and Fo — F& for rational numbers
b>a>0.

Theorem 3.2 (|1, Theorem 3.3|). (1) For each rational number a > 0, there exists a unique closed
normal subgroup G of Gk, such that, for any finite separable extension L of K contained in K>°P,
we have

Fi (L) = Fr(L)/Gk-
In particular, assuming L/K is Galois, we have the following canonical isomorphism
F(L) = Gal(L/K)/Gal(L/K)*

of finite sets with continuous Gk -actions, where Gal(L/K)® denotes the image of G% in Gal(L/K).
(2) Let b > a > 0 be two rational numbers. We have G4 < G4%.

Definition 3.3. Extending GY = Gk, the decreasing filtration {G% }4eq-, in Theorem 3.2 is
called the ramification filtration of Gk . For a real number b > 0, we put
G = a%.
r>b

Let Spec(L) be an object of FE . For a rational number a > 0, we say the ramification of L/K
is bounded by a (vesp. a+) if X\ : Fx(L) — F%(L) is bijective (resp. \ : Fx(L) — Fo(L) is a
bijection for any b > a). Assume that L is a finite Galois extension of K. The quotient filtration
{Gal(L/K)*} e, is call the ramification filtration of Gal(L/K). For a rational number a > 0, the
ramification of L/K is bounded by a (resp. a+) if Gal(L/K)* = {1} (resp. Gal(L/K)*" = {1}). We
define the conductor ¢ of L/K as the infimum of rational numbers r > 0 such that the ramification
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of L/K is bounded by r. Then c is a rational number and the ramification of L/K is bounded by
¢+ but not bounded by ¢ ([1, Proposition 6.4]).

Proposition 3.4 ([1, Proposition 3.7|). (1) For any rational number 1 = a > 0, the group G%
the inertia subgroup of Gx and G}g‘ is the wild inertia subgroup of G .

(2) Let L be a finite separable extension of K contained in K3P of ramification index e. Then,
for any rational number a = 0, we have G5 < GY.. If L/K is unramified, the inclusion is an
equality.

(3) If the residue field F of Ok is perfect, we have G" = G s where G ) denotes the
classical upper numbering filtration ([14]).

3.5. In the following of this section, L denotes a finite separable extension of K of ramification
index e. Let Z = {z1,...,2,} be a finite set of elements generating &, over Ok and we assume
that Z contains a uniformizer of &7,. Let P be a subset of {1,--- ,n} such that {z;};cp contains a
uniformizer of &7, but does not contain 0. We call (Z, P) a logarithmic system of generators of &',
over Uk. For each i € P, we put v (z;) = ¢;. Let

Oklz1,...,2x]/1z = O, x; — 2
be the representation of &, associated with Z and {fi,..., fm} a finite set of generators of the
ideal Iz. For each i € P, we take a lifting h; € Ok[z1,...,,] of the unit u; = 2{/7% € Or, and,

for each pair (i,j) € P?, we take a lifting g; ; € O |21, ..
define an affinoid subdomain Y7 , of D™ by

., ] of the unit v; ; = zfj/zjl € 0. We

vi(fi(z)) =a, for1<i<m
Yyp=1z=(21,...,2,) € Dy VK(xffw%hl(g) a+ezforzeP

VK (:vfj — :v;g”(g)) > a + e;ej/e for (i,5) € P?
We see that Y7 p € X7. The affinoid domains {ng}(z )
goes through all logarithmic systems of generators. We denote by wgeom(Yi p) the set of the
geometric connected components of Y7 , with respect to either the weak or the strong G-topology.

form a projective system when (Z, P)

The projective system {m§"™( Ygp )} (2.P) when (Z, P) goes through all logarithmic systems of

generators is constant ([1, Lemma 3.10]).

We take i . (L) = 75" (Y4 p). Since an object of FE/k is a finite disjoint union of connected
finite étale schemes X = [ [, Spec(L;) over K, the map F Jog 18 canonically extended to a functor
from FE/K to the category of finite sets by sending X to [ [, Fi& log( i). The canonical injection

(3.5.1) p: Hompg (L, K¥8) — Vg p(K™8), (¢ : L — K"8) > (¢(21),...,8(2n)).
induces a surjective map
(3.5.2) B Fr(L) = Firog(L) = m5 (Y2 p),

compatible with the continuous G g-actions. For any rational number b > a, the canonical inclusion
Y} p S Yg p induces a surjective map Fi .. (L) — Fi 1., (L) that factors through 7 : Fx (X) —
Fi 1og(X). In summary, we have natural transformations Frx — F ., and ]:?(.,log — FK log fOr
rational numbers b > a > 0.

Theorem 3.6 ([1, Theorem 3.11]). (1) For each rational number a > 0, there exists a unique
closed normal subgroup G?{,log of G, such that, for any finite extension L contained in K3°P, we
have

]:?(,log(L) = ]:K(L)/Gl;(,log'
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In particular, assuming that L/K is Galois, we have the following canonical isomorphism

]:?(,log(L) - Gal(L/K)/Gal(L/K)ilog
of finite sets with continuous G g-actions, where Gal(L/K)ilog denotes the image of G o, in
Gal(L/K).

(2) Let b> a > 0 be two rational numbers. We have Gl}(’log < G% 1og-

Definition 3.7. Extending G%log by the inertia subgroup Ix of G, the decreasing filtration
{G% 10g}ac, in Theorem 3.2 is called the logarithmic ramification filtration of Gg. For a real
number b > 0, we put

Gl};log = U G;(,log'
r>b

For a rational number a > 0, we say the logarithmic ramification of L/K is bounded by a (resp. a+)
7 Fr(L) = Fi 10g(L) is a bijection (resp. & : Fx (L) — .7-'}’{710g(L) is bijective for any b > a).
Assume that L/K is Galois. The quotient filtration {Gal(L/K)f,}aeq-, is call the logarithmic
ramification filtration of Gal(L/K). For a rational number a > 0, the logarithmic ramification of
L/K is bounded by a (resp. a+) if Gal(L/K)f,, = {1} (resp. Gal(L/K)fo‘g = {1}). We define the
logarithmic conductor ¢ of L/K as the infimum of rational numbers r > 0 such that the logarithmic
ramification of L/K is bounded by 7. Then ¢ is a rational number and the logarithmic ramification
of L/K is bounded by ¢+ but not bounded by ¢ ([AS1, 9.5]).

Proposition 3.8 (|1, Proposition 3.15]). (1) The subgroup G(I);flog 1s the wild inertia subgroup of
Gk.

(2) Let L be a finite separable extension of K contained in KP of ramification index e. Then,
or any rational number a = 0, we have G, € G% .. If L/K is tamely ramified, the inclusion

L,log K,log Y

is an equality.

3) For a rational number a = 0, we have G4 < G4 C G%. If the residue field of K 1is

K K,log K

perfect, we have G‘}()log = %{,C]'

Remark 3.9. Let Ky be a henselian discrete valuation field and we denote by IA(O the fraction
field of the formal completion ﬁAKO. By Artin’s algebraization theorem ([4]), we have a canonical
isomorphism GIA(0 > Gk,. Hence Abbes and Saito’s ramification filtrations are also applied to
henselian discrete valuation fields.

4. SHIFT OF RAMIFICATION FILTRATIONS BY PURELY INSEPARABLE EXTENSIONS

4.1. In this section, we assume that O is complete and that the characteristic of K is p > 0.
Let K’ be a complete discrete valuation field purely inseparable over K contained in K& m the
ramification index of K’/K and v : Gx» — G the isomorphism induced by the inclusion K < K’
(Lemma 2.2).

Lemma 4.2. Let L be a finite separable extension of K contained in K*P and L' = K'L. We

take a set of generators Z = {z1,...,zn} of O over Ok and we extend to a set of generators
Z ={21,- .y 2Zn, Znt1,- -, 2} Of O over Ok We have the following presentations

Ok|z1,.. .,:zrn]/IZ = 01, x5 %,

ﬁK/[Ilv"'v'rn']/IZ'l’ﬁL'; LT = Z4.

We take a logarithmic systems of generators (Z, P) of Or (resp. (Z',P') of Or') and we assume
that P < P'.
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Then, for any rational number a = 0, we have morphisms of affinoids pry : X70* — X§ x ¢ K’
and pry : Y% — Y7 p XK K’ such that the following diagrams are commutative

’

(4.2.1)  Homp (L', K*'8) —X o Xma(ale) Hom e (I, K*&) — s Yoo, (K %)
Y
Hompg (L, K*'#) — X2 (K%8) Hompg (L, K2'8) — Y p(K™8)

where X\, X', u and p' are canonical injections (3.1.1 and 3.5.1).

Proof. Tt is sufficient to show that X7:*(K?#) maps to X%(K®8) (resp. YZ”77‘}3/(Kalg) maps to
Y4 p(K alg)) through the projection

pry i DE(KY8) - DL(KY8),  (t1,... tw) = (t1, ... tn).

This is easy to verify for X2%(K®8) from the definition. The proof for Y7 (K alg) is an analogue
of [1, Lemma 9.6].

Let e (resp. € and m’) be the ramification index of L/K (resp. L'/K’ and L'/L). We have
em/ = ¢'m. For i € P, we put e}, = v/ (z;) and, for i € P, we put e; = v (z;). We have e} = m/e;
for i € P. We fix ¢ € P’ such that z, is a uniformizer of L’. Let w be the unit 7 /7x € Ok,

g € Okr[x1,...,x,] a lifting of Zf,/ﬂ'K/ € O, forie P, h; € Ogr[x1,...,2,] a lifting of zi/zf;,
li € Ogi[z1, ..., xn] alifting of 2,7 /2;, 7; € Ok[w1,...,2,] alifting of 2¢/7%, and, for (i,j) € P,
rij € Oklx1, ..., x,] a lifting of 257 /277 € Op. Let ! = (t1,...,tw) € D, (K?'2) be an element

in Y7/%, (K™¢) and we denote by t = (t1,...,t,) its image in D (K™#). Notice that g(t'), hi(t'),
L;(t'), ri(t) and r; ;(¢) are units in the integer ring Oaic and that vi () = vi(z;) = e;fe ([1,
Lemma 3.9]).

Since pr;_,, maps X 7¢(K?®#) to X (K?#), to show ¢ is contained in Y§7P(Kalg), it is sufficient
to check that, for i € P, we have v ((£¢/7%)—ri(t)) = a and, for (i, j) € P?, we have v ((tjl/tf] )—
7;,;(t)) = a. Take an i € P. Notice that

zi g = (W“Kl//wK)ei (zf//wK/)mei (zz/zfl)E =y (zf//wK/)mei (zz/zfl)E €Oy

Hence u® g™ h¢ € Ok[x1, ..., 2, ] is another lifting of z¢/7%. Since ¢’ is contained in X% (K?#),
we have
VK (ueig’HIEi (i/)hle (f) —ry (i)) > ma.

Notice that t¢/m5 = u® (t¢ /m)"" (ti/tf;)e. To show v ((t¢/75%) — 7i(t)) = a, it is sufficient to
check that

vie (u (6 )" (0/80)° = g™ ()R L)) > ma.
This is deduced from following inequalities (the definition of Y71%,):
VK’ ((tf//ﬁxl)mei _ gmei (f)) > Vi ((tf//m{/) — g(f)) > ma,
vie (/1) = he@)) = vie (8785 = u(0)) = ma.
Take a pair (¢,j) € P. Notice that

/ . .
zjel/zfj = (zj/zfj)el (zf;/zi)ej.



PURELY INSEPARABLE EXTENSIONS AND RAMIFICATION FILTRATIONS 9

Hence h§'l;’ € Ogi[xy, ..., 2, is another lifting of zjl/sz We have
vie (WS (G () =i j(t) = ma.

To show VK((t?/tfj) —14,;(t)) = a, it is sufficient to check that

vie ((05)° (65 /1) = 02 @) =

This is deduced from the following inequalities (the definition of Y77%,):
VK ((tj/ffj)ei - hj’ (f)) > VK ((fj/tfj) - hj(ﬁ')> > ma,

vier (54 /6) = 12)) = vie (15 /12) — 1(2)) = ma

Lemma 4.3. Let a and b be two positive rational numbers.

(1) Suppose that, for any finite Galois extension L/K whose ramification is bounded by a, the
ramification of LK'/K' is bounded by b. Then, we have v(G%.) € G%.

(1’) Suppose that, for any finite Galois extension L/ K whose logarithmic ramification is bounded
by a, the logarithmic ramification of LK'/K' is bounded by b. Then, we have ’Y(Gl}(qog) c
G%(,log'

(2) Suppose that, for any finite Galois extension L/K such that the ramification of LK'/K' is
bounded by b, the ramification of L/K is bounded by a. Then we have G% < ~v(GY%.).

(2’) Suppose that, for any finite Galois extension L/K such that the logarithmic ramification
of LK'/K' is bounded by b, the logarithmic ramification of L/K is bounded by a. Then we
have G4 < v(GY%)).

Proof. The proofs for the ramification filtration and for the logarithmic ramification filtration are
the same. We only verify (1) and (2).

(1) To prove v(G%/) < G4, it is sufficient to show that, for any finite Galois extension L of K
contained in K& we have 7(Gal(LK'/K')?) € Gal(L/K)?%, where 7 : Gal(LK'/K') = Gal(L/K)
denotes the quotient of v : Gg+ — Gx. We denote by Lo the Gal(L/K)%invariant subfield of L.
We have

Gal(Lo/K)* = (Gal(L/K)/Gal(L/K)*)* = {1}.
By the assumption of (1), we have Gal(LoK'/K')® = {1}. Since Gal(LoK’/K")® is the image of
Gal(LK'/K')" in Gal(LoK'/K'"), we have Gal(LK'/K')® < Gal(LK'/LoK"). Hence, we get

7(Gal(LK'/K")?) € 7(Gal(LK'/LoK")) = Gal(L/Lo) = Gal(Lo/K)°.

(2) To prove G% < ~(G%.), it is sufficient to show that, for any finite Galois extension
L of K contained in K& we have Gal(L/K)* < F(Gal(LK'/K')?). We denote by Lg the
7¥(Gal(LK'/K')?)-invariant subfield of L. Hence, LoK’ is the Gal(LK’/K')b-invariant subfield
of LK'. We have

Gal(LoK'/K")* = (Gal(LK'/K")/Gal(LK'/K")*)® = {1}.

By the assumption of (2), we have Gal(Lo/K)® = {1}. Since Gal(Lo/K)* = {1} is the image of
Gal(L/K)* in Gal(Lo/K), we get

Cal(L/K)* € Gal(L/Lo) = 7(Gal(LK'/K")").
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Proposition 4.4. For any rational number a > 0, we have

7( %51) S G(Il( and ’Y(G%g,log) S G?{,log'

Proof. We fix a rational number a > 0. Let L be a finite Galois extension of K contained in K5
and we take the notation of Lemma 4.2. By (4.2.1), we have the following commutative diagram

FreL') = Frme (L)

"Ll lm

FielL) —— Fi(L)

where -|, is a bijection, A and X are surjections induced by A and X (3.1.2) and Pry is induced
by pry (4.2.1). By chasing the diagram, N is a bijection if X is a bijection. By Theorem 3.2, A
(resp. X/) is an bijection if and only if Gal(L/K)* = {1} (resp. Gal(L'/K')™* = {1}). Hence,
Gal(L/K)* = {1} implies Gal(L'/K")™* = {1}. By Lemma 4.3 (1), we get v(G7) < G%.

The proof for the logarithmic ramification filtration is the same as above. O

Lemma 4.5. Let n > 0 be an integer and we denote by v, : G.p-n — G the isomorphism of

Kp
Galois groups induced by the canonical inclusion i, : K — K?" (Proposition 2.2). Then, for any
rational number a = 0, we have

0 (Clepn) = G and 30 (Cepmr 1) = Cletog:

Proof. Fix a rational number a > 0. We put §,, : K» = — K,z — zP" and denote by ¢, : Gx —
G p—n the induced isomorphism. Since ¢, is an isomorphism, we have G = ¥, 1(G‘;{p,n). Since

the composition 6,, and ¢, is the n-th power of the Frobenius map, the composition 7,1, : Gx —
G is the identity (Lemma 2.3). Hence, for any rational number a > 0, we have

Tn (G?{P’") = ('ann)(d};l(G%p,n)) = G%(

The proof for the logarithmic ramification subgroups is the same as above. O

Remark 4.6. When the residue field F' of O is perfect, K is isomorphic to the field of Laurent
power series F((x)). For any finite purely inseparable extension K’ over K, we have a canoni-

cal isomorphism K’ = F((2 ")) = K? ", where n = log,[K’ : K]. Lemma 4.5 implies that
Y(G% ) = G% . for rational number a > 0, where {G'% . }seq-, denotes the classical upper num-
bering filtration of G'rc. This is a proof of the equality v(G% ) = G . mentioned in 1.4 without

involving lower numbering filtration.

Theorem 4.7. Assume that K'/K has strict ramification index s (2.5). Then, for any rational
number a = 0, we have

(471) 7( SKa’) = Gl;( and 7( ;g’,log) = G?(,log'

Proof. Let t > 0 be an integer number such that kP~ < K’ and K ' & K’'. Then, s is
the ramification index of K’/K”ft. Applying Proposition 4.4 to K?° < K’ and Lemma 4.5 to
K < K? ', we obtain (4.7.1). 0

Theorem 4.8. Assume that K'/K has finite exponent and let n be the dual ramification index of
K'/K (2.5). Then, for any rational number a = 0, we have

G cy(Gh)  and Gy € V(G rog)-
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t

Proof. We denote by 0 : G-+ =5 Gk the isomorphism induced by the inclusion K’ < K? ',

where ¢ is the exponent of K’/K. The ramification index of K? /K’ is n. Fix a rational number
a = 0. Applying Proposition 4.4 to 6, we obtain H(G’;(“p,t) S Gy Let v, : Gppn =5 Gk be the

isomorphism induced by the inclusion K € K? " as in Lemma 4.5. Notice that 7, : G o — Gk
is the composition of 6 and 7. By Lemma 4.5, we have

Gi = (1) (G -0) = v(Gr)-
The proof for the logarithmic ramification subgroups is the same. O

Remark 4.9. Keep the assumption of Theorem 4.8. Assume that f = [K': K] < +00. The dual
ramification index of K'/K is less than f. Hence, by Theorem 4.8, we have

(4.9.1) Gi =7(G%) and Gi\oy © (G ios)-

Let L be a finite separable extension of K contained in K% of ramification index m. We have
a canonical inclusion G, € Gg. By [1, Proposition 3.7 and 3.15|, we have G7'* < G% and
GT'og € Gk 1og for any rational number a = 0, which are similar to Theorem 4.7. However, we do
not have inclusions (4.9.1) for L/K, since the number [L : K] cannot bound the ramification and
the logarithmic ramification of L/K.

4.10. In the following of this section, let k be an algebraically closed field of characteristic p > 3,
X = Spec(k[z,y]) a 2-dimensional affine space over k, D the Cartier divisor y = 0 of X, £ the
generic point of D and K = Frac(Ox ¢). We have K = k(z)((y)).
Let
U = Spec(@u[t)/(?? —t —z/y"""), (n>1),

be an Artin-Schreier cover of U = X — D and L/K the finite Galois extension associate to the
cover U/U. We have Gal(U/U) = Gal(L/K) =~ Z/pZ. Let A be a finite field of characteristic
£ # p and .% a locally constant and constructible étale sheaf of A-modules of rank 1 associated to
a non-trivial character ¢ : Gal(U/U) — A*.

Example 4.11. Let
X, = Spec(Ox [u]/(upn —z)) = Spec(k[u, y])

be a radicial cover of X and K,, = K[u]/(u?" —z) the purely inseparable extension of K associated
to the cover X,,/X. We put L,, = LK,, and we have

Ly = Ku[t]/(t? —t —u?" /y?" ") = Ki[t]/ (7 —t' —u/y?),

n—1 i

where t' =t — >, (u/y?)P . We denote by .7, the pull back of .# on U, = X,, xx U. The total
dimension of .7 |k (resp. Fy, |k, ) along the divisor D (resp. D,, = D x x X,,) equals the conductor
of L/K (resp. L,/K,) and the Swan conductor of .#|x (resp. %,|k,) equals the logarithmic
conductor of L/K (resp. L,/K,). On the other hand, by [11, Corollary 3.9.1] and [5, Theorem
5.1], the total dimensions and the Swan conductors of .7 |k (resp. %,|k, ) can be computed by
pull-back to curves. Then, we obtain that

(4.11.1) ¢(L/K) = ciog(L/K) = p™*',  c(Lyn/Kp) = log(Ln/Ky) = p,

where ¢ and cjoz denotes the conductor and the logarithmic conductor, respectively. Notice that
[K, : K] = p" and that K, /K has exponent n and ramification index 1. We claim that there is
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1o € > 0 such that, for any rational number a > 0, G¥ 9% ¢ 7(G%, ) and Ggf;o_ge)a S Y(G%,, 10g)-
n—1

Indeed, taking a = p + ¢/p" ™+, we get

Gal(L/K)P" " =</ = Gal(L/K)E, " > 2,

Gal(Ln /Ko7 = Gal(Ln /K )07 = (1},

n+1 2 n—1 n—1 n—1 1
which imply Gllj{+ —</p o W(G%:E/p ) and GIIJ( 1og_€ o/ an (Glgé{gg ). The assertion
implies that Theorem 4.8 is optimal in general.

Example 4.12. We take n = 0 in 4.10 and let
X' = Spec(Ox[v]/(v" — y)) = Spec(k[z, v])

be a radicial cover of X and K’ = K[v]/(vP — y) the purely inseparable extension of K associated
to X'/X. We put L’ = LK’ and we have

L = K'[t]/(#? —t — z/o*),

We denote by .#’ the pull back of % on U’ = U x x X’. The total dimension of .#’|k along the
divisor D' = D x x X’ equals the conductor of L’'/K’ and the Swan conductor of .#’|k equals the
logarithmic conductor of L'/K'. By [11, Corollary 3.9.1] and [5, Theorem 5.1] again, we compute
the total dimension and the Swan conductors of .%’| ks by pull-back to curves. We obtain that

o(L/K) = clog(L/K) = p, ¢(L'/K') = ciog(L'/K') = p*

Notice that the extension degrees of K’/K is p and that K’/K has exponent 1 and ramiﬁcation
index p. We claim that there is no € > 0, such that, for any rational number a > 0, G(p e G%

and G;?/,li)g“ < G‘}()log. Indeed, taking a = p + €, we have

Gal(L'/K'y*~<" = Gal(L'/K")0,~" = Z/pZ and Cal(L/K)P** = Gal(L/K)l: = {1},
which imply 'y(GII){z, ) & GEFC and y(G%, log) o G’?fog. This assertion implies that Theorem 4.7
is optimal in general.

Remark 4.13. Teyssier proposed a question [16, Question 1] as follows. Let g : Y — Z be a
k-morphism of irreducible k-schemes of finite type and ¢ a bounded complex of constructible étale
sheaves of A-modules on Y with Supp(¥¢) = Y. Can we bound the wild ramification of Rg,¥ in
terms of the wild ramification of ¢ and the wild ramification of g (precisely, the ramification of
the sheaf RgyA)?

In fact, when dimg Z > 2 and g : Y — Z a finite radicial cover, the degree of the purely
inseparable extension should also be considered in bounding the wild ramification of Rg«¥. Here
is an example. For an étale sheaf on smooth k-variety, Saito constructed the characteristic cycle
which is a cycle on the cotangent bundle of the variety [12]. The characteristic cycle is the finest
ramification invariant for an étale sheaf on a variety as far as we known. We take assumptions in
Example 4.11. Let i : X,, — X be the canonical projection and 3 : U, — X,, and j : U — X the
canonical injections. Since h : X,, — X is finite, surjective and radicial, it gives an equivalence of
categories of étale sites of X,, and X. We have

RhunFp = hapFp = 517  and RhypA = hepA = jiA

By [12, Theorem 7.14], for a sheaf of rank 1 and its ramification is non-degenerate along the
ramified divisor, the coefficient of the non-trivial part of the characteristic cycle is contributed by
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the total dimension of the sheaf along the divisor. Hence, by (4.11.1), we have
CC(jF) = —[TX X] —p"*[D - {dw)],
CC) = —[Tx, Xn] = [D - {d2)],
CO(]‘jn) 7[T§(an] - p[Dn : <du>]

We see that coefficients of CC'(ji.%) rely on not only those of CC(jiA) and CC(y1.%,) but also the
extension degree of h : X,, — X. This computation can also be derived from [13, Theorem 4.9].

5. GEOMETRIC PERLIMILARIES

5.1. Leti:Z — X be a closed immersion of schemes, D an effective Cartier divisor of X and
X’ the blow-up of X along Dz = D xx Z. We denote by X(P?) the complement of the proper
transform of D in X’ and we call it the dilatation of (X, Z) along D. We have a canonical projection
g: XP2) — X. The pull-back D of D in X(P2) is a Cartier divisor of X (P2) with the image Dz
in X. If X = Spec(A) is affine, if D is defined by a non-zero divisor f of A and if Z is defined by
an ideal I of A, we have

x(Pz) _ Spec(A[I/f])
for A[T/f] < A[1/f].

Let A : Y — X be a morphism of schemes such that F = D x x Y is an effective Cartier divisor
of Y and i : W — Y a closed immersion such that h o' : W — X factors through i : Z — X. By

the universality of the dilatation, h : Y — X is uniquely lifted to a morphism By Ew) o x(D2),

5.2. Let X be a scheme, D an effective Cartier divisor of X, M = mD a Cartier divisor supported
on D, Z,, = Spec(Ox|[t]/(t™)) the m-th thickening of the zero section of the line bundle A% and

XM] the dilatation of (A%, Z,,) along the divisor A},. We denote by X ™) the complement of

the proper transform of Z,, in X®) and we call it the inflation of (X, D) of thickening M. If
X = Spec(A) is affine and if D is associated to a non-zero divisor f of A, we have

XD = Spec (A[t, s*/(f — t™s))

Let Y be a scheme, E an effective Cartier divisor of Y and h : Y — X a morphism such that
h*D = eE. Let N = nE be an effective Cartier integer of Y such that [ = en/m is an integer and

Y the inflation of (Y, E) of thickening N. By the universality of the blow-up, the morphism
hi Ay — Ak, (ty) — (', h(y))

is uniquely lifted to a morphism

(5.2.1) bYW o X0,

5.3. Let X be a scheme, R a Cartier divisor of X, & a locally free Ox-sheaf on X and F =

Spec(Symg, (€Y)) the vector bundle associated to &. We denote by E(R) the vector bundle
Spec(Symg, (6 ®ox Ox(R))").
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5.4. Let k be a perfect field of characteristic p > 0, S a connected k-scheme, E a vector bundle over
S and G a finite étale p-torsion commutative group scheme over S. We denote by GV the Cartier
dual of G and by E" the dual vector bundle of E. Let a be an element in Homg, s(EY,A}) =
EY(S) and $ an element in Homgp, 5(F,, G) = G(S). The pair of group morphisms (c, §) give an
extension E in Extg(E, G) by following diagram

(5.4.1) 0 F, AL 1> AL 0
| =]
0 F, E' E 0
|1
0 G E E 0

where horizontal lines are exact sequence of group schemes, L : AL — A{ is the Lang’s isogeny
L*(t) = t? — ¢ for the canonical coordinate ¢ of A}, E’ is the pull-back of L : AL — A{ by
a:E— Al and E is the push-out of E' by 8 :F, — G. Etale locally on S, we have the canonical
isomorphism Homg,, 5(GY,EY) — EY(S) ®r, G(S). The diagram (5.4.1) gives a morphism of
abelian groups

(5.4.2) Hom,, (G, EY) — Extg(E, G).

by étale descent. Let S, be the fiber product S X g Fn k where F,™ denotes the inverse of the
n-th power of the Frobenius of k. Let m, : S, — S be the composition of the first projection
pry : Sp — S and the n-th power of the Frobenius of S. The map pr; : S, — S is a k-morphism
and gives an equivalence between étale sites on S and S,,. Hence, the pull-back Exts(E,G) —
Extg, (E xg Sp, G xgSy,) is an isomorphism. The map (5.4.2) give rise to a morphism of abelian
groups

(543) h_H)lHOmgpysn (GV X9 Sn, EY XS Sn) d Eth(E, G)

n

Proposition 5.5 ([11, Proposition 1.20, Lemma 1.21]). We keep the notation and assumptions of
5.4. Then the map (5.4.3) is an isomorphism. Let v : G¥ — EY be an element of the left side of
(5.4.3) and E, the corresponding extension of E by G. Then, E, 5 is connected for any geometric
point 5 of S, if and only if ¢ : G¥ — EY is a closed immersion.

6. RAMIFICATION OF ETALE COVERS

6.1. In this section, let k denotes a perfect field of characteristic p > 0, X a connected, separated
and smooth k-schemes, D an irreducible effective divisor of X smooth over Spec(k), i : D — X and
j:U =X — D — X the canonical injections, and § : X — X xj X the diagonal map. We denote
by (X x X)’ the blow-up of X x X along 6(D) and by (X x; X)(P) the complement of the proper
transforms D x; X and X xj D along in (X x; X)'. We consider (X x; X)(P) as an X-scheme by
the second projection. This projection is smooth ([11, Lemma 2.1.3]). By the universality of the
blow-ups, the diagonal § : X — X xj; X induces a closed immersion 6(P) : X — (X x;, X)(P). We
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denote by D(P) the pull-back of D = X in (X x; X)P). We have the following Cartesian diagram

(6.1.1) D ‘ U
| [ B
pWD) Xka(D)<—U><kU
l O lprgm O lprz
D X U
where i(P) and j(P) are canonical injections and préD) is the second projection. Notice that the

composition of §(P) and pr( ) is the identity of X. We see that the closed subscheme D) is an
irreducible effective divisor of (X x; X)) smooth over Spec(k) ([11, Lemma 2.1.3]).

6.2. Let M = mD be an effective Cartier divisor of X supported on D and X M) the inflation of
(X, D) of thickening M. The scheme X ) is a smooth k-scheme ([11, Lemma 1.18]). Let 3M)
X)) 5 X and v . XM) _, A} be canonical projections. The divisor DM — 4(M)*({0}) is an
irreducible effective divisor of X() smooth over Spec(k) and we have commutative diagram with
Cartesian squares (loc. cit.)

~ . ~ (M)
(6.2.1) mDOn 0 g Gy xi U
i
D X U
i J

For an effective rational divisor R = rD of X such that rm is an integer, we denote by RMM) the
effective divisor O)*(R) = rmD®) of X)),

We denote by (X xj X)(P:M) the inflation of ((X xj X)P), D(P)) of thickening mD®P). Let
M) (X x . X)PM) 5 (X, X)P) and M)+ (X x . X)(P-M) — Al be the canonical projections.
Applying (6.2.1) to the smooth k-scheme (X x; X)(P:M) | we see that (X x; X)) and the
irreducible effective divisor D(P-M) = »(M)*({0}) are smooth over Spec(k), that ¢(*)*(D(P)) =
mDP-M) and that the complement of D(P-M) in (X xp X)PM) s G,y xp U x3 U.

By (5.2.1), the map 6(P) : X — (X x;, X)P) uniquely induces a closed immersion

§OA L XD (X, X)(PM)

and the second projection préD) (X xp X )(D ) — X uniquely induces a projection

prgD M) (X % X)(PAM) X (M)
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Noticing that 3 M)opr(D M) pr gb(M and that pr(P?-M) ¢ §(D.M) = id3 . Combining (6.1.1)
and (6.2.1), we have the following Cartesian diagram

(M)

(6.2.2) DOD X0 ! G % U

l 0 l(;(D,M) 0 Lidxéy
(D M)

D(D’M) l(D—M;(X XkX)(DM)<—Gm Xk(U X e U)

l d lpr;D’M) O ‘/idxprg

Do T G X3 U

(M) j(M)

(M)

where compositions of vertical arrows are identities.

6.3. Let R=rD (r € Q=1) be an effective rational divisor of X and M = mD an effective divisor
such that mr is an integer. We denote by (X x ; X)#M) the dilatation of (X x, X)) X (D.M))
along the divisor m(r — 1)DP-M) by pr(R’M) (X xp X)BM) _, X(M) the composition of the
canonical projections (X x; X )M — (X x; X)(P:M) and pr(D M) (X xp X)(2M) _, X(M) ang
by DUM) the pull-back of D) « X(M) in (X xj, X)EM) The scheme DFM) s an irreducible
divisor of (X xp X)M) and both DY) and (X x;, X)M) are smooth over Spec(k). By the
universality of the blow-up, the map §(P-M) . X@n _, (X xp X)P:M) uniquely lifts to a closed
immersion
SR XOM) (X, X)(BM)
The diagram (6.2.2) lifts to the following Cartesian diagram

~ . ~ (M)
(6.3.1) pon 0 gon G x5 U
l 0 ng(R,M) O Lidxéy
(R, M) (R M)
D(R’M) —_— (X X[ X)(R’M) -~ Gm X e (U X e U)
l O lpréR’M) O Lidxm
D) X (M) — G ¥ U

(M) j

The scheme DM s a vector bundle over D) and we have ([11, Corollary 2.9]), (5.3)
(6.3.2) DEM) 2, (TX x v D)= ROV,
Proposition 6.4 ([11, Lemma 2.6]). We take the notation and assumptions of 6.3. Let

G (X XkX)(R’M) H)’Z(]w) XkX

be the unique morphism induced by the projection prgR’M) D (X xyg X)(R’M) — XM gnd the

compositz'on M) Opr(R'M) D (X xg X)EM) X and T : )N((M) — XD x . X the graph
of B . XM . X We denote by PEM) the dilatation of (X x; X Fg(X(M))) along the
effective divisor R x . X ofX(M %1 X (6.2). Then, © : (X x, X)BM) — X M) 5 X is uniquely
lifted to an open immersion 0: (X xp X)(BM) _, p(RM) g its image is the complement of the
proper transform of XM) x,. D < X(M) %, X in P(RM),
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6.5. Let V be an étale torsor over U of group G, A : G — G x G the diagonal homomorphism,
W the quotient (V' x; V)/A(G) and W — U xj, U the canonical projection. The diagonal map
dv : U — U xU is uniquely lifts to an injection ey : U — W. Let R = rD (r € Q=1) be an effective
rational divisor of X and M = mD an effective divisor such that mr is an integer. We denote by
WUEM) the integral closure of (X xj X)M) in G,, x, W, by h: WEM) (X x; X)EM) the
canonical projection and by ¢ : X)), W(RM) the unique lifting of id x ey : Gy, X U — Gy X, W.
We have the following commutative diagram with Cartesian squares

(651) GkaU%GkaW%Gka(UXkU)

P A ¥

X (M) W (R.M) — (X xj X)EM)

Definition 6.6. Let V be an étale torsor over U of group G, R = rD (r > 1) an effective
rational divisor of X and M = mD an effective divisor such that mr is an integer. We say that
the ramification of V' over U along D is bounded by R+ at a point x € D if the finite morphism
h: WEM) (X x, X)EM) in (6.5.1) is étale on a Zariski neighborhood of () ~1(x)) (6.2.1).
We say that the ramification of V' over U along D is bounded by R+ if the finite morphism
h: WEM) (X x, X)EM) s ¢tale on a Zariski neighborhood of (D).

Remark 6.7. Let m’ be an integer divisible by m and M’ = m’D. We have a surjection « :
XM, X(M) (59.1). By [11, Lemma 2.13], the map i’ : WEM) (X x, X)(BM) associated to
(R, M') is étale on a Zariski neighborhood of #' € X ™) if and only if h : WEM) — (X x, X)EM)
is étale on a Zariski neighborhood of the image of 2’ in X)) Hence, Definition 6.6 is independent
of the choice of the divisor M. In the following of this section, we fix M and we omit it in the
superscript of all notation for simplicity. The ramification of V /U along D is bounded by R+
implies that it is also bounded by S+ for an effective divisor S of X supported on D satisfying
S = R (loc. cit.).

6.8. Let V be an étale torsor over U of group G. Assume that the ramification of V' /U along D is
bounded by R+, for an effective rational divisor R = rD (r > 1). Fix an effective divisor M = mD
of X such that mr is an integer. We denote by WO(R) the largest open subscheme of W) which
is étale over (X x; X)), We define E() by the following Cartesian diagram

(6.8.1) E(R) Wi

Lo )
D) 5 (X x; X))

By [11, Corollary 2.15], h| g : EM — D) is an étale homomorphism of smooth group schemes
over D. We denote by E(° the unique connected normal subgroup scheme of E(9 | by hg :
E®e — D) the restriction of hlpw : EW) — D) and by GU) the kernel of hg : E()° — D)
By [11, Proposition 2.16], we have
(i) the group scheme E®° is commutative and p-torsion;
(ii) the map ho : EF° — DU is an étale and surjective homomorphism of group schemes
and G is an étale commutative p-torsion group scheme over D.
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Definition 6.9. We keep the notation and assumptions of 6.8. We say that the ramification of
V /U along D bounded by R+ is non-degenerate if the étale homomorphism hy : EWe . DR ig
finite.

The canonical projection D > Disa principal bundle of fiber G,,. The E—morphism ho :
Ee . D) i invariant under the canonical G,,-action. Hence, hg is finite after replacing D
by a Zariski open dense subscheme. Hence, the ramification of V /U along D bounded by R+ is
non-degenerate after replacing D by a Zariski open dense subscheme.

Definition 6.10. We keep the notation and assumptions of 6.8 and we assume that the ramification
of V/U along D is non-degenerate. Let GU9Y be the Cartier dual of G and DUV = (T*X x x

D)(R) the dual vector bundle of D®). The exact sequence of groups schemes
(6.10.1) 0—GH® - g, DB 0
corresponds to an injective homomorphism

charg(V/U) : G — DIV — (T*X x x D)(R)

of group schemes over a finite radicial cover D,, over D (5.4 and Proposition 5.5). We call
charg(V/U) the characteristic form of V /U along D with multiplicity R.

6.11. Let f : X’ — X be a morphism of connected, separated and smooth k-schemes, D’ an
irreducible effective divisor smooth over Spec(k) such that eD’ = f*D and U’ the complement of
D’ in X’. We have the following commutative diagram

i /

o xr<l U

o |
—=X=<=—U
i J

/ !/

S~

Let R = rD (r € Q=1) be a rational effective divisor of X. We fix an effective divisor M = mD
of X such that m’ = m/e and m/r are integers and fix an effective divisor M’ = m’D’ of X'. The
morphism

idx f: Ay — Ak, (t,2") = (t, f(2"))

induces a canonical morphism f : X’ — X of inflations (5.2.1). We denote by R’ = f*R the
pull-back of R on X’. By the left square of (6.2.1), we have the following Cartesian diagrams

D'—=D R—>R
S, 7 S, 7
X' —— X' —X

By the universality of the dilatation and Proposition 6.4, fN: X’ — X induces the morphism

f’ : (X, X ke X,)(R/) — (X X ke X)(R)
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that makes the following diagram commutative

(X! xp X)) Lo (X 5, X))

’
]| |

X! _ X
f

We denote by D'(R) the pull-back of D' = X’ by prgR/) (cf. (6.3.1)). The diagram above induces

the homomorphism X : D'(B) — D#) 5 D' of vector bundles over D’ which is functorial to the
isomorphism (6.3.2), i.e., we have the following commutative diagram (cf. [3, 4.8])

DR~ (TX’ X xr E/)(iél)

A J/Of

D@R) x s D' —=» (TX xx D')(—R')

6.12. We keep the notation and assumptions of 6.11. Let V' be an étale torsor of U of group G
and we assume that the ramification of V /U along D is bounded by R+. Let V' = U’ x; V be the
pull-back étale torsor over U’, W’ the quotient (V' x; V')/A(G) and ¢ : U’ — W' the unique
lifting of the diagonal dyr : U" — U’ x; U’. We have the following commutative diagram with
Cartesian squares

Gon X5 W =Gy x, (U x4 U') —— (X' x X))
G xpg W ——= Gy, X (U x, U) —— (X xp, X)(R)

We further denote by W/(E) the integral closure of (X’ x; X')&) in G,, xx W’ and by ¢’ : X' -
W' E) the unique lifting of id x ey : Gy, X U — G, xp W’. We have the following commutative
diagram

X W —— (X x; X))
We denote by WA(R/) the largest open subscheme of W/(®) which is étale over (X’ x;, X')(®). The
canonical morphisms
W/(R,) — W(R) X(XXkX)(R) (X/ X ke X’)(R/) — (X/ X ke X’)(R/)

are finite and surjective. Notice that WO(R) X (xxpx)® (X xg, X)) is ¢tale over the smooth

k-scheme (X’ xj, X’)(R/). It is also a smooth k-schemes. Hence, by the definition of Wé(R,),
have an open immersion

we

(6.12.1) W % (e xym (X g XD w0,
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The inclusion (6.12.1) implies that ¢/(D’) is contained in Wé(R/) if (D) is contained in WéR).
Namely, the ramification of V'/U’ is bounded by R’+ if the ramification of V /U is bounded by
R+ (Definition 6.6).

Assume that the ramification of V /U is bounded by R+ and non-degenerate. After replacing
D’ by a Zariski open dense subset, we may assume that the ramification of V’/U’ bounded by
R'+ is non-degenerate. We denote by E') the pull-back of D'F) < (X' x;, X")E) by n’ :
WA(R/) — (X" xp X)) by E'B)° the unique connected normal subgroup scheme of E'(F) | by
hy E'®)° — D'(B) the restriction of the canonical projection E/E) — D'(B) and by G/(B) the
kernel of the homomorphism hj : E'(®)° — D'(B) (¢f. (6.8.1) and (6.10.1)). Pulling-back the

injection (6.12.1) by E'(R) < WS(R/), we obtain the following open immersions
(6.12.2) E® x pony D'F) s BB,

Confering [11, Lemma 1.2, Proposition 1.5], the injection (6.12.2) is also a homomorphism of group
schemes over D’. Hence, it induces the following injective homomorphism

(6.12.3) E'FDe — U9y oy DI
and the following injection of kernels of hy and hj,
L GE) g X 5 D'

Proposition 6.13 (cf. [11, Proposition 2.22]). Keep the notation and assumptions of 6.11 and
6.12. We have a commutative diagram of group schemes

(6.13.1) G s [y 2V pyy s Dy

G(R’)v D/(R')v
char (V' /U")

over a radicial cover D, of D' (5.5).

Proof. The characteristic form charg(V/U) : GHY x5 D' — D®)Y X 7 D' corresponds to the
exact sequence of group schemes

(6.13.2) 0— G x5 D — B x s ' — DEF) x = D' -0,

Then, the composition of AV o charg(V/U) associates to the pull-back of (6.13.2) by A, i.e., the
following exact sequence

(6.13.3) 0— G x5 D — EW° x popy D' p'(ED) g,
The characteristic form charg (V//U’) : G'B)Y — D'(B)Y corresponds to the exact sequence
(6.13.4) 0— GWE) _, gr(Re _, py(R) _,

The composition of ¢¥ o chargr (V//U’) associates to the push out of the exact sequence (6.13.4)
by ¢ : GH) — G x 7 D'. The injection (6.12.3) induces the following commutative diagram of
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group schemes over D’

(6.13.5) 0 GE) E(R)o DI(E) 0

Lo |

0—— G(R) XD ﬁ/ —— E(R)O X D(R) D/(R/) —— D/(R,) —0

where horizontal lines are exact sequences and the left square is Cartesian. Notice that E(F)° x D(R)

D'F) is the push-out of E'F)° and G X 3 D' over GB). Hence, A\¥ o chargr(V/U) and ¥ o
charg (V'/U") correspond to the same exact sequence (6.13.3). Hence we obtain the commutativity
of the diagram (6.13.1). O

7. FUNCTORIALITY OF CHARACTERISTIC FORMS

In this section, let k& be a perfect field of characteristic p > 0 and K a discrete valuation field
which is a k-algebra with &'k henselian.

Definition 7.1. We say that K is geometric if there is a triple (X, D, ), where X is a connected,
separated and smooth k-scheme and D an irreducible Cartier divisor of X smooth over Spec(k)
with the generic point £, such that ﬁ}‘(f = Ok. Such a triple (X, D,€) is called a geometric
realization of K. In this case, the residue field F = k(&) of Ok is of finite type over k and Ok is a
finite 07, -algebra. The absolute differential module Q%K = Q%K K= Q}ﬁk Jor. is a finite generated
Ok -module.

We say that an extension K'/K of geometric discrete valuation fields is geometric if there
exist geometric realizations (X, D, ¢) and (X', D’,¢’) of K and K’, and a dominant k-morphism
g: X’ — X such that g(§) = &', that D' = (D X x X');eqa and that the diagram

ﬁ§(7£ ; ﬁK

o

ﬁ%',f’ _— ﬁK/
is commutative.

Proposition 7.2 (|11, Proposition 2.27, Proposition 2.28]). Let K be a geometric discrete valuation
field, L a finite Galois K-algebra of group G , (X, D,§) a geometric realization of K and V an
étale G-torsor of U = X — D such that Spec(L) = Spec(K) xx V.

(1) Then, for a rational number r > 1, the ramification of L/K is bounded by r+ (Definition
3.3) if and only if, the ramification of V /U along D is bounded by R+ (R =rD) at £ € D
(Definition 6.6).

(2) Assume that the ramification of L/K has conductor r > 1, i.e., G" # {1} and G"™" = {1}.
After replacing X by a Zariski open dense neighborhood of &, we may assume that the
ramification of V /U along D is bounded by R+. Then, we have Gt = GéR), where G(F)

denotes the étale group scheme over D constructed in 6.8 and & a geometric point above
& € D factors through D. In particular, G" and G%/G?‘ are finite and abelian p-torsion
groups.
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Definition 7.3. We keep the assumption of Proposition 7.2 (2). The stalk of the injective homo-
morphism charz(V/U) : GV — DY — (T*X x x D)(R) (6.10) at a geometric point & above
¢ € D gives the following injective homomorphism, called the characteristic form of L/K
(7.3.1) char(L/K) : Homg (G",F,) — Qb ®cy Ng
where N denotes the 1-dimensional F-vector space

Ny ={ze K*; vi(x) > —r}/{x e K*P; vk (z) > —r}.

Pass (7.3.1) to the absolute Galois group of K. Then, for any rational number r > 1, we have the
following injective homomorphism, called the characteristic form

char : Homp (G /G3F . Fp) — Qp, Qo Ny .

Theorem 7.4. Let K'/K be a geometric extension of geometric discrete valuation fields, e the
ramification index of K'/K and v : G+ — Gk the induced morphism of absolute Galois group.
Then, for any r € Q=1, we have (G, = G and the following commutative diagram

(7.4.1) Homg, (G /G Fy) — 2%~ QL ®g, N

'vvl l(f
+ char 1 ——=—er
HOm]FP( %//G%I 7]Fp) —— QﬁK’ ®ﬁK/ NK’

where 0 denotes the canonical map of differentials induced by the inclusion Ok < Ok.

Proof. Let L be a finite Galois extension of K of group GG, L’ a Galois extension of K’ which is a
component of L ®x K’ and H = Gal(L'/K").

To verify v(G%) < G for any r € Q-1, it sufficient to show that H°" = {1} if G" = {1}. Let
(X, D,§) and (X', D', ¢') be geometric realizations of K and K’ and g : X’ — X the map as in
Definition 7.1. After replacing X by a Zariski neighborhood of £, we can find an étale G torsor V'
of U = X — D such that Spec(L) =V xy Spec(K). We put V/ =V xx X’'. By the construction
in 6.12, we see that the ramification of V//U’ along D’ is bounded by esD+ for an s € Q~; if the
ramification of V/U along D is bounded sD+. Hence, for any s € Q=1, we have H®t = {1} if
G**t = {1} (Proposition 7.2). Then, we have

G ={1} = Gr=9% = {1}, for some €> 0;
= HEr—eOt — (1) = H = {1).

To verify the commutativity of the diagram (7.4.1), we only need to check it for a finite quotient

of Gi. We replace Gk by G and Gk by H. We further replace L by the sub-field LE" . We have
G™ = {1} and hence H*"* = {1}. We are reduced to show the commutativity of the diagram

, char(L/K) —r
(7.4.2) Homﬂ:p (G ,Fp) Qtlﬁk Qo N
7Y l le
har(L'/K") ——er
Homg, (H", F,) — Qb ®a, Ny

We take the geometric realizations of K, K" and L as above and we put R = rD and (R’ = erD’).
Notice that g : X’ — X is dominant. We may shrinking X (resp. X’) by a Zariski neighborhood
of £ (resp. &) such that the ramification of V/U along D is bounded by R+ and non-degenerate
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(resp. the ramification of V’//U’" along D’ is bounded by R’'+ and non-degenerate). Taking the
notation in 6.11 and 6.12, we have the commutative diagram (6.13.1) of group schemes over a
radicial cover lw);l of D'. Let € be a geometric point above £’ € D’ that factors through 5; Taking
the stalk of the diagram (6.13.1) at &', we obtain (7.4.2). O

Proposition 7.5. Let K'/K be a geometric extension of geometric discrete valuation field. We
assume that K'/K is purely inseparable, untwisted and has finite exponent (2.4). We denote by e the
ramification index of K'/K, by f the dual ramification index of K'/K (2.5) and by v : G — Gk
the induced isomorphism of absolute Galois groups. Notice K'/K has exponent n for ef = p™.
Then, for any r € Q=1, we have the following commutative diagrams

Homg, (G /G, F,) — 220 QL ®o Ny

l |

char ——=—er

Hom]Fp (G%//G%ﬁ—, ]Fp) _— Q”lﬁK/ ®ﬁK’ NK/

s T+ char 1 VAt
HOm]FP( K//GK/7]FP) —— QﬁK’ ®ﬁK, NK/

(v 1Y l l"
Hom, (G /G ) <225 0L @0, Ni'"

where o denotes the canonical map induced by the inclusion 1 : K' — K, o/ — " .

Proof. Applying Theorem 7.4 to the extension K’'/K, we obtain the commutativity of the first
diagram. To verify the commutativity of the second diagram by Theorem 7.4, it is sufficient to
show that the injection ¢ : K’ — K is geometric. Let (X, D, €) be a geometric realization of K and
F% : X — X the n-th power of the absolute Frobenius of X. Since the purely inseparable extension
K'/K has exponent n, we may find a realization (X', D', ¢’) of K" and a k-morphism ¢ : X' — X
such that F¥ : X — X is the composition of h : X — X’ and g : X’ — X after shrinking X.
Let F,™ be the inverse of the n-th power of the Frobenius of k£ and X,, = X X, Fom k. The first
projection pry : X, — X is an isomorphism of schemes and the composition hopry : X,, —» X’ is
a k-morphism. Hence, ¢ : K’ — K is geometric and realized by hopr; : X,, —» X' O

Conjecture 7.6. Keep the assumptions of Corollary 7.5. Then, two commutative diagrams in
loc. cit. are co-Cartesian. In particular, assuming that K'/K has exponent 1, for any r € Qs1,
the sequence

—1
v v
GG T T G |G = G /GRS
1s exact.
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