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Defect of an octahedron in a rational lattice

Mikhail Fadin
∗

Abstract

Consider an arbitrary n-dimensional lattice Λ such that Zn ⊂ Λ ⊂ Qn. Such lattices are called
rational and can always be obtained by adding m 6 n rational vectors to Zn. Defect d(E ,Λ) of the
standard basis E of Zn (n unit vectors going in the directions of the coordinate axes) is defined as
the smallest integer d such that certain (n− d) vectors from E together with some d vectors from the
lattice Λ form a basis of Λ.

Let ||...|| be L1-norm on Qn. Suppose that for each non-integer x ∈ Λ inequality ||x|| > 1 holds.
Then the unit octahedron On = {x ∈ Rn : ||x|| 6 1} is called admissible with respect to Λ and d(E ,Λ)
is also called defect of the octahedron On with respect to E and is denoted as d(On

E
,Λ).

Let dmn = maxΛ∈Am d(On
E ,Λ), where Am is the set of all rational lattices that can be obtained by

adding m rational vectors to Zn: Λ = 〈Zn, a1, . . . , am〉Z , a1, . . . , am ∈ Qn. In this article we show that
there exists an absolute positive constant C such that for any m < n

dmn 6 C
n ln(m+ 1)

ln n
m

(

ln ln
( n

m

)m)2

This bound was also claimed in [1], [2], however the proof was incorrect. In this article along with
giving correct proof we highlight substantial inaccuracies in those articles.

Keywords: Lattice, Defect, Octahedron, System of common representatives

1 Definitions, notation and formulation of result

Let Γ ⊂ Rn be an arbitrary lattice in an n-dimensional Euclidean space, and let O = (0, 0, . . . , 0) ∈ Γ
be the point of origin. If Γ is a sublattice of a lattice Λ, then Λ is called a centering of the lattice Γ. We
are going to investigate the difference between the basis of a lattice and the basis of its centering.

Let us consider a basis e1, . . . , en of Γ. The set of vectors E = {e1, . . . , en} will be called a frame. The
defect of the frame E with respect to the lattice Λ is defined as the smallest integer d such that certain
(n− d) vectors from E together with some d vectors from the lattice Λ form a basis of Λ. It is denoted as
d(E ,Λ) = d.

An octahedron corresponding to the frame E is defined as the set

On
E = {x ∈ Rn : x = λ1e1 + . . .+ λnen; |λ1|+ . . .+ |λn| 6 1} .

The octahedron On
E is called admissible with respect to the lattice Λ if its interior contains no points

of the lattice Λ, except for O and ±ei:

On
E ∩ Λ = {O, e1,−e1, . . . , en,−en}.
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If the octahedron On
E corresponding to the frame E is admissible with respect to the centering Λ, then

the quantity d(E ,Λ) is denoted as d(On
E ,Λ) and is called the defect of the admissible octahedron On

E in the
lattice Λ.

Note that without loss of generality we can take Γ to be Zn and the frame E to represent the standard
basis (n unit vectors going in the directions of the coordinate axes).

In [6] N.G. Moshchevitin introduced the quantity

d∗n = max
Λa

d(On
E ,Λa),

where Λa runs through lattices that can be obtained by adding one rational vector to Zn, and proved that
there exists a positive constant C such that

d∗n 6 C
n

lnn
(ln lnn)2 .

Then, in the article [7] (see also [8], [10], [11]) A.M Raigorodskii proved that there exists a positive
constant C such that

C
n

lnn
(ln lnn)2 6 d∗n

Finally, in the article [1] the quantity dmn — natural generalisation of d∗n, was introduced:

dmn = max
Λ∈Am

d(On
E ,Λ),

where Am is the set of all centerings of the integer lattice Zn that can be obtained by adding m rational
vectors:

Λ = 〈Zn, a1, . . . , am〉Z , a1, . . . , am ∈ Qn.

In [1], [2] the following bound was claimed.

Theorem 1. There exists an absolute positive constant C such that

dmn 6 C
n ln(m+ 1)

ln n
m

(

ln ln
( n

m

)m)2

for any m < n.

However, the proof contained several substantial inaccuracies. Eliminating those inaccuracies turned
out to be quite challenging. In this article we are going to show the correct proof of this bound and mark
substantial inaccuracies in [1], [2]. In order to do it we define the following quantity:

Dm
n = max

Λ∈A∗

m

d(On
E ,Λ),

where A∗
m is the set of all centerings of the integer lattice Zn that can be obtained by adding m rational

vectors whose coordinates’ denominators are square-free: Λ = 〈Zn, a1, . . . , am〉Z ; a1, . . . , am ∈ Qn, there
exists a square-free positive integer q such that q · a1, . . . , q · am ∈ Zn.

Theorem 2. There exists an absolute positive constant C such that

Dm
n 6 C

n ln(m+ 1)

ln n
m

(

ln ln
( n

m

)m)2

for any m < n.

Theorem 3. Dm
n = dmn .

Note that Theorem 1 is a direct implication of Theorems 2 and 3.
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2 Proof of Theorem 3

Let a1, . . . , am ∈ Qn be given vectors. Suppose On
E is admissible with respect to Λ = 〈Zn, a1, . . . , am〉Z.

Define A∗ as the matrix formed by writing vectors a1, . . . , am as its rows.

Lemma 1. Let Λ′ be a sublattice of Λ such that Zn ⊂ Λ′. Then there exist λ1, . . . , λm ∈ Qn such that

Λ′ = 〈Zn, λ1, . . . , λm〉Z .

Proof. Let b1, . . . , bn be a basis of Λ′. Obviously, Λ′ = 〈Zn, b1, . . . , bn〉Z. For each i there exist b∗i ∈ Zn such
that b′i = bi + b∗i ∈ 〈a1, . . . , am〉Z. We have Λ′ = 〈Zn, b′1, . . . , b

′
n〉Z = 〈Zn, c1A

∗, . . . , cnA
∗〉Z, where for each i,

ci is a row of m integers.

Let C = 〈c1, . . . , cn〉Z ⊂ Zm. C is a submodule of free module Zm of rank m over principle ring Z. Thus
C is a free module over Z of rank 6 m, which means that there exist c′1, . . . , c

′
m such that C = 〈c′1, . . . , c

′
m〉Z.

Clearly, Λ′ = 〈Zn, c1A
∗, . . . , cnA

∗〉Z = 〈Zn, c′1A
∗, . . . , c′mA

∗〉Z. Thus, λi = c′iA
∗ are desired vectors.

Lemma 2. There exist a lattice Λ′ such that

1) Zn ⊂ Λ′ ⊂ Λ,

2) denominators of coordinates of all vectors of Λ′ are square-free,

3) d(E ,Λ′) = d(E ,Λ).

Proof. Let d(E ,Λ) = n− k + 1. Then for each I = {i1, . . . , ik} ⊂ {1, . . . , n} coordinate vectors ei1 , . . . , eik
can not be completed to a basis of Λ, which means that there exists x = xI ∈ Λ such that

(*) x ∈ 〈ei1, . . . , eik〉R, but x /∈ 〈ei1 , . . . , eik〉Z .

Let qI be the least common multiple of the denominators of the coordinates of xI and let pI be the
smallest prime divisor of qI , uI = qI

pI
. Then uIxI also satisfies (*) and its coordinates’ denominators are

square-free.
Let Λ′ =

〈

Zn, {uIjxIj}
〉

Z
, where Ij runs through all k-element subsets of {1, . . . , n}. Obviously, Λ′

satisfies 1) and 2). Since for each I = {i1, . . . , ik} ⊂ {1, . . . , n} there exists yI = uIxI ∈ Λ′ which satisfies
(*), ei1 , . . . , eik can not be completed to a basis of Λ′. Thus d(E ,Λ′) > n − k + 1 = d(E ,Λ). But since
Λ′ ⊂ Λ, we have d(E ,Λ′) 6 d(E ,Λ). Therefore, d(E ,Λ′) = d(E ,Λ) as desired.

Theorem 3 directly follows from Lemma 1 and Lemma 2.

3 Auxiliary combinatorial constructions

3.1 A system of families of sets M

Let a1, . . . , am ∈ Qn be given vectors. Let us reduce their coordinates to a least possible common
denominator q. Due to Theorem 3 we may assume that q is square-free, m < n (since it suffices to prove
Theorem 2). Let q = p1 · p2 · . . . · ps (p1 > p2 > . . . > ps) be the prime factorization of q. Define A as the

3



matrix formed by writing vectors q · a1, . . . , q · am as its rows. For each j, the rank of the matrix A over
the field Zpj will be denoted as rankj.

Let Cn = {1, . . . , n} be the set of all coordinate indexes. For each j ∈ {1, . . . , s} let M i
j denote rankj-

element subsets of Cn such that for an arbitrary i the columns of the matrix A with numbers from M i
j

are linearly independent over the field Zpj . For a fixed j, the family of sets M i
j will be denoted as Mj.

Finally, the system of families of sets M is defined as M = {M1, . . . ,Ms}.

Remark. In [1], [2] there was no reduction to the square-free case (Theorem 3). Instead, matrix A was
considered over rings Zpkj

and most statements were formulated in terms of rings (with the usage of an

undefined rank over ring). However, in those terms Theorem 4 as well as auxiliary lemmas afterwards and
final constructions in the proof turned out to be wrong. Since even in the square-free case in [1] and [2]
there were substantial inaccuracies, in most following remarks we are only going to describe inaccuracies
in that case even though all statements in [1], [2] were formulated in the general case.

3.2 The relation between the defect and the system M

Let M be a subset of Cn such that for any j ∈ {1, . . . , s} there exists i ∈ {1, . . . , |Mj|} for which
M i

j ⊆ M .

Theorem 4. Let Λ = 〈Zn, a1, . . . , am〉Z. Then the following inequality is satisfied: d(E ,Λ) 6 |M |.

Proof. Any point of the lattice Λ can be represented as 1
q
· kA + b, where k = (k1, . . . , km) is a row of m

integer numbers, A is the matrix defined in the previous section and b is a vector in Zn.
Consider a subspace of Rn spanned by the coordinate axes with indexes that do not belong to M .

Assume that a point x = 1
q
· kA + b of the lattice Λ lies in this subspace. Then its coordinates with

numbers from M are equal to zero. Let us fix a number j ∈ {1, . . . , s}. By definition of M , there
exists a set M i

j =
{

v1, . . . , vrankj
}

which is fully embedded in M . Thus the coordinates of x numbered as
v1, . . . , vrankj are also equal to zero. In other words, coordinates of the vector kA numbered as v1, . . . , vrankj
are divisible by q, and thus also by pj. However, columns of the matrix A numbered as v1, . . . , vrankj form
a maximal linearly independent set of vectors of the matrix A over the field Zpj (by the definition of the
set M i

j). Then all other columns of A can be expressed over the field Zpj as linear combinations of these
rankj columns. Therefore, all coordinates of the vector kA are divisible by pj . Since this applies for any
j ∈ {1, . . . , s}, all coordinates of the vector kA are therefore divisible by q. Thus x ∈ Zn, meaning (see
[3]) that vectors of the frame E with numbers from Cn \M can be completed to form a basis of the lattice
Λ, and thus we have d(E ,Λ) 6 |M |.

Remark. In [1], [2] M was defined as a set which for every j contains some maximum set of indexes of
columns which are linear independent over the ring Zpkj

. The same inequality was claimed. One can easily

construct a contrexample to this version of the theorem by considering n = 2, a1 = ( 1
p2
, 1
p2
), a2 = ( 1

p2
, 1
p2
+ 1

p
).

Theorem 4 holds for any M , allowing us to write d(E ,Λ) 6 θ(M), where θ(M) is the cardinality of the
smallest set M . In the next subsection we are going to recall a problem similar to approximation of θ.

3.3 A covering problem

Let L = {L1, . . . , Lt} be an arbitrary family of subsets of the set Cn. Its system of common represen-
tatives (SCR) is defined as a set S ⊆ Cn that includes at least one element from each Li. The minimum
size of an SCR for L is denoted as τ(L). Clearly, the setting in the previous subsection is more general:
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instead of a family of sets we consider the system of families of sets M. If we assume that the size of all
sets in every family from M equals one, then the set M defined in the previous subsection is, as a matter
of fact, an SCR. Theorem 5 below provides an upper bound on the size of a minimal SCR which will later
help us to obtain a bound for θ(M). A proof and a discussion of this theorem can be found in [5], [9], [12].

Theorem 5. Assume that |Li| > k for each i ∈ {1, . . . , t}. Then there exists a constant c such that

τ(L) 6 c
n

k
·max

{

1, ln
tk

n

}

.

4 Proof of Theorem 2

4.1 Outline of the proof

Consider vectors a1, . . . , am ∈ Qn. Let us construct a system of families of sets M = {M1, . . . , Ms}
using the method from Subsection 3.1. We would like to prove the inequality

θ(M) 6 C
n ln(m+ 1)

ln n
m

(

ln ln
( n

m

)m)2

by applying Theorem 5. Subsection 4.3 is going to contain this proof, and the auxiliary lemmas used in
the proof are presented in the following subsection.

4.2 Auxiliary Lemmas

Lemma 3. det Λ = p−rank1
1 · p−rank2

2 · . . . · p−ranks
s

Proof. Denote Λk = 〈Zn, a1, . . . , ak〉Z for 0 6 k 6 m. We have Λ0 ⊂ Λ1 . . . ⊂ Λm and Λk/Λk−1 = 〈ak〉.
Define a number qk in the following way. Let q · ak not lie in 〈q · a1, . . . , q · ak−1〉Zpj

for pj|qk and lie for all

other pj.

Let r be integer such that 0 < r < qk. Suppose that r · ak ∈ Λk−1. There exists i such that pi|qk but
(pi, r) = 1. By assumption, r · ak = b1 · a1 + . . . + bk−1 · ak−1, where b1, . . . , bk−1 are integers. But that
means that in Zpi we have ak = r−1b1 · a1 + . . .+ r−1bk−1 · ak−1 which contradicts the definition of qk.

By Chinese Remainder Theorem and definition of qk there exist integers b1, . . . , bk−1 such that each
coordinate of q ·ak−qb1 ·a1− . . .−qbk−1 ·ak−1 is divisible by q

qk
i.e. qk ·ak−qkb1 ·a1− . . .−qkbk−1 ·ak−1 ∈ Zn.

So, ak, 2ak, . . . , (qk−1)ak /∈ Λk−1 while qkak ∈ Λk−1. Thus index of Λk−1 in Λk is qk. Since q ·ak cannot
be expressed as a linear combination of q ·a1, . . . , q ·ak−1 over Zpj for pj |qk and can be expressed as a linear

combination of q · a1, . . . , q · ak−1 over Zpj for all other pj , q1 · . . . · qm = prank11 · prank22 · . . . · prankss . Then we

have 1 = det Λ0 = q1 det Λ1 = . . . = q1 · . . . · qm · det Λm = prank11 · . . . · prankss · det Λ which concludes the
proof.

Lemma 4. Let j ∈ {1, . . . , s}, pj > 5 and let v1, . . . , vl be l integers, 0 6 l < rankj, 1 6 vi 6 n, such that
columns of the matrix A (see Subsection 3.1) numbered as v1, . . . , vl are independent over Zpj . Let M̃j be
the set of indexes of columns which are linearly independent with columns numbered v1, . . . , vl over Zpj .
The following inequality holds:

∣

∣

∣
M̃j

∣

∣

∣
>

1

2
·

ln p
rankj−l
j

ln ln p
rankj−l
j

.
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Remark. In [1], [2] in the formulation of the lemma in the inequality there was m instead of rankj.
However, this version of the lemma obviously does not hold: for instance, with fixed pj and limitlessly
increasing m, the right-hand side is limitlessly increasing while the left-hand side can be constant. We
introduced Lemma 3 in order to show a correct proof of the correct version of the lemma.

Proof. It suffices to prove the lemma in the case m = rankj, q = pj. Let Λ′ be a lattice obtained by the
intersection of Λ with subspace spanned by the coordinate axes numbered by elements of M̃j . We define
family of vectors aik (i = 0, . . . , l; k = 1, . . . , m) using the following algorithm.

• Put a0k = ak,

• If for each k the vthi coordinate of ai−1
k is integer then let aik = ai−1

k .

• Otherwise for some k vthi coordinate of pj · a
i−1
k is not divisible by pj . Thus for each r there exists

integer cir such that the vthi coordinate of ai−1
r + cir · a

i−1
k is an integer. Let aik = ai−1

r + cir · a
i−1
k .

Obviously, rankZpj
({pj · a

i
k}) > rankZpj

({pj · a
i−1
k })− 1. Thus rankZpj

({pj · a
l
k}) > rankj − l.

Consider vectors pj · a
l
k. By the construction, coordinates numbered by v1, . . . , vl of these vectors are

equal to zero in Zpj . By definition, all columns of matrix A with indexes from M̃j can be expressed over Zpj

as linear combinations of columns numbered by v1, . . . , vl. Since vectors pj · a
l
k are linear combinations of

pj ·a1, . . . , pj ·am we obtain that coordinates numbered by elements of M̃j of these vectors are equal to zero
in Zpj . That means that for every k there exists an integer vector tk such that all coordinates numbered by

elements of M̃j of alk+tk are equal to zero. Note that rankZpj
({pj ·(a

l
k+tk)}) = rankZpj

({pj ·a
l
k}) > rankj−l

and xk = alk + tk ∈ Λ′.

Let n∗ = |M̃j | and let Zn∗ be the subspace of Zn spanned by the coordinate axes with indexes from
M̃j . Applying Lemma 1 for lattice Γ = 〈Zn∗, x1, . . . , xm〉Z we obtain pl−rankj > det Γ > det Λ′. Since unit
octahedron On∗

E is admissible in Λ′ we can apply Minkowski’s Theorem (see [3]):

V ol(On∗
E ) =

2|M̃j|
∣

∣

∣
M̃j

∣

∣

∣
!
6 2|M̃j| · det Λ′

6
2|M̃j|

p
rankj−l
j

=⇒
∣

∣

∣
M̃j

∣

∣

∣
! > p

rankj−l
j =⇒

∣

∣

∣
M̃j

∣

∣

∣
>

1

2
·

ln p
rankj−l
j

ln ln p
rankj−l
j

.

The final inequality follows from the condition pj > 5. The lemma is proved.

Lemma 5. The following inequality holds: s 6 n.

Proof. The octahedron On
E is admissible with respect to the lattice Λ, det Λ 6

1
q

(follows from Lemma 3).
Thus, from Minkowski’s Theorem, we have:

2n

n!
6

2n

q
=⇒ q 6 n!,

and q = p1 . . . ps > s!, which proves the lemma.
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4.3 A bound for θ(M)

Consider the system of families of sets M0 = {M1, . . . , Mt}, where t is the maximum index such that

pt >
n
m

. We can assume that n is sufficiently large. We can also assume that m ≪ e(lnn)1/3 (otherwise the
desired bound is trivial).

Let us start by defining Lj (for each j such that |M1
j | = m) as the union of all sets from the family

Mj ∈ M0. Consider a family of sets L = {Li1 , . . . , Lir}. Let us build a minimal SCR L (§3.3) and estimate
the cardinality of this SCR or, in other words, obtain a bound for τ(L). Applying Lemma 4 with l = 0

we obtain |Lij | >
1
2
·

ln pmij
ln ln pmij

. Here we choose n to be sufficiently large for the inequality pij >
n
m

> 5 to be

satisfied. For sufficiently large values of x, the function lnx
ln lnx

is increasing, therefore we can write

|Lij | >
1

2
·

ln
(

n
m

)m

ln ln
(

n
m

)m .

Let

k =
1

2
·

ln
(

n
m

)m

ln ln
(

n
m

)m .

From Lemma 5 we have r 6 t 6 s 6 n, and thus Theorem 5 yields

τ(L) = O
(n

k
ln k
)

= O

(

n

ln
(

n
m

)m ·
(

ln ln
( n

m

)m)2
)

.

Let τ1 = τ(L), and let us denote the elements of the corresponding SCR as v11, . . . , v
1
τ1

.

For each j ∈ {ii, . . . , ir} consider an element v1ν(j) that lies in the set Lj . Clearly, this element lies in a

number of sets M i
j in the family Mj. For each identified set M i

j , replace M i
j by M i

j \
{

v1ν(j)

}

. Now delete

all other M i
j from Mj (if Mj became empty or now contains only empty sets then we delete it from M0)

and rename sets which are left( which contain v1ν(j)) so that Mj = {M1
j , . . .M

h(j)
j }. Define Lj (for j such

that |M1
j | = m− 1) as union of all sets of Mj .

From Lemma 4 with l = 1 or 0 ( depending on rankj), we have

|Lj| >
1

2
·

ln
(

n
m

)m−1

ln ln
(

n
m

)m−1 .

Let {v21, . . . , v
2
τ2
} be an SCR for L. As before, Lemma 4 and Theorem 5 yield

τ(L) = O

(

n

ln
(

n
m

)m−1 ·
(

ln ln
( n

m

)m)2
)

.

Repeating this procedure m times we obtain the following set:

M ′ =
{

v11, . . . , v
1
τ1

}

⊔
{

v21, . . . , v
2
τ2

}

⊔ . . . ⊔
{

vm1 , . . . , v
m
τm

}

.

Let M∗ =
⋃

pi<
n
m

M1
i ,M = M ′

⋃

M∗. From the prime number theorem (see [4]) and inequality ranki 6 m,

|M∗|= O
(

m n
m ln(n/m)

)

= O
(

n
ln(n/m)

)

= O
(

n ln(m+1)
ln n

m

(

ln ln
(

n
m

)m)2
)

. It is clear that θ(M) 6 |M |, i.e., we

can write
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θ(M)− |M∗| 6 O

(

n

ln
(

n
m

)m ·
(

ln ln
( n

m

)m)2
)

+O

(

n

ln
(

n
m

)m−1 ·
(

ln ln
( n

m

)m)2
)

+ . . .+

+O

(

n

ln
(

n
m

) ·
(

ln ln
( n

m

)m)2
)

.

To simplify the right-hand side of this asymptotic inequality, it is sufficient to compute the sum of the
following expressions:

1

ln
(

n
m

)r =
1

r
·

1

ln
(

n
m

) , r = 1, . . . , m.

Writing this sum as O

(

ln(m+1)

ln( n
m)

)

proves the theorem.

Remark. In [1], [2] M was constructed in a different (and incorrect) way. On each turn for each pj >
n
m

index of some new column (independent over Zpj with chosen for pj before) was added to M . This
was possible due to the incorrect version of Lemma 4: with correct version of it we can only guarantee

k = 1
2
·

ln( n
m)

ln ln( n
m)

on each turn of this algorithm and thus the bound for |M | becomes much weaker than

required to prove Theorem 2.
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