Defect of an octahedron in a rational lattice

Mikhail Fadin *

Abstract

Consider an arbitrary *n*-dimensional lattice Λ such that $\mathbb{Z}^n \subset \Lambda \subset \mathbb{Q}^n$. Such lattices are called *rational* and can always be obtained by adding $m \leq n$ rational vectors to \mathbb{Z}^n . Defect $d(\mathcal{E}, \Lambda)$ of the standard basis \mathcal{E} of \mathbb{Z}^n (*n* unit vectors going in the directions of the coordinate axes) is defined as the smallest integer *d* such that certain (n - d) vectors from \mathcal{E} together with some *d* vectors from the lattice Λ form a basis of Λ .

Let ||...|| be L^1 -norm on \mathbb{Q}^n . Suppose that for each non-integer $x \in \Lambda$ inequality ||x|| > 1 holds. Then the unit octahedron $O^n = \{x \in \mathbb{R}^n : ||x|| \leq 1\}$ is called admissible with respect to Λ and $d(\mathcal{E}, \Lambda)$ is also called defect of the octahedron O^n with respect to \mathcal{E} and is denoted as $d(O_{\mathcal{E}}^n, \Lambda)$.

Let $d_n^m = \max_{\Lambda \in \mathcal{A}_m} d(O_{\mathcal{E}}^n, \Lambda)$, where \mathcal{A}_m is the set of all *rational* lattices that can be obtained by adding *m* rational vectors to \mathbb{Z}^n : $\Lambda = \langle \mathbb{Z}^n, a_1, \ldots, a_m \rangle_{\mathbb{Z}}, a_1, \ldots, a_m \in \mathbb{Q}^n$. In this article we show that there exists an absolute positive constant *C* such that for any m < n

$$d_n^m \leqslant C \frac{n \ln(m+1)}{\ln \frac{n}{m}} \left(\ln \ln\left(\frac{n}{m}\right)^m\right)^2$$

This bound was also claimed in [1], [2], however the proof was incorrect. In this article along with giving correct proof we highlight substantial inaccuracies in those articles.

Keywords: Lattice, Defect, Octahedron, System of common representatives

Definitions, notation and formulation of result

Let $\Gamma \subset \mathbb{R}^n$ be an arbitrary lattice in an *n*-dimensional Euclidean space, and let $O = (0, 0, \dots, 0) \in \Gamma$ be the point of origin. If Γ is a sublattice of a lattice Λ , then Λ is called a *centering* of the lattice Γ . We are going to investigate the difference between the basis of a lattice and the basis of its centering.

Let us consider a basis e_1, \ldots, e_n of Γ . The set of vectors $\mathcal{E} = \{e_1, \ldots, e_n\}$ will be called a *frame*. The *defect of the frame* \mathcal{E} with respect to the lattice Λ is defined as the smallest integer d such that certain (n-d) vectors from \mathcal{E} together with some d vectors from the lattice Λ form a basis of Λ . It is denoted as $d(\mathcal{E}, \Lambda) = d$.

An *octahedron* corresponding to the frame \mathcal{E} is defined as the set

$$O_{\mathcal{E}}^{n} = \left\{ x \in \mathbb{R}^{n} : x = \lambda_{1}e_{1} + \ldots + \lambda_{n}e_{n}; |\lambda_{1}| + \ldots + |\lambda_{n}| \leq 1 \right\}.$$

The octahedron $O_{\mathcal{E}}^n$ is called *admissible* with respect to the lattice Λ if its interior contains no points of the lattice Λ , except for O and $\pm e_i$:

$$O_{\mathcal{E}}^n \cap \Lambda = \{O, e_1, -e_1, \dots, e_n, -e_n\}.$$

^{*}michailfadin@gmail.com; Faculty of Mathematics, National Research University Higher School of Economics, Moscow, 119048, Russia

If the octahedron $O_{\mathcal{E}}^n$ corresponding to the frame \mathcal{E} is admissible with respect to the centering Λ , then the quantity $d(\mathcal{E}, \Lambda)$ is denoted as $d(O_{\mathcal{E}}^n, \Lambda)$ and is called the *defect of the admissible octahedron* $O_{\mathcal{E}}^n$ in the *lattice* Λ .

Note that without loss of generality we can take Γ to be \mathbb{Z}^n and the frame \mathcal{E} to represent the standard basis (*n* unit vectors going in the directions of the coordinate axes).

In [6] N.G. Moshchevitin introduced the quantity

$$d_n^* = \max_{\Lambda_a} d(O_{\mathcal{E}}^n, \Lambda_a),$$

where Λ_a runs through lattices that can be obtained by adding one rational vector to \mathbb{Z}^n , and proved that there exists a positive constant C such that

$$d_n^* \leqslant C \frac{n}{\ln n} \left(\ln \ln n\right)^2$$
.

Then, in the article [7] (see also [8], [10], [11]) A.M Raigorodskii proved that there exists a positive constant C such that

$$C\frac{n}{\ln n}\left(\ln\ln n\right)^2 \leqslant d_n^*$$

Finally, in the article [1] the quantity d_n^m – natural generalisation of d_n^* , was introduced:

$$d_n^m = \max_{\Lambda \in \mathcal{A}_m} d(O_{\mathcal{E}}^n, \Lambda),$$

where \mathcal{A}_m is the set of all centerings of the integer lattice \mathbb{Z}^n that can be obtained by adding *m* rational vectors:

$$\Lambda = \langle \mathbb{Z}^n, a_1, \dots, a_m \rangle_{\mathbb{Z}}, \quad a_1, \dots, a_m \in \mathbb{Q}^n.$$

In [1], [2] the following bound was claimed.

Theorem 1. There exists an absolute positive constant C such that

$$d_n^m \leqslant C \frac{n \ln(m+1)}{\ln \frac{n}{m}} \left(\ln \ln \left(\frac{n}{m}\right)^m\right)^2$$

for any m < n.

However, the proof contained several substantial inaccuracies. Eliminating those inaccuracies turned out to be quite challenging. In this article we are going to show the correct proof of this bound and mark substantial inaccuracies in [1], [2]. In order to do it we define the following quantity:

$$\mathcal{D}_n^m = \max_{\Lambda \in \mathcal{A}_m^*} d(O_{\mathcal{E}}^n, \Lambda),$$

where \mathcal{A}_m^* is the set of all centerings of the integer lattice \mathbb{Z}^n that can be obtained by adding *m* rational vectors whose coordinates' denominators are square-free: $\Lambda = \langle \mathbb{Z}^n, a_1, \ldots, a_m \rangle_{\mathbb{Z}}; a_1, \ldots, a_m \in \mathbb{Q}^n$, there exists a square-free positive integer *q* such that $q \cdot a_1, \ldots, q \cdot a_m \in \mathbb{Z}^n$.

Theorem 2. There exists an absolute positive constant C such that

$$\mathcal{D}_n^m \leqslant C \frac{n \ln(m+1)}{\ln \frac{n}{m}} \left(\ln \ln \left(\frac{n}{m}\right)^m\right)^2$$

for any m < n.

Theorem 3. $\mathcal{D}_n^m = d_n^m$.

Note that Theorem 1 is a direct implication of Theorems 2 and 3.

2 Proof of Theorem 3

Let $a_1, \ldots, a_m \in \mathbb{Q}^n$ be given vectors. Suppose $O_{\mathcal{E}}^n$ is admissible with respect to $\Lambda = \langle \mathbb{Z}^n, a_1, \ldots, a_m \rangle_{\mathbb{Z}}$. Define A^* as the matrix formed by writing vectors a_1, \ldots, a_m as its rows.

Lemma 1. Let Λ' be a sublattice of Λ such that $\mathbb{Z}^n \subset \Lambda'$. Then there exist $\lambda_1, \ldots, \lambda_m \in \mathbb{Q}^n$ such that

$$\Lambda' = \langle \mathbb{Z}^n, \lambda_1, \ldots, \lambda_m \rangle_{\mathbb{Z}}.$$

Proof. Let b_1, \ldots, b_n be a basis of Λ' . Obviously, $\Lambda' = \langle \mathbb{Z}^n, b_1, \ldots, b_n \rangle_{\mathbb{Z}}$. For each *i* there exist $b_i^* \in \mathbb{Z}^n$ such that $b_i' = b_i + b_i^* \in \langle a_1, \ldots, a_m \rangle_{\mathbb{Z}}$. We have $\Lambda' = \langle \mathbb{Z}^n, b_1', \ldots, b_n' \rangle_{\mathbb{Z}} = \langle \mathbb{Z}^n, c_1 A^*, \ldots, c_n A^* \rangle_{\mathbb{Z}}$, where for each *i*, c_i is a row of *m* integers.

Let $C = \langle c_1, \ldots, c_n \rangle_{\mathbb{Z}} \subset \mathbb{Z}^m$. *C* is a submodule of free module \mathbb{Z}^m of rank *m* over principle ring \mathbb{Z} . Thus *C* is a free module over \mathbb{Z} of rank $\leq m$, which means that there exist c'_1, \ldots, c'_m such that $C = \langle c'_1, \ldots, c'_m \rangle_{\mathbb{Z}}$. Clearly, $\Lambda' = \langle \mathbb{Z}^n, c_1 A^*, \ldots, c_n A^* \rangle_{\mathbb{Z}} = \langle \mathbb{Z}^n, c'_1 A^*, \ldots, c'_m A^* \rangle_{\mathbb{Z}}$. Thus, $\lambda_i = c'_i A^*$ are desired vectors.

Lemma 2. There exist a lattice Λ' such that

1) $\mathbb{Z}^n \subset \Lambda' \subset \Lambda$,

2) denominators of coordinates of all vectors of Λ' are square-free,

3) $d(\mathcal{E}, \Lambda') = d(\mathcal{E}, \Lambda).$

Proof. Let $d(\mathcal{E}, \Lambda) = n - k + 1$. Then for each $I = \{i_1, \ldots, i_k\} \subset \{1, \ldots, n\}$ coordinate vectors e_{i_1}, \ldots, e_{i_k} can not be completed to a basis of Λ , which means that there exists $x = x_I \in \Lambda$ such that

(*) $x \in \langle e_{i_1}, \ldots, e_{i_k} \rangle_{\mathbb{R}}$, but $x \notin \langle e_{i_1}, \ldots, e_{i_k} \rangle_{\mathbb{Z}}$.

Let q_I be the least common multiple of the denominators of the coordinates of x_I and let p_I be the smallest prime divisor of $q_I, u_I = \frac{q_I}{p_I}$. Then $u_I x_I$ also satisfies (*) and its coordinates' denominators are square-free.

Let $\Lambda' = \langle \mathbb{Z}^n, \{u_{I_j}x_{I_j}\} \rangle_{\mathbb{Z}}$, where I_j runs through all k-element subsets of $\{1, \ldots, n\}$. Obviously, Λ' satisfies 1) and 2). Since for each $I = \{i_1, \ldots, i_k\} \subset \{1, \ldots, n\}$ there exists $y_I = u_I x_I \in \Lambda'$ which satisfies $(^*), e_{i_1}, \ldots, e_{i_k}$ can not be completed to a basis of Λ' . Thus $d(\mathcal{E}, \Lambda') \ge n - k + 1 = d(\mathcal{E}, \Lambda)$. But since $\Lambda' \subset \Lambda$, we have $d(\mathcal{E}, \Lambda') \le d(\mathcal{E}, \Lambda)$. Therefore, $d(\mathcal{E}, \Lambda') = d(\mathcal{E}, \Lambda)$ as desired.

Theorem 3 directly follows from Lemma 1 and Lemma 2.

3 Auxiliary combinatorial constructions

3.1 A system of families of sets \mathfrak{M}

Let $a_1, \ldots, a_m \in \mathbb{Q}^n$ be given vectors. Let us reduce their coordinates to a least possible common denominator q. Due to Theorem 3 we may assume that q is square-free, m < n (since it suffices to prove Theorem 2). Let $q = p_1 \cdot p_2 \cdot \ldots \cdot p_s$ ($p_1 \ge p_2 \ge \ldots \ge p_s$) be the prime factorization of q. Define A as the

matrix formed by writing vectors $q \cdot a_1, \ldots, q \cdot a_m$ as its rows. For each j, the rank of the matrix A over the field \mathbb{Z}_{p_i} will be denoted as $rank_j$.

Let $C_n = \{1, \ldots, n\}$ be the set of all coordinate indexes. For each $j \in \{1, \ldots, s\}$ let M_j^i denote $rank_j$ element subsets of C_n such that for an arbitrary i the columns of the matrix A with numbers from M_j^i are linearly independent over the field \mathbb{Z}_{p_j} . For a fixed j, the family of sets M_j^i will be denoted as \mathcal{M}_j . Finally, the system of families of sets \mathfrak{M} is defined as $\mathfrak{M} = \{\mathcal{M}_1, \ldots, \mathcal{M}_s\}$.

Remark. In [1], [2] there was no reduction to the square-free case (Theorem 3). Instead, matrix A was considered over rings $\mathbb{Z}_{p_j^k}$ and most statements were formulated in terms of rings (with the usage of an undefined rank over ring). However, in those terms Theorem 4 as well as auxiliary lemmas afterwards and final constructions in the proof turned out to be wrong. Since even in the square-free case in [1] and [2] there were substantial inaccuracies, in most following remarks we are only going to describe inaccuracies in that case even though all statements in [1], [2] were formulated in the general case.

3.2 The relation between the defect and the system \mathfrak{M}

Let M be a subset of C_n such that for any $j \in \{1, \ldots, s\}$ there exists $i \in \{1, \ldots, |\mathcal{M}_j|\}$ for which $M_j^i \subseteq M$.

Theorem 4. Let $\Lambda = \langle \mathbb{Z}^n, a_1, \ldots, a_m \rangle_{\mathbb{Z}}$. Then the following inequality is satisfied: $d(\mathcal{E}, \Lambda) \leq |M|$.

Proof. Any point of the lattice Λ can be represented as $\frac{1}{q} \cdot kA + b$, where $k = (k_1, \ldots, k_m)$ is a row of m integer numbers, A is the matrix defined in the previous section and b is a vector in \mathbb{Z}^n .

Consider a subspace of \mathbb{R}^n spanned by the coordinate axes with indexes that do not belong to M. Assume that a point $x = \frac{1}{q} \cdot kA + b$ of the lattice Λ lies in this subspace. Then its coordinates with numbers from M are equal to zero. Let us fix a number $j \in \{1, \ldots, s\}$. By definition of M, there exists a set $M_j^i = \{v_1, \ldots, v_{rank_j}\}$ which is fully embedded in M. Thus the coordinates of x numbered as v_1, \ldots, v_{rank_j} are also equal to zero. In other words, coordinates of the vector kA numbered as v_1, \ldots, v_{rank_j} form a maximal linearly independent set of vectors of the matrix A numbered as v_1, \ldots, v_{rank_j} form a maximal linearly independent set of vectors of the matrix A over the field \mathbb{Z}_{p_j} (by the definition of these $rank_j$ columns. Therefore, all coordinates of the vector kA are divisible by p_j . Since this applies for any $j \in \{1, \ldots, s\}$, all coordinates of the vector kA are therefore divisible by q. Thus $x \in \mathbb{Z}^n$, meaning (see [3]) that vectors of the frame \mathcal{E} with numbers from $\mathcal{C}_n \setminus M$ can be completed to form a basis of the lattice Λ , and thus we have $d(\mathcal{E}, \Lambda) \leq |M|$.

Remark. In [1], [2] M was defined as a set which for every j contains some maximum set of indexes of columns which are linear independent over the ring $\mathbb{Z}_{p_j^k}$. The same inequality was claimed. One can easily construct a contrexample to this version of the theorem by considering $n = 2, a_1 = (\frac{1}{p^2}, \frac{1}{p^2}), a_2 = (\frac{1}{p^2}, \frac{1}{p^2} + \frac{1}{p})$.

Theorem 4 holds for any M, allowing us to write $d(\mathcal{E}, \Lambda) \leq \theta(\mathfrak{M})$, where $\theta(\mathfrak{M})$ is the cardinality of the smallest set M. In the next subsection we are going to recall a problem similar to approximation of θ .

3.3 A covering problem

Let $\mathcal{L} = \{L_1, \ldots, L_t\}$ be an arbitrary family of subsets of the set \mathcal{C}_n . Its system of common representatives *(SCR)* is defined as a set $S \subseteq \mathcal{C}_n$ that includes at least one element from each L_i . The minimum size of an SCR for \mathcal{L} is denoted as $\tau(\mathcal{L})$. Clearly, the setting in the previous subsection is more general:

instead of a family of sets we consider the system of families of sets \mathfrak{M} . If we assume that the size of all sets in every family from \mathfrak{M} equals one, then the set M defined in the previous subsection is, as a matter of fact, an SCR. Theorem 5 below provides an upper bound on the size of a minimal SCR which will later help us to obtain a bound for $\theta(\mathfrak{M})$. A proof and a discussion of this theorem can be found in [5], [9], [12].

Theorem 5. Assume that $|L_i| \ge k$ for each $i \in \{1, \ldots, t\}$. Then there exists a constant c such that

$$\tau(\mathcal{L}) \leqslant c \frac{n}{k} \cdot \max\left\{1, \ln \frac{tk}{n}\right\}.$$

4 Proof of Theorem 2

4.1 Outline of the proof

Consider vectors $a_1, \ldots, a_m \in \mathbb{Q}^n$. Let us construct a system of families of sets $\mathfrak{M} = \{\mathcal{M}_1, \ldots, \mathcal{M}_s\}$ using the method from Subsection 3.1. We would like to prove the inequality

$$\theta(\mathfrak{M}) \leqslant C \frac{n \ln(m+1)}{\ln \frac{n}{m}} \left(\ln \ln \left(\frac{n}{m}\right)^m\right)^2$$

by applying Theorem 5. Subsection 4.3 is going to contain this proof, and the auxiliary lemmas used in the proof are presented in the following subsection.

4.2 Auxiliary Lemmas

Lemma 3. det $\Lambda = p_1^{-rank_1} \cdot p_2^{-rank_2} \cdot \ldots \cdot p_s^{-rank_s}$

Proof. Denote $\Lambda_k = \langle \mathbb{Z}^n, a_1, \ldots, a_k \rangle_{\mathbb{Z}}$ for $0 \leq k \leq m$. We have $\Lambda_0 \subset \Lambda_1 \ldots \subset \Lambda_m$ and $\Lambda_k / \Lambda_{k-1} = \langle a_k \rangle$. Define a number q_k in the following way. Let $q \cdot a_k$ not lie in $\langle q \cdot a_1, \ldots, q \cdot a_{k-1} \rangle_{\mathbb{Z}_{p_j}}$ for $p_j | q_k$ and lie for all other p_j .

Let r be integer such that $0 < r < q_k$. Suppose that $r \cdot a_k \in \Lambda_{k-1}$. There exists i such that $p_i|q_k$ but $(p_i, r) = 1$. By assumption, $r \cdot a_k = b_1 \cdot a_1 + \ldots + b_{k-1} \cdot a_{k-1}$, where b_1, \ldots, b_{k-1} are integers. But that means that in \mathbb{Z}_{p_i} we have $a_k = r^{-1}b_1 \cdot a_1 + \ldots + r^{-1}b_{k-1} \cdot a_{k-1}$ which contradicts the definition of q_k .

By Chinese Remainder Theorem and definition of q_k there exist integers b_1, \ldots, b_{k-1} such that each coordinate of $q \cdot a_k - qb_1 \cdot a_1 - \ldots - qb_{k-1} \cdot a_{k-1}$ is divisible by $\frac{q}{q_k}$ i.e. $q_k \cdot a_k - q_k b_1 \cdot a_1 - \ldots - q_k b_{k-1} \cdot a_{k-1} \in \mathbb{Z}^n$.

So, $a_k, 2a_k, \ldots, (q_k-1)a_k \notin \Lambda_{k-1}$ while $q_k a_k \in \Lambda_{k-1}$. Thus index of Λ_{k-1} in Λ_k is q_k . Since $q \cdot a_k$ cannot be expressed as a linear combination of $q \cdot a_1, \ldots, q \cdot a_{k-1}$ over \mathbb{Z}_{p_j} for $p_j | q_k$ and can be expressed as a linear combination of $q \cdot a_1, \ldots, q \cdot a_{k-1}$ over \mathbb{Z}_{p_j} for all other $p_j, q_1 \cdot \ldots \cdot q_m = p_1^{rank_1} \cdot p_2^{rank_2} \cdot \ldots \cdot p_s^{rank_s}$. Then we have $1 = \det \Lambda_0 = q_1 \det \Lambda_1 = \ldots = q_1 \cdot \ldots \cdot q_m \cdot \det \Lambda_m = p_1^{rank_1} \cdot \ldots \cdot p_s^{rank_s} \cdot \det \Lambda$ which concludes the proof.

Lemma 4. Let $j \in \{1, \ldots, s\}, p_j \ge 5$ and let v_1, \ldots, v_l be l integers, $0 \le l < \operatorname{rank}_j, 1 \le v_i \le n$, such that columns of the matrix A (see Subsection 3.1) numbered as v_1, \ldots, v_l are independent over \mathbb{Z}_{p_j} . Let \tilde{M}_j be the set of indexes of columns which are linearly independent with columns numbered v_1, \ldots, v_l over \mathbb{Z}_{p_j} . The following inequality holds:

$$\left|\tilde{M}_{j}\right| \geqslant \frac{1}{2} \cdot \frac{\ln p_{j}^{rank_{j}-l}}{\ln \ln p_{j}^{rank_{j}-l}}.$$

Remark. In [1], [2] in the formulation of the lemma in the inequality there was m instead of $rank_j$. However, this version of the lemma obviously does not hold: for instance, with fixed p_j and limitlessly increasing m, the right-hand side is limitlessly increasing while the left-hand side can be constant. We introduced Lemma 3 in order to show a correct proof of the correct version of the lemma.

Proof. It suffices to prove the lemma in the case $m = rank_j$, $q = p_j$. Let Λ' be a lattice obtained by the intersection of Λ with subspace spanned by the coordinate axes numbered by elements of \tilde{M}_j . We define family of vectors a_k^i (i = 0, ..., l; k = 1, ..., m) using the following algorithm.

• Put
$$a_k^0 = a_k$$
,

- If for each k the v_i^{th} coordinate of a_k^{i-1} is integer then let $a_k^i = a_k^{i-1}$.
- Otherwise for some $k v_i^{th}$ coordinate of $p_j \cdot a_k^{i-1}$ is not divisible by p_j . Thus for each r there exists integer c_r^i such that the v_i^{th} coordinate of $a_r^{i-1} + c_r^i \cdot a_k^{i-1}$ is an integer. Let $a_k^i = a_r^{i-1} + c_r^i \cdot a_k^{i-1}$.

Obviously, $rank_{\mathbb{Z}_{p_j}}(\{p_j \cdot a_k^i\}) \ge rank_{\mathbb{Z}_{p_j}}(\{p_j \cdot a_k^{i-1}\}) - 1$. Thus $rank_{\mathbb{Z}_{p_j}}(\{p_j \cdot a_k^l\}) \ge rank_j - l$.

Consider vectors $p_j \cdot a_k^l$. By the construction, coordinates numbered by v_1, \ldots, v_l of these vectors are equal to zero in \mathbb{Z}_{p_j} . By definition, all columns of matrix A with indexes from \tilde{M}_j can be expressed over \mathbb{Z}_{p_j} as linear combinations of columns numbered by v_1, \ldots, v_l . Since vectors $p_j \cdot a_k^l$ are linear combinations of $p_j \cdot a_1, \ldots, p_j \cdot a_m$ we obtain that coordinates numbered by elements of \tilde{M}_j of these vectors are equal to zero in \mathbb{Z}_{p_j} . That means that for every k there exists an integer vector t_k such that all coordinates numbered by elements of \tilde{M}_j of $a_k^l + t_k$ are equal to zero. Note that $rank_{\mathbb{Z}_{p_j}}(\{p_j \cdot (a_k^l + t_k)\}) = rank_{\mathbb{Z}_{p_j}}(\{p_j \cdot a_k^l\}) \ge rank_j - l$ and $x_k = a_k^l + t_k \in \Lambda'$.

Let $n^* = |\tilde{M}_j|$ and let \mathbb{Z}^{n^*} be the subspace of \mathbb{Z}^n spanned by the coordinate axes with indexes from \tilde{M}_j . Applying Lemma 1 for lattice $\Gamma = \langle \mathbb{Z}^{n^*}, x_1, \ldots, x_m \rangle_{\mathbb{Z}}$ we obtain $p^{l-rank_j} \ge \det \Gamma \ge \det \Lambda'$. Since unit octahedron $O_{\mathcal{E}}^{n^*}$ is admissible in Λ' we can apply Minkowski's Theorem (see [3]):

$$Vol(O_{\mathcal{E}}^{n*}) = \frac{2^{\left|\tilde{M}_{j}\right|}}{\left|\tilde{M}_{j}\right|!} \leqslant 2^{\left|\tilde{M}_{j}\right|} \cdot \det \Lambda' \leqslant \frac{2^{\left|\tilde{M}_{j}\right|}}{p_{j}^{rank_{j}-l}} \Longrightarrow \left|\tilde{M}_{j}\right|! \geqslant p_{j}^{rank_{j}-l} \Longrightarrow \left|\tilde{M}_{j}\right| \geqslant \frac{1}{2} \cdot \frac{\ln p_{j}^{rank_{j}-l}}{\ln \ln p_{j}^{rank_{j}-l}}$$

The final inequality follows from the condition $p_i \ge 5$. The lemma is proved.

Lemma 5. The following inequality holds: $s \leq n$.

Proof. The octahedron $O_{\mathcal{E}}^n$ is admissible with respect to the lattice Λ , det $\Lambda \leq \frac{1}{q}$ (follows from Lemma 3). Thus, from Minkowski's Theorem, we have:

$$\frac{2^n}{n!} \leqslant \frac{2^n}{q} \Longrightarrow q \leqslant n!,$$

and $q = p_1 \dots p_s \ge s!$, which proves the lemma.

6

4.3 A bound for $\theta(\mathfrak{M})$

Consider the system of families of sets $\mathfrak{M}_{o} = {\mathcal{M}_{1}, \ldots, \mathcal{M}_{t}}$, where t is the maximum index such that $p_{t} \geq \frac{n}{m}$. We can assume that n is sufficiently large. We can also assume that $m \ll e^{(\ln n)^{1/3}}$ (otherwise the desired bound is trivial).

Let us start by defining L_j (for each j such that $|M_j^1| = m$) as the union of all sets from the family $\mathcal{M}_j \in \mathfrak{M}_0$. Consider a family of sets $\mathcal{L} = \{L_{i_1}, \ldots, L_{i_r}\}$. Let us build a minimal SCR \mathcal{L} (§3.3) and estimate the cardinality of this SCR or, in other words, obtain a bound for $\tau(\mathcal{L})$. Applying Lemma 4 with l = 0 we obtain $|L_{i_j}| \ge \frac{1}{2} \cdot \frac{\ln p_{i_j}^m}{\ln \ln p_{i_j}^m}$. Here we choose n to be sufficiently large for the inequality $p_{i_j} > \frac{n}{m} > 5$ to be satisfied. For sufficiently large values of x, the function $\frac{\ln x}{\ln \ln x}$ is increasing, therefore we can write

$$|L_{i_j}| \ge \frac{1}{2} \cdot \frac{\ln\left(\frac{n}{m}\right)^m}{\ln\ln\left(\frac{n}{m}\right)^m}.$$

Let

$$k = \frac{1}{2} \cdot \frac{\ln\left(\frac{n}{m}\right)^m}{\ln\ln\left(\frac{n}{m}\right)^m}.$$

From Lemma 5 we have $r \leq t \leq s \leq n$, and thus Theorem 5 yields

$$\tau(\mathcal{L}) = O\left(\frac{n}{k}\ln k\right) = O\left(\frac{n}{\ln\left(\frac{n}{m}\right)^m} \cdot \left(\ln\ln\left(\frac{n}{m}\right)^m\right)^2\right).$$

Let $\tau_1 = \tau(\mathcal{L})$, and let us denote the elements of the corresponding SCR as $v_1^1, \ldots, v_{\tau_1}^1$.

For each $j \in \{i_i, \ldots, i_r\}$ consider an element $v_{\nu(j)}^1$ that lies in the set L_j . Clearly, this element lies in a number of sets M_j^i in the family \mathcal{M}_j . For each identified set M_j^i , replace M_j^i by $M_j^i \setminus \{v_{\nu(j)}^1\}$. Now delete all other M_j^i from \mathcal{M}_j (if \mathcal{M}_j became empty or now contains only empty sets then we delete it from \mathfrak{M}_o) and rename sets which are left(which contain $v_{\nu(j)}^1$) so that $\mathcal{M}_j = \{M_j^1, \ldots, M_j^{h(j)}\}$. Define L_j (for j such that $|M_j^1| = m - 1$) as union of all sets of \mathcal{M}_j .

From Lemma 4 with l = 1 or 0 (depending on $rank_j$), we have

$$|L_j| \ge \frac{1}{2} \cdot \frac{\ln\left(\frac{n}{m}\right)^{m-1}}{\ln\ln\left(\frac{n}{m}\right)^{m-1}}$$

Let $\{v_1^2, \ldots, v_{\tau_2}^2\}$ be an SCR for \mathcal{L} . As before, Lemma 4 and Theorem 5 yield

$$\tau(\mathcal{L}) = O\left(\frac{n}{\ln\left(\frac{n}{m}\right)^{m-1}} \cdot \left(\ln\ln\left(\frac{n}{m}\right)^{m}\right)^{2}\right).$$

Repeating this procedure m times we obtain the following set:

$$M' = \{v_1^1, \dots, v_{\tau_1}^1\} \sqcup \{v_1^2, \dots, v_{\tau_2}^2\} \sqcup \dots \sqcup \{v_1^m, \dots, v_{\tau_m}^m\}.$$

Let $M^* = \bigcup_{p_i < \frac{n}{m}} M_i^1$, $M = M' \bigcup M^*$. From the prime number theorem (see [4]) and inequality $rank_i \leq m$, $|M^*| = O\left(m\frac{n}{m\ln(n/m)}\right) = O\left(\frac{n}{\ln(n/m)}\right) = O\left(\frac{n\ln(m+1)}{\ln\frac{n}{m}}\left(\ln\ln\left(\frac{n}{m}\right)^m\right)^2\right)$. It is clear that $\theta(\mathfrak{M}) \leq |M|$, i.e., we can write

$$\theta(\mathfrak{M}) - |M^*| \leq O\left(\frac{n}{\ln\left(\frac{n}{m}\right)^m} \cdot \left(\ln\ln\left(\frac{n}{m}\right)^m\right)^2\right) + O\left(\frac{n}{\ln\left(\frac{n}{m}\right)^{m-1}} \cdot \left(\ln\ln\left(\frac{n}{m}\right)^m\right)^2\right) + \ldots + O\left(\frac{n}{\ln\left(\frac{n}{m}\right)} \cdot \left(\ln\ln\left(\frac{n}{m}\right)^m\right)^2\right).$$

To simplify the right-hand side of this asymptotic inequality, it is sufficient to compute the sum of the following expressions:

$$\frac{1}{\ln\left(\frac{n}{m}\right)^r} = \frac{1}{r} \cdot \frac{1}{\ln\left(\frac{n}{m}\right)}, \quad r = 1, \dots, m.$$

Writing this sum as $O\left(\frac{\ln(m+1)}{\ln\left(\frac{n}{m}\right)}\right)$ proves the theorem.

Remark. In [1], [2] M was constructed in a different (and incorrect) way. On each turn for each $p_j \ge \frac{n}{m}$ index of some new column (independent over \mathbb{Z}_{p_j} with chosen for p_j before) was added to M. This was possible due to the incorrect version of Lemma 4: with correct version of it we can only guarantee $k = \frac{1}{2} \cdot \frac{\ln(\frac{n}{m})}{\ln \ln(\frac{n}{m})}$ on each turn of this algorithm and thus the bound for |M| becomes much weaker than required to prove Theorem 2.

Acknowledgements

I would like to thank A.M Raigorodskii for productive discussions about [1], [2], helpful suggestions and proofreading.

References

- A.A. Bagan, A.M. Raigorodskii, Defect of an admissible octahedron in a centering of an integer lattice generated by a given number of vectors, Math. Notes, 99 (2016), N3, 457–459
- [2] A.A. Bagan, A.M. Raigorodskii, Defect of an admissible octahedron in a centering obtained by adding rational vectors to an integer lattice, Moscow Journal of Combinatorics and Number Theory, 5 (2015), N 1-2, 3-13
- [3] J.W.S. Cassels, An introduction to the geometry of numbers, Springer Berlin Heidelberg, 1996, 344 p.
- [4] A. Karatsuba, *Basic analytic number theory*, Springer Berlin Heidelberg, 2012, 222 p.
- [5] N.N. Kuzyurin, The asymptotic investigation of the problem of covering, Probl. Kibern., 1980, N37, 19-56.
- [6] N.G. Moshchevitin, The defect of an admissible octahedron in a lattice, Math. Notes, 58 (1995), N4, 558–568.
- [7] A.M. Raigorodskii, The defects of admissible balls and octahedra in a lattice, and systems of generic representatives, Mat. Sb., 189 (1998), N6, 117–141.
- [8] A.M. Raigorodskii, On a problem in the geometry of numbers, Proc. National Acad. Sci. Belarus, 15 (2007), N1, 111–117.

- [9] A.M. Raigorodskii, Systems of common representatives in combinatorics and their application to geometry, MCCME, Moscow, Russia, 2009.
- [10] A.M. Raigorodskii, The defects of admissible sets in a lattice, and systems of common representatives, Beiträge zur zahlentheoretischen Analysis, Grazer Math. Berichte, N338 (1999), 31–62.
- [11] A.M. Raigorodskii, A probabilistic approach to the problem of the defects of admissible sets in a lattice, Math. Notes, 68 (2000), N6, 910–916.
- [12] A.M. Raigorodskii, Systems of common representatives, Fundam. Prikl. Mat., 5 (1999), N3, 851–860.