
ar
X

iv
:1

80
4.

08
13

6v
3 

 [
m

at
h.

L
O

] 
 1

5 
M

ay
 2

01
9 PBZ*-Lattices:

Structure Theory and Subvarieties

Roberto Giuntini, Claudia Mureşan, Francesco Paoli
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Abstract

We investigate the structure theory of the variety of PBZ*-lattices and

some of its proper subvarieties. These lattices with additional structure

originate in the foundations of quantum mechanics and can be viewed

as a common generalisation of orthomodular lattices and Kleene algebras

expanded by an extra unary operation. We lay down the basics of the

theories of ideals and of central elements in PBZ*-lattices, we prove some

structure theorems, and we explore some connections with the theories of

subtractive and binary discriminator varieties.

1 Introduction

The papers [14] and [15] contain the beginnings of an algebraic investigation
of a variety of lattices with additional structure, the variety PBZL

∗ of PBZ∗ –
lattices. The key motivation for the introduction of this class of algebras comes
from the foundations of quantum mechanics. Consider the structure

E (H) = (E (H) ,∧s,∨s,
′ ,∼ ,O, I) ,

where:

• E (H) is the set of all effects of a given complex separable Hilbert space
H, i.e., positive linear operators of H that are bounded by the identity
operator I;

• ∧s and ∨s are the meet and the join, respectively, of the spectral ordering
≤s so defined for all E,F ∈ E (H):

E ≤s F iff ∀λ ∈ R : MF (λ) ≤ ME(λ),

where for any effect E, ME is the unique spectral family [19, Ch. 7]
such that E =

∫∞

−∞
λdME(λ) (the integral is here meant in the sense of

norm-converging Riemann-Stieltjes sums [22, Ch. 1]);
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• O and I are the null and identity operators, respectively;

• E′ = I− E and E∼ = Pker(E) (the projection onto the kernel of E).

The operations in E (H) are well-defined. The spectral ordering is indeed
a lattice ordering [20, 18] that coincides with the usual ordering of effects in-
duced via the trace functional when both orderings are restricted to the set of
projection operators of the same Hilbert space.

A PBZ∗ –lattice can be viewed as an abstraction from this concrete physical
model, much in the same way as an orthomodular lattice can be viewed as
an abstraction from a certain structure of projection operators in a complex
separable Hilbert space. The faithfulness of PBZ∗ –lattices to the physical
model whence they stem is further underscored by the fact that they reproduce
at an abstract level the “collapse” of several notions of sharp physical property
that can be observed in E (H).

Further motivation for the study of PBZL
∗ comes from its emerging rela-

tionships with many related algebraic structures (orthomodular lattices, Kleene
algebras, Stone algebras). In particular, PBZ∗ –lattices can be seen as a com-
mon generalisation of orthomodular lattices and of Kleene algebras with an
additional unary operation.

This paper is devoted to laying down the basics of the structure theory of
the variety PBZL

∗ and of some of its subvarieties; let us briefly summarise its
contents. In Section 2 we dispatch a number of preliminaries in order to keep
the paper reasonably self-contained, including a short résumé of the results in
[14] and [15]. In Section 3, we study decompositions of PBZ∗ –lattices. As
it happens for orthomodular lattices, and more generally for members of all
Church varieties [21], direct decompositions in a PBZ∗ –lattice L are induced
by certain members of L (the so-called central elements) that form a Boolean
algebra and that can be conveniently described. In particular, we show that the
central elements in a PBZ∗ –lattice L are those elements that “commute” with
any a ∈ L, and that this “commuting” relation generalises the analogous relation
of decisive importance in the context of orthomodular lattices. In Section 4, we
introduce the notion of a p-ideal (ideal closed under perspectivity), mimicking
the corresponding definition available for orthomodular lattices. Although in
the general case p-ideals lack many of the strong properties one would expect
from a reasonable notion of an ideal, as soon as we zoom in on the subvariety
SDM satisfying the strong De Morgan law (x ∧ y)

∼
≈ x∼∨y∼, we can show that

such ideals coincide with the SDM-ideals in the sense of Ursini (whence also with
0-classes of congruences, since PBZL

∗ and all its subvarieties are 0-subtractive).
We also prove that the 0-assertional logic of SDM is strongly algebraisable and
we characterise its equivalent variety semantics. Finally, we observe that the
variety V (AOL) generated by antiortholattices — that is, PBZ∗ –lattices with
no nontrivial sharp element — is a binary discriminator variety and we further
simplify the description of ideals in that case. In the concluding Section 5, after
streamlining the known equational basis for V (AOL), we axiomatise the varietal
join of orthomodular lattices and the variety generated by antiortholattices in
the lattice of subvarieties of PBZL∗.
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2 Preliminaries

2.1 Universal Algebra and Lattice Theory

For basic information on universal algebra, the reader is referred to [6, 17].
Throughout this paper, all algebras will be nonempty; by a trivial algebra we

will mean a one–element algebra, and a trivial variety will be a variety consisting
solely of trivial algebras. If A is an algebra, then A will be the universe of A;
in some cases, such as those of congruence lattices, lattices will be designated
by their set reducts. If V is a variety of algebras of similarity type ν and A
or a reduct of A is a member of V, then (ConV(A),∩,∨,∆A,∇A) will be the
bounded lattice of the congruences of A with respect to ν; when V is the variety
of lattices, ConV(A) will be denoted by Con(A). With V assumed implicit, the
congruence of A generated by an S ⊆ A× A will be denoted by Cg(S); for all
a, b ∈ A, the principal congruence Cg({(a, b)}) will be denoted by Cg(a, b).

For any lattice L and any x, y ∈ L, the principal filter (resp. ideal) of L
generated by x will be denoted by [x) (resp. (x]), and, if x ≤ y, then [x, y] =
[x)∩(y] will be the interval of L bounded by x and y. The dual of any (bounded)
lattice M will be denoted by Md. If A is an algebra with a bounded lattice
reduct, then such a reduct will be indicated by Al. In this case, a congruence θ
of A (or any of its reducts) is said to be pseudo-identical iff 0A/θ =

{

0A
}

and

1A/θ =
{

1A
}

.

2.2 PBZ∗ –lattices

We recap in this section some definitions and results on PBZ∗ –lattices (the
latter mostly from [14] and [15], except when explicitly noted) that will be
needed in the following.

Definition 1 A bounded involution lattice is an algebra L = (L,∧,∨,′ , 0, 1) of
type (2, 2, 1, 0, 0) such that (L,∧,∨, 0, 1) is a bounded lattice with partial order
≤ and the following conditions are satisfied for all a, b ∈ L:

• a′′ = a;

• a ≤ b implies b′ ≤ a′.

Note that, for any bounded involution lattice L, the involution ′ : L → L is
a dual lattice isomorphism of Ll.

Definition 2 A bounded involution lattice L = (L,∧,∨,′ , 0, 1) is a pseudo-
Kleene algebra in case it satisfies any of the following two equivalent conditions:

(i) for all a, b ∈ L, if a ≤ a′ and b ≤ b′, then a ≤ b′ ;

(ii) for all a, b ∈ L, a ∧ a′ ≤ b ∨ b′.

3



The class of bounded involution lattices is a variety, here denoted by BI. The
involution of a pseudo-Kleene algebra is called Kleene complement. The variety
of pseudo-Kleene algebras, for which see e.g. [10], is denoted by PKA. Distribu-
tive pseudo-Kleene algebras are variously called Kleene lattices or Kleene alge-
bras in the literature. Observe that in [14], embracing the terminological usage
from [12, p. 12], pseudo-Kleene algebras were referred to as “Kleene lattices”.
In [15], however, the authors switched to the less ambiguous “pseudo-Kleene
algebras”.

In unsharp quantum logic, there are several competing purely algebraic char-
acterisations of sharp effects [12, Ch. 7]. A quantum effect or property is usually
called sharp if it satisfies the noncontradiction principle:

Definition 3 Let L be a bounded involution lattice.

(i) An element a ∈ L is said to be Kleene-sharp iff a∧a′ = 0. SK(L) denotes
the class of Kleene-sharp elements of L.

(ii) L is an ortholattice iff SK(L) = L.

(iii) L is an orthomodular lattice iff L is an ortholattice and, for all a, b ∈ L,
if a ≤ b, then b = (b ∧ a′) ∨ a.

The variety of ortholattices is denoted by OL. Among ortholattices, ortho-
modular lattices play a crucial role in the standard (sharp) approach to quantum
logic. The class of orthomodular lattices is actually a variety, hereafter denoted
by OML.

It is well-known that an ortholattice L is orthomodular if and only if, for all
a, b ∈ L, if a ≤ b and a′∧b = 0, then a = b. In the wider setting of bounded in-
volution lattices, the previous condition does not imply the stronger condition of
orthomodularity above. We will call this weaker condition paraorthomodularity.

Definition 4 An algebra L with a bounded involution lattice reduct is said to
be paraorthomodular iff, for all a, b ∈ L:

if a ≤ b and a′ ∧ b = 0, then a = b.

It turns out that the class of paraorthomodular pseudo-Kleene algebras is
a proper quasivariety, whence we cannot help ourselves to the strong universal
algebraic properties that characterise varieties. It is then natural to wonder
whether there exists an expansion of the language of bounded involution lat-
tices where the paraorthomodular condition can be equationally recovered. The
appropriate language expansion is provided by including an additional unary
operation and moving to the type (2, 2, 1, 1, 0, 0), familiar in unsharp quantum
logic from the investigation of Brouwer-Zadeh lattices (see [9] or [12, Ch. 4.2]).

Definition 5 A Brouwer-Zadeh lattice (or BZ-lattice) is an algebra

L =
(

L, ∧,∨ , ′, ∼, 0 , 1
)

of type (2, 2, 1, 1, 0, 0), such that:
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(i)
(

L, ∧,∨ , ′, 0 , 1
)

is a pseudo-Kleene algebra;

(ii) for all a, b ∈ L, the following conditions are satisfied:

(1) a ∧ a∼ = 0; (2) a ≤ a∼∼;
(3) a ≤ b implies b∼ ≤ a∼; (4) a∼′ =a∼∼.

The operation ∼ is called the Brouwer complement of the BZ–lattice. The
class of all BZ-lattices is a variety, denoted by BZL; OL can be identified with
the subvariety of BZL whose relative equational basis w.r.t. BZL is given by
the equation x∼ = x′. In any BZ-lattice, we set ♦x = x∼∼ and �x = x′∼.
The following arithmetical lemma, the proof of which is variously scattered in
the above-mentioned literature and elsewhere [7, 8], will be used without being
referenced in what follows.

Lemma 6 Let L be a BZ-lattice. For all a, b ∈ L, the following conditions hold:
(i) a∼∼∼ = a∼; (vi) �(a ∧ b) = �a ∧�b;
(ii) a∼ ≤ a′; (vii) ♦(a ∨ b) = ♦a ∨ ♦b;
(iii) (a ∨ b)∼ = a∼ ∧ b∼; (viii) ♦(a ∧ b) ≤ ♦a ∧ ♦b;
(iv) a∼ ∨ b∼ ≤ (a ∧ b)∼; (ix) if a′ ≤ a, then a∼ = 0.
(v) (�(a′))′ = ♦a;

We remarked above that Kleene-sharpness is not the unique purely algebraic
characterisation of a sharp quantum property. Two noteworthy alternatives now
become available in our expanded language of BZ-lattices.

Definition 7 Let L be a BZ-lattice.

(i) An element a ∈ L is said to be ♦-sharp iff a = ♦a; the class of all ♦-sharp
elements of L will be denoted by S♦(L).

(ii) An element a ∈ L is said to be Brouwer-sharp iff a ∨ a∼ = 1; the class of
all Brouwer-sharp elements of L will be denoted by SB(L).

It is easy to derive from the previous lemma that, in any BZ-lattice L,
S♦(L) = {a∼ : a ∈ L} = {a ∈ L : a′ = a∼}. For any BZ-lattice L, we have that
S♦(L) ⊆ SB(L) ⊆ SK(L). However, in any BZ-lattice of effects of a Hilbert
space (under the meet and join operation induced by the spectral ordering)
these three classes coincide. Consequently, it makes sense to investigate whether
there is a class of BZ-lattices for which this collapse result can be recovered at
a purely abstract level. The next definition and theorem answer this question
in the affirmative.

Definition 8 A BZ∗-lattice is a BZ-lattice L that satisfies, for all a ∈ L, the
condition

(∗) (a ∧ a′)∼ ≤ a∼ ∨�a.

Theorem 9 Let L be a paraorthomodular BZ∗-lattice. Then,

S♦(L) = SB(L) = SK(L).
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As pleasing as this result may be, the class of paraorthomodular BZ∗-lattices
still suffers from a major shortcoming: the paraorthomodularity condition is
quasiequational. However, the next result shows that it can be replaced by an
equation, so that paraorthomodular BZ∗-lattices form a variety, which we will
denote by PBZL

∗ and whose members will be called, in brief, PBZ ∗-lattices.

Theorem 10 Let L be a BZ∗-lattice. The following conditions are equivalent:

(1) L is paraorthomodular;

(2) L satisfies the following ♦-orthomodularity condition for all a, b ∈ L:

(a∼ ∨ (♦a ∧ ♦b)) ∧ ♦a ≤ ♦b.

Every bounded lattice can be embedded as a sublattice into a PBZ∗ –lattice
[14, Lm. 5.3]. Consequently, PBZL∗ satisfies no nontrivial identity in the lan-
guage of lattices.

The naturalness of the concept of a PBZ∗-lattice is further reinforced by the
circumstance that BZ-lattices of effects of a Hilbert space, under the spectral
ordering, qualify as instances of PBZ∗-lattices:

Theorem 11 Let H be a complex separable Hilbert space. The algebra

E (H) = 〈E (H) ,∧s,∨s,
′ ,∼ ,O, I〉 ,

(see the introduction for the notation) is a PBZ∗ –lattice. Moreover,

SK(E (H)) =S♦(E (H)) = SB(E (H))

is an orthomodular subuniverse of E (H) consisting of all the projection opera-
tors of H.

All orthomodular lattices become, of course, PBZ∗ –lattices when endowed
with a Brouwer complement that equals their Kleene complement. In every
PBZ∗ –lattice L, SK(L) is always the universe of the largest orthomodular sub-
algebra SK(L) of L, so that L is orthomodular iff it satisfies x∼ ≈ x′. Further
examples of PBZ∗ –lattices are given by those algebras in this class that are
“as far apart as possible” from orthomodular lattices. In any orthomodular
lattice L, SK(L) = L; on the other hand, by definition, a PBZ∗ –lattice L is an
antiortholattice iff SK(L) = {0, 1}. We denote by AOL the class of antiortho-
lattices.

Lemma 12

(i) A PBZ∗ –lattice L belongs to AOL iff 0∼ = 1 and, for all a ∈ L \ {0},
a∼ = 0.

(ii) Every L ∈ AOL is directly indecomposable.

6



(iii) AOL is a proper universal class.

The Brouwer complement of Lemma 12.(i) is called trivial.
For all n ≥ 1, the n-element Kleene chain with universe Dn = {0, d1, d2, . . . ,

dn−2, 1}, with 0 < d1 < d2 < . . . < dn−2 < 1, is an antiortholattice Dn under
the trivial Brouwer complement. To avoid notational overloading, the reduct
(Dn)l will simply be denoted by Dn, as well. Note that every finite chain is
self–dual both as a bounded lattice and as a Kleene algebra, so the notation Dd

n

is superfluous in these cases; the same can be stated about direct products of
finite chains, in particular about Boolean algebras.

The following easy results are observed (sometimes implicitly) in the litera-
ture on BZ-lattices, in particular in [14] and in [15]:

Lemma 13 (i) Any pseudo-Kleene algebra, endowed with the trivial Brouwer
complement, becomes a BZ-lattice.

(ii) Any paraorthomodular pseudo-Kleene algebra which, endowed with the
trivial Brouwer complement, satisfies condition (∗), becomes an antiortho-
lattice.

(iii) Any pseudo-Kleene algebra in which 0 is meet–irreducible is paraortho-
modular and satisfies condition (∗) when endowed with the trivial Brouwer
complement, whence it becomes an antiortholattice.

We will repeatedly have the occasion to consider the following identities in
the language of BZ–lattices:

SDM (the Strong de Morgan law) (x ∧ y)
∼
≈ x∼ ∨ y∼;

WSDM (weak SDM ) (x ∧ y∼)
∼
≈ x∼ ∨ ♦y;

DIST x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z);

J2 x ≈ (x ∧ (y ∧ y′)
∼

) ∨ (x ∧ ♦ (y ∧ y′));

SK x ∧ ♦y ≤ �x ∨ y.

Clearly, SDM implies WSDM. Observe that OML satisfies SDM, J2 and SK.
Trivially, AOL satisfies WSDM and J2, whence OML ∨ V (AOL) satisfies these
two identities.

We list some useful properties of the variety V (AOL) generated by an-
tiortholattices, including an axiomatisation relative to PBZL

∗.

Lemma 14 Let A ∈V (AOL). Then for all a, b, c ∈ A:
(i) a ∧ (b ∨ c∼) = (a ∧ b) ∨ (a ∧ c∼);
(ii) a ∨ (b ∧ c∼) = (a ∨ b) ∧ (a ∨ c∼);
(iii) a∼ ∧ (b ∨ c) = (a∼ ∧ b) ∨ (a∼ ∧ c);
(iv) a∼ ∨ (b ∧ c) = (a∼ ∨ b) ∧ (a∼ ∨ c) .

7



Theorem 15 (i) An equational basis for V (AOL) relative to PBZL
∗ is given

by the identities

(AOL1) (x∼ ∨ y∼) ∧ (♦x ∨ z∼) ≈ ((x∼ ∨ y) ∧ (♦x ∨ z))
∼
;

(AOL2) x ≈ (x ∧ y∼) ∨ (x ∧ ♦y) ;

(AOL3) x ≈ (x ∨ y∼) ∧ (x ∨ ♦y) .

(ii) Every subdirectly irreducible member of V (AOL) is an antiortholattice.

Clearly V (AOL) ∩OML is the variety BA of Boolean algebras.
The lattice LPBZL∗ of subvarieties of PBZL

∗ has BA as a unique atom. It
is well-known that BA has a single orthomodular cover [5, Cor. 3.6]: the va-
riety V (MO2), generated by the simple modular ortholattice with 4 atoms.
Moreover:

Theorem 16 There is a single non-orthomodular cover of BA in LPBZL∗ , the
variety V (D3) generated by the 3-element antiortholattice chain, whose equa-
tional basis relative to V (AOL) is given by the identity SK.

Two other notable subvarieties of V (AOL) are the variety DIST, whose
equational basis relative to V (AOL) (or, equivalently, relative to PBZL

∗) is
given by the distribution identity DIST, and the variety SAOL, whose equational
basis relative to V (AOL) is given by the Strong De Morgan identity SDM. We
have that:

Theorem 17 V (D5) = DIST ∩ SAOL.

A more circumscribed study of DIST and its subvarieties, also focussing on
the relationship with known classes of algebras (including Kleene-Stone algebras
 Lukasiewicz algebras, Heyting-Wajsberg algebras) is currently in preparation
[16]

2.3 Subtractive Varieties

Subtractive varieties were introduced by Ursini [23] to enucleate the common fea-
tures of pointed varieties with a good ideal theory, like groups, rings or Boolean
algebras. They were further investigated in [1, 2, 3, 24].

Definition 18 Let V a variety of type ν, and let 0 be a nullary term (or equa-
tionally definable constant) of type ν. V is called 0-subtractive if there exists
a binary term s, also of type ν, s.t. V satisfies the identities s (x, x) ≈ 0 and
s (x, 0) ≈ x. A variety of type ν which is 0-subtractive w.r.t. at least one constant
0 of type ν is called subtractive tout court.

It is not hard to see that subtractivity is a congruence property: namely, a
variety V is 0-subtractive exactly when in each A ∈ V congruences permute at
0 (meaning that for all θ, ϕ in ConV (A), 0A/(θ ◦ ϕ) = 0A/(ϕ ◦ θ)).
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To investigate ideals in this context, first and foremost, we need a workable
general notion of ideal encompassing all the intended examples mentioned above
(normal subgroups of groups, two-sided ideals of rings, ideals or filters of Boolean
algebras). Ursini’s candidate for playing this role is defined below.

Definition 19 (i) If K is a class of similar algebras whose type ν is as in
Definition 18, then a term p (−→x ,−→y ) of type ν is a K-ideal term in −→x iff
K �p (0, ..., 0,−→y ) ≈ 0.

(ii) A nonempty subset J of the universe of an A ∈ K is a K-ideal of A (w.r.t.

0) iff for any K-ideal term p (−→x ,−→y ) in −→x we have that pA
(

−→a ,
−→
b
)

∈ J

whenever −→a ∈ J and
−→
b ∈ A.

We will denote by IK (A) the set (or the lattice) of all K-ideals of A, drop-
ping the subscript whenever K can be contextually identified; observe that
{0} , A ∈ IK (A). The main reason that backs our previous claim to the ef-
fect that subtractive varieties have a good ideal theory is given by the following
result. Let V be a variety of type ν. Recall that an algebra A from V is said to
be 0-regular iff the map sending a congruence θ ∈ Con (A) to its 0-class 0A/θ is
injective. The variety V is said to be 0-regular iff every A ∈ V is 0-regular; this
happens exactly when there exists a finite family of binary ν-terms (called Ficht-
ner terms) {di (x, y)}i≤n such that V �d1 (x, y) ≈ 0&...&dn (x, y) ≈ 0 ⇔ x ≈ y.

Theorem 20 (i) Subtractive varieties have normal ideals. That is, if V is a
0-subtractive variety and A ∈ V, then

IV (A) =
{

I ⊆ A : I = 0A/θ for some θ ∈ ConV (A)
}

.

(ii) If V is a 0-subtractive and 0-regular variety, then, for every A ∈ V,
ConV (A) is isomorphic to IV (A).

Actually, the situation described by the previous theorem can be made more
precise as follows. Let A be an algebra in a 0-subtractive variety V. Then the
following maps are well-defined: ·δ, ·ε : IV(A) → ConV(A), for all I ∈ IV(A),

Iδ =
∧

{θ ∈ ConV (A) : 0A/θ = I},
Iε =

∨

{θ ∈ ConV (A) : 0A/θ = I}.

Henceforth, all unnecessary superscripts will be dropped for the sake of con-
ciseness. Note that, for all I ∈ IV(A), we have 0/Iδ = 0/Iε = I, so that
Iδ = min{θ ∈ ConV (A) : 0/θ = I} and Iε = max{θ ∈ ConV (A) : 0/θ = I}.
Moreover, the map I 7→ [Iδ, Iε] is a lattice isomorphism from IV(A) to the
following lattice of intervals of ConV(A): {[min(Cθ),max(Cθ)] : θ ∈ ConV(A)},
where, for all θ ∈ ConV(A), Cθ = {α ∈ ConV(A) : 0/α = 0/θ} = {α ∈
ConV(A) : 0/θ ∈ A/α}, which is a complete sublattice of ConV(A). Clearly, if
V is in addition 0-regular, then Cθ = {θ} for all θ ∈ ConV(A), hence all intervals
of the form

[

Iδ, Iε
]

for some I ∈ IV(A) are trivial, and Theorem 20.(ii) follows
as a special case.
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Definition 21 Let A be an algebra in a 0-subtractive variety V. A is said to
be reduced iff {0}

ε
= ∆A.

The class of all reduced algebras in V will be denoted by Vε. Clearly, for all
θ ∈ ConV (A), we have A/θ ∈ Vε iff θ = Iε for some I ∈ IV (A).

For a 0-subtractive variety, a property that generalises 0-regularity is finite
congruentiality. Roughly put, a 0-subtractive variety is finitely congruential if
it has a family of terms that do “part of the job” usually dispatched by the
Fichtner terms for 0-regularity.

Definition 22 A variety V, whose type ν is as in Definition 18, is finitely
congruential iff there exists a finite set {di (x, y)}i≤n of binary ν-terms s.t.,
whenever A ∈ V and I ∈ IV(A), we have:

Iε = {(a, b) : dAi (a, b) ∈ I for all i ≤ n}.

The next results establish a significant connection between the theory of
subtractive varieties and abstract algebraic logic (for information on this research
area, the reader is referred to [13]). It turns out that, for a 0-subtractive variety
V, the properties of the 0-assertional logic of V yield relevant information on
the properties of the class of reduced algebras in V, and conversely.

Theorem 23 If A is a member of a 0-subtractive variety V, then IV (A) is
the class of all deductive filters on A of the 0-assertional logic of V, and for all
I ∈ IV (A), Iε = ΩA (I).

Theorem 24 [2, Thm. 3.12] For a 0-subtractive variety V the following are
equivalent:

(i) The 0-assertional logic of V is equivalential.

(ii) Vε is closed under subalgebras and direct products.

Theorem 25 [2, Thm. 3.16] For a 0-subtractive variety V the following are
equivalent:

(i) The 0-assertional logic of V is strongly algebraisable with Vε as an equiv-
alent algebraic semantics.

(ii) Vε is a variety.

Important examples of subtractive varieties are binary discriminator vari-
eties. Recall that a discriminator variety [25] is a variety V of given type ν for
which there exists a ternary ν-term t(x, y, z) that realises the ternary discrimi-
nator function

t (a, b, c) =

{

c if a = b,
a, otherwise

on any subdirectly irreducible member of V (equivalently, on any member of
some class K such that V = V (K)). The introduction of binary discriminator
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varieties by Chajda, Halaš, and Rosenberg [11] was aimed at singling out an
appropriate weakening of the ternary discriminator that can vouchsafe some of
the strong properties of discriminator varieties (like congruence distributivity
or congruence permutability) only “locally”, i.e. at 0. Binary discriminator
varieties are paramount among subtractive varieties with equationally definable
principal ideals [1]; they were thoroughly studied in the unpublished [4].

Definition 26 [11] Let A be a nonempty set and fix 0 ∈ A. The 0-binary
discriminator on A is the binary function bA0 on A defined by:

bA0 (a, c) =

{

a if c = 0,
0 otherwise.

An algebra A with a term definable element 0 is said to be a 0-binary discrim-
inator algebra in case the 0-binary discriminator bA0 on A is a term operation
on A. A variety V (K) is a 0-binary discriminator variety if it is generated by
a class K of 0-binary discriminator algebras such that the property is witnessed
by the same terms for all members of K.

3 Central Elements

One of the most distinctive and far-reaching chapters in the theory of ortho-
modular lattices is the study of the commuting relation and of central elements
(see e.g. [5, § 2]). Given an orthomodular lattice L and a, b ∈ L, a is said to
commute with b in case (a ∧ b) ∨ (a′ ∧ b) = b. Such a relation is reflexive and
symmetric. An element a ∈ L is said to be central in L in case it commutes
with all elements of L. The next celebrated result is one of the most useful tools
for practicioners of the field:

Theorem 27 (Foulis-Holland) [5, Prop. 2.8] If L is an orthomodular lattice
and a, b, c ∈ L are such that a commutes both with b and with c, then the set
{a, b, c} generates a distributive sublattice of Ll.

Although these investigations were carried out in the special context of or-
thomodular lattices, the notion of a central element is deeply rooted in universal
algebra. Recall that, if A is an algebra in a double-pointed variety V with con-
stants 0, 1, an element e ∈ A is central in A in case the congruences Cg (e, 0)
and Cg (e, 1) are complementary factor congruences of A [21]. By C(A) we
denote the centre of A, i.e. the set of central elements of the algebra A. In par-
ticular, if A is a Church algebra [21], namely, if there is an “if-then-else” term
operation qA on A s.t., for all a, b ∈ A, qA

(

1A, a, b
)

= a and qA
(

0A, a, b
)

= b,
then, by defining

x ∧ y = q(x, y, 0), x ∨ y = q(x, 1, y) and x′ = q(x, 0, 1),

we get:
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Theorem 28 [21, Thm. 3.7] The algebra c [A] =(C(A),∧,∨,′ , 0, 1) is a
Boolean algebra which is isomorphic to the Boolean algebra of factor congru-
ences of A.

In Church algebras, central elements can be equationally characterised [21,
Prop. 3.6]. When studying a specific variety V, however, more informative de-
scriptions of central elements in members of V can sometimes be found either in
terms of certain properties of intrinsic interest, or by appropriately streamlining
the above-mentioned equational characterisation. As regards members of OML,
for example, it can be shown that the two definitions of central element we have
given above are equivalent. For PBZL

∗, on the other hand, a more economical
equational description of central elements was provided in [14, Lm. 5.9]. We
reproduce this lemma for the reader‘s convenience:

Lemma 29 Let L ∈ PBZL
∗. Then e ∈ L is central in L iff it satisfies the

following conditions for all a, b ∈ L:

C1 a = (e ∧ a) ∨ (e′ ∧ a);

C2 (a ∨ b) ∧ e = (a ∧ e) ∨ (b ∧ e);

C3 (a ∨ b) ∧ e′ = (a ∧ e′) ∨ (b ∧ e′);

C4 ((e ∨ b) ∧ (e′ ∨ a))∼ = (e ∨ b∼) ∧ (e′ ∨ a∼).

The aim of the next subsection is to improve on this result, giving a descrip-
tion of the centre in a generic PBZ∗ –lattice that resembles as closely as possible
the one we have in orthomodular lattices.

3.1 Central Elements in PBZ∗ –lattices

Throughout the rest of this subsection, unless mentioned otherwise, L will be an
arbitrary PBZ∗ –lattice. Observe that C(L) ⊆ SK(L), by C1 for a = 1. Since
e′ = e∼ for all e ∈ SK(L), it follows that, for all e ∈ L: e ∈ C(L) iff e∼ ∈ C(L).
In [14, Thm. 5.4] it is also proved that central elements in any member L
of V (AOL) are exactly the members of SK (L). The problem of finding a
manageable description of central elements in PBZ∗ –lattices, that relates in a
perspicuous way to the notions of a centre and of a commutator in orthomodular
lattice, was however left open. We now set about filling this gap. We show that
the property of being central, in a generic PBZ∗ –lattice, is actually two-sided. In
order to belong to C(L), an e ∈ L should not only “commute” with any element
of L, in a sense of commuting that appropriately generalises the corresponding
(reflexive and symmetric) relation on orthomodular lattices; but it should also
be such that, for any a ∈ L, (e ∧ a)∼ = e∼ ∨ a∼ and (e′ ∧ a)∼ = �e ∨ a∼. This
latter component is sort of “hidden” in the case of OML, where the Strong De
Morgan identity is satisfied across the board.
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We define the following binary relations on L:

CL = {(a, b) ∈ L2 : (a ∧ b) ∨ (a′ ∧ b) = b};
CSDM,L = CL ∩ {(a, b) ∈ L2 : (a ∧ b)∼ = a∼ ∨ b∼ and (a′ ∧ b)∼ = �a ∨ b∼}.

Both relations are clearly reflexive. Also, for all a ∈ L, (1, a) ∈ CSDM,L ⊆
CL, while the following four conditions are mutually equivalent: i) (a, 1) ∈
CSDM,L; ii) (a, 1) ∈ CL; iii) a ∨ a′ = 1; iv) a ∈ SK(L). Hence, CSDM,L is
symmetric exactly when CL is symmetric, which in turn obtains if and only if
L is orthomodular — in which case, apparently, the two relations coincide.

Definition 30 Let L ∈ PBZL
∗. An element a ∈ L is said to be PBZ∗ –central

iff (a, b) ∈ CSDM,L for all b ∈ L.

We will denote by Cpbz(L) the set of all PBZ∗ –central elements of L:

Cpbz(L) = {a ∈ L : (∀ b ∈ L) ((a, b) ∈ CSDM,L)}.

We also consider the following subset of L:

Cp(L) = {a ∈ L : (∀ b ∈ L) ((a, b) ∈ CL)}.

In virtue of the above,

Cpbz(L) = Cp(L) ∩ {a ∈ L : (∀ b ∈ L) ( (a ∧ b)∼ = a∼ ∨ b∼, (a′ ∧ b)∼ = �a ∨ b∼)}
= Cp(L) ∩ {a ∈ SK(L) : (∀ b ∈ L) ((a ∧ b)∼ = a∼ ∨ b∼, (a′ ∧ b)∼ = �a ∨ b∼)}
⊆ Cp(L) ⊆ SK(L).

Lemma 31 Let L ∈ PBZL
∗. Then:

(i) Cp(L) = {a ∈ SK(L) : (∀ b ∈ L) ((a ∧ b) ∨ (a∼ ∧ b) = b)} = {a ∈ SK(L) :
(∀ b ∈ L) ((a ∨ b) ∧ (a∼ ∨ b) = b)};

(ii) for all a ∈ SK(L), a ∈ Cp(L) iff a∼ ∈ Cp(L); furthermore, a ∈ Cpbz(L)
iff a∼ ∈ Cpbz(L);

(iii) if L satisfies WSDM, then Cpbz(L) = Cp(L).

Proof. Let a ∈ SK(L), arbitrary.
(i) The fact that a′ = a∼ gives us the first equality. To obtain the second

equality, notice that, for all b ∈ L, we have: (a, b) ∈ CL iff (a ∧ b) ∨ (a′ ∧ b) = b
iff (a′ ∨ b′) ∧ (a ∨ b′) = b′ iff (a ∨ b′) ∧ (a∼ ∨ b′) = b′, hence: (a, b) ∈ CL for all
b ∈ L iff (a ∨ b) ∧ (a∼ ∨ b) = b for all b ∈ L.

(ii) From (i), along with the fact that a = ♦a.
(iii) From the fact that Cp(L) ⊆ SK(L).
Note from this proof that CL and CSDM,L preserve the Kleene complement

and that, under WSDM, the relation CSDM,L∩(SK(L)×L) = CL∩(SK(L)×L)
preserves the Brouwer complement. Some useful properties of members of Cp(L)
follow in the next two lemmas.
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Lemma 32 Let L ∈ PBZL
∗ and let a ∈ L be such that a∼ ∈ Cp(L). Then, for

all b, c ∈ L:

(i) a∼ ∨ b = a∼ ∨ (♦a ∧ b) and a∼ ∧ b = a∼ ∧ (♦a ∨ b);

(ii) b∨(c∧♦a) = (b∨c∨a∼)∧(b∨♦a) and b∧(c∨♦a) = (b∧c∧a∼)∨(b∧♦a);

(iii) a∼ ∧ (b ∨ c) = a∼ ∧ (b ∨ (a∼ ∧ c)) and a∼ ∨ (b ∧ c) = a∼ ∨ (b ∧ (a∼ ∨ c)).

Proof. By adapting the corresponding proofs in [14, Lm. 5.10].

Lemma 33 Let L ∈ PBZL
∗, and let a ∈ L be such that a∼ ∈ Cp(L). Then the

following hold for all b, c ∈ L:

(i) b ∨ (c ∧ a∼) = (b ∨ c) ∧ (b ∨ a∼) and b ∧ (c ∨ a∼) = (b ∧ c) ∨ (b ∧ a∼);

(ii) a∼ ∧ (b ∨ c) = (a∼ ∧ b) ∨ (a∼ ∧ c) and a∼ ∨ (b ∧ c) = (a∼ ∨ b) ∧ (a∼ ∨ c).

Proof. We prove the first equalities in each pair. The lattice duals are derived
similarly.

(i) Let x = b ∨ (c ∧ a∼). Then:

x = x ∧ (x ∨ (c ∧ (x ∨ ♦a))) Absorption
= (x ∨ a∼) ∧ (x ∨ ♦a) ∧ (x ∨ (c ∧ (x ∨ ♦a))) Lemma 31
= (x ∨ a∼) ∧ (x ∨ (c ∧ (x ∨ ♦a))) Lattice prop.
= (b ∨ a∼) ∧ (x ∨ (c ∧ (x ∨ ♦a))) Absorption
= (b ∨ a∼) ∧ (x ∨ c)
= (b ∨ c) ∧ (b ∨ a∼) Absorption

The penultimate equality is obtained by observing that, according to Lemma
32.(i), since ♦(a∼) = a∼, we have: c ≤ b ∨ c ∨ ♦a = b ∨ ♦a ∨ (a∼ ∧ c) = x ∨ ♦a.

(ii)

a∼ ∧ (b ∨ c) = a∼ ∧ (b ∨ (a∼ ∧ c)) Lemma 32.(iii)
= ((a∼ ∧ c) ∨ a∼) ∧ (b ∨ (a∼ ∧ c)) Absorption
= (a∼ ∧ b) ∨ (a∼ ∧ c) (i)

Theorem 34 Let L ∈ PBZL
∗. Then Cpbz(L) = C(L).

Proof. Let e ∈ L.
Assume that e∼ ∈ Cpbz(L) ⊆ Cp(L). We verify all the conditions C1 through

C4 in Lemma 29. C1 holds because (e∼, a) ∈ CSDM,L ⊆ CL for all a ∈ L.
C2 holds by Lemma 33.(ii). C3 holds by Lemma 33.(ii) and Lemma 31, which
ensures us that e∼′ = ♦e ∈ Cp(L). From the latter fact, the equality e∼∨♦e = 1
and Lemma 33.(i), we obtain:

a ∧ b ≤(a ∨ b) ∧ (a ∨ ♦e) ∧ (b ∨ e∼)

=(a ∨ b) ∧ (e∼ ∨ b) ∧ (♦e ∨ a) ∧ (e∼ ∨ ♦e)

= (b ∨ (a ∧ e∼)) ∧ (♦e ∨ (a ∧ e∼))

= (a ∧ e∼) ∨ (b ∧ ♦e),
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whence, also using the equality e∼ ∧ ♦e = 0 and Lemma 31.(ii),

((e∼ ∨ b) ∧ (♦e ∨ a))
∼

= ((e∼ ∧ a) ∨ (♦e ∧ b) ∨ (b ∧ a))
∼

Lemma 33
= ((e∼ ∧ a) ∨ (♦e ∧ b))∼

= (e∼ ∧ a)
∼
∧ (♦e ∧ b)

∼

= (e∼ ∨ b∼) ∧ (♦e ∨ a∼) e∼,♦e ∈ Cpbz(L)

Conversely, if e∼ is central in L, then by C1 we have that for all a ∈ L,
a = (a ∧ e∼) ∨ (a ∧ ♦e), whereby e∼∈ Cp(L). Now, recall that if e∼ is central,
then so is ♦e, whereby C4 holds for both elements — i.e., for all a, b ∈ L:

(i) ((e∼ ∨ b) ∧ (♦e ∨ a))∼ = (e∼ ∨ b∼) ∧ (♦e ∨ a∼);

(ii) ((♦e ∨ b) ∧ (e∼ ∨ a))
∼

= (♦e ∨ b∼) ∧ (e∼ ∨ a∼) .

Letting b = e∼ in (i) and using Lemma 33.(ii), we have that (e∼ ∧ a)∼ =
((e∼ ∨ e∼) ∧ (♦e ∨ a))

∼
= ♦e ∨ a∼. Similarly, letting b = ♦e in (ii), we obtain

(♦e ∧ a)
∼

= e∼ ∨ a∼.

3.2 Central Elements in the Variety Generated by An-

tiortholattices

In any member L of V (AOL) central elements are exactly the sharp elements:
C (L) = SK (L). Therefore, for any a ∈ L, L is decomposable as L/Cg (a∼, 0)×
L/Cg (a∼, 1), or equivalently as L/Cg (a∼, 0) × L/Cg (♦a, 0). However, the
mentioned results in [21] do not provide us with a uniform recipe to obtain an
explicit description of the factors in this decomposition. This situation marks a
sharp contrast with the case of orthomodular lattices, where the following result
is available:

Theorem 35 [5, Lm. 2.7] Let L ∈ OML and let e ∈ C (L). Then L ≃ L1×L2,
where L1,L2 are algebras whose universes are the intervals [0, e] and [0, e′],
respectively.

In this subsection, we similarly characterise the factors in these decomposi-
tions in terms of algebras on intervals in L.

Lemma 36 Let L ∈ V (AOL) and let a ∈ L. Define:

L1 =
(

[0, a∼] ,∧,∨,′1 ,∼1 , 0, a∼
)

;

L2 =
(

[0,♦a] ,∧,∨,′2 ,∼2 , 0,♦a
)

,

where for all b in [0, a∼], b′1 = b′ ∧ a∼, b∼1 = b∼ ∧ a∼, while for all c in [0,♦a],
c′2 = c′ ∧ ♦a, c∼2 = c∼ ∧ ♦a. Then the algebras L1 and L2 are in V (AOL).

Proof. Clearly, L1 and L2 are bounded lattices. We now verify the remaining
properties for L1; by replacing a by a∼, we obtain our claim for L2.

(L1 is a pseudo-Kleene algebra). Let b, c ∈ [0, a∼]. Then, using Lemma
14.(iii), b′1′1 = (b′ ∧ a∼)

′
∧ a∼ = (b ∨ ♦a) ∧ a∼ = b ∧ a∼ = b. Moreover,
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(b ∧ c)
′1

= (b ∧ c)
′
∧ a∼ = (b′ ∨ c′) ∧ a∼ = (b′ ∧ a∼) ∨ (c′ ∧ a∼) = b′1 ∨ c′1.

Finally, since b ∧ b′ ≤ c ∨ c′ in L, we use Lemma 14.(ii) and obtain

b ∧ b′1 = b ∧ b′ ∧ a∼ ≤ (c ∨ c′) ∧ (c ∨ a∼) = c ∨ (c′ ∧ a∼) = c ∨ c′1.

(L1 is paraorthomodular). Let b, c ∈ [0, a∼]. Suppose that b ≤ c and
that b′1 ∧ c = b′ ∧ a∼ ∧ c = 0. Since c ≤ a∼, b′ ∧ a∼ ∧ c = b′ ∧ c, whence
paraorthomodularity of L yields the desired result.

(L1 is a BZ-lattice). Let b, c ∈ [0, a∼]. Clearly, b ∧ b∼1 = 0. Further,
b∼1∼1 = (b∼ ∧ a∼)

∼
∧ a∼. Since b∼ and a∼ are sharp elements, (b∼ ∧ a∼)

∼
=

(b∼ ∧ a∼)
′

= ♦b∨♦a, hence b∼1∼1 = (b∼ ∧ a∼)
∼
∧a∼ = (b∼ ∧ a∼)

′

∧a∼ = b∼1′1.
By Lemma 14.(iii) b∼1∼1 = (♦b ∨ ♦a) ∧ a∼ = ♦b ∧ a∼ ≥ b. Finally, it is easily
seen that if b ≤ c, then c∼1 ≤ b∼1.

(L1 is a BZ*-lattice). Let b ∈ [0, a∼]. Then, by Lemma 14.(iii) and WSDM,
we have that:

(

b ∧ b′1
)∼1

= (b ∧ b′ ∧ a∼)
∼
∧ a∼

= (b ∧ b′)
∼
∧ a∼

= (b∼ ∨�b) ∧ a∼

= (b∼ ∧ a∼) ∨ (�b ∧ a∼)
= (b∼ ∧ a∼) ∨ ((b′ ∧ a∼)

∼
∧ a∼)

= b∼1 ∨ b′1∼1.

(L1 ∈ V (AOL)). By way of example, we check that the reformulation of
AOL2 in terms of the new operations ∼1 and ′1 is satisfied in any antiortholattice
M. Thus, for a, b, c ∈ M, consider the element

tM (a, b, c) = (b ∧ c∼ ∧ a∼) ∨ (b ∧ (c∼ ∧ a∼)∼ ∧ a∼) .

If c > 0, then tM (a, b, c) = 0 ∨ (b ∧ 1 ∧ a∼) = b ∧ a∼. If c = 0, then

tM (a, b, c) = (b ∧ a∼) ∨ (b ∧ ♦a ∧ a∼) = (b ∧ a∼) ∨ 0 = b ∧ a∼.

Since L ∈ V (AOL), it follows that for all a, b, c ∈ L, tL (a, b, c) = b ∧ a∼,
which equals b whenever b ≤ a∼, hence L1 satisfies AOL2.

Theorem 37 Let L ∈ V (AOL) and let a ∈ L. Then L ≃ L1 × L2, where
L1,L2 are defined as in Lemma 36.

Proof. Let ϕ : L → L1×L2 be defined, for any b ∈ L, by ϕ (b) = (b ∧ a∼, b ∧ ♦a).
We first show that ϕ is a bijection. If ϕ (b) = ϕ (c) for some b, c ∈ L, then
b ∧ a∼ = c ∧ a∼ and b ∧ ♦a = c ∧ ♦a. Thus, by AOL2,

b = (b ∧ a∼) ∨ (b ∧ ♦a) = (c ∧ a∼) ∨ (c ∧ ♦a) = c.

Now, let (x, y) ∈ L1 × L2. Then x ≤ a∼ and y ≤ ♦a, whence y ∧ a∼ ≤
♦a ∧ a∼ = 0. Let us compute ϕ (x ∨ y). Using Lemma 14.(iii), we obtain

(x ∨ y) ∧ a∼ = (x ∧ a∼) ∨ (y ∧ a∼)
= x ∨ 0 = x.
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Similarly, (x ∨ y) ∧ ♦a = y and thus ϕ is onto.
Next, we show that ϕ preserves meets and the unary operations (observe

that this is sufficient in virtue of Lemma 36). For meets,

ϕ
(

b ∧L c
)

= (b ∧ c ∧ a∼, b ∧ c ∧ ♦a)
= (b ∧ a∼, b ∧ ♦a) ∧L1×L2 (c ∧ a∼, c ∧ ♦a)
= ϕ (b) ∧L1×L2 ϕ (c) .

With regards to Kleene complements, resorting again to Lemma 14.(iii),

ϕ
(

b′L
)

= (b′ ∧ a∼, b′ ∧ ♦a)
= ((b′ ∨ ♦a) ∧ a∼, (b′ ∨ a∼) ∧ ♦a)

=
(

(b ∧ a∼)′ ∧ a∼, (b ∧ ♦a)′ ∧ ♦a
)

=
(

(b ∧ a∼)
′1
, (b ∧ ♦a)

′2
)

= ϕ (b)′L1×L2 .

For Brouwer complements the computation is similar. It is safely left to the
reader, who is warned that the WSDM identity (x ∧ y∼)

∼
≈ x∼ ∨ ♦y will be

needed somewhere down the line.

4 Ideal Theory

It is well-known from the theory of orthomodular lattices that OML-ideals admit
a manageable characterization in terms of lattice ideals closed under perspectiv-
ity, for short p-ideals : in other words, in terms of lattice ideals I of an ortho-
modular lattice L such that, whenever a ∈ I, then also b⋓a = b∧(b′ ∨ a) ∈ I for
all b ∈ L [5, Prop. 4.7]. The aim of this section is to generalise this idea within
the expanded language of PBZL∗. Unfortunately, in the general case these p-
ideals do not even coincide with 0-classes of congruences — and, a fortiori, no
isomorphism result between the lattices of p-ideals and of congruences can be
attained. The situation improves if we restrict ourselves to the subvariety SDM

of PBZL
∗, axiomatised relative to PBZL

∗ by the Strong De Morgan identity.
In fact, in any L ∈ SDM p-ideals coincide with Ursini SDM-ideals, hence with
0-classes of congruences, given the fact that PBZL

∗ (and thus, all the more so,
SDM) is a 0-subtractive variety.

4.1 Ideals in PBZ∗ –lattices

We start by defining the notion of a p-ideal for generic PBZ∗ –lattices.

Definition 38 Let L be a PBZ∗ –lattice. I ⊆ L is a p-ideal iff it is a lattice
ideal of L s.t. if a ∈ I, then ♦b ⋓ ♦a = ♦b ∧ (b∼ ∨ ♦a) ∈ I for all b ∈ L.

Lemma 39 Let L be a PBZ∗ –lattice, let I be a p-ideal of L, and let a, b ∈ L.
Then: (i) if a ∈ I, then ♦a ∈ I; (ii) ♦a ⋓ ♦b ∈ I iff ♦b ⋓ ♦a ∈ I.
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Proof. (i) Let b = 1 in Definition 38.
(ii) Suppose that ♦b ∧ (b∼ ∨ ♦a) ∈ I. Then, since I is a p-ideal,

♦a ∧ (a∼ ∨ ♦ (♦b ∧ (b∼ ∨ ♦a))) = ♦a ∧ (a∼ ∨ (♦b ∧ (b∼ ∨ ♦a))) ∈ I.

By Theorem 27 applied to SK (L), however,

♦a ∧ (a∼ ∨ (♦b ∧ (b∼ ∨ ♦a))) = ♦a ∧ (a∼ ∨ ♦b) ,

whence our conclusion.
We now aim at defining a customary notion of equivalence between elements

in a PBZ∗ –lattice modulo a given p-ideal. Note that {0} is a p-ideal; thus,

Definition 40 Let L be a PBZ∗ –lattice, and let I be a p-ideal of L. The
elements a, b ∈ L are said to be I-modally equivalent iff

(♦a)∼ ⋓ ♦b, (♦b)∼ ⋓ ♦a, (�a)∼ ⋓ �b, (�b)∼ ⋓�a ∈ I.

The elements a, b ∈ L are said to be modally equivalent iff they are {0}-
modally equivalent, namely iff ♦a = ♦b and �a = �b.

Definition 41 Let L be a PBZ∗ –lattice, and let I be a p-ideal of L. We define
the following binary relation on L:

ρ (I) = {(a, b) ∈ L : (♦a)
∼
⋓ ♦b, (♦b)

∼
⋓ ♦a, (�a)

∼
⋓ �b, (�b)

∼
⋓ �a ∈ I}.

Thus, (a, b) ∈ ρ (I) iff a and b are I-modally equivalent, and, in particular,
(a, b) ∈ ρ ({0}) iff a and b are modally equivalent. The relation ρ (I) also admits
a less cumbersome description:

Theorem 42 Let L be a PBZ∗ –lattice, and let I be a p-ideal of L. For a, b ∈ L
the following conditions are equivalent:

(i) (♦a ∨ ♦b) ∧ (a∼ ∨ b∼) , ((�a)∼ ∨ (�b)∼) ∧ (�a ∨�b) ∈ I;

(ii) there exist s, t ∈ I such that ♦a ∨ s = ♦b ∨ s and �a ∨ t = �b ∨ t;

(iii) (a, b) ∈ ρ (I).

Proof. (i) implies (ii). Let s = (♦a ∨ ♦b)∧(a∼ ∨ b∼) and t = ((�a)
∼
∨ (�b)

∼
)∧

(�a ∨�b). Then:

♦a ∨ s = ♦a ∨ ((♦a ∨ ♦b) ∧ (a∼ ∨ b∼))
= ♦a ∨ ♦b (Thm. 27 in SK (L) )
= ♦b ∨ s.

Similarly, �a ∨ t = �b ∨ t.
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(ii) implies (iii). Suppose that there exist s, t ∈ I such that ♦a ∨ s = ♦b ∨ s
and �a ∨ t = �b ∨ t. First, we prove (♦b)

∼
⋓ ♦a ∈ I.

(♦b)
∼
⋓ ♦a = b∼ ∧ (♦b ∨ ♦a)

≤ b∼ ∧ (♦s ∨ ♦b ∨ ♦a)
= b∼ ∧ (♦ (s ∨ ♦a) ∨ ♦b)
= b∼ ∧ (♦ (s ∨ ♦b) ∨ ♦b)
= b∼ ∧ (♦b ∨ ♦s)
= (♦b)

∼
⋓ ♦s.

Since I is a p-ideal of L and s ∈ I, we have that (♦b)
∼
⋓ ♦s ∈ I and

therefore (♦b)
∼
⋓ ♦a ∈ I. The remaining conditions are proved similarly and

thus (a, b) ∈ ρ (I).
(iii) implies (i). Suppose (a, b) ∈ ρ (I); we prove that (♦a ∨ ♦b)∧(a∼ ∨ b∼) ∈

I. By assumption,

(a∼ ∧ (♦a ∨ ♦b)) ∨ (b∼ ∧ (♦b ∨ ♦a)) = ((♦a)
∼
⋓ ♦b) ∨ ((♦b)

∼
⋓ ♦a) ∈ I.

By Theorem 27 applied to SK (L), however,

(a∼ ∧ (♦a ∨ ♦b)) ∨ (b∼ ∧ (♦b ∨ ♦a)) = (♦a ∨ ♦b) ∧ (a∼ ∨ b∼) ,

whence our claim follows. A similar proof establishes the other claim.

Theorem 43 Let L be a PBZ∗ –lattice, and let I be a p-ideal of L. Then ρ (I)
is an equivalence relation on L that preserves the operations ′ and ∼.

Proof. Since, for all a ∈ L, (♦a)
∼
⋓ ♦a, (�a)

∼
⋓ �a = 0 ∈ I, ρ (I) is reflexive.

Symmetry is trivial. For transitivity, suppose (a, b) , (b, c) ∈ ρ (I). By Theorem
42, there exist:

• s1, t1 ∈ I such that ♦a ∨ s1 = ♦b ∨ s1 and �a ∨ t1 = �b ∨ t1;

• s2, t2 ∈ I such that ♦b ∨ s2 = ♦c ∨ s2 and �b ∨ t2 = �c ∨ t2.

Thus s1 ∨ s2 ∈ I and ♦a∨ s1 ∨ s2 = ♦b∨ s1 ∨ s2 = ♦c∨ s1 ∨ s2, and similarly
for the other condition, whence by Theorem 42 again, (a, c) ∈ ρ (I). The unary
operations are clearly preserved.

Although ρ (I) is always an equivalence relation, it need not always be a
congruence, as the next example shows.

Example 44 Consider the distributive antiortholattice whose lattice reduct is
the ordinal sum of D2

2 with itself, with atoms a, b and the fixpoint c = c′. Observe
that (a, c) ∈ ρ ({0}), because ♦a = ♦c = 1 and �a = �c = 0. However,
♦ (a ∧ b) = ♦0 = 0 and ♦ (c ∧ b) = ♦b = 1, whence ρ ({0}) does not preserve
meets.

Our next goal is to tweak the notion of p-ideal in such a way that its asso-
ciated equivalence is necessarily a congruence.
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Definition 45 Let L be a PBZ∗ –lattice, and let I be a p-ideal of L. I is a
weak De Morgan ideal iff for all a, b ∈ L, whenever (a, b) ∈ ρ (I), then for all
c ∈ L it is the case that ♦ (a ∧ c)∼ ⋓ ♦ (b ∧ c) ∈ I.

Lemma 46 Let L be a PBZ∗ –lattice, and let I be a p-ideal of L. The following
conditions are equivalent:

(i) ρ (I) is a congruence;

(ii) I is a weak De Morgan ideal.

Proof. (i) implies (ii). Suppose that ρ (I) is a congruence and let (a, b) ∈ ρ (I),
c ∈ L. Then (♦ (a ∧ c) ,♦ (b ∧ c)) ∈ ρ (I). It follows that (♦(a∧c)∼⋓♦(b∧c), 0) ∈
ρ(I), which implies ♦ (a ∧ c)

∼
⋓ ♦ (b ∧ c) ∈ I.

(ii) implies (i). Let I be a weak De Morgan ideal. By Theorem 43, to
attain our conclusion it will suffice to show that ρ (I) preserves meets. Thus, let
(a, b) ∈ ρ (I) and c ∈ L. In virtue of our assumption, ♦ (a ∧ c)

∼
⋓ ♦ (b ∧ c) ∈ I

and, taking into account the symmetry of ρ (I), ♦ (b ∧ c)∼ ⋓ ♦ (a ∧ c) ∈ I. It
remains to show that

(� (a ∧ c))
∼
⋓ � (b ∧ c) , (� (b ∧ c))

∼
⋓ � (a ∧ c) ∈ I.

However, since (a, b) ∈ ρ (I) and ρ (I) preserves the unary operations, (�a,�b) ∈
ρ (I). Given that I is a weak De Morgan ideal, thus,

(� (a ∧ c))
∼
⋓� (b ∧ c) = ♦ (a′ ∨ c′) ⋓ (b′ ∨ c′)

∼

= (�a ∧�c)∼ ⋓ ♦ (�b ∧�c)
= ♦ (�a ∧�c)

∼
⋓ ♦ (�b ∧�c) ∈ I.

Similarly, (� (b ∧ c))∼ ⋓ � (a ∧ c) ∈ I.

4.2 Ideals in the Strong De Morgan Subvariety

The subvariety of PBZL∗ that is axiomatised relative to PBZL
∗ by the Strong

De Morgan law SDM, here labelled SDM, includes OML and stands out for its
smooth theory of ideals. In fact, we have that:

Lemma 47 Let L ∈ SDM, and let I be a p-ideal of L. Then I is a weak De
Morgan ideal and therefore ρ (I) is a congruence.

Proof. If (a, b) ∈ ρ (I), then (a∼, b∼) ∈ ρ (I) by Theorem 43. Thus, Theorem
42 guarantees that there is s ∈ I such that a∼∨s = ♦a∼∨s = ♦b∼∨s = b∼∨s.
Then, for an arbitrary c ∈ L, a∼ ∨ c∼ ∨ s = b∼ ∨ c∼ ∨ s. Applying SDM, we
have that � ((a ∧ c)

∼
) ∨ s = (a ∧ c)

∼
∨ s = (b ∧ c)

∼
∨ s = � ((b ∧ c)

∼
) ∨ s.

A further recourse to Theorem 42 yields ((a ∧ c)
∼
, (b ∧ c)

∼
) ∈ ρ (I), whence

(♦ (a ∧ c) ,♦ (b ∧ c)) ∈ ρ (I), which implies, in particular, that I is weak De
Morgan. Lemma 46 takes care of the remaining claim.

We are now in a position to prove that within the boundaries of this subva-
riety, p-ideals coincide with ideals in the sense of Ursini.
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Theorem 48 If L ∈ SDM, then the class of p-ideals of L coincides with ISDM (L).

Proof. Let I ∈ ISDM (L), whence by Theorem 20.(i) I = 0/θ for some θ ∈
ConBZL (L). Clearly, I is a lattice ideal of L. Furthermore, if a ∈ I, then
(♦a, 0) ∈ θ and then ♦a ∈ I. What remains to show is that, for an arbitrary
b ∈ L, ♦b ⋓ ♦a ∈ I. Since ♦a ∈ I = 0/θ, (♦b ⋓ ♦a, 0) = (♦b ⋓ ♦a,♦b ⋓ 0) ∈ θ,
which means ♦b ⋓ ♦a ∈ I. Conversely, it will be enough to prove that if I is a
p-ideal of L, then I = 0/ρ (I). However, by Theorem 42,

0/ρ (I) = {a ∈ L : (a, 0) ∈ ρ (I)}

= {a ∈ L : ♦a ≤ s,�a ≤ t for some s, t ∈ I} .

If a ∈ I, then choose s = t = ♦a ∈ I to obtain a ∈ 0/ρ (I). If a ∈ 0/ρ (I), then
there is s ∈ I such that a ≤ ♦a ≤ s, whence a ∈ I.

Observe that, by Lemma 47 and Theorem 48, whenever L ∈ SDM, all mem-
bers of ISDM (L) are weak De Morgan ideals.

Theorem 49 Let L ∈ SDM, and let I ∈ ISDM (L). Then ρ (I) = Iε.

Proof. By the proof of Theorem 48 0/ρ (I) = I, whence ρ (I) ⊆ Iε. For the
converse inequality, suppose (a, b) ∈ Iε. Since Iε is a congruence,

((♦a ∨ ♦b) ∧ (a∼ ∨ b∼) , 0) , ((�a ∨�b) ∧ ((�a)
∼
∨ (�b)

∼
) , 0) ∈ Iε.

So (♦a ∨ ♦b)∧(a∼ ∨ b∼) ∈ 0/Iε = I and (�a ∨�b)∧((�a)
∼
∨ (�b)

∼
) ∈ 0/Iε =

I. By Theorem 42, this means that (a, b) ∈ ρ (I).

Corollary 50 SDM is finitely congruential.

Proof. We have to find a finite set of terms {di (x, y)}i≤n that witnesses finite
congruentiality according to Definition 22. Thus, let

d1 (x, y) = (♦x)
∼
⋓ ♦y, d2 (x, y) = (♦y)

∼
⋓ ♦x,

d3 (x, y) = (�x)∼ ⋓ �y, d4 (x, y) = (�y)∼ ⋓ �x.

If L ∈ SDM and I ∈ ISDM (L), then by Theorems 49 and 42 ρ (I) = Iε. As
a result, (a, b) ∈ Iε = ρ (I) iff dAi (a, b) ∈ I, for all i ≤ 4.

Theorem 51 The 0-assertional logic of PBZL∗ is not equivalential.

Proof. Consider again the antiortholattice of Example 44. Being simple, this
antiortholattice belongs to PBZL

∗
ε. Moreover, the set {0, a, a′, 1} is a subuni-

verse of such, isomorphic to D4, and its middle congruence, that collapses only
a and a′, is a nonzero pseudo-identical congruence. Our claim follows then from
Theorem 24.

Lemma 52 Let L ∈ SDM. The following are equivalent:

(i) ρ ({0}) = ∆L.
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(ii) L satisfies the quasi-identity �x ≤ �y &♦x ≤ ♦y ⇒ x ≤ y.

(iii) L satisfies the identity SK.

Proof. (i) implies (ii). ρ ({0}) = ∆L means that modally equivalent elements
of L are identical. Now, let �a ≤ �b and ♦a ≤ ♦b. By SDM, this implies that
a ∧ b and a are modally equivalent, whence a ≤ b.

(ii) implies (iii). Using SDM, we have that for all a, b ∈ L,

� (a ∧ ♦b) = �a ∧ ♦b ≤ �a ∨�b = � (�a ∨ b) ;

♦ (a ∧ ♦b) = ♦a ∧ ♦b ≤ �a ∨ ♦b = ♦ (�a ∨ b) .

By our assumption, then, a ∧ ♦b ≤ �a ∨ b.
(iii) implies (i). Suppose �a = �b and ♦a = ♦b. Then

a = a ∧ ♦a = a ∧ ♦b ≤ �a ∨ b = �b ∨ b = b.

Similarly, b ≤ a, whence our conclusion.
Let us call SK the subvariety of SDM that is axiomatised relative to SDM

by the identity SK.

Theorem 53 The 0-assertional logic of SDM is strongly algebraisable with
equivalent variety semantics SDMε = SK.

Proof. By Theorem 25, it suffices to establish that SDMε is a variety, which
would follow if we were to show that SDMε = SK. By Theorem 49, whenever
L belongs to SDM, {0}

ε
= ρ ({0}). Thus L ∈ SDMε iff ρ ({0}) = ∆L, and by

Lemma 52, this happens exactly when L ∈ SK.
By Theorems 23 and 48, in any member L of SDM the Ursini ideals of L

coincide with its p-ideals and with the deductive filters on L of the 0-assertional
logic of SDM. By [13, Thm. 3.58], therefore, we obtain:

Corollary 54 Let L ∈ SDM. Then the lattice of p-ideals of L is isomorphic to
the lattice of all congruences θ on L such that L/θ ∈ SK.

Observe that, although SK implies SDM in the context of V (AOL) [15, Lm.
3.8] this is not the case in the more general context of PBZL∗. In fact, consider
the PBZ∗ –lattice L whose lattice reduct is the 5-element modular and non-
distributive lattice M3 with atoms a, a′, b, where b = b′ and b∼ = 0. Then L
satisfies SK but fails SDM - actually, it fails even WSDM because a ∈ SK (L)
and (a ∧ b)

∼
= 1 but a∼ ∨ b∼ = a′. For future reference, we make a note of the

fact that L satisfies J2.

4.3 Ideals in V (AOL)

Another subvariety of PBZL∗ where our description of ideals can be considerably
simplified is the variety V (AOL) generated by all antiortholattices. Bignall
and Spinks first observed that the variety of distributive BZ-lattices is a binary
discriminator variety [4]. We extend their observation by noticing that V (AOL)
is itself a binary discriminator variety.
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Proposition 55 V (AOL) is a 0-binary discriminator variety.

Proof. Referring to Definition 26 for notation and terminology, let bL0 (x, y) =
x∧y∼. Then for any antiortholattice L and, for any a, c ∈ L, bL0 (a, 0) = a∧0∼ =
a ∧ 1 = a, while, if c > 0, then bL0 (a, c) = a ∧ c∼ = a ∧ 0 = 0.

Among the consequences of this remark we have a very slender description
of V (AOL)-ideals. In fact, recall from [4] that if A is an algebra in a 0-binary
discriminator variety V and b0 (x, y) is the term witnessing this property for V,
I ⊆ A is a V-ideal of A exactly when, for any a, c ∈ A, if c ∈ I and bA0 (a, c) ∈ I,
then a ∈ I. Therefore:

Proposition 56 Let L ∈ V (AOL). For a lattice ideal I ⊆ L the following are
equivalent:

(i) I is a V (AOL)-ideal.

(ii) For any a, b ∈ L, if b ∈ I and a ∧ b∼ ∈ I, then a ∈ I.

(iii) I is closed w.r.t. all interpretations in L of the V (AOL)-ideal term (in
y, z):

u (x, y, z) = x ∧ ♦ (y ∨ z) .

Proof. The equivalence of (i) and (ii) follows from the remarks immediately
preceding this lemma. Suppose now that (ii) holds, and that a, b ∈ I. Then
a ∨ b ∈ I. On the other hand, for any c in L,

0 = c ∧ ♦ (a ∨ b) ∧ (a ∨ b)
∼
∈ I,

whence by our hypothesis c ∧ ♦ (a ∨ b) ∈ I. Conversely, under the assumption
(iii), let b ∈ I and a ∈ L be such that a ∧ b∼ ∈ I. Then, using WSDM and
Lemma 14 several times,

uA (a, b, a ∧ b∼) = a ∧ ♦ (b ∨ (a ∧ b∼))

= a ∧ (♦b ∨ ♦ (a ∧ b∼))

= a ∧ (♦b ∨ (♦a ∧ b∼))

= a ∧ (♦b ∨ ♦a)

= (a ∧ ♦b) ∨ a = a,

hence a ∈ I.

5 Axiomatic Bases for Some Subvarieties

The goal of this final section is to simplify the axiomatisation of V (AOL) given
in [14] and to solve a problem (here called the Join Problem) posed in [15],
where it was observed that the varietal join OML∨V (AOL) in the lattice of
subvarieties of PBZL∗ was strictly included in PBZL

∗, but no axiomatic basis
for such a join was given.
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5.1 A Streamlined Axiomatisation for V (AOL)

In Theorem 15.(i) we recalled that an equational basis for V (AOL) relative to
PBZL

∗ is given by the identities AOL1-AOL3, here reproduced for the reader’s
convenience:

(AOL1) (x∼ ∨ y∼) ∧ (♦x ∨ z∼) ≈ ((x∼ ∨ y) ∧ (♦x ∨ z))
∼

;

(AOL2) x ≈ (x ∧ y∼) ∨ (x ∧ ♦y) ;

(AOL3) x ≈ (x ∨ y∼) ∧ (x ∨ ♦y) .

The aim of this subsection is showing that AOL2 suffices to derive the re-
maining two axioms. For a start, we notice that Lemma 14 does not depend
on AOL1, whence it holds for any subvariety of PBZL∗ that satisfies AOL2 and
AOL3.

Lemma 57 Let L be a member of PBZL∗ that satisfies AOL2 and AOL3. Then,
for any a, b, c ∈ L: (i) a ∧ b ≤ (a ∧ c∼) ∨ (b ∧ ♦c); (ii) (a ∧ ♦b)

∼
∨ ♦b = 1; (iii)

♦a ≤ (b ∧ a∼)
∼
.

Proof. (i) In fact, using Lemma 14,

a ∧ b ≤ (a ∨ c∼) ∧ (b ∨ ♦c) ∧ (a ∨ b) = (a ∧ c∼) ∨ (b ∧ ♦c) .

(ii) Since a∧♦b ≤ ♦b, it follows that b∼ ≤ (a ∧ ♦b)
∼

, whence 1 = b∼ ∨♦b ≤
(a ∧ ♦b)∼ ∨ ♦b.

(iii) Since b ∧ a∼ ≤ a∼, our conclusion follows.

Lemma 58 Let L be a member of PBZL∗ that satisfies AOL2 and AOL3. Then
L satisfies AOL1 iff it satisfies WSDM.

Proof. From left to right, WSDM can be obtained by taking y = 0 and applying
Lemma 14.(iii). Conversely, let L satisfy WSDM, and let a, b, c ∈ L. Then:

((a∼ ∨ b) ∧ (♦a ∨ c))∼ = ((a∼ ∧ c) ∨ (♦a ∧ b) ∨ (b ∧ c))∼ Lm. 14
= ((a∼ ∧ c) ∨ (♦a ∧ b))

∼
Lm. 57.(i)

= (a∼ ∧ c)∼ ∧ (♦a ∧ b)∼ Lm. 6.(iii)
= (a∼ ∨ b∼) ∧ (♦a ∨ c∼) WSDM

Theorem 59 An equational basis for V (AOL) relative to PBZL
∗ is given by

the single identity AOL2.

Proof. By Theorem 15.(i), an equational basis for V (AOL) relative to PBZL
∗

is given by the identities AOL1-AOL3. To attain our conclusion, taking into
account Lemma 58, it will suffice to show that: i) any subvariety of PBZL∗ that
satisfies AOL2 and AOL3 also satisfies WSDM; ii) any subvariety of PBZL∗ that
satisfies AOL2 also satisfies AOL3. We establish these claims in reverse order.
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i) Let L belong to any subvariety of PBZL
∗ that satisfies AOL2, and let

a, b ∈ L. Then a′ = (a′ ∧ b∼) ∨ (a′ ∧ ♦b), whence

a = ((a′ ∧ b∼) ∨ (a′ ∧ ♦b))
′

= (a′ ∧ b∼)
′
∧ (a′ ∧ ♦b)

′
= (a ∨ ♦b) ∧ (a ∨ b∼) .

ii) Let L belong to any subvariety of PBZL∗ that satisfies AOL2 (thus also
AOL3, by the previous item), and let a, b ∈ L. Then:

a∼ ∨ ♦b = ((a ∧ b∼) ∨ (a ∧ ♦b))
∼
∨ ♦b AOL2

= ((a ∧ b∼)
∼
∧ (a ∧ ♦b)

∼
) ∨ ♦b Lm. 6.(iii)

= ((a ∧ b∼)
∼
∨ ♦b) ∧ ((a ∧ ♦b)

∼
∨ ♦b) Lm. 14.(iv)

= ((a ∧ b∼)∼ ∨ ♦b) Lm. 57.(ii)
= (a ∧ b∼)

∼
Lm. 57.(iii).

Taking into account Lemma 31 and Theorem 34, we have that:

Corollary 60 (i) V (AOL) is the class of all PBZ∗ –lattices L such that
Cp(L) = SK(L).

(ii) V (AOL) is the class of all PBZ∗ –lattices L that satisfy WSDM and are
such that Cpbz(L) = SK(L).

(iii) The class of the directly indecomposable members of V (AOL) is AOL.

5.2 The Join Problem

We round off this paper by axiomatising the variety OML∨V (AOL), as well as
some of its notable subvarieties. Let:

• V1 be the variety of PBZ∗ –lattices that is axiomatised relative to PBZL
∗

by the identities J2 and WSDM;

• V2 be the variety of PBZ∗ –lattices that is axiomatised relative to PBZL
∗

by the identities J2 and SDM;

• V3 be the variety of PBZ∗ –lattices that is axiomatised relative to PBZL
∗

by the identities J2, WSDM, and SK.

Taking into account the results in [15] and [14], as well as Theorem 59, in
V (AOL), SK implies SDM, that is AOL2 and SK imply SDM, while AOL2 and
SDM do not imply SK. We observed in Section 4 that J2 and SK do not imply
WSDM (all the more so, thus, SDM). The following PBZ∗ –lattice:

H :

r

r

rr

r rr r

rr r r

rr r r

d
e

f ′
e′g′ d′

f g

0

1

f∼= b c = c′ b′= e∼ a′= d∼g∼= a

❍❍❍❍❍❍❍❍

✟✟✟✟✟✟✟✟

❅
❅

❅
❅

�
�
�
�

✟✟✟✟✟✟✟✟

❍❍❍❍❍❍❍❍

�
�

�
�

❅
❅
❅
❅

❅
❅
❅
❅

❍❍❍❍❍❍❍❍

�
�

�
�

✟✟✟✟✟✟✟✟

25



satisfies SK and SDM and fails J2. The 4-element antiortholattice chain D4

fails SK but satisfies SDM and AOL2, thus also J2. Therefore, in the sets of
axioms {J2, SK, SDM} and {J2, SK, WSDM}, each axiom is independent from
the other two.

Given any L ∈ PBZL
∗, it will be expedient to denote by T (L) the set

{x ∈ L : x∼ = 0} ∪ {0}.

Lemma 61 Let L be a PBZ∗ –lattice that satisfies WSDM and such that SK(L)∪
T (L) = L. Then if b ∈ SK(L) and c /∈ SK(L), it follows that either b = 1 or
b ≤ c.

Proof. If b ∧ c ∈ SK(L), then

b ∧ c = ♦ (b ∧ c) = ♦b ∧ ♦c = b ∧ 1 = b,

where WSDM can be applied to obtain the second equality because b ∈ SK(L),
while the third equality follows from the fact that c /∈ SK(L), whence c∼ = 0.
On the other hand, if b∧c /∈ SK(L), then we apply again WSDM (as b ∈ SK(L))
and the assumption that SK(L) ∪ T (L) = L, obtaining

0 = (b ∧ c) ∼ = b∼∨c∼ =b∼∨0 = b∼,

whereby b = 1 since b ∈ SK(L).

Proposition 62 Any directly indecomposable L ∈V1 is either orthomodular or
an antiortholattice.

Proof. Let L be as in the statement of the proposition, and suppose that L
is directly indecomposable, but is neither orthomodular nor an antiortholattice.
By Theorem 34, the only PBZ*-central elements of L are 0 and 1. By WSDM
and Lemma 31.(iii) we conclude that 0 and 1 are the only sharp elements a such
that b = (b ∧ a∼) ∨ (b ∧ ♦a) for all b ∈ L.

Now, we want to show that SK(L) ∪ T (L) = L. Let x ∈ L. The element
♦ (x ∧ x′) is sharp and, by J2, we have that

b = (b ∧ (x ∧ x′) ∼) ∨ (b ∧ ♦ (x ∧ x′)) = (b ∧ ♦ (x ∧ x′) ∼) ∨ (b ∧ ♦♦ (x ∧ x′))

for all b ∈ L. So, ♦ (x ∧ x′) ∈ {0, 1}. If ♦ (x ∧ x′) = 0, then x∧x′ ≤ ♦ (x ∧ x′) =
0, whence x ∈ SK(L). If ♦ (x ∧ x′) = 1, then

x∼ ≤x∼ ∨�x = (x ∧ x′) ∼ = 0,

and x ∈ T (L). Our claim is therefore settled.
Recall that L is directly indecomposable but fails to be an antiortholattice —

whence by Corollary 60.(iii) there exist a, b ∈ L such that a > (a ∧ b∼)∨(a ∧ ♦b).
Also, recall throughout the remainder of this proof that SK(L) ∪ T (L) = L. If
b /∈ SK(L), then

a > (a ∧ b∼) ∨ (a ∧ ♦b) = a,
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a contradiction. Therefore b ∈ SK(L) and we can apply Lemma 61: either
b = 1, or b ≤ x for every x /∈ SK(L). If b = 1, then a > a, a contradiction again.
If there is some c /∈ SK(L), then b ≤ c, whence b = �b ≤ �c = 0, which yields
again the contradiction a > a. Therefore L = SK(L) and L is orthomodular,
against our assumption.

Theorem 63 (i) V1= OML∨V (AOL).

(ii) V2= OML ∨ SAOL.

(iii) V3= OML ∨ V (D3).

Proof. (i) It will suffice to show that any subdirectly irreducible L ∈ V1

is either an orthomodular lattice or an antiortholattice. However, since L is
directly indecomposable, Proposition 62 applies and we obtain our conclusion.

(ii) Any subdirectly irreducible, and thus directly indecomposable, member
of V2 is either orthomodular, or an antiortholattice satisfying SDM; since SAOL

is generated by such antiortholattices, our claim follows.
(iii) This follows, as above, from the fact that V (D3) is axiomatised by SK

relative to V (AOL) [15, Cor. 3.3].
An upshot of this theorem is that V3 ⊂ V2 ⊂ V1 ⊂ SDM ∨ V (AOL), where

the last strict inclusion is witnessed by the PBZ∗ –lattice H above which satisfies
SDM, thus also WSDM, but fails J2, thus showing in passing that V2 ⊂ SDM.
Note, also, that V3 is the unique cover of OML in the lattice of subvarieties of
PBZL

∗, because any member of such which is not included in OML contains
D3 [14, Thm. 5.5].

Acknowledgement 64 All authors gratefully acknowledge the following fund-
ing sources: the European Union’s Horizon 2020 research and innovation pro-
gramme under the Marie Sklodowska-Curie grant agreement No 689176 (project
“Syntax Meets Semantics: Methods, Interactions, and Connections in Substruc-
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