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Carter constant is a non-trivial conserved quantity of motion of a particle moving in sta-

tionary axisymmetric spacetime. In the version of the theorem originally given by Carter, due

to the presence of two Killing vectors, the system effectively has two degrees of freedom. We

propose an extension to the first version of Carter’s theorem to a system having three degrees

of freedom to find two functionally independent Carter-like integrals of motion. We further

generalize the theorem to a dynamical system with N degrees of freedom. We further study

the implications of Carter Constant to Superintegrability and present a different approach to

probe a Superintegrable system. Our formalism gives another viewpoint to a Superintegrable

system using the simple observation of separable Hamiltonian according to Carter’s criteria.

We then give some examples by constructing some 2-Dimensional superintegrable systems

based on this idea and also show that all 3-D simple classical Superintegrable potentials are

also Carter separable.

I. INTRODUCTION

Carter constant is a non-trivial conserved quantity of motion in stationary axisymmetric spacetime

such as the Kerr solution rendering the equations of motion integrable [1–3]. It is a manifestation of

one of the hidden symmetries of the spacetime. In a general axisymmetric spacetime, there might be no

independent fourth constant of motion. It has been shown by Carter that if the corresponding Klein-

Gordon equation is separable, then the existence of a fourth constant of motion is ensured [3]. The

fourth constant of motion has been extremely useful in studying the geodesics of motion of a particle

in Kerr spacetime. The Carter’s constant along with energy, axial angular momentum, and particle

rest mass provide the four conserved quantities necessary to integrate all orbital equations. The actual

physical meaning of Carter constant which appears as a part of the separability conditions in Hamilton-

Jacobi formalism, is still not clearly known. One approach is to look for Newtonian systems that would
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give rise to non-trivial Carter-like constants. Refs. [4, 5] have given Carter-like constants in Newtonian

dynamics. For example, angular momentum of a system plays an important role in understanding

the physics of a rotating system. Because of the interrelation between the components of angular

momentum, only two independent scalar quantities can be constructed out of it. Conventionally, they

are the azimuthal component of the angular momentum Lz and the square of the angular momentum

L2. In some well studied scenarios like problems having spherical symmetry, the Carter constant

reduces to L2 [6, 7]. However in general L2 need not be conserved, for example in static or stationary

axisymmetric spacetimes, Lz is conserved but L2 is not. In such situations, Carter constant may be

used to define L2.

Carter constant was first given for systems in 4-D stationary and axially symmetric spacetime [1].

It has been shown by Walker and Penrose that for vacuum, Petrov type D solutions admit Carter-

like constants [8]. In addition , Ramachandra has shown that Petrov type D solutions allow a Carter

constant even if they are non-vacuum and asymptotically non-flat [9]. One specific case is the Kerr

metric and the constant is applicable only to a general system having two degrees of freedom [3, 10].

Another approach for finding Carter constant is through Killing tensors [8], which is a rather brute-force

and physically non-intuitive method. Though computationally hard, in principle it is straightforward

to find such Killing tensors in higher dimensional spacetimes as well.

In this short paper, we show that Carter-like constants can also exist in systems with more degrees

of freedom. Systems with three degrees of freedom can exist in 4-D or higher dimensional spaces.

These emerging constants of motion in higher dimensional systems might be useful in revealing several

hidden properties of such systems. Closely following the approach given by Carter [3], our approach

depends on the form and separability of the Hamiltonian and hence can be applied to any Hamiltonian

system with N -degrees of freedom. Furthermore, the analysis of these constants may be done in

general relativistic framework in a variety of different metrics corresponding to different spacetimes or

in Newtonian mechanics for a better understanding of Carter constant in general.

Our primary idea of this work is the following theorem given by Carter where the constant of motion

can be found out by an inspection of the Hamiltonian [3].

For a Hamiltonian having the form:

H =
1

2
(
Hr +Hµ

Ur + Uµ
) , (1)

where Ur, Uµ are single variable functions of coordinates r and µ respectively, where Hr is independent

of pµ and of all other coordinate functions other than r and Hµ is independent of pr and of all other

coordinate functions other than pµ then,

κ =
UrHµ − UµHr

Ur + Uµ
, (2)



3

is a constant of motion. In this article, we would generalize the theorem by proving that a similar kind

of theorem is valid for a system with N -degrees of freedom as well.

One of the interesting consequences of integrability of physical systems is the possibility of the

existence of Superintegrable systems in nature where roughly by Superintegrability, one implies a

syatem having more number of independent integrals of motion than the degrees of freedom available

for the system. Some familiar examples, such as the Kepler problem and the harmonic oscillator, have

been known since the time of Laplace. Superintegrable systems are extremely important for developing

insight into physical principles, for they can be solved algebraically as well as analytically. Such systems

are special since they allow maximum possible symmetry which allows for their complete solvability.

The modern theory of Superintegrability was inaugurated in 1965 [11–13] and was developed further

throughout the decades [14–19]. For a thorough review of Superintegrability, we refer to [20]. In this

present work, we will investigate Superintegrability from a Carter-like separability approach of the

Hamiltonian.

This paper is organized as follows. In Section II, we generalize Carter’s theorem to systems having

more degrees of freedom and show that we can obtain non-trivial constants in higher dimensional

systems as well. We will prove this by means of the Principle of Mathematical induction. In Section

III, we explore the idea of Superintegrability using a ‘Carter-like’ idea and show that Superintegrability

can be explored via Carter approach. Finally, in Section IV, we summarize with a brief concluding

remark.

II. GENERALIZATION OF CARTER’S THEOREM

In this section, we first extend the Carter’s theorem for a system with 3-degrees of freedom, which

can be easily generalized to the case of n-degrees of freedom.

Theorem 1 If a time independent Hamiltonian can be written in the form :

H =
1

2
(
H1 +H2 +H3

U1 + U2 + U3
) , (3)

where U1, U2 and U3 are three functions of only x1, x2 and x3 respectively and H1 is independent of

p2, p3 and of all other coordinate functions other than x1, and similarly for H2 and H3, then there are

two non-trivial conserved quantities, which are given by:

κ1 = 2U1H −H1 =
U1H2 + U1H3 − U2H1 − U3H1

U1 + U2 + U3
, (4)

κ2 = 2U2H −H2 =
U2H3 + U2H1 − U1H2 − U3H2

U1 + U2 + U3
, (5)

proof: We start with the commutation relation:

[H1,H] =
1

2

[

H1,
H1 +H2 +H3

U1 + U2 + U3

]

=
1

2
(H1 +H2 +H3)

[

H1,
1

U1 + U2 + U3

]

, (6)
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This is because of the constraints in the form of H and H1 as stated in the theorem, we further have

the relation,

[U1,H] =
1

2(U1 + U2 + U3)
[U1,H1] , (7)

and,

[H1,
1

U1 + U2 + U3
] =

1

(U1 + U2 + U3)2
[U1,H1] . (8)

Combining the above equations, we get:

[H1,H] = 2H[U1,H], (9)

With the above result, now we show that,

κ1 = 2U1H −H1 , (10)

commutes with the Hamiltonian

[H,κ1] = [2U1H −H1,H] = 2[U1H,H]− [H1,H]

= 2H[U1,H]− [H1,H] = [H1,H]− [H1,H] = 0, (11)

Here, we observe that κ1 commutes with H and hence it is a constant of motion. Expanding κ1, we get

κ1 = 2U1H −H1 =
U1H2 + U1H3 − U2H1 − U3H1

U1 + U2 + U3
. (12)

Similarly, we can show that κ2 is also a constant of motion. It can be checked that κ1, κ2 and H

are functionally independent. Hence, they will contribute to three separate integrals of motion. For a

Hamiltonian, which has the separable form that is given in expression (3), we see that we can have two

more constants of motion κ2 and κ3 corresponding to the canonical coordinates x2 and x3 giving two

integrals of motion. But the third integral κ3 is not independent, because the sum of κ1, κ2 and κ3

is zero which is just a constant number. Hence, we obtain only two independent conserved quantities

along with the Hamiltonian using this formalism. Next we further generalize this theorem for a system

with n degrees of freedom. We extend the theorem to n-dimensions using the Principle of Mathematical

Induction, we will get non-trivial constants of motion.

Theorem 2 If a given Hamiltonian has the form :

H =
1

2
(
H1 +H2 +H3 + ..... +Hn

U1 + U2 + U3 + .....+ Un
) , (13)

where U1, U2, , · · · , Un are n functions of single canonical variable only in x1, x2, · · · , xn respectively

and H1 is independent of canonical momentum p2, p3, · · · , pn and of all other coordinate functions
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other than x1 and similar conditions also hold for functions H2, H3, · · · , Hn, then there are n-1

independent contants of motions, which are given by:

κ1 =
U1H2 + U1H3 + ....+ U1Hn − U2H1 − U3H1 − ....− UnH1

U1 + U2 + U3 + ....+ Un
,

κ2 =
U2H1 + U2H3 + ....+ U2Hn − U1H2 − U3H2 − ....− UnH2

U1 + U2 + U3 + ....+ Un
,

...

κn−1 =
Un−1H1 + Un−1H3 + ....+ Un−1Hn − U1Hn−1 − U3Hn−1 − ....− UnHn−1

U1 + U2 + U3 + .... + Un
. (14)

Expression (14), along with H gives a set of n conserved quantities. From the above theorems, we can

infer that even if we are able to separate one coordinate out of all the coordinates, we can obtain a

conserved quantity. We state it in a formal manner below:

Theorem 3 If the Hamiltonian has the form :

H =
1

2
(
H1 +H23

U1 + U23
) (15)

where, U1 is a function of canonical variable x1 only. In addition, U23 is a function of the canonical

coordinates x2 and x3 only. The function H1 is independent of p2, p3 and of all coordinates except x1.

While, H23 is independent of p1 and of all other coordinate functions other than x2 and x3. If the above

conditions are satisfied, the conserved quantity is given by:

κ =
U1H23 − U23H1

U1 + U23
(16)

For a given coordinate system and Hamiltonian these theorems are useful for finding out non-trivial

conserved quantities. It is clear from the above theorems that non-trivial conserved quantities might

arise if the Hamiltonian satisfies certain symmetric structures. It should be noted that if H is replaced

by any constant of motion, i.e. a quantity that commutes with H, a similar proof holds. We will explore

this idea to observe that Superintegrability can be explained using this simple Carter-like approach. In

the next few sections, we will see the implications of Carter constant to the ideas of superintegrability

and also construct some examples of Carter’s constant in specific Hamiltonians.

III. APPLICATION TO SUPERINTEGRABLE HAMILTONIANS

We can use Carter Constant approach to identify all the conserved quantities in several Superinte-

grable systems as it is based on the observation of separability of the Hamiltonan. An n-dimensional

system is Superintegrable if there exists more than n functionally independent globally defined and

single valued integrals. We will explore Superintegrability in 2- and 3- dimensional systems by con-

structing explicit examples of Superintegrable systems using Carter criteria. For Hamiltonian systems
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with three degrees of freedom, Evans [18] carried out a detailed investigation and tabulated the con-

served quantities in various possible separable coordinate systems. In order that our examples don’t

overlap with Evans we will construct superintegrable examples in 2-D systems using Carter separability

criteria. Because Evans had already classified all 3-D superintegrable systems thoroughly, at the end

we would show that all 3-D classical superintegrable systems are also Carter separable. That would be

to provide an instructive aspect to our approach. Since we are considering Hamiltonians which does

not explicitly depend on time, the Hamiltonian or the energy (E) itself is one of the integrals of mo-

tion. We would construct three different Carter separable and Superintegrable systems by constructing

Hamiltonians that are separable in more than one coordinate systems. These three examples would be

for illustrative purposes.

Example 1

We start with the following Hamiltonian in 2-D Cartesian coordinate system:

H =
1

2
(p2x + p2y) +

1

(x2 + y2)1/2

(

α+
β

(x+
√

x2 + y2)
+

γ

(
√

x2 + y2 − x)

)

. (17)

We will show that this system is superintegrable by bringing it to Carter separable form in polar

and parabolic cylindrical coordinates. In polar coordinates, x = r cosθ, y = r sinθ, and Hamiltoninan

(17) becomes:

H =
1

2
(p2r +

p2θ
r2

) +
1

r

(

α+
β

(r cosθ + r)
+

γ

(r − r cosθ)

)

. (18)

simplified to:

H =
1

r2

(

(r pr)
2

2
+

p2θ
2

+ α r +
β

( cosθ + 1)
+

γ

(1− cosθ)

)

. (19)

In this form, it is clear that r and θ components separate, and a constant of motion is K1 =

p2
θ

2 + β
( cosθ+1) +

γ
(1− cosθ) . A second constant of motion is trivially the Hamiltonian, K2 = H. For the

third integral of motion, we look at cylindrical parabolic coordinates. Parabolic cylindrical coordinates

are defined by ξ =
√

x2 + y2 + x and η =
√

x2 + y2 − x, and the Hamiltonian becomes:

H =
ξ2 p2ξ + η2 p2η + α+ β

ξ + γ
η

η + ξ
. (20)

In this form, it is easy to see that the Hamiltonian is Carter separable, with Hξ = ξ2 p2ξ +
β
ξ , Hη =

η2 p2η + γ
η , Uξ = ξ and Uη = η, and so we have a superintegrable system with the extra integral of

motion being:

K3 =
ξ(η2p2η +

γ
η )− η(ξ2p2ξ +

β
ξ )

η + ξ
. (21)

Hence, this system is superintegrable as can be seen from Carter separability.
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Example 2 We start with the following Hamiltonian in 2-D Cartesian coordinate system:

H =
1

2
(p2x + p2y) +

1
√

x2 + y2

(

α+ β

√

x+
√

x2 + y2 + γ

√

√

x2 + y2 − x

)

. (22)

In rotational parabolic coordinates, x = στ and y = 1
2(τ

2 − σ2) and x2 + y2 = 1
4 (σ

2 + τ2)2, and

the momenta squared is found out from the Laplacian to be: p2x + p2y = 1
σ2+τ2

[p2σ + p2τ ]. Expanding the

Hamiltonian (22), in this coordinate system gives:

H =
1

σ2 + τ2

[

p2σ + p2τ + α+ β(σ + τ) + γ(σ − τ)
]

=
1

σ2 + τ2

[

p2σ + p2τ + α+ (β + γ)σ + (β − γ)τ
]

.

(23)

In this form, clearly this Hamiltonian is Carter separable in rotational parabolic coordinates, with the

corresponding Carter constant given by:

K1 =
1

σ2 + τ2

[

τ2[p2σ + (β + γ)σ]− σ2[p2τ + (β − γ)τ ]
]

. (24)

The second constant of motion is the Hamiltonian itself (K2 = H), and the third extra integral, we see

that we can separate this system in parabolic cylindrical coordinates, where the Hamiltonian is:

H =
1

η + ξ

[

η2p2η + ξ2p2ξ + α+ β
√

ξ + γ
√
η
]

. (25)

Clearly, giving Carter separability again and another constant of motion K3 = 1
η+ξ [ξ(η

2p2η + γ
√
η) −

η(ξ2p2ξ + β
√
ξ)], so, with K1,K2 and K3, this 2-D system becomes Superintegrable.

Example 3 We start with the following Hamiltonian in 2-D Rotational parabolic system:

H =
1

σ2 + τ2
(p2σ + p2τ ) + τ2 − σ2 . (26)

which can be also written as:

H =
1

σ2 + τ2
(p2σ + p2τ + τ4 − σ4) . (27)

having the form Hσ+Hτ

Uσ+Uτ
, with Hσ = p2σ − σ4, Hτ = p2τ + τ4, Uσ = σ2 and Uτ = τ2, giving the conserved

quantity, K1 = σ2(p2τ+τ4)−τ2(p2σ−σ4)
σ2+τ2

, in Cartesian coordinate system, this Hamiltonian takes on the

simple form H = p2x + p2y + 2y, thereby giving a 2nd integral K2 = px, and along with K3 = H, we see

that this Hamiltonian admits 3 integrals becoming Superintegrable.

The linear independence of these conserved quantities is an easy check. Many such examples of

Superintegrable systems can be constructed in 2-dimensions by following the general idea of constructing

a Carter separable Hamiltonian in two different coordinate systems, i.e. we look for a Hamiltonian of

the form H = 1
2

(

Hr+Hθ

Ur+Uθ

)

in some coordinate system (r, θ) and then we also demand that this same

Hamiltonian has the form H = 1
2

(

Hη+Hξ

Uξ+Uη

)

in some different coordinate system (η, ξ), then along with

the conserved quantity H, we will also have K1 =
UrHθ−UθHr

Ur+Uθ
and K2 =

UηHξ−UξHη

Uη+Uξ
as other conserved
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quantities hence, if we are then able to prove the linear independence of these constants, we will be able

to claim that the corresponding system is Superintegrable. This general procedure can then be carried

over to systems with higher degrees of freedom as well in accordance with the theorems presented in

Section 2. Of course, it must be kept in mind that this idea may not be able to reproduce all possible

Superintegrable conserved quantities for all possible system howsoever complicated it might be. But,

it is clear that this provides an alternative approach to construct and explore at simple and non-trivial

Superintegrable systems.

For 3-dimensional systems, Evans paper [18] gives an in-depth analysis of all possible Superintegrable

systems. Apart from the 2-D examples that we constructed above, we will take one sample potential

from Evan’s paper and show that all the potentials listed there are also Carter separable.

H = p2x + p2y + p2z −
k

r
+

k1

x2
+

k2

y2
. (28)

We look at the Hamiltonian in spherical polar coordinates, which takes the form:

H =
1

2
(p2r +

p2θ
r2

+
p2φ

r2 sin2 θ
)−

k

r
+

k1

r2 sin2 θ cos2 φ
+

k2

r2 sin2 θ sin2 φ
. (29)

Here, we can separate the r coordinate from H, then apply theorem 3 to obtain the following constant:

I1 =
1

2
(p2θ +

p2φ

sin2 θ
) +

k1

sin2 θ cos2 φ
+

k2

sin2 θ sin2 φ
. (30)

It can be seen that I1 can be further separated by taking out sin2 θ as a common factor. Since I1

commutes with H, we can further apply the theorem 3 on I1, resulting in a second integral of motion

that reads:

I2 =
1

2
p2φ +

k1

cos2 φ
+

k2

sin2 φ
. (31)

Along with I1, I2 and total energy (E), the system has three conserved quantities and is integrable.

For system to be superintegrable, we need at least one more independent conserved quantity. Now we

use another coordinate system in which the system is separable, i.e. rotational parabolic coordinate

system, (ξ, η, φ) where the coordinate transformation are given by:

x = ξ η cosφ, y = ξ η cosφ, z =
1

2
(η2 − ξ2) , (32)

where ξ ≥ 0, η < ∞, and 0 ≤ φ ≤ 2π. Under this coordinate transformation the Hamiltonian can be

written as:

H =
1

2(η2 + ξ2)

[

p2ξ + p2η +
(η2 + ξ2)p2φ

ξ2η2
− 4k + 2k1

(η2 + ξ2)

ξ2η2 cos2 φ
+ 2k2

(η2 + ξ2)

ξ2η2 sin2 φ

]

. (33)

We now observe that the last two terms and the pφ in the above expression is nothing but, ( 1
η2

+ 1
ξ2
)I2,

so the form of the Hamiltonian can be further simplified to:

H =
1

2(η2 + ξ2)

[

p2ξ + p2η − 4k + (
1

η2
+

1

ξ2
)I2

]

. (34)
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This equation is clearly separable and we can apply theorem 3 to obtain another conserved quantity

with Uξ = ξ2 and Uη = η2,

I4 =
η2(p2ξ +

I2
ξ2 − 2k)− ξ2(p2η +

I2
η2 − 2k)

η2 + ξ2
. (35)

Substitutig I2 back, we obtain:

I4 =
η2p2ξ − ξ2p2η

η2 + ξ2
+ (η2 − ξ2)(

k1

ξη cos2 φ
+

k2

ξη sin2 φ
−

2k

η2 + ξ2
) . (36)

With I4 obtained in this way gives rise to a non-trivial and functionally independent conserved quantity

of the Hamiltonian thereby giving us four possible conserved quantities of motion, thus making the

system Superintegrable. On doing this exercise for all potentials listed in [18], we will be able to see

that all these 3-D superintegrable potentials are also Carter separable in more than one coordinate

systems.

So, to summarize, in this section we have given a simple approach of probing certain Superinte-

grable systems via Carter approach by direct inspection of the Hamiltonian. We have demonstrated

our proposition using three examples of Superintegrable Hamiltonians in 2-dimensions and following a

Carter-like approach to perceive the associated Superintegrability. We have also verified that all Super-

integrable potentials in 3-Dimensional Newtonian dynamics are also Carter separable. The question of

whether this simple idea can be applied to extremely complicated Hamiltonian is indeed left open for

now and as a scope for future work.

IV. DISCUSSIONS

In this work, we explored the hidden symmetries of Superintegrable systems by means of the presence

of Carter constant as an integral of motion. We constructed some 2-Dimensional superintegrable

systems by constructing potentials that are Carter separable in more than one coordinate systems.

Many such 2-D Superintegrable potentials may be constructed by following the general procedure

outlined in Section 3. We constructed 2-D non-trivial Superintegrable systems because all possible 3-D

superintegrable sytems has been outlined by Evans in [18]. But we have verified that all of those

potentials in 3-D also satisfy this Carter Separability criteria. This general construction of simple

non-trivial Superintegrable systems can be extended to higher dimensions by algebraic construction

of Carter separable systems in more than one coordinate systems and and in turn checking the linear

independence of these various Carter-like conserved quantities arising out of them.
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