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QUANTUM LINEAR GALOIS ORDERS

VYACHESLAV FUTORNY AND JOÃO SCHWARZ

Abstract. We define a class of quantum linear Galois algebras which in-
clude the universal enveloping algebra Uq(gln), the quantum Heisenberg Lie
algebra and other quantum orthogonal Gelfand-Zetlin algebras of type A, the
subalgebras of G-invariants of the quantum affine space, quantum torus for
G = G(m, p, n), and of the quantum Weyl algebra for G = Sn. We show
that all quantum linear Galois algebras satisfy the quantum Gelfand-Kirillov
conjecture. Moreover, it is shown that the the subalgebras of invariants of the
quantum affine space and of quantum torus for the reflection groups and of the
quantum Weyl algebra for symmetric groups are, in fact, Galois orders over an
adequate commutative subalgebras and free as right (left) modules over these

subalgebras. In the rank 1 cases the results hold for an arbitrary finite group
of automorphisms when the field is C.

1. Introduction

The purpose of this paper is to quantize the results of [14], where subalgebras
of invariants of Weyl algebras were studied for irreducible reflection groups. It was
shown that in many cases these subalgebras have a structure of Galois orders over
certain commutative domains. This feature indicates a hidden skew group algebra
structure of all these algebras.

The theory of Galois rings and orders developed in [11], [12]. Classical examples
includes finite W -algebras of type A [15], in particular the universal enveloping
algebra of gln, and generalized Weyl algebras of rank 1 over integral domains with
infinite order automorphisms [6]. The importance of the Galois order structure is
in their representation theory, where one can effectively study the Gelfand-Tsetlin
categories of modules with torsion for certain maximal commutative subalgebras
[20], [12].

Our main objects of interest are the following quantum algebras: the quantum
affine space Oq(k

2n), the quantum torus Oq(k∗
2n) and the quantum Weyl algebra

Aq
n(k).
Our first result shows that the subring of invariants Oq(k

2n)G of the quantum
affine space is a Galois order over certain polynomial subalgebra when G = G⊗n

m is a
product of cyclic groups (Proposition 5) or G = G(m, p, n) is one of non exceptional
reflection groups (Theorem 5):

Theorem 1. If G is a product of n copies of a cyclic group of fixed finite order
or one of the irreducible non exceptional reflection groups G(m, p, n), then the in-
variant subring Oq(k

2n)G of the quantum affine space is is a Galois order over a
polynomial subalgebra Γ of Oq(k

2n)G. Moreover, Oq(k
2n)G is free as a left (right)

Γ-module.

Theorem 1 can be easily generalized to the case of the quantum torus (Theorem
6):
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Theorem 2. For every G = G(m, p, n) the invariant subring Oq(k∗
2n)G of the

quantum torus is is a Galois order over Γ = k[x±1
1 , . . . , x±1

n ]G in k(x1, . . . , xn) ∗
Zn)G. Moreover, Oq(k

2n)G is free as a left (right) Γ-module.

We have the following generalization of Theorem 1 for quantum planes (Theorem
7) and the first quantum Weyl algebra (Proposition 7) when k = C:

Theorem 3. Let A ∈ {Oq(C
2), Aq

1(C)}. For every finite group G of automorphisms
of A, the subring of invariants AG is a Galois order over a certain polynomial
subalgebra Γ in one variable. Moreover, AG is free as a left (right) Γ-module.

It was shown in [13] that An(k)
Sn is a Galois order over some polynomial algebra.

We prove the quantum analog of this result for Aq
n(k)

Sn (Theorem 8).
In Section 5 we address the quantum Gelfand-Kirillov conjecture for various

algebras. We introduce a class of quantum linear Galois algebras and show that the
quantum Gelfand-Kirillov conjecture is valid in this class (Theorem 9). Quantum
linear Galois algebras include the quantum Orthogonal Gelfand-Zetlin algebras of
type A (in particular, the universal enveloping algebra Uq(gln) and the quantum
Heisenberg Lie algebra), Oq(k

2n)G and Oq(k∗
2n)G for G = G(m, p, n), Aq

n(k)
Sn .

When n = 1 the group G in all cases can be arbitrary.
We also compute the skew fields of fractions for the quantum 2-sphere and for

the quantum group Oq2 (so(3,C)). Finally, we show that the subalgebra of Gm-
invariants ofU(sl2) for the cyclic group Gm of order m is birationally equivalent to
U(sl2) in spite of the rigidity of the latter.

Acknowledgements. V.F. is supported in part by CNPq grant (200783/2018-1)
and by Fapesp grant (2014/09310-5). J.S. is supported in part by Fapesp grants
(2014/25612-1) and (2016/14648-0).

2. Preliminaries

All rings and fields in the paper are assumed to be k-algebras over an algebraically
closed field k of characteristic 0.

For q ∈ k we denote by kq[x, y] the quantum plane over k is defined as k〈x, y |
yx = qxy〉. In this paper we will always assume that q is not a root of unity. Let
q = (q1, . . . , qn) ∈ k

n be an n-tuple whose components are non zero and non roots
of unity. The tensor product of quantum planes kq1 [x1, y1]⊗ . . .⊗kqn [xn, yn] will be
called quantum affine space and will be denoted by Oq(k

2n). If q1 = . . . = qn = q,
we will use the notation Oq(k

2n).
Denote by Aq

1(k) the first quantum Weyl algebra defined as k〈x, y | yx−qxy = 1〉
and set

Aq
n(k) = Aq1

1 (k)⊗k · · · ⊗k A
qn
1 (k)

for any positive integer n. Again, if q1 = . . . = qn = q then we simply denote it by
Aq

n(k).
The quantum affine space Oq(k

2n) and the quantum Weyl algebra Aq
n(k) are

birationally equivalent, that is they have isomorphic skew fields of fractions [7].

2.1. Galois orders. We recall the concepts of Galois rings and Galois orders from
[11]. Let Γ be a commutative domain and K the field of fractions of Γ. Let L be
a finite Galois extension of K with the Galois group G = Gal(L,K), M ⊂ Autk L
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a monoid satisfying the following condition: if m,m′ ∈ M and their restrictions to
K coincide, then m = m′. Consider the action of G on M by conjugation.

A finitely generated Γ-ring U in (L ∗ M)G is called a Galois ring over Γ if
KU = KU = (L ∗M)G. A Galois ring over Γ is called a right (left) Galois order
over Γ if for every right (left) finite dimensional K-vector subspace W ⊂ K, W ∩ Γ
is a finitely generated right (left) Γ-module. If U is both left and right Galois order
over Γ, then we say that U is a Galois order over Γ.

If x =
∑

m∈M
xmm ∈ L ∗M then set

supp x = {m ∈ M|, xm 6= 0}.

We have

Proposition 1. [11] Let Γ ⊂ U be a commutative domain and U ⊂ (L ∗M)G.

(i) If U is generated by u1, . . . , uk as a Γ-ring and
⋃k

i=1 supp ui generates M

as a monoid, then U is a Galois ring over Γ.
(ii) Let U be a Galois ring over Γ and S = Γ \ {0}. Then S is a left and right

Ore set, and the localization of U by S both on the left and on the right is
isomorphic to (L ∗M)G.

We also recall the following characterization of Galois orders.

Proposition 2. [11] Let Γ be a commutative Noetherian domain with the field of
fractions K. If U is a Galois ring over Γ and U is a left (right) projective Γ-module,
then U is a left (right) Galois order over Γ.

Remark. Let D be a commutative domain, finitely generated as a k-algebra,
σ ∈ Autk D and A = D[x;σ] the skew polynomial Ore extension, where xd = σ(d)x,
for all d ∈ D. Then D[x;σ] ≃ D ∗M, where

M = {σn | n = 0, 1, . . .} ≃ N.

The isomorphism is identity on D and sends x to the generator 1 of the monoid
N and 1 acts on D as σ. Then for L = K, the field of fractions of D and for
G = {e} we have that the algebra A is a Galois ring (order) over D in K ∗M. The
localization of A by x is isomorphic to D ∗ Z.

2.2. Invariant subalgebras. We will use the following two results on the sub-
algebras of invariants in the non commutative setting. The first is the result of
Montgomery and Small which generalizes the Hilbert-Noether theorem.

Theorem 4. Let A be a commutative Noetherian ring, and R ⊃ A an overring
such that A is central and R is a finitely generated A-algebra. Let G be a finite
group of A-algebra automorphisms of R such that |G|−1 ∈ R. If R is left and right
Noetherian then RG is a finitely generated A-algebra.

The following connects the projectivity of subalgebras of invariants with the pro-
jectivity of the algebra itself as modules over respective commutative subalgebras.

Lemma 1. [14] Let U be an associative algebra and Γ ⊂ U a Noetherian com-
mutative subalgebra. Let H be a finite group of automorphisms of U such that
H(Γ) ⊂ Γ. If U is projective right (left) Γ-module and Γ is projective over ΓH ,
then UH is projective right (left) ΓH-module.
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2.3. Generalized Weyl algebras. We will often use a realization of a given alge-
bra as a generalized Weyl algebra [6]. Let D be a ring, σ = (σ1, . . . , σn) an n-tuple
of commuting automorphisms of D, a = (a1, . . . , an) nonzero elements of the center
of D and σi(aj) = aj , j 6= i. The generalized Weyl algebra D(a, σ) is generated
over D by Xi, Yi, i = 1, . . . , n subject to the relations:

Xid = σi(d)Xi; Yid = σ−1
i (d)Yi, d ∈ D, i = 1, . . . , n,

YiXi = ai; XiYi = σi(ai), i = 1, . . . , n ,

[Yi, Xj ] = [Yi, Yj ] = [Xi, Xj ] = 0 , i 6= j.

We will assume that D is a Noetherian domain which is finitely generated k-
algebra. Fix a basis e1, . . . , en of the free abelian group Zn. There is natural
embedding of D(a, σ) int the skew group ring D ∗ Z

n, where the action on D is
defined as follows: rei acts as σ

r
i , for all i and r ∈ Z. Moreover, this embedding is

an isomorphism if each ai is a unit in D, i = 1, . . . , n (cf. [14], Proposition 4). Both
algebras algebras, D(a, σ) and D ∗ Zn, admit the skew fields of fractions. Hence,
following the discussion above we have

Proposition 3. The algebras D(a, σ) and D ∗ Zn have isomorphic skew fields of
fractions.

Note that, if σ1, . . . , σn are linearly independent over Z, then D(a, σ) is a Galois
order over D in the skew group ring (Frac D) ∗ Zn (cf. [14], Theorem 5).

3. Invariants of quantum affine spaces

In this section we consider the invariants of quantum affine space Oq(k
2n). Fix

any integer m > 1 and let Gm ⊂ k be a cyclic group of order m. Our first group
G = G⊗n

m is the product of n copies of Gm. Consider the following natural action of
G⊗n

m on Oq(k
2n): if g = (g1, . . . , gn) ∈ G then g(xi) = gixi, g(yi) = yi, i = 1, . . . , n.

This action was defined in [17], however we are using the defining relations as in
[8].

We have

Proposition 4. The invariant subspace Oq(k
2n)G

⊗n

m is isomorphic to Oqm(k2n).

Proof. The isomorphism just sends xi to xm
i and yi to yi, i = 1, . . . , n. �

Consider the free monoid Nn with generators ǫ1, . . . , ǫn and the skew monoid
ring k[x1, . . . , xn] ∗ N

n, where Nn acts as follows: ǫi(xi) = qxi, ǫi(xj) = xj , j 6= i,
i, j = 1, . . . , n.

Proposition 5. Quantum affine space Oq(k
2n) is isomorphic to k[x1, . . . , xn]∗N

n.
In particular, Oq(k

2n) is a Galois ring over Γ = k[x1, . . . , xn] in k(x1, . . . , xn) ∗N
n.

Proof. The isomorphism is given by: xi 7→ xi, yi 7→ ǫi, i = 1, . . . , n. The rest is
clear. �

For m ≥ 1, n ≥ 1, p|m, p > 0 denote by A(m, p, n) the subgroup of G⊗n
m

consisting of elements (h1, . . . , hn) such that (h1h2 . . . hn)
m/p = id. The groups

G(m, p, n) = A(m, p, n) ⋊ Sn were introduced by Shephard and Todd and de-
scribe all irreducible non-exceptional complex reflection groups. Here Sn acts on
A(m, p, n) by permutations.
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Let G = G(m, p, n), and consider the following action of G on Oq(k
2n): h =

(g, π) ∈ G, g = (g1, . . . , gn) ∈ G⊗n
m , π ∈ Sn, with h(xi) = gixπ(i), h(yi) = yπ(i),

i = 1, . . . , n. The group G also acts on k[x1, . . . , xn] ∗ N
n: the action on xi is the

same as above, and h(ǫi) = ǫπ(i). Clearly, G acts on Nn by conjugations, and the

isomorphism in Proposition 5 isG-equivariant. Hence, Oq(k
2n)G and (k[x1, . . . , xn]∗

Nn)G are canonically isomorphic. Hence, Oq(k
2n)G is a Galois order over Γ =

k[x1, . . . , xn]
G. Taking into account that Γ is a polynomial algebra and applying

Proposition 2, Lemma 1 and [5], Corollary 4.5, we have

Theorem 5. For every G = G(m, p, n) the invariant subring Oq(k
2n)G of the

quantum affine space is is a Galois order over Γ = k[x1, . . . , xn]
G. Moreover,

Oq(k
2n)G is free as left (right) Γ-modules.

3.1. Invariants of quantum torus. One can extend Theorem 5 to quantum torus
Oq(k∗

2n)G, which is the localization of Oq(k
2n)G ≃ k[x1, . . . , xn]∗N

n by x1, . . . , xn,
y1, . . . , yn. Hence,

Oq(k∗
2n)G ≃ k[x±1

1 , . . . , x±1
n ] ∗ Zn.

We also have by Proposition 4:

Oq(k∗
2n)G

⊗n

m ≃ Oqm(k∗2n).

Using the arguments before Theorem 5 we immediately obtain

Theorem 6. For every G = G(m, p, n) the invariant subring Oq(k∗
2n)G of the

quantum torus is is a Galois order over Γ = k[x±1
1 , . . . , x±1

n ]G in k(x1, . . . , xn) ∗
Z
n)G. Moreover, Oq(k

2n)G is free as a left (right) Γ-module.

3.2. Quantum complex plane. In this section we assume that k = C.

Proposition 6. Consider any finite group G of automorphisms of the quantum
plane Cq[x, y]. Then the ring of invariants Cq[x, y]

G is embedded into the Ore
extension Cq[x, y]

G
x

∼= C(xm)[v;σ], where σ(xm) = qnxm for some n,m > 0 and
v = xkyl, l, k > 0.

Proof. The action of G on the quantum plane Cq[x, y] extends naturally to its
action on the localization of Cq[x, y] by x. It was shown in [4] that every finite
group G of automorphisms of the quantum plane is a subgroup of the torus C∗2,
and thus has the form Gm ×Gm′ for cyclic groups of orders m and n respectively.
Let g′ be a generator of Gm and g′′ a generator of Gm′ . Then (g′k, g′′l)(x) =
αkx, (g′k, g′′l)(y) = βly, where α is a primitive m-th root of unity, and β is a
primitive m′′-th root of unity. The subring of G-invariants of the localized ring
Cq[x, y]x is the Ore extension C(xm)[v;σ], where σ(xm) = qnxm for some n and m
by [8], 3.3.3. Multiplying v by xm sufficiently many times, we can assume it to be
in the claimed form. �

We have the following general result about the invariants of the quantum plane.

Theorem 7. For every finite group G of automorphisms of the quantum plane
Cq[x, y] the subring of invariants Cq[x, y]

G is a Galois order over a certain polyno-
mial subalgebra Γ. Moreover, Cq[x, y]

G is free as a left (right) Γ-module.

Proof. The subring of invariants Cq[x, y]
G Cq[x, y]

G is embedded into C(xm)[v;σ] ∼=
C(xm) ∗ N by Proposition 6, where the generator 1 of N acts as follows: 1(xm) =
qnxm. Also, v = xkyl is G-invariant and it is mapped to 1 under the isomorphism
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above. We conclude that Cq[x, y]
G is a Galois order over C[xm] (cf. Remark 2.1).

The rest follows from Proposition 2, Lemma 1 and [5], Corollary 4.5. �

4. Invariants of quantum Weyl algebras

Consider now the first quantum Weyl algebra Aq
1(k), generated over k by x and

y subject to the relation yx − qxy = 1. It can be realized as a generalized Weyl
algebra D(a, σ) with D = k[h], a = h, σ(h) = q−1(h − 1) and generators X,Y .
The isomorphism is given as follows: yx 7→ h, x 7→ X , y 7→ Y . Then Aq

1(k)
is a Galois order over D by [11], as q is not root of unity and σ has an infinite
order. Moreover, the quantum Weyl algebra Aq

n(k) ≃ Aq
1(k)

⊗n is a Galois order
over Γ = k[h1, . . . , hn] in k(h1, . . . , hn) ∗ Z

n, where a basis ǫ1, . . . , ǫn of Zn atcs on
Γ as expected: ǫi(hi) = q−1(hi − 1); ǫi(hj) = hj , i, j = 1, . . . , n. The embedding is
given by:

yixi 7→ hi, xi 7→ ǫi, yi 7→ h−1
i ǫ−1

i ,

i = 1, . . . , n
Consider the subring of invariants Aq

n(k)
Sn , where Sn acts by simultaneous per-

mutations of the variables yi and xi, i = 1, . . . , n. Using the structure of the quan-
tumWeyl algebraAq

n(k) as a Galois order over Γ = k[h1, . . . , hn] in k(h1, . . . , hn)∗Z
n

we obtain an embedding of Aq
n(k)

Sn into the ring (k(h1, . . . , hn) ∗ Z
n)Sn , where Sn

permutes h1, . . . , hn and acts on Nn by conjugation: if π ∈ Sn then π(σi) = σπ(i).

Theorem 8. Aq
n(k)

Sn is a Galois order over Γ = k[h1, . . . , hn]
Sn . Moreover,

Aq
n(k)

Sn is free as a left (right) Γ-module.

Proof. The algebra Aq
n(k)

Sn is finitely generated by Theorem 4. Choose generators
u1, . . . , uk and add to this list the elements x1 + . . . + xn and y1 + . . . + yn. The
images of the latter two elements in (k(h1, . . . , hn) ∗ Zn) are ǫ1 + . . . + ǫn and
h−1
1 ǫ−1

1 + . . .+ h−1
n ǫ−1

n respectively. Hence the support of their image generate Zn

as a group, and the first statement follows from Proposition 1. The seond statement
follows from Proposition 2, Lemma 1 and [5], Corollary 4.5. �

We have the following analog of Theorem 7 for the first quantum Weyl algebra
when k = C:

Proposition 7. Let G be any finite group of automorphisms of Aq
1(C). Then the

invariant subring Aq
1(C)

G is a Galois order over Γ = C[xm] in C(xm)∗N. Moreover,
Aq

1(C)
G is free as a left (right) Γ-module.

Proof. Again, by Alev and Dumas ([2]), every finite group G of automorphisms of
Aq

1(C) is of the form Gm, where the generator of Gm acts by: x 7→ αx, y 7→ α−1y
for some mth primitive root of unity α. Localization of Aq

1(C) by x is isomorphic
to C(x)[z, σ], with z = (q− 1)xy+1 and σ(x) = qx. On the other hand, C(x)[z, σ]
is just the localization of Cq[x, z] by x. By Theorem 7 we obtain an embedding of
Aq

1(C)
G into C(xm)[v;σ] ∼= k(xm) ∗ N, where σ(xm) = qnxm. �

5. Quantum Gelfand-Kirillov conjecture

The quantum Gelfand-Kirillov conjecture (cf. [7], [10]) compares the skew field
of fractions of a given algebra with quantum Weyl fields, that is the skew field of
fractions of the tensor product of quantum Weyl algebras Aq1

1 (k) ⊗k · · · ⊗k A
qn
1 (k)
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(or, equivalently, of some quantum affine space). An algebra A is said to satisfy the
quantum Gelfand-Kirillov conjecture if Frac(A) is isomorphic to a quantum Weyl
field over a purely transcendental extension of k. We will say that two domains D1

and D2 are birationally equivalent if Frac(D1) ≃ Frac(D2).
The quantum Gelfand-Kirillov conjecture is strongly connected with the

q-difference Noether problem for reflection groups introduced in [17]. This problem
asks whether the invariant quantum Weyl subfield (FracAq

n(k))
W is isomorphic to

some quantum Weyl field, where W is a reflection group. The positive solution of
the q-difference Noether problem was obtained in [17] for classical reflection groups.
Using this fact, the validity of the quantum Gelfand-Kirillov conjecture was shown
for the quantum universal enveloping algebra Uq(gln) ([10]) and for the quantum
Orthogonal Gelfand-Zetlin algebras of type A ([17]). The latter class includes the
simplyconnected quantized form of gln, Ǔ(gln) and the quantized Heisenberg Lieal-
gebra among the others.

5.1. Functions on the quantum 2-sphere. Denote by A(S2
λ) the algebra of

functions on the quantum 2-sphere. The algebraA(S2
λ) is the quotient of C〈X,Y,H〉

by the relations

XH = λHX, Y H = λ−1HY,

λ1/2Y X = −(c−H)(d+H), λ−1/2XY = −(c− λH)(d+ λH).

It can be realized as a generalized Weyl algebra C[H ](a, σ), where

a = −λ−1/2XY (c−H)(d+H))

and σ(H) = λH . By Proposition 3, C[H ](a, σ) is birationally equivalent to C[H ]∗Z,
where Z is generated by 1 and 1(H) = λH . Applying Proposition 5 we obtain that
A(S2

λ) is birationally equivalent to the quantum plane with parameter λ. Hence,
A(S2

λ) satisfies the quantum Gelfand-Kirillov conjecture, that is

Corollary 1. FracA(S2
λ)

∼= Frac kλ[x, y].

5.2. The quantum group Oq2 (so(3,C)). Let A = Oq2(so(3,C)). The algebra A
can be realized as a generalized Weyl algebra C[H,C](σ, a), where a = C+H2/q(1+
q2)) and σ(C) = C, σ(H) = q2H . By Proposition 3, A is birationally equivalent to
C[C,H ] ∗Z, where Z is generated by 1 acting as σ on C[C,H ]. Since C is invariant
by σ, this ring is clearly birationaly equivalent to C[C] ⊗ (C[H ] ∗ Z). Applying
Proposition 5 we obtain that A satisfies the quantum Gelfand-Kirillov conjecture,
that is

Corollary 2. FracOq2 (so(3,C)) ∼= Frac (C(C) ⊗ Cq2 [x, y]).

5.3. Quantum Linear Galois Algebras. In this section we obtain a quantum
version of the theory of linear Galois algebras developed in [9]. The field k is
assumed to be the field of complex numbers. Recall that U is a Galois algebra over
Γ if U is a Galois ring over Γ and k-algebra.

Let V be a finite dimensional complex vector space, S = S(V ∗) = C[x1, . . . , xn],
and L = FracS. Let G be a unitary reflection group which is a product of
groups of type G(m, p, n). Consider the tensor product of polynomial algebras
S ⊗ C[w1, . . . , wm], with the trivial action of G on the second component.

A quantum linear Galois algebra U is a Galois algebra over an appropriate Γ
in (C(x1, . . . , xn;w1, . . . , wm) ∗Zn)G or (C(x1, . . . , xn;w1, . . . , wm) ∗Nn)G, where a
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basis ǫ1, . . . , ǫn of either Zn or Nn acts as follows: ǫi(xi) = qxi, ǫi(xj) = xj , j 6= i,
i, j = 1, . . . , n.

Note that the quantum universal enveloping algebra Uq(gln) and the quantum
orthogonal Gelfand-Zetlin algebras of type A are examples of quantum linear Ga-
lois algebras [10], [17]. The results of the previous sections show that the following
algebras are also quantum linear Galois algebras:

• Oq(k
2n)G for G = G(m, p, n);

• Aq
n(k)

Sn ;
• Oq(k∗

2n)G for G = G(m, p, n).

The following theorem shows that the quantum Gelfand-Kirillov Conjecture
holds for quantum linear Galois algebras, which is the quantum analogue of [9],
Theorem 6.

Theorem 9. Let U be a quantum linear Galois algebra in

(C(x1, . . . , xn;w1, . . . , wm) ∗Xn)G,

where X is either Z or N, with the G action as above. Then the quantum Gelfand-
Kirillov conjecture holds for U and there exist l = (l1, . . . , ln) ∈ Zn such that

FracU ∼= Frac (Oq(k
2n)⊗ C[w1, . . . , wn]),

where q = (ql1 , . . . , qln).

Proof. The proof follows from Proposition 1, (ii) and the positive solution of the
q-difference Noether problem for G [17]. �

5.4. Skew field of fractions of U(sl2). Consider the standard basis e, f, h of sl2,
where [h, e] = e, [h, f ] = −f , [e, f ] = 2h. The universal enveloping algebra U(sl2)
can be realized as a generalizedWeyl algebra k[H,C](σ, a), where a = C−H(H+1)),
with the isomorphism given by e 7→ X , f 7→ Y , h 7→ H, h(h+ 1) + fe 7→ C.

Define an action of the cyclic group Gm of order m, m > 1 on U(sl2) as follows.
Denote by g a generator of Gm. Then g fixes h and sends e 7→ ξe, f 7→ ξ−1f , where
ξ is a fixed mth primitive root of unity.

We have that k[H,C](σ, a) (and hence U(sl2)) is birationally equivalent to k[H,C]∗
Z, where again Z acts by σ. The action of Gm naturally extends to k[H,C] ∗ Z,
where the generator g acts on Z by sending y 7→ ξy, y ∈ Z. Therefore U(sl2)

Gm

embedds into (k[H,C] ∗Z)Gm . Since C is fixed by σ and also by the action of Gm,
we have

Frac(k[H,C] ∗ Z)Gm ∼= Frac(k[C]⊗ (k[H ] ∗ Z)Gm).

On the other hand, k[H ] ∗Z is isomorphic to the localization A1(k)x = A1(k)xm

([11], section 7) of the first Weyl algebra. Hence,

Frac(k[H ] ∗ Z)Gm ∼= Frac(A1(k)xm)Gm ∼= Frac(A1(k)
Gm

xm ) ∼= Frac(A1(k)
Gm),

where the action of the generator g on A1(k) is as follows: x 7→ ξ−1x, ∂ 7→ ξ∂.
We conclude that U(sl2)

Gm is birationally equivalent to k[C]⊗A1(k)
Gm . Taking

into account the result of [1], which implies that A1(k)
Gm ≃ A1(k) we finally have

Corollary 3. For any m > 1 and the action of Gm described above, we have

Frac(U(sl2)
Gm) ∼= Frac(k[C]⊗A1(k)) ∼= Frac(k[C])⊗ Frac(U(sl2)).
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The last isomorphism is just the classical Gelfand-Kirillov conjecture for sl2 [16].
Recall, that U(sl2) is rigid by [3], that is there is no non trivial finite group

G ⊂ Autk U(sl2) such that U(sl2)
G ∼= U(sl2). By Corollary 3, in spite of the

rigidity of U(sl2) we have Frac(U(sl2)
Gm) ≃ Frac(U(sl2)), giving an example to

the question posed in in [18].
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