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Abstract

Let TFAG be the theory of torsion-free abelian groups. We show that if there is
no countable transitive model of ZFC−+κ(ω) exists, then TFAG is a∆1

2
-complete;

in particular, this is consistent with ZFC. We define the α-ary Schröder- Bernstein
property, and show that TFAG fails the α-ary Schröder-Bernstein property for every
α < κ(ω). We leave open whether or not TFAG can have the κ(ω)-ary Schröder-
Bernstein property; if it did, then it would not be a∆1

2
-complete, and hence not

Borel complete.

1 Introduction

In their seminal paper [2], Friedman and Stanley introduced Borel complexity, a measure
of the complexity of the class of countable models of a sentence Φ ∈ Lω1ω. Let Mod(Φ)
be the set of all countable models of Φ with universe N (or any other fixed countable
set). Then Mod(Φ) can be made into a standard Borel space in a natural way.

Definition 1. Suppose Φ, Ψ are sentences of Lω1ω. Then say that Φ ≤B Ψ (Φ is Borel
reducible to Ψ) if there is a Borel-measurable function f : Mod(Φ) → Mod(Ψ) satisfying
the following: for all M1,M2 ∈ Mod(Φ), M1

∼=M2 if and only if f(M1) ∼= f(M2).
Say that Φ ∼B Ψ (Φ and Ψ are Borel bi-reducible) if Φ ≤B Ψ and Ψ ≤B Φ.

One way to think about the definition of ≤B is that f induces an injection from
Mod(Φ)/ ∼= to Mod(Ψ)/ ∼=; in other words, we are comparing the Borel cardinality of
Mod(Φ)/ ∼= and Mod(Ψ)/ ∼=.

In [2], Friedman and Stanley showed that there is a maximal class of sentences under
≤B, namely the Borel complete sentences. For example, the theories of graphs, groups,
rings, linear orders, and trees are all Borel complete. This provides a way to answer the
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question “Is it possible to classify the countable models of Φ” negatively in a precise
sense: if Φ is Borel complete, then classifying the countable models of Φ is as hard as
classifying arbitrary countable structures.

In [2], Friedman and Stanley leverage the Ulm analysis [15] to show that torsion
abelian groups are far from Borel complete. They then pose the following question:

Question. Let TFAG be the theory of torsion-free abelian groups. Is TFAG Borel
complete?

This has attracted considerable attention, but has nonetheless remained open. The
following theorem of Hjorth [6] is the best known so far, where (Φα : α < ω1) is the
Friedman-Stanley tower:

Theorem 2. Φα ≤B TFAG for every α < ω1.

This means that if TFAG is not Borel complete, then it represents a very new phe-
nomenon. In fact, in [2], Friedman and Stanley separately described the following ques-
tion as one of the basic open problems of the general theory: if Φ is a sentence of Lω1ω

and if Φα ≤B Φ for each α < ω1, must Φ be Borel complete?
In Section 2, we give a uniform treatment of the main currently known techniques of

coding information into abelian groups. The basic idea for these codings is old, dating
at least to [6] and [11]; namely, we start with a free abelian group, and then tag various
subgroups by making the elements infinitely divisible by particular primes. However, to
make the coding more robust we adopt an idea of [4], replacing the use of primes by
an algebraically independent sequence of p-adic integers for a fixed prime p. As a first
application, we show the following, where AG is the theory of abelian groups:

Theorem 3. TFAG ∼B AG. Further, if R is any countable ring, then R-mod, the
theory of left R-modules, has R-mod ≤B AG.

In Section 3, we expand on Hjorth’s proof of Theorem 2. To state our results we
need to introduce some more terminology.

Definition 4. By ZFC−, we mean ZFC without the power-set axiom, but where
we strengthen replacement to collection and we strengthen choice to the well-ordering
principle; this is as in [3].

κ(ω) is the least cardinal κ such that κ → (ω)<ω
2 . This makes sense even in models

of ZFC− (or less).

Definition 5. Sometimes natural reductions that arise require transfinite recursion, and
thus are not Borel. A coarser notion of reduciblity that allows for this is absolute ∆1

2

reducibility, denoted a∆1
2. This notion has been studied, for instance, by Hjorth in

Chapter 9 of [7]. Namely: suppose Φ,Ψ are sentences of Lω1ω. Then put Φ ≤a∆1

2

Ψ

if there is some function f : Mod(Φ) → Mod(Ψ) with ∆1
2 graph, such that for all

M,N ∈ Mod(Φ), M ∼= N if and only if f(M) ∼= f(N), and such that further, this
continues to hold in any forcing extension. Explicitly, if σ(x, y) is the Π1

2 definition of
the graph of f , and τ(x, y) is the Σ1

2-definition of the graph of f , and if V[G] is a forcing
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extension, then σ(x, y) and τ(x, y) coincide on Mod(Φ)V[G]×Mod(Ψ)V[G] and define the
graph of a function fV[G], such that for all M,N ∈ Mod(Φ)V[G], M ∼= N if and only if
fV[G](M) ∼= fV[G](N).

Using the basic idea of Theorem 2, we are able to prove the following theorem in
Section 3:

Theorem 6. Suppose there is no transitive model of ZFC− + κ(ω) exists. Then
Graphs ≤a∆1

2

TFAG.

Corollary 7. It is consistent with ZFC that Graphs ≤a∆1

2

TFAG, and hence that

TFAG is a∆1
2-complete.

It is natural to ask whether the set-theoretic hypothesis is necessary. For instance,
the second author can show in [16] that if κ(ω) exists, then a key part of the proof
of Theorem 6 fails, namely, the conclusion of Theorem 26. This failure suggests the
following question: are models of TFAG controlled by some sort of biembeddability
invariants? We investigate this question in Section 4:

The Schröder-Bernstein property is the simplest way that biembeddability can con-
trol isomorphism. This notion was originally introduced by Nurmagambetov [9], [10],
who defined that a complete first order theory T has the Schröder-Bernstein property in
the class of all models if for all M,N |= T , if M and N are elementarily biembeddable,
then M ∼= N . Goodrick investigated this property further, including in his thesis [5]
where he proves that if T has the Schröder-Bernstein property in the class of all models,
then T is classifiable of depth 1, i.e. I(T,ℵα) ≤ |α+ ω|2

ℵ0 for all α.
For our purposes, we want to tweak the definition in several ways. First of all,

elementary embedding is somewhat awkward to deal with outside the context of complete
first order theories.

Definition 8. Suppose M,N are L-structures. Then f : M ≤ N is an embedding if
f the following holds: whenever R is a relation symbol of L then f [RM ] ⊆ [RN ], and
whenever F is a function symbol of L then f ◦ FM = FN ◦ f . Say that M ≤ N if there
is an embedding f : M → N . Also, say that (M,a) ≤ (N, b) if there is an embedding
f : M ≤ N with f(a) = b. Finally, say that M ∼ N if M ≤ N ≤ M and say that
(M,a) ∼ (N, b) if (M,a) ≤ (N, b) ≤ (M,a).

In the context of groups, we will only want to consider injective embeddings; formally
then, we add a unary predicate for {(a, b) : a 6= b}.

The following is what we mean by Schröder-Bernstein property:

Definition 9. Suppose Φ is a sentence of Lω1ω. Then say that Φ has the Schröder-
Bernstein property if wheneverM,N are countable models of Φ, ifM ∼ N thenM ∼= N .

This fails for TFAG, as first proved by Goodrick [5]. Recently, Calderoni and
Thomas have shown in [1] that the relation of biembeddability on models of TFAG
is Σ1

1-complete, which is as bad as possible.
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However, the proof of Theorem 6 suggests a weaker property: perhaps a group
G |= TFAG is determined by {(G, a)/ ∼: a ∈ G}. We will call this the 1-ary Schröder
Bernstein property. In Section 4, we generalize this further to the α-ary Schröder-
Bernstein property, for any ordinal α; the 0-ary Schröder-Bernstein property is the
Schröder-Bernstein property.

The second author proves in [16]:

Theorem 10. Suppose κ(ω) exists, and suppose α is an ordinal. If Φ is a sentence
of Lω1ω with the α-ary Schröder-Bernstein property, then Φ is not a∆1

2-complete (and
hence not Borel complete).

In Section 4, we prove the following:

Theorem 11. For every α < κ(ω), TFAG fails the α-ary Schröder-Bernstein property.

The construction breaks down at κ(ω), so the following remains open:

Question. Does TFAG have the κ(ω)-ary Schröder-Bernstein property?

Acknowledgements. We would like to thank Julia Knight for pointing out a gap in a
previous version.

2 Some Bireducibilities with TFAG

Notation: If X is a set and G is a group we let ⊕XG denote the group of functions from
X to G with finite support; so we consider ⊕XG ≤ GX .

For p a prime, Z[1
p
] is the subring of Q generated by 1

p
; and similarly for sets of primes.

Z(p) (read: Z localized at the ideal (p)) is Z[1
q
: q 6= p]. Let Zp be the p-adic integers, i.e.

the completion of Z(p) under the p-adic metric. Let Qp be the field completion of Zp.
Given G ≤ H groups, say that G is a pure subgroup of H is for every n < ω,

nH ∩G = nG. If p is a prime, say that G is a p-pure subgroup of H if for every n < ω,
pnH ∩G = pnG.

The following is a generalization of Hjorth’s notion of “eplag.”

Definition 12. Suppose I and J are countable index sets. Then let LI,J be the
language extending the language of abelian groups, with a unary predicate symbol Gi

for each i ∈ I, and a unary function symbol φj for each j ∈ J (we will allow φj to be a
partial function).

Let ΩI,J be the infinitary LF -sentence such that (G,+, Gi : i ∈ I, φj : j ∈ J) |= ΩI,J

if and only if the following all hold:

• (G,+) ≡∞ω ⊕ωZ;

• Each Gi is a subgroup of G;

• Each dom(φj) is either equal to all of G, or else to some Gi;
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• Each φj : dom(φj) → G is a homomorphism.

Let Ωp
I,J assert additionally that each Gi is a pure subgroup of G.

Some important examples: the countable models of Ω{0},0 are of the form (G,H)
where G is free abelian of infinite rank (i.e., isomorphic to ⊕ωZ) and H is a subgroup
of G. The countable models of Ω0,{0} are of the form (G,φ) where G is free abelian of
infinite rank and φ : G → G is a homomorphism. The countable models of Ωω,0 are
of the form (G,Gn : n < ω), where G is free abelian of infinite rank and each Gn is a
subgroup of G.

We aim to prove the following. Let AG denote the theory of abelian groups.

Theorem 13. Suppose I,J are countable index sets, not both empty. Then Ωp
I,J ∼B

ΩI,J ∼B TFAG ∼B AG.

The proof will be via many lemmas.

Lemma 14. TFAG ≤B Ωp

{0},0
and AG ≤B Ω{0},0.

Proof. We describe the essential features of the construction, leaving it to the reader to
check that it is Borel when formulated as an operation on Polish spaces. Suppose G
is an (infinite) countable abelian group. Define φ : ⊕GZ → G to be the augmentation
map, that is given a ∈ ⊕GZ, let φ(a) =

∑

b∈G a(b)b (this is really a finite sum). Let
K be the kernel of φ. Thus G 7→ (⊕GZ,K) works, using G ∼=

∑

G Z/K. This shows
AG ≤B Ω{0},0; but note that if G is torsion-free, then K will be pure, so we also get
TFAG ≤B Ωp

{0},0.

Lemma 15. Ω{0},0 ≤B Ω0,{0}. Hence, whenever I,J are not both empty, Ω{0},0 ≤B

ΩI,J and Ωp
{0},0 ≤B Ωp

I,J .

Proof. Suppose (G,H) |= Ω{0},0 is a given countable model; so G is free abelian of
infinite rank and H is a subgroup of G. Write G′ = G ×H ′, where H ′ ∼= H; note that
H ′ and hence G′ is free abelian, since subgroups of free abelian groups are free. Define
φ : G′ → G′ via φ ↾G= 0 and φ ↾H′ : H ′ ∼= H. Then (G,H) 7→ (G′, φ) works, using
G = ker(φ) and H = im(φ).

The second claim follows trivially (note Ωp
0,{0} = Ω0,{0}).

Lemma 16. For any countable index sets I,J , ΩI,J ≤B Ωω,0 and Ωp
I,J ≤B Ωp

ω,0.

Proof. Write I ′ = I ∪ J ∪ {∗0, ∗1} (we suppose this is a disjoint union). We show that
ΩI,J ≤B ΩI′,0 and Ωp

I,J ≤B Ωp
I′,0.

Suppose (G,Gi : i ∈ I, φj : j ∈ J ) |= ΩI,J . Define G′ = G × G; for each i ∈ I,
define G′

i to be the copy of Gi in the first factor of G′; for each j ∈ J , define G′
j to be

the graph of φj ; define G
′
∗0 = G × 0; and finally let G′

∗1 be the graph of the identify
function idG : G→ G. Then (G′, G′

i : i ∈ I ′) |= ΩI′,0 works. Also note that if each Gi is
pure, then so is each G′

i′ ; this is because the graph of a partial homomorphism is pure if
and only if its domain is pure.
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Lemma 17. Ωω,0 ≤B Ωp
ω,0.

Proof. By the preceding lemma, it suffices to find index sets I,J such that Ωω,0 ≤B

Ωp
I,J . Write I = ω ∪ {∗}, write J = ω.
Suppose (G,Gn : n < ω) |= Ωω,0. We define G′ = G×⊕n<ω(⊕GnZ). For each n < ω

let G′
n = ⊕GnZ; let G

′
∗ = G. Finally, define φn : G′

n → G′ to be the augmentation
map ⊕GnZ 7→ Gn. Then clearly (G′, G′

i : i ∈ I, φj : j ∈ J ) works (G = G′
∗ and each

Gn = Im(φn)).

Note that to finish the proof of Theorem 13, it suffices to show that Ωp
ω,0 ≤B TFAG.

Indeed, we would then have that for any countable index sets I,J not both empty,
TFAG ≤B Ωp

{0},0 ≤B Ωp
I,J ≤B Ωp

ω,0 ≤B TFAG, and thus these are all equivalent; and

similarly, AG ≤B ΩI,J ≤B Ωω,0 ≤B Ωp
ω,0 ≤B AG, and so these are also all equivalent.

This remaining reduction is more involved than the others; the basic idea for it is
due to Goodrick [4]. To begin, we need the following lemma. The point is that if G is a
p-pure subgroup of ⊕ωZp, then the isomorphism type of (ZpG,G) depends only on the
isomorphism type of G, where ZpG is the Zp-submodule of ⊕ωZp generated by G.

Lemma 18. Suppose G is a p-pure subgroup of ⊕ωZp. Then there is a Zp-module
isomorphism φ : (Zp ⊗ G)/(p∞(Zp ⊗ G)) → ZpG which is the identity on G, where
Zp ⊗G is the tensor product (over Z).

Proof. Define ψ(γ, a) = γa, going from Zp×G to ZpG. ψ is clearly a Z-bilinear map, so
it induces a group homomorphism φ0 : Zp ⊗G → ZpG. Clearly φ0 is 0 on p∞(Zp ⊗ G)
so this induces a map φ : (Zp ⊗G)/(p∞(Zp ⊗G)) → ZpG. We check this works. Clearly
φ is surjective and the identity on G, and preserves the Zp-action. So it suffices to check
the kernel of φ0 is p∞(Zp ⊗G).

Given γ ∈ Zp and n < ω, let γ ↾n∈ {0, . . . , pn − 1} be the unique element with
γ − γ ↾n∈ pnZp (recall that Zp is the completion of Z in the p-adic metric; so choose
(km : m < ω) a sequence from Z converging to γ and note that km mod pn must
eventually be constant).

Suppose
∑

i<n γiai = 0; we want to show
∑

i<n γi ⊗ ai ∈ p∞(Zp ⊗ G). Note that
for each m,

∑

i<n γiai ∈ pm(⊕ωZp). Hence, for each m, bm :=
∑

i<n γi ↾m ai ∈ pmG,
using that G is p-pure. Note that in Zp ⊗ G,

∑

i<n γi ↾m ⊗ai = 1 ⊗ bm, since we
can move all the γi ↾m’s to the right-hand side; and 1 ⊗ bm ∈ pm(Zp ⊗ G). Also,
1 ⊗ bm −

∑

i<n γi ⊗ ai ∈ (pmZp) ⊗ G, as it is equal to
∑

i<n(γi ↾m −γi) ⊗ ai. Thus
∑

i<n γi ⊗ ai ∈ pm(Zp ⊗G) for all m, as desired.

Finally:

Lemma 19. Ωp
ω,0 ≤B TFAG.

Proof. Let p be a prime.
Let (γn : 1 ≤ n < ω) be a sequence of algebraically-independent elements of Zp over

Q, such that each γn is a unit of Zp (in particular is not divisible by p). Write γ0 = 1.
Note then that (γn : n < ω) is linearly independent over Q.
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Let (⊕ωZ, Gn : n < ω) |= Ωp
ω,0; we can suppose G0 = G1 = ⊕ωZ. Let G be the

p-pure subgroup of ⊕ωZp generated by
⋃

n<ω γnGn (that is, close off under addition,
inverses, and division by p within ⊕ωZp). We want to check that the map G 7→ G works.

First, suppose (⊕ωZ, Gn : n < ω) ∼= (⊕ωZ, G
′
n : n < ω); we want to verify that the

corresponding groups G,G′ are isomorphic. Let φ be the isomorphism. Then φ lifts
canonically to an isomorphism φ∗ : ⊕ωZp

∼= ⊕ωZp (let (ei : i < ω) be the standard basis
of ⊕ωZ, define φ

∗(
∑

i γiei) =
∑

i γiφ(ei), where (ei : i < ω) is the standard basis of ⊕ωZ;
more abstractly, φ∗ = 1 ⊗ φ where we view ⊕ωZp = Zp ⊗ ⊕ωZ). Then clearly φ∗ ↾G is
an isomorphism onto G′.

For the reverse it suffices, by Lemma 18, to show we can canonically recover each Gn

from (ZpG,G).
Note that every a ∈ G can be written as

∑

n<ω γnp
k(n)bn, when k(n) ∈ Z, bn ∈ Gn

with all but finitely many bn = 0, and k(n) = 0 whenever bn = 0. (Not all such sums are
inG; G contains such sums which are additionally in ⊕ωZp.) We call this a representation
of a if each p 6 |bn. Then representations are unique: for suppose

∑

n<ω γnp
k(n)bn =

∑

n<ω γnp
k′(n)b′n. Let i ∈ ω; then we have

∑

n<ω

(

pk(n)bn(i) − pk
′(n)b′n(i)

)

γn = 0. By

linear independence of (γn : n < ω) this implies each pk(n)bn(i) = pk
′(n)b′n(i). Since this

holds for each i we have each pk(n)bn = pk
′(n)b′n. Then by divisibility assumptions we

have that each bn = b′n and so each k(n) = k′(n).
Suppose f ∈ ZpG and let 1 ≤ m < ω. It suffices to show that a ∈ Gm if and only if

a ∈ G and γma ∈ G: left to right follows from our assumption that γ0 = 1. For right
to left: let

∑

n<ω γnp
k(n)bn be the representation of a, and let

∑

n<ω γnp
k′(n)b′n be the

representation of γma. Let i ∈ ω. Then
∑

n<ω γmγnp
k(n)bn(i) =

∑

n<ω γnp
k′(n)b′n(i).

Note that the only time γmγn = γk is when n = 0, k = m. Thus by linear independence
of (γn : n < ω)⌢ (γmγn : 1 ≤ n < ω) we have that bn = 0 for all n 6= 0, and b′n = 0 for
all n 6= m. In particular, a = pkb for some b ∈ Gm. Since ⊕ωZ is p-pure in ⊕ωZp and
since Gm is p-pure in ⊕ωZ, we have that a ∈ Gm.

Remark 20. It is easy to add to the list in Theorem 13. For instance, we can additionally
insist that each φj is a pure embedding, i.e. preserves the divisibility relations.

A much stronger condition is the following: let Ω∗
I,J be ΩI,J together with the

second-order assertion saying, given (G,Gi : i ∈ I, φj : j ∈ J), that there is a basis B
of G (as a Z-module) such that each Gi is spanned by basis elements of B and each φj
takes basis elements to basis elements. All of the known complexity of TFAG is also
present in Ω∗

ω,{0}; see the next section.

Finally, we aim towards showing that whenever R is a countable ring, then R-mod
(the theory of left R-modules) is Borel reducible to AG. This will not be used in the
remainder of the paper.

Definition 21. Suppose I,J are countable index sets. Let Ω−
I,J be the LI,J -theory

such that (G,+, Gi, φj : i ∈ I, j ∈ J ) |= Ω−
I,J if and only if:

• (G,+) is an abelian group;

7



• Each Gi is a subgroup of G;

• Each dom(φj) is either all of G or else some Gi;

• Each φj : dom(φj) → G is a homomorphism.

So the only difference with ΩI,J is that we are no longer requiring G ≡∞ω ⊕ωZ.

Theorem 22. For all countable index sets I,J , we have Ω−
I,J ∼B AG.

Proof. Clearly AG ≤B Ω−
I,J . (Given G |= AG, let each Gi = G and let each φj be

the identity of G.) Also, we have by exactly the same argument as before that each
Ω−
I,J ≤B Ω−

ω,0. So it suffices to show that Ω−
ω,0 ≤B Ωω∪{∗},0.

Given (G,Gn : n < ω) |= Ω−
ω,0 (that is, G is an abelian group and each Gn is

a subgroup of G), write G′ = ⊕GZ; let G′
∗ be the kernel of the augmentation map

G′ → G; and let G′
n = G′

∗ +⊕GnZ. Then (G′, G′
n : n < ω,G′

∗) works, using G
∼= G′/G∗

via an isomorphism that takes each Gn to G′
n/G∗.

Corollary 23. Suppose R is a countable ring. Then R-mod ≤B AG.

Proof. An R-module (M,+, ·r : r ∈ R) can be viewed as a model of Ω−
0,R, and this gives

a reduction R-mod ≤B Ω−
0,R.

3 Embedding Graphs into TFAG

In this section, we prove Theorem 6: if there is no transitive model of ZFC−+κ(ω) exists,
then Graphs ≤a∆1

2

TFAG. To begin, we introduce some terminology for colored trees.

Definition 24. A colored tree is a structure, (T,≤, 0, c) where (T,≤) is a tree (of height
at most ω) with root 0, and c : T → ω. We view these as model-theoretic structures,
formally we can replace c with a sequence of unary predicates. Let CT be the theory of
colored trees.

As notation, when we say T ,S, etc. is a colored tree, then we will have T = (T,<T

, 0T , cT ), S = (S,<S , 0S , cS), etc., unless stated otherwise.
Suppose T and T ′ are two colored trees. Then say that f : T ≤ T ′ is an embedding

of trees if for all f(0T ) = 0S , and for all s, t ∈ T , s ≤T t if and only if f(s) ≤T ′ f(t),
and also cT ′(f(s)) = cT (s). (We do not require that f be injective.) Say that T and T ′

are tree-biembeddable (T ∼ T ′) if T ≤ T ′ and T ′ ≤ T . (These definitions agree with
the definitions form the introduction).

If T and t ∈ T then ht(t) denotes its height in T (if there is ambiguity we will write
htT (t)). Let T≥t denote the subtree of all elements of T bigger than or equal to t, with
the induced coloring.

We will now split the proof of Theorem 6 into two main subtheorems.

8



Theorem 25. There is a Borel map f : Mod(CT) → Mod(TFAG) such that for all
T ,T ′ |= CT, if T ∼= T ′ then f(T ) ∼= f(T ′), and if f(T ) ∼= f(T ′) then T ∼ T ′. (In fact,
we will get that for every t ∈ T , there is t′ ∈ T ′ of the same height with T≥t ∼ T ′

≥t′ , and
conversely.)

Theorem 26. Suppose there is no transitive model of ZFC− + κ(ω) exists. Then
there is an absolutely ∆1

2-reduction g : Mod(Graphs) → Mod(CT) such that whenever
G,G′ ∈ Mod(Graphs), if G 6∼= G′ then then f(G) 6∼ f(G′).

We are essentially following Hjorth’s proof of Theorem 2 in [6], although Theorem 13
will make our life easier. The second author shows in [16] that if κ(ω) exists, then the
conclusion of Theorem 26 fails.

Before proceeding, note that it suffices to establish Theorem 25 and Theorem 26.
Indeed, let h = f ◦ g : Mod(Graphs) → Mod(TFAG). Clearly f ◦ g has a ∆1

2 graph,
and preserves isomorphism; we need to check this remains true in forcing extensions.
Suppose V[G] is a forcing extension. By the definition of absolute ∆1

2-reduction, g
V[G]

still makes sense, and is a reduction from Graphs to CT. The remaining properties of
f, g are preserved by Shoenfield’s absoluteness theorem.

Proof of Theorem 25.

Suppose T = (T,<T , cT ) |= CT. We define a model T ⊗ Z of Ωω×ω,{0}. (f will
be the function T 7→ T ⊗ Z.) Let the underlying group of T ⊗ Z be ⊕TZ; define the
group homomorphism πT : ⊕TZ → ⊕TZ by πT (a)(t) =

∑

s∈succT (t) a(s), where succT (t)
denotes the set of all immediate successors of s in T . Viewing T ⊆ ⊕TZ, note that
πT (0T ) = 0, and for all s 6= 0T , πT (s) is the immediate predecessor of s. For each
n, i < ω write GT ,n,i = ⊕tZ, where the sum is over all t ∈ T of height n and with
cT (t) = i. Let T ⊗ Z be the structure (⊕T Z, GT ,n,i, πT : n, i < ω).

Let CT⊗Z be the Σ1
1-sentence describing the closure under isomorphism of {T ⊗Z :

T |= CT}.
Note that it is obvious that if T1 ∼= T2 then T1 ⊗ Z ∼= T2 ⊗ Z.
Fix some countable T |= CT. We perform some analysis on T ⊗ Z; write G = ⊕TZ.
For each i = (im : m < n + 1) ∈ ωn+1, let GT ,i be the subgroup of all a ∈ G such

that for each m ≤ n, πm(a) ∈ GT ,in−m . Also let GT ,∅ = 0. Note that π takes GT ,i

to GT ,i↾n
, also G is the direct sum of the various GT ,i’s. Further, GT ,i is spanned by

{t ∈ T : ht(t) = n, cT (t) = i}, where cT (t) = (cT (t ↾0), cT (t ↾1), . . . , cT (t)).
For each a ∈ GT ,i nonzero, let T

∗
a denote the set of all b such that for some i ⊆ j,

b ∈ GT ,j and π
lg(j)−lg(i)
T (b) = a. If we define c∗a(b) = j(lg(j)− 1), and if we let b ≤f b

′ if
and only if some πm(b′) = b, then (T ∗

a ,≤a, c
∗
a) = T ∗

a is a colored tree.
We need to characterize the colored trees T ∗

a up to biembeddability. This will be
done in terms of products of trees:

Definition 27. If (Sk : k < k∗) are colored trees, then by the product
∏

k<k∗
Sk, we

mean the colored tree whose elements are all sequences (sk : k < k∗), where for some
n < ω, each sk has height n, and for some (im : m ≤ n) ∈ ωn+1, we have for all m ≤ n,
cSk

(sk ↾m) = im. Then we define the color of (sk : k < k∗) to be in.

9



Clearly,
∏

k<k∗
Sk ≤ Sk′ for each k′ < k∗, via projection onto the k′-factor. In fact,

T ≤
∏

k<k∗
Sk if and only if T ≤ Sk for each k < k∗. This is because if T ≤

∏

k<k∗
Sk,

then we can compose with the projection maps to get T ≤ Sk for each k; and if fk : T ≤
Sk for each k < k∗, we can define f : T ≤

∏

k<k∗
Sk via f(t) = (fk(t) : k < k∗).

Claim 1. Suppose a ∈ GT ,i is nonzero; enumerate supp(a) = {tk : k < k∗}. (Here,
we are viewing a ∈ ⊕TZ as a function from T to Z of finite support supp(a).) Then
T ∗
a ∼

∏

k<k∗
T≥tk .

Proof. First we will define an embedding f : T ∗
a ≤

∏

k<k∗
T≥tk . We will define f(b)

inductively on the height of b ∈ T ∗
a ; our inductive hypothesis will be that f(b) = (tk :

k < k∗) is a sequence from supp(b), and if we let i be such that b ∈ GT ,i, then each

cT (tk) = i.
So we are given b and f(b) = (tk : k < k∗). Suppose i < ω and c ∈ GT ,ii satisfies that

πT (c) = b. Then πT [supp(c)] ⊇ supp(b), so for each k < k∗ we can find sk ∈ supp(c)
with πT (sk) = tk. Clearly then we can define f(c) = (sk : k < k∗), and continue.

For the reverse embedding
∏

k<k∗
T≥tk ≤ T ∗

a , write a =
∑

k<k∗
λktk, and send (sk :

k < k∗) ∈
∏

k<k∗
T≥tk to

∑

k<k∗
λksk ∈ T ∗

a .

Given an ω-labeled tree S, let GT ,i,S be the set of all a ∈ GT ,i such that S ≤ T ∗
a ,

along with a = 0. From the preceding claim it is clear that GT ,i,S is a subgroup of GT ,i.

Also, let GT ,i,>S be the sum of all GT ,i,S′ , for S <ct S ′.
Note that if a ∈ GT ,i, then always a ∈ GT ,i,T ∗

a
, but sometimes also a ∈ GT ,i,>T ∗

a
.

Say that a is good if this is not the case, i.e. a ∈ GT ,i,T ∗
a
\GT ,i,>T ∗

a
.

Claim 2. Suppose a ∈ GT ,i. Then a is good if and only if a is nonzero, and there is
some t ∈ supp(a) such that T ∗

a ∼ T≥t.

Proof. Enumerate supp(a) = {tk : k < k∗}, and write a =
∑

k<k∗
λktk. Then by Claim

1, T ∗
a ≤

∏

k<k∗
T≥tk , so T ∗

a ≤ T≥tk for each k < k∗.
If a is good, then we cannot have each T ∗

a < T≥tk , so some T≥tk ∼ T ∗
a as desired.

For the converse, suppose t ∈ supp(a) satisfies that T ∗
a ∼ T≥t . Suppose we write

a =
∑

i<i∗
bi. Then t ∈ supp(bi) for some i < i∗. By Claim 1, T ∗

bi
≤ T≥t, and thus

T ∗
bi
6> T≥t ∼ T ∗

a .

In particular, if a ∈ GT ,i is good then T ∗
a ∼ T≥t for some t ∈ T , and so we can

recover {T≥t/ ∼: t ∈ T,ht(t) = n} from the isomorphism class of T ⊗Z, for each n. This
concludes the proof of Theorem 25.

Before continuing on to the proof of Theorem 26, we need some set-theoretic obser-
vations.

First, we note that various familiar facts about κ(ω) continue to hold when the
ambient set theory is just ZFC− (less suffices as well). Recall that a cardinal κ (in a
model of ZFC) is totally indescribable if for every n, for every sentence φ in the language
of set theory with an extra relation symbol, and for every R ⊆ Vκ with (Vκ+n,∈, R) |= φ,
there is an α < κ such that (Vα+n,∈, R ∩ Vα) |= φ. This is a large cardinal notion;
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it implies that κ is weakly compact. In fact, weak compactness is equivalent to this
condition when restricted to n = 1 (see Theorem 6.4 of Kanamori [8], due to Hanf and
Scott).

Lemma 28. Work in ZFC−.

(A) Suppose κ → (ω)<ω
2 and N is a transitive model of ZFC− containing κ (possible

a proper class). Then (κ→ (ω)<ω
2 )N .

(B) If V = L (we really just need global choice), and if κ(ω) exists, then κ(ω) is
inaccessible (i.e., κ(ω) is a regular cardinal, and for all α < κ(ω), P(α) exists and
has cardinality less than κ(ω)). Thus, Lκ(ω) = Vκ(ω) is a set model of ZFC.

(C) If V = L and if κ(ω) exists, then Vκ(ω) |= “There exist totally indescribable
cardinals.”

(D) If V = L, then κ(ω) is the least cardinal κ such that whenever f : [κ]<ω → 2, there
is an increasing sequence (αn : n < ω) from κ such that for all n, f(α0, . . . , αn−1) =
f(α1, . . . , αn).

(E) If V = L, then κ(ω) is the least cardinal κ such that there is no antichain (Tα :
α < κ(ω)) of ω-colored trees; by an antichain I mean that for all α < β < κ(ω),
Tα 6≤ Tβ and Tβ 6≤ Tα. (If κ(ω) does not exist then we just mean that for every
cardinal κ, there is an antichain of length κ.)

Note that Corollary 7 follows from Theorem 6 and (B). (C) provides a strengthening:
it is consistent with ZFC+“There is a totally indescribable cardinal” that Graphs ≤a∆1

2

TFAG.

Proof. All of these are routine modifications of the case where the ambient set theory
is ZFC. In the context of ZFC: (A) and (D) are due to Silver [13]. (B) is also due to
Silver [14], or see Corollary 7.6 of Kanamori [8]. (C) is due to Silver and Reinhardt, see
Exercise 9.18 of [8]. (E) is due to Shelah [12]; we provide a sketch of the proof.

First suppose κ < κ(ω). Choose some f : [κ]<ω → 2 failing (D). For each α < κ, we
define a colored tree Tα as follows. Namely, let Tα be all finite increasing sequences of
ordinals from κ whose first term is α; let <Tα be initial segment. Let cTα(s) = f(s). Let
Sα be Tα together with the tree of descending sequences from α, with the new elements
all colored 2.

Note that for all α0 < α1 < κ, Tα0
6≤ Tα1

, as given an embedding ρ : Tα ≤ Tβ, we
can inductively find αn : n < ω such that for all n, ρ(αi : i < n) = (αi : 1 ≤ i ≤ n+ 1);
but this clearly contradicts the hypothesized property of f . From this it follows that
(Sα : α < κ) is the desired antichain.

In the other direction, suppose (Tα : α < κ(ω)) is a sequence of colored trees. Write
κ = κ(ω); choose an elementary substructure H ≤ (Vκ, . . .) (using <L) such that H is
the Skolem hull of an infinite set of indiscernible ordinals {αn : n < ω}. Then it is easy
to check that Tα0

≤ Tα1
.
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We can now finish.

Proof of Theorem 26.

Suppose A is a hereditarily countable set. We describe a colored tree TA = (TA, <A

, cA), and then show that for all A 6= A′ then TA 6∼ TA′ . Moreover, the operation A 7→ TA
will be absolute to transitive models of ZFC−.

Before proceeding, we indicate how we finish. Given a graph G ∈ Mod(Graphs), let
g(G) be the <L[G]-least element of Mod(CT) which is isomorphic to Tcss(G), where css(G)

is the canonical Scott sentence of G. (Note that Tcss(G) ∈ (HC)L[G] since (HC)L[G] |=
ZFC−, so Tcss(G) does have models with universe ω in L[G].) Clearly, for any G,G′ |=
CT, if G ∼= G′ then css(G) = css(G′) so g(G) = g(G′), and if G 6∼= G′ then css(G) 6=
css(G′) and so g(G) 6∼ g(G′). To finish, note that g is an absolutely ∆1

2-reduction, since
it is computed correctly in any countable transitive model of ZFC−.

So we define A 7→ TA. Let A be given, and let α = rnk(A), where rnk is foundation
rank. Let (Sβ : β ≤ α) be the <L-least antichain of colored trees indexed by α+1. This
is computed correctly in any transitive model of ZFC−, since if M is any transitive
model of ZFC− with α ∈M , then LM does not believe that κ(ω) exists, and so LM can
find a <LM -least sequence (Sβ : β ≤ α) such that LM |= (Sβ : β ≤ α) is an antichain.
But the property of being an antichain of colored trees of length α + 1 is absolute to
models of ZFC−; thus (Sβ : β ≤ α) is the <L-least antichain of colored trees indexed
by α+ 1.

We define a preliminary colored tree T0,A = (T0,A, <0,A, c0,A). Let (T0,A, <0,A) be the
tree of all nonempty finite sequences (a0, . . . , an) from tcl(A∪{A}) such that a0 = A and
rnk(a0) > rnk(a1) > . . . > rnk(an). Given (a0, . . . , an) ∈ T0,A, let c0,A(a0, . . . , an) = 0 if
an−1 ∈ an, and c0,A(a0, . . . , an) = 1 otherwise. Let TA be obtained from T0,A as follows:
above each (a0, . . . , an) ∈ T0,A, put a copy of (Sβ, <Sβ

), where β is the foundation rank
of an; given t ∈ Sβ, let the color of the copy of t above (a0, . . . , an) be cSβ

(t) + 2.
Suppose TA ∼ TA′ . Let α = rnk(A) and let α′ = rnk(A′). Let f : TA ≤ TA′ and

f ′ : TA′ ≤ TA witness that TA ∼ TA′ . Note that f ↾TA,0
and f ′ ↾TA′,0

witness that TA,0 and
TA′,0 are biembeddable; since TA,0 is well-founded of rank α, and TA′,0 is well-founded
of rank α′, this implies α = α′. Let (Sβ : β ≤ α) be as above.

Now, consider the embedding h := f ′ ◦ f : TA ≤ TA. I claim that h ↾T0,A must be the
identity. This suffices, since it implies T0,A ∼= T0,A′ and hence A = A′.

Suppose (a0, . . . , an) ∈ T0,A; write β = rnk(an) and write h(a0, . . . , an) = (b0, . . . , bn).
We show by induction on β that an = bn; this suffices. Note that Sβ ≤ Srnk(bn), and

hence rnk(bn) = β also (this is the key point!).
If β = 0, then an = bn = ∅. Suppose we have verified the claim for all γ < β. We

show that for every a ∈ tcl(A ∪ {A}) with rnk(a) < β, we have that a ∈ an if and
only if a ∈ bn. Indeed, suppose a is given. Write h(a0, . . . , an, a) = (b0, . . . , bn, b). By
construction of the coloring, we have that a ∈ an if and only if b ∈ bn; but by the
inductive hypothesis, we have that a = b.
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4 Schröder-Bernstein Properties for TFAG

We repeat a bit from the introduction.

Definition 29. Suppose M,N are L-structures. Then f : M ≤ N is an embedding
if f : whenever R is a relation symbol of L then f [RM ] ⊆ [RN ], and whenever F is a
function symbol of L then f ◦ FM = FN ◦ f . Say that M ≤ N if there is an embedding
f : M → N . Also, say that (M,a) ≤ (N, b) if there is an embedding f : M ≤ N with
f(a) = b. Finally, say that M ∼ N if M ≤ N ≤ M and say that (M,a) ∼ (N, b) if
(M,a) ≤ (N, b) ≤ (M,a).

In the context of groups, we will only want to consider injective embeddings; formally
then, we add a unary predicate for {(a, b) : a 6= b}.

Definition 30. Suppose Φ is a sentence of Lω1ω. Then say that Φ has the Schröder-
Bernstein property if wheneverM,N are countable models of Φ, ifM ∼ N thenM ∼= N .

This fails for TFAG, as first proved by Goodrick [5] and in a strong form by Calderoni
and Thomas [1]. Nonetheless, the statement of Theorem 25 suggests a weaker property:
is a group G |= TFAG is determined by {(G, a)/ ∼: a ∈ G}? We will call this the 1-ary
Schröder Bernstein property. Generalizing further:

Definition 31. Suppose M,N are L-structures, and a ∈ M , b ∈ M are tuples of the
same length. By induction on the ordinals we define what it means for (M,a) ∼α (N, b).

• (M,a) ∼0 (N, b) if and only if (M,a) ∼ (N, b).

• For δ limit, (M,a) ∼δ (N, b) if and only if (M,a) ∼α (N, b) for all α < δ.

• (M,a) ∼α+1 (N, b) if and only if for all a ∈ M there is b ∈ M with (M,aa) ∼α

(N, bb), and conversely.

Say that M ∼α N if (M, ∅) ∼α (N, ∅).

Note the similarity between these clauses and the clauses for defining ≡αω; the only
change is to the base case.

Definition 32. Suppose α < ω1. Then say that Φ has the α-ary Schröder-Bernstein
property if for all countable models M,N |= Φ, if M ∼α N then M ∼= N .

The notion of α-ary Schröder-Bernstein property can be extended to α ≥ ω1, with
some care:

Definition 33. Suppose Φ is a sentence of Lω1ω. A pinned name for a model of Φ is a
pair (P, Ṁ ), where P is a forcing notion, P  Ṁ ∈ Mod(Φ̌), and P × P  Ṁ0

∼= Ṁ1,
where Ṁ0 is the copy of Ṁ in the first factor of P × P , and Ṁ1 is the copy of Ṁ in the
second factor of P × P .
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Suppose (P, Ṁ ) and (Q, Ṅ ) are pinned names for models Φ, and α is an ordinal.
Then say that (P, Ṁ) ∼α (Q, Ṅ) if P × Q × R  Ṁ ∼α Ṅ , where R is some or any
forcing notion which makes α,P,Q, Ṁ , Ṅ all countable. Say that (P, Ṁ ) ∼= (Q, Ṅ ) if
P ×Q  Ṁ ∼= Ṅ .

Say that Φ has the α-ary Schröder-Bernstein property if for all pinned names (P, Ṁ ),
(Q, Ṅ ) for models of Φ, if (P, Ṁ) ∼α (Q, Ṅ ) then (P, Ṁ) ∼= (Q, Ṅ ).

This does not conflict with the previous definition, by a downward Lowenheim-Skolem
argument; see [16]. (In [16], canonical Scott sentences are used in place of pins, but this
is equivalent.)

The following will serve as the only interface we need with the machinery of pins:

Lemma 34. Suppose Φ is a sentence of Lω1ω, and α is an ordinal. Suppose there are
M,N |= Φ such thatM ∼α N butM 6≡∞ω N . Then Φ fails the α-ary Schröder-Bernstein
property.

Proof. Let PM be the set of all finite partial functions from ω to M , and let ḟM be
the PM -name for the generic surjection from ω onto M̌ added by PM . Let PN , ḟN be
defined similarly. Then (PM , ḟ

−1
M (M̌ )) and (PN , ḟ

−1
N (Ň)) are pinned names for models

of Φ, and it is easy to check that (PM , ḟ
−1
M (M̌ )) ∼α (PN , ḟ

−1
N (Ň )) but (PM , ḟ

−1
M (M̌ )) 6∼=

(PN , ḟ
−1
N (Ň)).

Looking at the statement of Theorem 25, it is reasonable to ask if TFAG has the
1-ary Schröder-Bernstein property. This would have consequences for the complexity of
TFAG, as the following theorem of the second author [16] shows:

Theorem 35. Suppose κ(ω) exists, and suppose α is an ordinal. If Φ is a sentence
of Lω1ω with the α-ary Schröder-Bernstein property, then Φ is not a∆1

2-complete (and
hence not Borel complete).

In this section, we prove Theorem 4, namely: for every α < κ(ω), TFAG fails the α-
ary Schröder-Bernstein property. The construction breaks down at κ(ω), so the following
remains open:

Question. Does TFAG have the κ(ω)-ary Schröder-Bernstein property?

In the remainder of this section, we prove the following:

Theorem 36. Suppose κ(ω) does not exist. Then for every ordinal α, TFAG fails the
α-ary Schröder-Bernstein property.

Note that Theorem 11 follows: for every α < κ(ω), TFAG fails the α-ary Schröder-
Bernstein property. This is because we can always apply Theorem 36 in Vκ(ω) =
H(κ(ω)).

So, in the remainder of this section, suppose κ(ω) does not exist; equivalently, for
every cardinal λ, there is an antichain of colored trees of length α.

First of all, we note the following lemma:
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Lemma 37. Suppose I,J are countable index sets, not both empty; let F : Ωp
I,J ≤B

TFAG be the Borel reduction from the proof of Theorem 13 (that is, the composition

of the reductions from Lemma 16 and Lemma 19). Suppose G
0
, G

1
∈ Mod(ΩI,J ) and

α < ω1. If G
0
∼2·(ω·α) G

1
, then F (G

0
) ∼α F (G

1
).

Hence, if Ωp
I,J fails the α-ary Schröder-Bernstein property for every ordinal α < κ(ω),

then so does TFAG.

Proof. The final claim follows, since the first part continues to hold in forcing extensions.
Write I ′ = I ∪ J ∪ {∗0, ∗1} (we suppose this is a disjoint union).
Let F0 : Ωp

I,J ≤B Ωp
I′,0 be as in Lemma 16 and let F1 : Ωp

ω,0 ≤B TFAG be as in
Lemma 19.

First we look at F0. We recap the definition of F0, for the reader’s convenience.
Suppose G = (G,Gi : i ∈ I, φj : j ∈ J ) |= Ωp

I,J is countable. Define G′ = G × G; for
each i ∈ I, define G′

i to be the copy of Gi in the first factor of G′; for each j ∈ J , define
G′

j to be the graph of φj ; define G
′
∗0 = G × 0; and finally let G′

∗1 be the graph of the

identify function idG : G→ G. Then F (G,Gi : i ∈ I, φj : j ∈ J) is G
′
= (G′, G′

i′ : i
′ ∈ I ′)

(suppressing the coding that arranges everything to have universe ω).

Suppose G0, G1 |= Ωp
I,J are countable, and define G

′
0, G

′
1 as above. Then it is easy

to check that for all ((a0i , a
1
i ) : i < i∗) from G

′
0 and all (b0i , b

1
i ) : i < i∗) from G

′
1, if

f : (G0, (a
j
i : i < i∗, j < 2)) ≤ (G1, (b

j
i : i < i∗, j < 2), then f × f : (G

′
0, ((a

0
i , a

1
i ) :

i < i∗)) ≤ (G
′
1, ((b

0
i , b

1
i ) : i < i∗)). From this it follows by an easy inductive argument

that for all β < ω1, if (G0, (a
j
i : i < i∗, j < 2)) ∼2·β (G1, (b

j
i : i < i∗, j < 2), then

(G
′
0, ((a

0
i , a

1
i ) : i < i∗)) ∼β (G

′
1, ((b

0
i , b

1
i ) : i < i∗)).

Next we look for F1. Let (γn : 1 ≤ n < ω) be as in Lemma 19, i.e. a sequence of
algebraically independent units of Qp; and let γ0 = 1. Let G = (⊕ωZ, Gn : n < ω) be a
countable model of Ωp

ω,0; we only consider the case where G0 = G1 = ⊕ωZ, without loss

of generality. Then recall F1(G) is (isomorphic to) G, where G is the p-pure subgroup
of ⊕ωZp generated by

⋃

n γnGn. Recall that every a ∈ G can be written as a sum
a =

∑

n<ω γnp
k(n)bn, where each k(n) ∈ Z, bn ∈ Gn and all but finitely many k(n), bn

are 0. Say that this is a weak representation of a (it may not be a full representation;
we don’t require that p 6 |bn in Gn.)

Suppose G
j
= (⊕ωZ, G

j
n : n < ω) are countable models of Ωp

ω,0 for j < 2; let G0, G1

be defined from G
0
, G

1
as above. Suppose f : G

0
≤ G

1
. Define f∗ : ⊕ωZp → ⊕ωZp

via f∗(
∑

n γnen) =
∑

n γnf(en), where (en : n < ω) is the standard basis. Moreover,
f∗ ↾G0 : G0 ≤ G1, since f∗ preserves the action of Zp.

Suppose (ai : i < i∗) is a sequence from ⊕ωZ, and suppose (a′i : i < i∗) is a sequence
from ⊕ωZ. Suppose for each i < i∗, ai =

∑

n∈Γi
γnp

ki(n)bi,n is a weak representation

with respect to G
0
, and a′i =

∑

n∈Γi
γnp

ki(n)b′i,n is a weak representation with respect

to G
1
, for finite sets Γi ⊂ ω. Suppose finally that f : (G

0
, (bi,n : n ∈ Γi, i < i∗)) ≤

(G
1
, (b′i,n : n ∈ Γi, i < i∗)). Then note that each f∗(p

ki(n)bi,n) = pki(n)b′i,n, hence each

f∗(ai) = a′i, hence f∗ : (G
0, (ai : i < i∗)) ≤ (G1, (a′i : i < i∗)).
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From this, an easy inductive argument shows that if (G
0
, (bi,n : n ∈ Γi, i < i∗)) ∼ω·α

(G
1
, (b′i,n : n ∈ Γi, i < i∗)), then (G0, (ai : i < i∗)) ∼α (G1, (a′i : i < i∗)).

Thus it suffices to show that some Ωp
I,J fails the α-ary Schröder-Bernstein property

for all α.
For the next lemma, we make the obvious definitions for Ωp

I,J in the case where the
index sets are possibly uncountable.

Lemma 38. Suppose κ(ω) does not exist. Suppose I,J are index sets, and suppose

G
0
, G

1
|= ΩI,J . Then we can find F(G

0
),F(G

1
) |= Ωp

ω×ω∪{0,1},{0,1}, such that G
0
≡∞ω

G
1
if and only if F(G

0
) ≡∞ω F(G

1
), and for every ordinal β, if G

0
∼β G

1
then F(G

0
) ∼β

F(G
1
).

Proof. We can suppose J = ∅, by applying the construction from Lemma 16.

Choose λ large enough so that I, G
0
, G

1
all are of size at most λ. We can suppose

I = λ.
Let (Tγ : γ < λ) be a family of pairwise-non-biembeddable colored trees. Let T be

the colored tree such that cT (0) = 0 (say), and for each γ < λ, there are λ-many t ∈ T
of height 1 such that T≥t

∼= Tγ , and for each t ∈ T of height 1, T≥t is isomorphic to some
such Tγ .

Recall the definition of T ⊗ Z = (GT , GT ,n,i, π : n, i < ω) |= Ωp

ω×ω,{0} from Theo-
rem 25. For each γ < λ, let Eγ be the set of all t ∈ T of height 1 such that T≥t

∼= Tγ . Let
ĜT ,γ denote the subgroup of GT spanned by Eγ . Note that each ĜT ,γ is L∞ω-definable,

since (Tγ : γ < λ) is an antichain, and so g ∈ ĜT ,γ if and only if g = 0 or else Tγ embeds
into T ∗

g .

Let F(G
ℓ
) = (GT ⊕ Gℓ, GT ,n,i,H

0,H1, π, ψℓ : n, i < ω) |= Ωp

ω×ω∪{0,1},{0,1}
, where

H0 = T ⊗ Z, H1 = Gℓ, and where ψℓ : GT → Gℓ satisfies:

• ψℓ(t) = 0 for all t ∈ T not of height 1,

• For every γ < λ, ψ ↾Eγ : Eγ → Gℓ
γ is λ-to-one.

It is easy to check that this works.

Thus, to finish it suffices to verify the following:

Lemma 39. Suppose κ(ω) does not exist. Suppose α∗ < κ(ω). Then for some index

set I, there are G
0
∗, G

1
∗ |= Ωp

I,{0}, with G
0
∗ ∼α∗ G

1
∗ yet G

0
∗ 6≡∞ω G

1
∗.

Our idea is the following: given G = (G,Gi : i ∈ I, φ) |= Ωp
I,{0}, define X

G :=

G\
⋃

iGi and define ≤G to be the partial order of XG given by: a ≤G b if and only if

φn(a) = b for some n < ω, satisfying further that for all m < n, φm(a) ∈ XG. Then

16



we will arrange that (XG
0

∗ ,≤G
0

∗) is ill-founded, but (XG
1

∗ ,≤G
1

∗) is well-founded. It turns

out we can make G
0
∗ ∼α∗ G

1
∗ without upsetting this.

We will be approximating G
0
∗ and G

1
∗ as a union of chains. To control the eventual

behavior of (XG
i
∗ ,≤G

i
∗), we will be defining upper bounds to the rank function at each

stage. The following are the approximations we will be using:

Definition 40. Given an index set I, let ΓI denote all tuples (G,B, ρ) where:

• G = (G,Gi, φ : i ∈ I) |= Ωp
I,{0};

• G is free abelian (this is not redundant, since Ωp
I,{0} only asserts that G ≡∞ω ⊕ωZ)

and B is a basis of G;

• φ : G→ G;

• ρ : XG → ON ∪ {∞} satisfies: for all a, b ∈ XG, if φ(b) = a and ρ(b) < ∞ then

ρ(a) < ρ(b). Hence ρ(a) ≥ rnk(a) where rnk is the rank function for (XG,≤G).

• For all a ∈ X and for all n ∈ Z nonzero, ρ(a) = ρ(na).

When we write G,G
′
, G

ℓ
, etc., then we will always have G = (G,Gi, φ : i ∈ I),

G
′
= (G′, G′

i, φ
′ : i ∈ I), G

ℓ
= (Gℓ, Gℓ

i , φ
ℓ : i ∈ I), etc.

Definition 41. Suppose I,I ′ are index sets with I ⊆ I ′. Suppose (G,B, ρ) ∈ ΓI and

(G
′
,B′, ρ′) ∈ ΓI′. Then say that (G

′
,B′, ρ′) extends (G,B, ρ) if:

• G ⊆ G′ and B ⊆ B′;

• For each i ∈ I, G′
i ∩G = Gi;

• For each i ∈ I ′\I, G′
i ∩G = 0;

• φ′ ↾Gi
= φ;

• ρ′ ↾
XG= ρ.

The following lemma is immediate.

Lemma 42. Suppose δ < λ+ is a limit ordinal, (Iγ : γ < δ) is an increasing chain of
index sets, and ((G

γ
,Bγ , ργ) : γ < δ) is a sequence satisfying each (G

γ
,Bγ , ργ) ∈ ΓIγ

and for γ < γ′, (G
γ′

,Bγ′
, ργ

′
) extends (G

γ
,Bγ , ργ). Then the natural union of the chain

(G,B, ρ) extends each (G
γ
,Bγ , ργ).

The final set of definitions describe the embeddings we will use to arrange G
0
∗ ∼α∗ G

1
∗.

17



Definition 43. If (G,B, ρ) ∈ ΓI , then say that H is a basic subgroup of G if H is
spanned by H ∩B. By G ↾H we mean (H,Gi ∩H,φ ↾H : i ∈ I) |= Ωp

I,{0}. By (G,B, ρ) ↾H

we mean (G ↾H ,B ∩H, ρ ↾
XG↾H

).

Suppose (G,B, ρ), (G
′
,B′, ρ′) ∈ ΓI . Then by a −1-embedding from (G,B, ρ) into

(G
′
,B′, ρ′), we mean a map f where f : G ≤ G

′
is an embedding and f [B] ⊆ B′. For an

ordinal α ≥ 0, say that f is an α-embedding if additionally: f [XG] ⊆ XG
′

, and for all

a ∈ XG, if ρ(a) < ω · α, then ρ(a) = ρ′(f(a)).

For all α ≥ −1, say that f is a partial α-embeddding from (G,B, ρ) into (G
′
,B′, ρ′) if

for some basic subgroup D of G, f is an an α-embedding from (G,B, ρ) ↾D to (G
′
,B′, ρ′).

Finally, we describe the construction of G
0
∗, G

1
∗. We will build them as a union of

chains. In the outer layer, we will construct, by induction on n < ω, index sets In, and,

for each ℓ < 2, (G
ℓ,n
,Bℓ,n, ρℓ,n) ∈ ΓIn with a privileged element en ∈ G0,n for n > 0, and

for each ℓ < 2 a set Fℓ,n, satisfying various constraints. The goal is that (en : n < ω)

will witness that XG
0,n

is ill-founded, and Fℓ,n will be a set of partial embeddings from

G
ℓ,n

to G
1−ℓ,n

, which will be used to arrange that G
0
∗ ∼α∗ G

1
∗. Formally, we need the

following requirements:

1. For n < m < ω, (G
ℓ,m
,Bℓ,m, ρℓ,m) extends (G

ℓ,n
,Bℓ,n, ρℓ,n);

2. For each n > 0, en ∈ XG
0,n

, and φ0,n+1(en+1) = en (so necessarily each ρ0,n(en) =
∞).

3. For all a ∈ XG
1,n

, ρ1,n(a) <∞.

4. For all n, ℓ, (φℓ,n)n = 0 (i.e. φℓ,n iterated n-many times is 0);

5. Each Fℓ,n is a set of tuples (α,D,R, f), where −1 ≤ α ≤ α∗, and f is a partial

α-embedding from (G
ℓ,n
,Bℓ,n, ρℓ,n) to (G

1−ℓ,n
,B1−ℓ,n, ρ1−ℓ,n) with domain D and

range R;

6. For each n < m, and for each ℓ < 2, Fℓ,n ⊆ Fℓ,m;

7. If (α,D,R, f) ∈ Fℓ,n and α ≥ 0, then (α,R,D, f−1) ∈ F1−ℓ,n (in particular f−1

is a partial α-embedding);

8. Suppose (α,D,R, f) ∈ Fℓ,n, and suppose either β < α or else β = −1. Then for
every a ∈ Gℓ,n+1, there is some D′ ⊇ D ∪ {a}, R′ ⊇ R, and f ′ ⊇ f such that
(β,D′, R′, f ′) ∈ Fℓ,n+1;

9. G0,0 = G1,0 = 0 (this determines each (G
ℓ,0
,Bℓ,0, ρℓ,0)), and (α∗, 0, 0, 0) ∈ F0,0.

Having done this, let (G
ℓ
∗,B

ℓ
∗, ρ

ℓ
∗) be the union of the chain ((G

ℓ,m
,Bℓ,m, ρℓ,m) : m <

ω), as promised by Lemma 42. Then G
0
∗ 6≡∞ω G

1
∗, since (XG

0

∗ ,≤G
0

∗) is ill-founded (by

18



condition (2)) while (XG
1

∗ ,≤G
1

∗) is well-founded (by condition (3). On the other hand,
it is clear that for all n < ω, for all (α,D,R, f) ∈ Fℓ,n with α ≥ 0, and for all finite

tuples a ∈ D, we have (G
ℓ
∗, a) ∼α (G

1−ℓ
∗ , f(a)) (by condition (8)). Thus G

0
∗ ∼α∗ G

1
∗.

So it remains to show this construction is possible. This will mostly be achieved by
the following two lemmas, which will allow us to handle the key condition (8) without
disturbing any of the other hypotheses:

Lemma 44. Suppose (G
ℓ
,Bℓ, ρℓ) ∈ ΓI for each ℓ < 2. Suppose f is a partial −1-

embedding from (G
0
,B0, ρ0) to (G

1
,B1, ρ1). Finally, suppose each (φi)n+1 = 0. Then

we can find an index set I ′, and an extension (G
2
,B2, ρ2) of (G

1
,B1, ρ1) in ΓI′ , such

that XG2 = XG1 , and f extends to a −1-embedding h from (G
0
,B0, ρ0) to (G

2
,B2, ρ2),

and finally (φ2)n+1 = 0.

Proof. Let D be the domain of f and let R be its range. Recall that we require D and
R to be basic subgroup of G, that is, B ∩D spans D. Let I ′ ⊇ I be large enough.

Write A = B0\(B ∩ D). Let G2 = G1 × ⊕AZ. Write H = 0 × ⊕AZ, and let
g : spanG0(A) ∼= H be the natural isomorphism. Let B2 be B1∪g[A]. Define h : G0 → G2

via h ↾D= f and h ↾span(A)= g.
Define φ2 : G2 → G2 via: φ2 ↾G1= φ1, and φ2 ↾H= g ◦ φ0 ◦ g−1. For each i ∈ I, let

G2
i = G1

i .
Let G2

i : i ∈ I ′\I enumerate all singly generated pure subgroups of G2 which are not

contained in G1. Note then that XG
2

= XG
1

so we must let ρ2 = ρ1 and then clearly
we are done.

Lemma 45. Suppose (G
ℓ
,Bℓ, ρℓ) ∈ ΓI for each ℓ < 2. Suppose 0 ≤ β < α, and f is

a partial α-embedding from (G
0
,B0, ρ0) to (G

1
,B1, ρ1) such that f−1 is also a partial

α-embedding. Finally, suppose each (φi)n+1 = 0. Then we can find an index set I ′, and

an extension (G
2
,B2, ρ2) of (G

1
,B1, ρ1) in ΓI′ , such that:

• f extends to an β-embedding h from (G
0
,B0, ρ0) to (G

2
,B2, ρ2);

• h−1 is a partial β-embedding from (G
2
,B2, ρ2) to (G

0
,B0, ρ0);

• For all a ∈ XG
2

\XG
1

, ρ2(a) < ω · α;

• (φ2)n+1 = 0.

Proof. Let D be the domain of f and let R be its range. Let I ′ ⊇ I be large enough.
Write B0 = (B ∩ D) ∪ A. Let G2 = G1 × ⊕AZ. Write H = 0 × ⊕AZ, and let

g : spanG0(A) ∼= H be the natural isomorphism. Let B2 be B1∪g[A]. Define h : G0 → G2

via h ↾D= f and h ↾span(A)= g.
Define φ2 : G2 → G2 via: φ2 ↾G1= φ1, and φ2 ↾H= g ◦ φ0 ◦ g−1. For each i ∈ I, let

G2
i = G1

i . It remains to define G2
i for i ∈ I ′\I, and then to define ρ2.
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Let G2
i : i ∈ I ′\I enumerate all singly generated pure subgroups of G2 which are

not contained in G1 and which are not contained in R + H. Note then that XG
2

=
XG

1

∪ h[XG
0

]. We define ρ2 as follows: suppose a ∈ XG
2

. If a ∈ XG
1

then we must

let ρ2(a) = ρ1(a). Suppose instead a ∈ h[XG
0

]\XG
1

; write a = h(a′). If ρ0(a) < ω · β

then let ρ2(a) = ρ0(a). Otherwise, let k be largest such that there is c′ ∈ XG
0

such

that (φ0)k(c′) = a′, and for all k′ < k, (φ0)k
′
(c′) ∈ XG

0

, and finally ρ0(c′) ≥ ω · β; let
ρ2(a) = ω · β + k. Note that k ≤ n since (φ0)

n+1 = 0.
Now I claim this works. First of all:

Claim. Suppose a ∈ h[XG
0

]\XG
1

; write h(a′) = a. Then ρ0(a′) ≥ ρ2(a).

Proof. This is immediate if ρ0(a′) < ω ·β, so suppose instead ρ0(a′) ≥ ω ·β; let c′, k be as
in the definition of ρ2(a). Then ρ0(a′) = ρ0((φ0)

k(c′)) ≥ ρ0(c′)+k ≥ ω ·β+k = ρ2(a).

We show (G
2
,B2, ρ2) ∈ ΓI′ . We must check that for all a, b ∈ XG

2

with φ2(b) = a

and with ρ2(a) < ∞, we have that ρ2(b) < ρ2(a). If b ∈ XG
1

, then a ∈ XG
1

and this is

clear. Suppose b ∈ h[XG
0

]\XG
1

, and a ∈ XG
1

; note that a ∈ f [XG
0

] ⊆ h[XG
0

]; write
a = f(a′) and write b = h(b′). We consider two further subcases. If ρ0(a′) = ρ1(a),
then ρ2(a) = ρ0(a′) > ρ0(b′) ≥ ρ2(b), using the claim. If ρ0(a′) 6= ρ1(a), then since
f, f−1 are both α-embeddings we must have ρ0(a′), ρ1(a) ≥ ω ·α. Hence ρ2(a) = ρ1(a) ≥

ω · α > ω · β + n ≥ ρ2(b). Finally, suppose both a, b ∈ h[XG
0

]\XG
1

. Write a = h(a′),
b = h(b′). If ρ0(a′) < ω · β then ρ2(a) = ρ0(a′) > ρ0(b′) ≥ ρ2(b). If ρ0(a′) ≥ ω · β and
ρ0(b′) < ω · β, then ρ2(a) ≥ ω · β > ρ0(b′) = ρ2(b). Finally, if ρ0(a′) and ρ0(b′) are both
≥ ω · β, then let k be as in the definition of ρ2(b), i.e. so that ρ2(b) = ω · β + k; clearly
then ρ2(a) ≥ ω · β + (k + 1).

To finish, it is clear that for all a′ ∈ G
0
, if either ρ0(a′) < ω ·β or else ρ2(h(a′)) < ω ·β,

then ρ0(a′) = ρ2(h(a′)); hence h is a β-embedding and h−1 is a partial β-embedding.

Now, suppose we are given (G
ℓ,n
,Bℓ,n, ρℓ,n), Fℓ,n, and en satisfying (1) through (9).

We explain how to get (G
ℓ,n+1

,Bℓ,n+1, ρℓ,n+1), Fℓ,n+1, and en+1.
Define G0 = G0,n × Z, let en+1 = (0, 1) ∈ G0. Let I ⊇ In be sufficiently large.

For each i ∈ In let G0
i = G0,n

i . Choose (G0
i : i ∈ I\In) so as to enumerate the singly-

generated pure subgroups of G0 which are not contained in G0,n and which do not contain
en+1. Define φ0 via φ0 ↾G0,n= φ0,n and φ0(en+1) = en (or, if n = 0 then let φ0(e1) = 0).

We have defined G
0
|= Ωp

I,{0}, an extension of G
0,n

. Note that XG
0

= XG
n,0

∪ {men+1 :

m ∈ Z,m 6= 0}. Let B0 = B0,n ∪ {en+1}, and define each ρ0(men+1) = ∞.
Define G1 = G1,n; for each i ∈ In, let G1

i = G1, and for each i ∈ I\In, and let
G1

i = 0; let φ1 = φ1,n. Finally, let Fℓ = Fℓ,n for each ℓ < 2.
The only thing left to do is arrange (8) to hold. For this, apply Lemmas 44 and 45

repeatedly, using Lemma 42 at limit stages.
This concludes the proof of Theorem 36, and hence of Theorem 11.
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