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HYPERSURFACES QUASI-INVARIANT BY CODIMENSION ONE

FOLIATIONS

JORGE VITRIO PEREIRA AND CALUM SPICER

Abstract. We present a variant of the classical Darboux-Jouanolou Theorem.
Our main result provides a characterization of foliations which are pull-backs
of foliations on surfaces by rational maps. As an application, we provide a
structure theorem for foliations on 3-folds admitting an infinite number of
extremal rays.

1. Introduction

In this paper, we study codimension one singular holomorphic foliations on pro-
jective manifolds. More specifically, we introduce and investigate the concept of
quasi-invariant hypersurfaces: an irreducible hypersurface H is quasi-invariant by
a foliation F if it is not F invariant, but the restriction of the foliation F to H is
an algebraically integrable foliation, i.e. every leaf of F|H is algebraic.

1.1. Statement of the main result. Rational pull-backs of foliations on projec-
tive surfaces provide natural examples with infinitely many quasi-invariant divisors.
Our main result shows that the existence of sufficiently many quasi-invariant hy-
persurfaces characterizes this class of foliations.

Theorem A. Let F be a codimension one holomorphic foliation on a projective
manifold X. If F admits infinitely many quasi-invariant hypersurfaces then F is
algebraically integrable, or F is a pull-back of a foliation on a projective surface
under a dominant rational map.

Indeed, we prove a stronger statement in Section 4, see Theorem 4.6.
Theorem A has to be compared with, and was inspired by, Darboux-Jouanolou’s

criterion for the algebraic integrability of codimension one foliations. We take the
opportunity to revisit this criterion and we provide a small improvement of it in
Section 2, see Theorem 2.3.

1.2. A version in positive characteristic. In [Kim97], an analogue of Darboux-
Jouanolou’s Theorem was proved for codimension one foliations on smooth projec-
tive varieties defined over fields of positive characteristic, under the assumption
that in the ambient variety every global differential 1-form is closed. This extra
assumption was later proved to be superfluous by Brunella and Nicolau in [BN99].

We show that Brunella-Nicolau’s argument can be adapted to prove the following
analogue of Theorem A.
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2 PEREIRA AND SPICER

Theorem B. Let X be a smooth projective variety defined over a field k of charac-
teristic p > 0, and let F be a codimension one foliation on X. If F admits infinitely
many quasi-invariant hypersurfaces then F is p-closed, or F is a pull-back of a fo-
liation on a projective surface under a dominant rational map.

The concepts used in the statement of Theorem B are recalled/presented in
Section 5.1.

1.3. Structure of the cone of curves. The second author established in [Spi]
a cone theorem which describes the structure of the Kleiman-Mori cone of curves
in terms of numerical properties of the canonical bundle KF of a codimension one
foliation F on a projective 3-dimensional variety. We were lead to the definition of
quasi-invariant divisors while trying to understand the implications of this result
on the geometry/dynamics of the original foliation. As a corollary of Theorem A
we obtain the following statement.

Theorem C. Let F be a codimension one foliation with non-dicritical canonical
singularities on a connected 3-dimensional Q-factorial projective variety X with
at worst terminal singularities. If the KF -negative portion of the cone of curves
contains infinitely many extremal rays then (at least) one of the following assertions
holds true.

(1) the foliation F is algebraically integrable and the closure of a general leaf
is rational; or

(2) there exists a finite number of rational F-invariant hypersurfaces containing
all but finitely many extremal rays.

The definitions of extremal rays and canonical singularities are recalled in Section
6, where the precise statement of the cone theorem is also recalled, cf. 6.1.

1.4. Acknowledgments. The results presented here were achieved in a visit of
J.V. Pereira to Imperial College London followed by a visit of C. Spicer to FRIAS,
Freiburg. We acknowledge the support of Paolo Cascini and Stefan Kebekus who
made these visits possible. J.V. Pereira was partially supported by Cnpq and
FAPERJ.

2. Foliations, invariant and quasi-invariant divisors

2.1. Foliations. A foliation F on a projective manifold X is determined by an
involutive and saturated subsheaf TF of the tangent sheaf of X . The sheaf TF is
the tangent sheaf of F . The dimension of F is the rank of TF , and its codimension
is the corank of TF inside TX . The singular set of F is the singular set of the
sheaf TX/TF . As we are assuming TF saturated inside TX , the singular set of F is
of codimension at least two. Away from the singular set, the Frobenius Theorem
provides a decomposition of sufficiently small open (in the Euclidean topology)
subsets U ⊂ X in level sets of submersions f : U → V ⊂ Cq, where q = codimF .
Maximal analytic continuation of a level set of f inside X − sing(F) is a leaf of the
foliation F .

The dual of TF is the cotangent sheaf of F and will be denoted by Ω1
F . As the

notation suggests, the local sections of Ω1
F can be interpreted as 1-forms defined

along the leaves of the foliation F .
Alternatively, a foliation F can be presented by a subsheaf N∗

F of Ω1
X , which is

integrable and saturated. The sheaf N∗
F is called the conormal sheaf of F . Its dual
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will be denote by NF and is called the normal sheaf of F . One can recover TF from
N∗

F by considering the subsheaf of TX which annihilates every element of N∗
F . The

natural analogous construction allows us to recover N∗
F from TF .

2.2. Invariant divisors. Let F be a codimension one foliation on a projective
manifold X . We will denote by Inv(F) the subgroup of Div(X) generated by
irreducible F -invariant hypersurfaces.

Proposition 2.1. If D is a F-invariant divisor then the restriction of differential
forms to leaves of F defines a morphism

H0(X,Ω1
X(logD)) → H0(X,Ω1

F ) .

Proof. For any local section v ∈ TF(U) of the tangent sheaf of F , the contraction
of v with a section of Ω1

X(logD) is holomorphic due to the F -invariance of D. �

Recall that a holomorphic F -partial connection on coherent sheaf E is a C-linear
morphism ∇ : E → E ⊗C Ω1

F satisfying Leibniz rule, i.e.

∇(f · σ) = f · ∇(σ) + σ ⊗ (df)|TF

where f is a local section of OX and σ is a local section of E .

Proposition 2.2. If D ∈ Inv(F) is a F-invariant divisor then the line-bundle
OX(D) admits a holomorphic F-partial connection.

Proof. The logarithmic differentials of local defining functions of D define a flat
logarithmic connection ∇ on OX(D) with residue divisor equal to D. The F -
invariance of D implies that the restriction of ∇ to TF is holomorphic. �

It was observed by Bott that the normal sheaf of a foliation F admits a natural
F -partial connection, the so called Bott’s partial connection. For codimension one
foliations Bott’s connection can be locally defined as follows. Let ω be a local
generator of N∗

F . The integrability assumption implies that the existence of a
meromorphic 1-form η such that

dω = ω ∧ η .

The 1-form η is not unique, one can replace η by η+hω for an arbitrary meromorphic
function h. Nevertheless, if v is a local section of TF then the contraction of v with
η does not depend on h and, furthermore, it is a holomorphic function. In other
words, the restriction of the 1-form η to TF defines a local holomorphic section of
Ω1

F . Bott’s connection is the connection on NF locally defined by η|TF
.

2.3. Jouanolou’s Theorem. If X is a projective manifold then we will denote by
NS(X) the Nron-Severi group of X , i.e. NS(X) is the group of divisors modulo
numerical equivalence. The tensor product of NS(X) with C injects into H2(X,C)
and is the natural target for the Chern class map c : Div(X)⊗ C→ NS(X)⊗X .

Below we present a small improvement on Darboux-Jouanolou Theorem, com-
pare with [Jou78], [Ghy00] and [Bru00, Theorem 6.1]. It involves the concept of a
transversely affine foliation. We recall that a codimension one foliation F is called
transversely affine, if there exists a flat meromorphic connection on the normal sheaf
of F which, when restricted to the leaves of F coincides with Bott’s F -partial con-
nection. For a thorough discussion of this concept, and other equivalent definitions
the reader can consult [CP14].
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Theorem 2.3. Let F be a codimension one foliation on a projective manifold X.
If k is the number of F-invariant hypersurfaces and ℓ is the integer dimNS(X) +
h0(X,Ω1

F)− h0(X,Ω1
X) then the following assertions hold true.

(1) If k ≥ ℓ then F is transversely affine.
(2) If k ≥ ℓ+ 1 then F is defined by a closed logarithmic 1-form.
(3) If k ≥ ℓ+ 2 then F is algebraically integrable.

Proof. Let Inv0(F) ⊗ C be the kernel of the restriction of the Chern class map
to to Inv(F). Basic Hodge theory associates to each element D ∈ Inv0(F) ⊗ C
a logarithmic 1-form η with residue divisor equal to D. This association is not
unique: η is defined up to the addition of a global holomorphic 1-form.

The restriction of the logarithmic 1-form η to the leaves of F defines a holomor-
phic section of Ω1

F , i.e. η|TF
∈ H0(X,Ω1

F).
If the number k of irreducible F -invariant hypersurfaces is at least ℓ + 1 then

we can produce a non-zero logarithmic 1-form η such that η|TF
= 0. Hence η is

the sought logarithmic 1-form defining F . Item (2) follows. If k ≥ ℓ + 2 then we
have two linearly independent logarithmic 1-forms η and η′ which vanish along TF .
Since F is a codimension one foliation, there exists a non-constant rational function
f ∈ C(X) such that η = fη′. Differentiation implies df ∧ η′ = 0. We conclude that
f is a rational first integral for F . Item (3) follows.

To prove item (1), consider the fiber of the Chern class map c : Inv0(F) ⊗ C→
H2(X,C) over the Chern class of the normal bundle. For each divisor D such that
c(D) = c(NF ), we can construct a family, parameterized by H0(X,Ω1

X), of flat
logarithmic connections on NF with residue divisor equal to D. If we restrict one
such connection to a partial connection along the leaves of F then it will differ from
Bott’s partial connection by an element of H0(X,Ω1

F). Thus, if k ≥ ℓ then at least
one of such connections will have restriction to the leaves equal to Bott’s partial
connection. But this means exactly that F is transversely affine. �

2.4. Examples. The foliation H5 described in [MP05, Theorem 2] is a foliation on
P2 with Ω1

F = OP2(4), h0(P2,Ω1
F) = 15 = k − 1 invariant lines, and which is not

transversely affine. This shows that item (1) is sharp.
The general Riccati foliation on P1 × P1 with three invariant fibers (multiplicity

one) and an invariant section is a transversely affine foliation which is not trans-
versely Euclidean. In this case, Ω1

F = OP1×P1(1, 0) and therefore

dimNS(P1 × P1) + h0(P1 × P1,Ω1
F )− h0(P1 × P1,Ω1

P1×P1) = 2 + 2− 0 = 4 .

This shows that item (2) is sharp.
The general logarithmic 1-form on P2 with poles along three distinct lines defines

a foliation F with dimNS(P2)+h0(P2,Ω1
F )−h0(P2,Ω1

P2) = 2, three invariant lines,
and which is not algebraically integrable. This shows that item (3) is sharp.

2.5. Comparison. We have stated our version of Darboux-Jouanolou Theorem
for projective manifolds, but it can be formulated for arbitrary compact complex
manifolds as in [Ghy00]. For that, one has to take the integer ℓ equal to

dim
{
cokerDiv(X)⊗ C→ H1(X,Ω1

X,cl)
}
+ h0(X,Ω1

F)− h0(X,Ω1
X,cl)

where Ω1
X,cl stands for the C-sheaf of closed holomorphic 1-forms on X .

The bound presented in Theorem 2.3 item (3) coincides with the bound pre-
sented in [Bru00, Theorem 6.1] and is slightly different from the bound presented
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in [Ghy00], even if one specializes the latter to projective manifolds. The main
difference comes from the use here of H0(X,Ω1

F) instead of H0(X,Ω2
X ⊗NF). To

relate the dimensions of these two finite dimensional vector spaces observe that the
sheaf Ω1

F injects into Ω2
X ⊗NF . Indeed, if ω ∈ H0(X,Ω1

X ⊗NF) is a twisted 1-form
defining F then for any local section η ∈ Ω1

F(U) (U sufficiently small) we can un-
ambiguously define ω ∧ η by considering a lift of η|U−sing(F) to Ω1

X(U − sing(F)),
extending the result using Hartog’s, and taking the wedge product with ω. The
final result is clearly independent of the choice of the lift.

2.6. Quasi-invariant divisors. We will say that an irreducible hypersurface H is
quasi-invariant by a codimension one foliation F if H is not F invariant and the
restriction of F to H is algebraically integrable. The subgroup of Div(X) generated
by the irreducible hypersurfaces quasi-invariant by F will be denoted by QInv(F).

For a foliation F on a surface S the concept is not very useful. According to our
definition, any divisor in Div(S) is a member of Inv(F) +QInv(F). Anyway, these
foliations provide a natural source of examples of quasi-invariant divisors.

Proposition 2.4. Let X be a projective manifold of dimension at least three which
admits a dominant rational map p : X 99K S to a smooth projective surface S. If
G is a foliation on S and we set F = p∗G then p∗ Div(S) ⊂ Inv(F) + QInv(F).

Proof. Let C be an irreducible curve on S. The pull-back of C consists in a finite
number of irreducible hypersurfaces. The ones which dominate C are either F -
invariant (when C is G invariant) or are not F -invariant but foliated by fibers of p.
Hence the irreducible hypersurfaces dominating C are either F -invariant or quasi-
invariant as wanted. If a hypersurface is contracted to a point then after blowing-up
sufficiently many times its image, we reduce to the previous situation. �

3. Flat divisors

The proof of Theorem A will be presented in Section 4 and is based on properties
of flat S1-divisors (in the sense of [Per06]) and their associated foliations. In this
section we recall several results from [Per06, §2, §3] relating to S1-flat divisors, and
adapt/extend some of them to our current goals.

3.1. Definition. Let X be a complex manifold. A divisor D is called S1-flat if
OX(D) is in the image of the natural morphism

H1(X,S1) → H1(X,O∗
X) = Pic(X)

induced by the inclusion S1 → O∗
X , where S1 denotes the constant sheaf of complex

numbers of modulus 1.

Lemma 3.1. Let X be a compact Kähler manifold. A line bundle L on X is S1-flat
if and only if c(L) = 0 ∈ H2(X,C).

3.2. Associated 1-forms. If D 6= 0 is an S1-flat divisor then there exists a natural
construction of a closed logarithmic 1-form ωD ∈ H0(X,Ω1(logD)) with purely
imaginary periods. It goes as follows. Choose a sufficiently fine open covering Ui

of X and meromorphic functions fi : Ui 99K P
1 such that D|Ui

= (fi)0 − (fi)∞ and
fi = tijfj where tij is constant of modulus 1. Define ωD locally as the logarithmic
differential of fi, i.e.

ωD|Ui
=

dfi
fi

.
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If X is compact then the 1-form ωD is defined unambiguously. In general, ωD is
well-defined up to the addition of an exact holomorphic differential.

LetD 6= 0 be a S1-flat divisor on a complex manifold and let ωD be a logarithimic
1-form associated to D as in §3.2. Since dωD = 0 this defines a codimension one
foliation denoted FD.

We record some facts about the foliation FD.

Lemma 3.2. Let D 6= 0 be a S1-flat divisor and let ωD and FD be as above. Then
the following assertions hold true.

(1) The support of D is FD-invariant.

(2) The periods of ωD are purely imaginary and so F = |e
∫
ωD | : X → [0,∞] is

a well-defined non-constant continuous function.
(3) The function F provides a real first integral of FD, i.e., F is constant on

leaves of FD.

3.3. Closure of leaves. We start this section with a simple observation.

Lemma 3.3. Let F1 and F2 be two codimension one foliations on a connected
complex manifold (not necessarily compact) X. Suppose that F1 and F2 have an
uncountable number of distinct leaves in common. Then F1 = F2.

Proof. Let Lλ be the set of common leaves of F1 and F2. By a simple counting
argument we know that there must be some point p ∈ X and an open set p ∈ U ⊂ X
such that the Lλ accumulate to some point in the interior of U .

The tangency locus of F1 and F2 in U contains the smallest analytic set con-
taining all the leaves Lλ, which is all of U . Thus F1 and F2 agree on a non-empty
open subset and so must be equal on all of X . �

Proposition 3.4 below is a version of [Per06, Proposition 5.2] in the non-compact
case. The argument is essentially the same, but for convenience we include it here.

Proposition 3.4. Let X be a complex manifold (not necessarily compact) and let
D be an S1-flat divisor on X. Let F be a codimension one foliation on X and
suppose F admits a leaf L such that

(1) the smallest complex analytic subset of X containing L is X itself; and
(2) the topological closure L of L is disjoint from the support of D, i.e. L ∩

supp(D) = ∅.

Then the foliations F and FD coincide.

Proof. Without loss of generality by [Per06, Lemma 5.1] we may assume that D =
D+ −D− where D+, D− ≥ 0 and D+ ∩D− = ∅.

The foliation FD is defined by a closed logarithmic 1-form ωD with a polar set
supported on D and by Lemma 3.2 admits a real first integral F : X → [0,∞] such
that F−1(0) = supp(D+) and F−1(∞) = supp(D−). Consider the restriction of F
to L. Since F is the modulus of a holomorphic function we have two cases: F |L is
either (i) constant or is (ii) open.

In case (i) F |L is constant, L is a leaf of both F and FD. So, the tangency locus
of F and FD must contain the smallest complex analytic subset of X containing
L. This, however, is X itself and hence F = FD.

Suppose that we are in case (ii), i.e., F |L is an open map. Since F |L is open and
L is bounded away from D we know that there exists positive real numbers m < M
such that F (L) is the interval (m,M) ⊂ R.
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Recall that F can be locally written as

F = |e
∫
ωD |

and that all the periods of ωD are purely imaginary complex numbers. Let f denote

the multivalued function e
∫
ωD and let π : X̃ → X be the cover associated to f .

Write L̃ = π−1(L) and let F̃ be the pulled back foliation. If f̃ is the lift of f we
have that

f̃ : X̃ → P1

is holomorphic.

We know that f̃(L̃) ⊂ C∗ is open and relatively compact. Thus ∂(f̃(L̃)) is

(uncountably) infinite. Pick p ∈ π−1(∂L) ∩ f̃−1(∂(f̃(L̃))) and let L̃p be the leaf of

F̃ through p. By the maximum principle we see that f̃ must be constant on L̃p,

and therefore π(L̃p) is a leaf of both F and FD.
Since the monodromy group associated to f is countably generated, this implies

that F and FD have uncountably many leaves in common. Lemma 3.3 implies that
F and FD are equal. �

3.4. Subfoliations defined by almost invariant divisors. The following Propo-
sition is the main technical point in the proof of Theorem 4.6/Theorem A.

Proposition 3.5. Let D1 and D2 be two S1-flat divisors on a compact complex

threefold X and let L
j
−→ X be an immersion of a smooth complex surface. Suppose

(1) the connected components of j−1(supp(Di)) are compact for i = 1, 2; and
(2) there exists some connected component E of j−1(supp(D1)) such that E ∩

j−1(supp(D2)) = ∅; and
(3) if we write D1 = D1,+ −D1,− where D1,+, D1,− ≥ 0 are effective divisors,

then D1,+ ∩D1,− ∩ L = ∅.

Let G be the restriction of FD1
to L. Then there exists a neighborhood of E, satu-

rated by G, and filled up with G-invariant compact curves.

Proof. Let E be as in assumption (2). According to assumption (1), E is a compact
G-invariant curve.

Let F be the real first integral of FD1
given by Lemma 3.2, which by restriction

to L gives a real first integral of G. Assumption (3) guarantees the existence of
an open neighborhood U of E in L which is saturated by G, i.e. any leaf of FD1

which meets U is in fact contained in U . Moreover, shrinking U even further we
may assume that U ∩ j−1(D2) = ∅.

For p ∈ U , let ℓp denote the leaf of G through p and let ℓp denote the topological
closure of ℓp in U .

If ℓp = ℓp (up to the addition of finitely many singular points of G) for all p

then we are done. Otherwise, there is some p such that the cardinality of ℓp − ℓp
is infinite. Since ℓp ∩ j−1(D2) = ∅ we may apply Proposition 3.4 to conclude that
G = H where H is the restriction of FD2

to L.
If ωi is the closed logarithmic 1-form defining FDi

we have that ω1 = Hω2 for
some meromorphic function H on L. Assumption (2) guarantees the non-constancy
of H . Taking d of both sides shows that dH ∧ ω2 = 0 and so G has a meromorphic
first integral. However, since Di,+∩Di,−∩L = ∅ we see that this first integral may
be taken to be holomorphic. The restriction of the level sets of H to U fills up the
neighbourhood with G-invariant compact curves. �
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4. Proof of Theorem A

4.1. General complete intersection subvarities. We recall a definition from
[AD14] which is based on [LPT, Section 2.3].

Definition 4.1. Let F be a holomorphic foliation on a normal variety X. Then
there exists a normal variety Y (unique up to birational equivalence), a dominant
rational map with connected fibres φ : X 99K Y and a holomorphic foliation G on
Y such that the following holds

(1) G is purely transcendental, i.e., through a general point of Y there is no
positive dimensional variety tangent to G, and

(2) F = φ∗G.

The foliation induced by φ is called the algebraic part of F and is denoted Falg.

For a projective manifold X , we say that a subvariety V ⊂ X is general complete
intersection if V is obtained by embedding X in a projective space by means of
a complete linear system defined by sufficiently high multiple of an ample line
bundle and intersecting the result with sufficiently general hyperplane sections. In
particular, if V is a general complete intersection in X of dimension at least three
then Lefschetz-type results [Gro05, Expos XII, Corollaire 3.6] guarantee that V and
X have isomorphic Picard groups.

Lemma 4.2. Let F be a codimension one foliation on a projective variety X and
let φ : X 99K Y be the rational map corresponding to Falg. Let V ⊂ X be a general
complete intersection variety and let F|V be the restricted foliation. Then (F|V )

alg

is induced by φ|D : D 99K φ(D) ⊂ Y .

Proof. Let W be the normalization of φ(D) and let G|W be the restricted folia-
tion. Since V is a general complete intersection variety we see that G|W is purely
transcendental.

Thus the map φ|D : V 99K W satisfies both conditions of Definition 4.1. �

4.2. Reduction of singularities. Recall from [Can04, page 910] that a foliation
F has dicritical singularities if there exists a sequence of blow-ups with F invariant
centers such that an irreducible component of the exceptional divisor is not invariant
by the resulting foliation.

If F is a codimension one foliation on a threefold X then [Can04] shows the
existence of a sequence of blowups in foliation invariant centres

π : (Y,G) → (X,F)

so that G does not have dicritical singularities. Such a resolution is not known in
higher dimensions.

If a foliation F does not have dicritical singularities then the group Inv(F) +
QInv(F) behaves rather well with respect to birational morphisms.

Lemma 4.3. Let F be a foliation on a projective manifold X of dimension three.
Let π : Y → X be a birational morphism from another projective manifold Y to X.
If F does not have dicritical singularities then every fibre of π is tangent to π∗F .
In particular, π∗(Inv(F) + QInv(F)) ⊂ Inv(π∗F) + QInv(π∗F).

Proof. To prove our first claim suppose for sake of contradiction that there exists
some P ∈ X and a component of π−1(P ) which is not tangent to the foliation.
Perhaps blowing up more we may assume that this component is a non-invariant
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divisor E. Observe that E being non-invariant implies P ∈ sing(F). Let π0 : Y0 →
X be the blow up at P and let Z0 be the centre of E on Y0. By [CM92, Théoremè 4]
exc(π0) is π

∗
0F invariant and so Z0 ⊂ sing(π∗

0F). Blowing up in Z0 and continuing
inductively we get a sequence of blow ups extracting divisors invariant under the
foliation. However, by [KM98, Lemma 2.45] this process will eventually extract E,
a contradiction.

To prove our second claim it suffices to show that irreducible components of the
exceptional divisor of π are either invariant or quasi-invariant. Let D be one such
component. If D is non-invariant the fibres of D → π(D) are tangent to (π∗F)|D,
in particular (π∗F)|D is algebraically integrable and so D is quasi-invariant. �

Another advantage of non-dicritical singularities can be seen in the following
proposition.

Proposition 4.4. Let X be a smooth threefold and let F be a codimension one
foliation with non-dicritical singularities. Let C ⊂ X be a projective curve tangent
to F . Then there exists a germ of a F-invariant surface S containing C.

Proof. This follows from [CC92, Theorem IV.1.1]. �

Proposition 4.4 allows to extend immersions j◦ : L◦ → X − sing(F) of leaves of
F|X−sing(F) to holomorphic maps j : L → X with the property that the pre-image
of quasi-invariant divisors have compact connect components.

Notice that the non-dicritical assumption is necessary in Proposition 4.4 as the
following example by [Jou79] shows.

Example 4.5. The dicritical foliation defined on C3 by

ω = (xmy − zm+1)dx+ (ymz − xm+1)dy + (zmx− ym+1)dz

has no separatrices at the origin. However, every line passing through the origin is
tangent to the foliation.

4.3. Strenghtening of Theorem A. At this point we have all the concepts neces-
sary to state the more precise version of Theorem A mentioned in the Introduction.

Theorem 4.6. Let F be a codimension one foliation on a projective manifold X.
If the singularities of the restriction of F to a three dimensional general complete
intersection subvariety of X are non-dicritical and

dimQInv(F)⊗ C ≥ dim
NS(X)⊗ C

c(Inv(F)⊗ C)
+ 2

then there exists a projective surface S, a dominant rational map p : X 99K S, and
a foliation G on S such that F = p∗G.

4.4. Reduction to dimension three.

Lemma 4.7. Let X be a projective manifold of dimension n ≥ 3 and let F be
a codimension one foliation on X. Let V ⊂ X be a three dimensional general
complete intersection and let F|V be the restricted foliation. Then

(1) F|V is algebraically integrable if and only if F is algebraically integrable and
(2) F|V is pulled back from a rational map to a surface if and only if F is pulled

back from a rational map to a surface.

Thus, without loss of generality it suffices to prove Theorem 4.6 and Theorem A in
the case where X is a threefold.
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Proof. The if direction of items (1) and (2) are clear.
To prove the other direction in both items, let φ : X 99K Y be the fibration

corresponding to Falg. On one hand we know that φ|V : V 99K Y corresponds to
(F|V )

alg and so by assumption dimφ(V ) = 1 (respectively = 2). But since V is
a general complete intersection of dimension 3 this forces dimY = 1 (respectively
= 2).

To see our final claim, notice that D is a F -(quasi-)invariant divisor if and only
if D|V is G-(quasi-)invariant. This gives us

dimQInv(FV )⊗ C = dimQInv(F)⊗ C .

Thus the assumptions of Theorem A are also satisfied by F|V . Hence, to prove
Theorem A, it suffices to do it in dimension three.

We will now verify the analogue claim for Theorem 4.6. As we are assuming
that V is a general complete intersection of dimension three, Lefschetz-type results
guarantee that NS(V ) = NS(X). Consequently,

dim
NS(V )⊗ C

c(Inv(FV )⊗ C)
= dim

NS(X)⊗ C

c(Inv(F)⊗ C)
.

Thus, assuming Theorem 4.6 for threefolds,

dimQInv(F)⊗ C ≥ dim
NS(X)⊗ C

c(Inv(F)⊗ C)
+ 2

implies that F|V is either algebraically integrable or pulled back from a surface, in
which case we conclude the same is true of F . �

4.5. From non-trivial deformations to pull-backs.

Lemma 4.8. Let X be a smooth projective threefold and let F be a codimension one
foliation on X. Let C be a curve (not necessarily irreducible) each component of
which is tangent to F . Suppose that F is smooth near C, i.e. C does not intersect
the singular set of F . Let L be the germ of leaf containing C. Suppose that C has
a non-trivial deformation in L. Then either

(1) L is algebraic (i.e., its Zariski closure is a surface); or
(2) there is a foliation in algebraic curves tangent to F .

Proof. Let W be the closed subscheme of the Hilbert scheme parametrizing sub-
varieties tangent to F and let W0 be the connected component of W containing
[C]. Let γ : ∆ → W0 be the map associated to the deformation and let B be the
Zariski closure of γ(∆). Let π : U → W0 be the universal family with evaluation
map e : U → X . Consider the restriction e : UB = U ×W0

B → X .
If e : UB → X is dominant then if S ⊂ B is a general hypersurface we have that

S parametrizes a two dimensional family of curves tangent to F and dominating
X which gives our desired subfoliation by curves.

Otherwise, e : UB → X dominates some divisor D. Let pt = γ(t) and let
Γ = γ(∆). One one hand, we have e(π−1(pt)) ⊂ D, on the other, if V is some small
neighborhood of C we see that L∩ V ⊂ e(π−1(Γ)). Hence, the Zariski closure of L
is contained in D. �
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4.6. Algebraicity criterion.

Lemma 4.9. Let L be a leaf of a foliation on a projective 3-fold X containing an
effective and nef divisor Σ with compact and connected support. If Σ2 > 0 then L
is algebraic.

Proof. Write Σ = Σ1 + Σ0 where Σ · C > 0 for all C in the support of Σ1 and
Σ · C = 0 for all C in the support of Σ0. We define

Σ(1) = (1 + ǫ)Σ1 +Σ0

for some sufficiently small choice of ǫ > 0 and we define Σ
(1)
1 and Σ

(1)
0 in a similar

manner. For ǫ > 0 small we see that suppΣ1 ⊂ suppΣ
(1)
1 but also, if C ⊂ suppΣ0

and C ∩ suppΣ1 6= ∅ then C ⊂ suppΣ
(1)
1 . Continuing inductively, since Σ is

connected, we eventually produce a divisor Σ(m) such that Σ
(m)
1 = Σ(m). For

N ∈ N sufficiently divisble
σ = NΣ(m)

is a Cartier divisor. By construction σ · C > 0 for all irreducible C ⊂ suppσ. In
particular, we see that Nσ/L is ample.

Thus by [Har68, Theorem 6.7] the Zariski closure of L in X is a projective
surface. �

4.7. Proof of Theorem 4.6. The assumption on the number of quasi-invariant
hypersurfaces allows the construction of two S1-flat divisors in Inv(F) + QInv(F),
sayD1 and D2, which have distinct quasi-invariant hypersurfaces in their respective
supports.

We may assume, by Lemma 4.7, that F is a non-dicritical foliation on a projective
3-fold.

Let D ∈ Inv(F) +QInv(F) and let π : Y → X be a birational morphism from a
projective manifold Y to X . As we are assuming that F has non-dicritical singular-
ities, then π∗D ∈ Inv(π∗F) + QInv(π∗F) according to Lemma 4.3. Therefore, we
may freely replaceX and F by any resolution without interfering with the existence
of divisors D1 and D2 as above.

We may write Di = Di,+ −Di,− where Di,+, Di,− ≥ 0 are effective divisors. Let
Bi be the scheme theoretic intersection of Di,+ and Di,− and let π : Y → X be the
blow up in B1 and B2 followed by a resolution of singularities. Let p ∈ Di,+ ∩Di,−

and let U be an open affine containing p such that Di,+ ∩ U = (fi,+ = 0) and
Di,− ∩ U = (fi,− = 0). This gives us a rational map F = [fi,+ : fi,−] : U 99K P1

such that F ∗0− F ∗∞ = Di ∩ U . Observe that π resolves the indeterminacy locus
of F and so if we write π∗Di = Ai −Bi where Ai, Bi ≥ 0 are effective then Ai and
Bi have disjoint support. Thus, replacing X , F and Di by Y , π∗F and π∗Di we
may assume that Di,+ ∩Di,− = ∅.

Let H1 be a quasi-invariant invariant hypersurface contained in suppD1 and let
j : L → X be a general leaf of F passing through a sufficiently general point of
H1. Let E be a connected component of the divisor j∗(D1) containing a connected
component of j∗H1.

As D1,+ and D1,− are disjoint effective divisors with the same Chern classes,
we have that E or −E is an effective divisor in L with zero self-intersection, i.e.
E2 = 0. Perhaps after replacing E by −E, we can assume that E is effective. Note
also that any curve C in the support of E satisfies E · C = 0. Hence E is effective
and nef.
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Consider now the restriction of D2 to L, i.e. j∗D2. Our choice of L (passing
through a general point of H1  supp(D2)) guarantees that the support of j∗D2

does not contain the support of E. If the support of j∗D2 intersects E, then we
can pick a curve F in supp(j∗D2) such that E · F > 0. For k ≫ 0, the divisor
(kE+F )2 > 0 is nef, effective and has positive self-intersection. Lemma 4.9 implies
L is algebraic. Since L is general, we deduce that F is algebraically integrable.

If instead the support of j∗D2 does not intersect the support of E then the
hypotheses of Proposition 3.5 are satisfied. So, if G is the restriction of the foliation
FD1

to L then G has a saturated neighborhood of E filled up with invariant compact
curves.

Since c1(j
∗Di) = 0 this implies that in fact E is a (multiple of a) fibre of f and

so (a multiple of) E must move in L. Since F is smooth near E we may apply
Lemma 4.8 to conclude. �

4.8. Proof of Theorem A. We may assume, by Lemma 4.7, that dimX = 3.
Moreover, it suffices to verify the conclusion on some resolution of X and F . So
passing to a resolution we may assume that F has simple singularities, in particular,
they are non-dicritical, cf. Section 4.2. We can apply Theorem 4.6 to conclude. �

4.9. Remarks on the assumptions of Theorem A. It is possible that adap-
tations analogous to the ones described in Section 2.5, might lead to a version of
our result for arbitrary complex manifolds. One obstruction to carry out our argu-
ment in general is the lack of reduction of singularities for foliation on manifolds of
dimension strictly greater than 3. In the projective case, the lack of such result is
bypassed by considering the restriction of the foliation to the general 3-dimensional
submanifold. Another difficulty comes from the lack of properness for irreducible
components of the spaces parametrizing the codimension two subvarieties invariant
by the foliation G, used in the proof Lemma 4.8.

5. Quasi-invariant divisors in positive characteristic

5.1. Basic concepts. We recall some basic facts and definitions about foliations
in characteristic p.

Let X be a smooth variety over an algebraically closed field of characteristic p.
For us, a foliation F on X is, as in characteristic zero, given by a saturated subsheaf
TF of TX which is closed under the Lie bracket.

Let v ∈ TX(U) be some local section of the tangent sheaf. An elementary
computation shows that the p-th power of v is still a vector field on U . Taking p-th
powers of vector fields gives an OX -linear map

F : Frob∗ TF → TX/TF ,

where Frob : X → X is the (absolute) Frobenius morphism.

Definition 5.1. Let X be a normal variety over a field of characteristic p and let
F be a foliation on X. We say that F is p-closed provided F : Frob∗ TF → TX/TF

is the zero morphism.

It is easy to see that p-closedness is a birational invariant and that if F is
algebraically integrable then it is p-closed.

Unlike in characteristic zero, the Frobenius Theorem does not hold in positive
characteristic. The structure of the foliation depends on whether it is p-closed or
not. If a foliation is not p-closed then for a sufficiently general closed point x ∈ X
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there is no (formal) F invariant subvariety through x. If instead the foliation is
p-closed then through any closed point x ∈ X there exists infinitely many algebraic
F invariant subvarieties through x. For more details and references on the subject
we redirect the reader to [MP97, Lecture III] and [LPT, Section 7].

The dichotomy on the behaviour of F describe in the previous paragraph suggests
the following adaptation of the notion of quasi-invariance to positive characteristic.

Definition 5.2. Let X be a normal variety over an algebraically closed field of
characteristic p > 0 and let F be a codimension one foliation on X. We say that a
hypersurface H is quasi-invariant if it is not invariant and the foliation restricted
to H is p-closed.

5.2. Proof of Theorem B. Denote by D1, D2, ... the collection of quasi-invariant
hypersurfaces. Suppose that F is not p-closed, then the map Frob∗ TF → TX/TF

given by v 7→ vp is generically surjective, and so the kernel K is a rank n − 2
reflexive subsheaf of Frob∗ F where dim(X) = n. We claim that K = Frob∗ TG for
a p-closed foliation G on X .

By [PT13, Proposition 6.1] there exists a saturated subsheaf TG ⊂ TX such that
K = Frob∗ TG .

We first prove that G is a p-closed distribution. It suffices check this locally in a
Zariski neighborhood of a sufficiently general point Q ∈ X . In particular, we can
assume that each Di is cut out by a single equation fi = 0 and that F is defined
by a regular 1-form ω.

After passing to a smaller Zariski neighborhood of Q according to [CLNL+07,
Lemma 6.1] we may find regular vector fields vi,1, ..., vi,n−1 such that [vi,j , vi,k] = 0
and vi,1, ..., vi,n−1 generate TF where n = dim(X). Furthermore, we may choose
vi,1, ..., vi,n−2 so that vi,1, ..., vi,n−2 leave Di invariant and so are tangent to F|Di

,
the restriction of the foliation F to Di. We have then for 1 ≤ j ≤ n− 2 that vpi,j is

still tangent to F|Di
and so ω(vpi,j) ∈ (fi). We have two cases

(1) ω(vpi,n−1) ∈ (fi) and

(2) ω(vpi,n−1) /∈ (fi).

In case (1) we see that the map Frob∗ TF → TX/TF vanishes along Di, and so
if case (1) holds for infinitely many Di we have that TF is p-closed.

Thus, for all but finitely many i we are in case (2). Suppose that G is generated
by vector fields w1, ..., wn−2. Then for all i we may write

wk =

n−1∑

j=1

aki,jvi,j

with aki,j ∈ OX,Q.
Observe that

wp
k =

∑
(aki,j)

pvpi,j mod TF .

Since ω(wp
k) = 0 for all k, ω(vpi,j) ∈ (fi) for 1 ≤ j ≤ n − 2 and ω(vpi,n−1) /∈ (fi),

applying ω to both sides gives us that (aki,n−1)
p ∈ (fi), hence aki,n−1 ∈ (fi). But

this implies that for all k, wk (and hence wp
k) leaves Di invariant, and so G leaves

Di invariant. Since wp
k is tangent to F and leaves Di invariant, we see that it is

tangent to G along Di. Thus the tangency locus of G and wp
k consists of infinitely

many divisors and so G is p-closed.



14 PEREIRA AND SPICER

We now claim that G is closed under Lie bracket. Since G leaves Di invariant
for all i we see that [wj , wk] leaves Di invariant for all i. Thus [wj , wk] is tangent
to F and leaves Di invariant, and so is tangent to G along Di. Thus the tangency
locus of G and [wj , wk] consists of infinitely many divisors and so G is closed under
Lie bracket.

Since G is a p-closed foliation there exists a purely inseparable morphism ρ :
X → Y of degree pn−2 such that that ker dρ = TG .

We therefore have an exact sequence

ρ∗Ω1
Y → Ω1

X → Ω1
G .

Let p : Y 99K S be a general choice of a dominant rational map to a smooth surface
and let U ⊂ Y and V ⊂ S be two open sets such that p|U : U → V is a morphism.

Since p is general we may assume that ρ∗p∗Ω1
V → ρ∗Ω1

U is generically surjective.

Consider the dominant rational map p ◦ ρ : X 99K S. Let X denote the closure
of the graph of p ◦ ρ : ρ−1(U) → S in X × S. Then X → X is birational (although
X is no longer smooth) and p extends to a proper morphism p : X → S. Let F
and G denote the transforms of F and G respectively.

Consider the Stein factorization of p

X

T S.

p
φ

a

Let T̃ → T be a resolution of singularities (which exists since T is a surface) and

let X̃ be the normalization of the main component of X ×T T̃ . Replacing X by X̃

and T by T̃ we may freely assume that T is smooth.
Consider the composition of sheaf morphisms

Φ : φ∗Ω1
T → Ω1

X
→ Ω1

F
.

Since im(φ∗Ω1
T → Ω1

X
) is contained in the kernel of Ω1

X
→ Ω1

G
we see that ker(Φ)

is a rank 1 reflexive subsheaf of φ∗Ω1
T . Pushing forward we have

0 → φ∗ ker(Φ) → φ∗φ
∗Ω1

T = Ω1
T

where the latter equality holds since Ω1
T is locally free and φ∗OX = OT . The

sheaf φ∗ ker(Φ) defines a foliation by curves L on T such that φ∗L = F and we are
done. �

6. Cone of curves

6.1. Setup. We will now consider consider codimension one foliations on singular
threefolds. As customary in birational geometry, we will assume that the threefold
is normal and that the canonical sheaf of the foliation is Q-Cartier.

Given any birational morphism π : X̃ → X , from a normal 3-fold X̃ we get an

induced foliation F̃ on X̃. Thus, we can write

KF̃ = π∗KF +
∑

a(Ei,F)Ei,

We say that F has canonical singularities if a(Ei,F) ≥ 0, for every exceptional divi-

sor Ei of an arbitrary birational morphism π : X̃ → X from any normal projective

variety X̃ to X .
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6.2. Cone theorem for codimension one foliations. The result below is proved
in [Spi, Theorem 1.1] for foliated pairs. To avoid an extra layer of definitions, we will
stick to “classical” foliated varieties. The interested reader will have no difficulties
to extend Theorem C for foliated pairs.

Theorem 6.1. Let X be a projective Q-factorial and klt projective variety of di-
mension three and F a codimension one foliation with non-dicritical foliation sin-
gularities. Suppose F has canonical singularities. Then

NE(X) = NE(X)KF≥0 +
∑

R+[Li]

where Li are curves. Furthermore, either Li is contained in sing(X), or Li may
be taken to be a rational curve with KF · Li ≥ −6. In particular, the KF -negative
extremal rays are locally discrete in the KF < 0 portion of the cone.

6.3. Classification of extremal rays. The extremal rays detected by Theorem
6.1 are of three different types according to the dimension of

loc(R) = {x ∈ X : x ∈ C such that [C] ∈ R} ,

the locus of points belonging to a curve C with class spanning the extremal ray R.
In the terminology of [Spi, Definition 23], a KF -negative extremal ray can be of
one of the following types.

(1) Fiber type when dim loc(R) = 3. In this case, the foliation is the pull-back
of a foliation on a surface under a rational map with rational fibers.

(2) Divisorial type when dim loc(R) = 2. The irreducible components of the
support of the divisor spanned by the curves with class generating the
extremal ray R are invariant or quasi-invariant by F .

(3) Flipping type when dim loc(R) = 1. In this case, we will say that the curves
with class generating R are flipping curves. Each extremal ray of flipping
type is represented by a finite number of curves.

Lemma 6.2. Set up as in Theorem 6.1. Let C be an irreducible curve such that
[C] ∈ NE(X) spans an extremal ray of flipping type. Then either C ∩ sing(X) 6= ∅
or C ⊂ sing(F)

Proof. Suppose C∩sing(X) = ∅. ShrinkingX to a neighborhood of C by [Can04] we

may perform a series of blow ups in foliation invariant centres π : (X̃, F̃) → (X,F)

so that F̃ has simple singularities. However, since we only blow up in invariant
centres π must be crepant, i.e., KF̃ = π∗KF . In particular the strict transform of
C is still KF̃ -negative in which case we may apply [Spi, Corollary 11.2] to conclude
that C ⊂ sing(F). �

We will also need the following easy observations.

Lemma 6.3. Set up as in Theorem 6.1. Suppose there are two KF -negative ex-
tremal rays R1 and R2 of fibre type. Then F is algebraically integrable and the
closure of every leaf of F is a rational surface.

Proof. Let fi : X → Bi be the contractions associated to fi. If either B1 or B2 is
a curve, then since fi only contracts curves tangent to the foliation, we see that F
is algebraically integrable. So assume that Bi is a surface.

There exists a foliation Gi on Bi such that F = f∗
i Gi. Let p ∈ B2 be a general

point and let C = f−1
2 (p). C is a rational curve tangent to F and so f1(C) is a
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rational curve tangent to G1. Since p is general, we see through a general point of
B1 there is a G1-invariant rational curve which implies that G1, and hence F , is
algebraically integrable. We see that the closure of a general leaf is a P1-fibration
over P1, and so the closure of a general leaf (hence any leaf) is rational. �

Lemma 6.4. Let M be a smooth projective surface. Suppose that M contains
infinitely many (−1)-curves. Then M is rational.

Proof. If D is a psef divisor on M then by considering the Zariski decomposition
D = P + Z where P is nef and Z ≥ 0 we see that D · C < 0 for only finitely many
curves C. Thus KM is not psef.

We may run a KM -MMP which terminates in either P2 or a P1-bundle over a
curve C. We are done if we can show that we must have C ∼= P1.

Suppose for sake of contradiction that g(C) ≥ 1. Then the image of the Ci under
the MMP must be disjoint rational curves, which implies that there are infinitely
many disjoint (−1)-curves on M , a contradiction of the Hodge index theorem. Thus
M is rational and we are done. �

6.4. Proof of Theorem C. By Lemma 6.3 if there is more than one extremal ray
of fibre type then F is algebraically integrable and there is nothing else to prove.
So we may assume there are infinitely many extremal rays either of divisorial type
or infinitely many extremal rays of flipping type.

Let π : X̃ → X be a resolution of singlarities of X . Suppose there are infinitely
many extremal rays Ri of divisorial type. Let Di = loc(Ri). Suppose for sake of
contradiction that infinitely many Di are invariant. Without loss of generality we
may assume that Di is disjoint from sing(X) for all i. We apply Theorem 2.3 to

produce a map f : X̃ → C such that the π∗Di are contained in fibres of f . This
implies that all but finitely many Di are numerically equivalent, and hence {Ri} is
in fact a finite set, a contradiction.

Thus, infinitely many Di are quasi-invariant. Let Ci be a curve spanning Ri,
again, without loss of generality we may assume that Ci is disjoint for sing(X) for
all i. By Theorem 4.6 either F is algebraically integrable or there is a map to a

surface f : X̃ → S contracting π−1
∗ (Ci) for all i. Notice that in the latter case

since the π−1
∗ (Ci) are all contained in the fibres of f we see that all but finitely

many Ci must be in the same numerical equivalence class, a contradiction, thus F
must be algebraically integrable. If M is the closure of a general leaf, we see that
M ∩Di ⊂ M is a (−1)-curve and so, by Lemma 6.4, M is rational.

It remains to treat the case where there are infinitely many extremal rays of
flipping type. According to Lemma 6.2, each flipping curve must intersect sing(X)
or be contained in sing(F). Since X has terminal singularities sing(X) is a finite
collection of points. As the singular set sing(F) consists of finitely many compo-
nents, we may assume that we have infinitely many Ci passing through a single
point p ∈ sing(X).

According to [Spi, Corollary 6.4], there exists a F -invariant analytic subvariety
L containing p which contains the Ci. To prove Theorem C it suffices to verify that
L is algebraic and rational.

Let µ : M → L be the minimal resolution of L and notice that we can write
µ∗KF = KM + ∆ where ∆ ≥ 0. Let C′

i be the strict transform of Ci under µ.
Observe that supp(∆) ⊂ exc(µ)∪µ−1(sing(F)) and so throwing away finitely many
C′

i we may assume that ∆ · C′
i ≥ 0 for all i.
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Since each Ci is a flipping curve we know that (C′
i)

2 < 0 and (KM +∆) ·C′
i < 0.

By adjunction we know that

(KM +∆+ C′
i) · C

′
i ≥ −2

in particular
(C′

i)
2 = −1

for all i.
Assume that µ is not an isomorphism at p (the case where µ is an isomorphism

is easier and can be handled in a similar manner). There exists some irreducible
componentE of µ−1(p) such that C′

i∩E 6= ∅ for infinitely many i. LetN = −2E2+1

and let Σ = 2E+
∑N

i=1 C
′
i. We claim that NΣ/M is ample. Indeed for all 1 ≤ j ≤ N

Σ · C′
j = 2E · C′

j +

N∑

i=1

C′
i · C

′
j ≥ 2E · C′

j + (C′
j)

2 ≥ 2 + (−1) ≥ 1

and

Σ · E = 2E2 +
N∑

i=1

C′
i ·E ≥ 2E2 +N ≥ 1

which proves our claim.

If M̂ is the formal completion of M along Σ then [Har68, Theorem 6.7] implies

that the field C(M̂) of meromorphic functions on M̂ is of transcendence degree

2 over C. Since C(M̂) is a field extension of C(L
Zar

) where L
Zar

is the Zariski

closure of L we see that L
Zar

is an algebraic surface. It remains to show that L
Zar

is rational. Indeed, as above we see that the minimal resolution of L
Zar

contains
infinitely many (−1)-curves in which case we apply Lemma 6.4 to conclude. �
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