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Abstract. We study the bifurcation of limit cycles from the periodic orbits of 2n–
dimensional linear centers ẋ = A0x when they are perturbed inside classes of contin-
uous and discontinuous piecewise linear differential systems of control theory of the
form ẋ = A0x+ ε

(
Ax+ φ(x1)b

)
, where φ is a continuous or discontinuous piecewise

linear function, A0 is a 2n × 2n matrix with only purely imaginary eigenvalues, ε is
a small parameter, A is an arbitrary 2n× 2n matrix, and b is an arbitrary vector of
Rn.

1. Introduction and statement of the main results

In control theory are relevant the continuous piecewise linear differential systems of
the form

(1) ẋ = Ax+ ϕ(x1)b,

with A a m × m matrix, x, b ∈ Rm, ϕ : R → R is the continuous piecewise linear
function

(2) ϕ(x1) =


−1 if x1 ∈ (−∞,−1),

x1 if x1 ∈ [−1, 1],

1 if x1 ∈ (1,∞),

where x = (x1, . . . , xm)T , and the dot denotes the derivative with respect to the inde-
pendent variable t, the time.

Also in control theory are important the discontinuous piecewise linear differential
systems of the form (1) where instead of the function ϕ we have the discontinuous
piecewise linear function

(3) ψ(x1) =


−1 if x1 ∈ (−∞, 0),

1 if x1 ∈ (0,∞).
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For more details on these continuous and discontinuous piecewise linear differential
systems see for instance the books [1, 3, 10, 11, 16, 18].

The analysis of discontinuous piecewise linear differential systems goes back mainly
to Andronov and coworkers [2] and nowadays still continues to receive attention by
many researchers. In particular, discontinuous piecewise linear differential systems
appear in a natural way in control theory and in the study of mechanical systems,
electrical circuits, ... see for instance the book [4] and the references quoted there.
These systems can present complicated dynamical phenomena such as those exhibited
by general nonlinear differential systems.

One of the main ingredients in the qualitative description of the dynamical behavior
of a differential system is the number and the distribution of its limit cycles. The goal of
this paper is to study analytically the existence of limit cycles for a class of continuous
and a class of discontinuous piecewise linear differential of the form (1).

More precisely, first we consider the class of continuous piecewise linear differential
systems

(4) ẋ = A0x+ ε
(
Ax+ ϕ(x1)b

)
,

with |ε| 6= 0 a sufficiently small real parameter, where A0 is the 2n× 2n matrix having
on its principal diagonal the following 2× 2 matrices 0 −(2k − 1)

2k − 1 0

 for k = 1, . . . , n,

and zeros in the complement, A is an arbitrary 2n×2n matrix and b ∈ R2n \{0}. Note
that for ε = 0 system (4) becomes

(5) ẋ1 = −x2, ẋ2 = x1, . . . , ẋ2n−1 = −(2n− 1)x2n, ẋ2n = (2n− 1)x2n−1.

Moreover, the origin of (5) is a global isochronous center in R2n, i.e. all its orbits
different from the origin are periodic with period 2π.

In a similar way we consider the discontinuous piecewise linear differential systems

(6) ẋ = A0x+ ε
(
Ax+ ψ(x1)b

)
.

Our main results on the limit cycles of the continuous and discontinuous piecewise
linear differential systems (4) are the following ones.

Theorem 1. For |ε| > 0 sufficiently small and if the conditions for applying the av-
eraging theory of first order hold, then at most one limit cycle γε of the continuous
piecewise linear differential system (4) bifurcates from the periodic orbits of system (5),
i.e. γε tends to a periodic solution of system (5) when ε → 0. Moreover there are
systems (4) with |ε| > 0 sufficiently small having a such limit cycle.

Theorem 1 is proved in section 3.
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Theorem 2. For |ε| > 0 sufficiently small and if the conditions for applying the av-
eraging theory of first order hold, then at most one limit cycle γε of the discontinuous
piecewise linear differential system (6) bifurcates from the periodic orbits of system (5).
Moreover there are systems (6) with |ε| > 0 sufficiently small having a such limit cycle.

Theorem 2 is proved in section 4.

If instead of the matrix A0 we consider the matrix A1 where A1 is the 2n×2n matrix
having on its principal diagonal the following 2× 2 matrices 0 −k

k 0

 for k = 1, . . . , n,

and zeros in the complement, then we have the following results.

Theorem 3. Assume that the conditions for applying the averaging theory of first order
hold. Then this theory does not provide any information about the limit cycles of the
continuous piecewise linear differential system

(7) ẋ = A1x+ ε
(
Ax+ ϕ(x1)b

)
.

Theorem 4. Assume that the conditions for applying the averaging theory of first order
hold. Then this theory does not provide any information about the limit cycles of the
discontinuous piecewise linear differential system

(8) ẋ = A1x+ ε
(
Ax+ ψ(x1)b

)
.

Theorems 3 and 4 are proved in section 5.

Note the difference between the matrices A0 and A1, in the matrix A0 the non-zero
entries are only the odd numbers 1, 3, . . . , 2n− 1, while in the matrix A1 the non-zero
entries are the numbers 1, 2, . . . , n. This difference provides that the continuous and
discontinuous piecewise linear differential systems (4) and (6) can have limit cycles
detected by the averaging theory, while for the continuous and discontinuous piecewise
linear differential systems (7) and (8) the averaging theory cannot detect limit cycles.

According to the results of the averaging theory used it follows that for the control
differential systems here studied, the limit cycles that we obtain bifurcate from some
periodic orbit of the 2n-dimensional linear differential center (5). This technique of
finding limit cycles bifurcating from centers has been intensively studied in dimension
2, see for instance the book of Christopher and Li [9] and the hundreds of references
quoted therein.

Other results different to the ones presented here, but which also study the limit
cycles of control systems of the form (1) using averaging theory, can be found in [6, 7,
8, 12, 14].
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The main tools for proving the previous theorems are the extensions of the classical
averaging theory for computing periodic solutions of C2 differential systems to contin-
uous and discontinuous differential systems. In section 2 we summarize the extensions
of the averaging theory that we shall use here for proving our results.

2. First order averaging theory

For the classical averaging theory for finding periodic orbits of differential systems
of class C2 see for instance the chapter 11 of the book of Verhulst [17].

In this section we present first the result on the continuous averaging theory that we
will use for proving our Theorems 1 and 3. This theory uses the Brouwer degree of a
continuous function and its proof can be found in [5].

Theorem 5. We consider the following differential system

(9) ẋ = εH(t, x) + ε2R(t, x, ε),

where H : R × D → Rn, R : R × D × (−εf , εf ) → Rn are continuous functions,
T -periodic in the first variable, and D is an open bounded subset of Rn. We define
h : D → Rn as

(10) h(z) =

∫ T

0
H(s, z)ds,

and assume that

(i) H and R are locally Lipschitz with respect to x;
(ii) for p ∈ D with h(p) = 0, there exists a neighborhood V of p such that h(z) 6= 0

for all z ∈ V̄ \ {p} and the Brouwer degree dB(h, V, 0) 6= 0.

Then, for |ε| 6= 0 sufficiently small, there exists an isolated T - periodic solution x(t, ε)
of system (9)such that x(0, ε)→ p as ε→ 0.

Remark 6. Let h : D → Rn be a C1 function with h(p) = 0, where D is an open
bounded subset of Rn and p ∈ D. If the Jacobian of h at p is not zero, then there exists
a neighborhood V of p such that h(z) 6= 0 for all z ∈ V̄ \ {p}, and the Brouwer degree
dB(h, V, p) ∈ {−1, 1}.

For a proof of Remark 6 see for instance [15].

For proving Theorems 2 and 4 we shall need the following extension of the averaging
theory for computing periodic solutions to discontinuous differential systems done in
[13].

Theorem 7. We consider the following discontinuous differential system

(11) x′(t) = εH(t, x) + ε2R(t, x, ε),

with
H(t, x) = H1(t, x) + sign(g(t, x))H2(t, x),

R(t, x, ε) = R1(t, x, ε) + sign(g(t, x))R2(t, x, ε),
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where H1, H2 : R×D → Rn, R1, R2 : R×D × (−ε0, ε0)→ Rn and g : R×D → R are
continuous functions, T–periodic in the variable t and D is an open subset of Rn. We
also suppose that g is a C1 function having 0 as a regular value.

Define the average function h : D → Rn as

(12) h(x) =

∫ T

0
H(t, x)dt.

We assume the following conditions.

(i) H1, H2, R1, R2 are locally Lipschitz with respect to x;
(ii) there exists an open bounded subset C ⊂ D such that, for |ε| > 0 sufficiently

small, every orbit starting in C reaches the set of discontinuity only at its cross-
ing regions.

(iii) for a ∈ C with h(a) = 0, there exists a neighbourhood U ⊂ C of a such that
h(z) 6= 0 for all z ∈ U \ {a} and dB(h, U, 0) 6= 0.

Then, for |ε| > 0 sufficiently small, there exists a T–periodic solution x(t, ε) of system
(11) such that x(0, ε)→ a as ε→ 0.

3. Proof of Theorem 1

The main tool for proving Theorem 1 is the averaging theory of first order for con-
tinuous differential systems presented in Theorem 5. In order to use this theorem we
need to write the differential system (4) in the normal form (9), and for obtaining this
we need to some changes of variables.

Lemma 8. Doing the change of variables (x1, x2, . . . , x2n) 7→ (θ, r, θ1, r1, . . . , θn−1, rn−1)
defined by

x1 = r cos θ,

x2 = r sin θ,

x2j−1 = rj−1 cos((2j − 1)θ + θj−1),

x2j = rj−1 sin((2j − 1)θ + θj−1),

for j = 2, . . . , n system (4) is transformed into the system

(13)

dr

dθ
= εH1(θ, r, θ1, r1, . . . , θn−1, rn−1) +O(ε2),

drj−1
dθ

= εH2(j−1)(θ, r, θ1, r1, . . . , θn−1, rn−1) +O(ε2),

dθj−1
dθ

= εH2j−1(θ, r, θ1, r1, . . . , θn−1, rn−1) +O(ε2),

where

H1 =

n∑
l=1

rl−1

(
F1,l cos θ + F2,l sin θ

)
+ ϕ(r cos θ)(b1 cos θ + b2 sin θ),
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and for j = 2, 3, . . . , n we have

H2(j−1) =
n∑
l=1

rl−1

(
F2j−1,l cos((2j − 1)θ + θj−1) + F2j,l sin((2j − 1)θ + θj−1)

)
+ϕ(r cos θ)

[
b2j−1 cos((2j − 1)θ + θj−1) + b2j sin((2j − 1)θ + θj−1)

]
,

H2j−1 =

n∑
l=1

rl−1
rj−1

(
F2j,l cos((2j − 1)θ + θj−1)− F2j−1,l sin((2j − 1)θ + θj−1)

)
+(2j − 1)

n∑
l=1

rl−1
r

(
F1,l sin θ − F2,l cos θ

)
+ϕ(r cos θ)

(
b2j
rj−1

cos((2j − 1)θ + θj−1)−
b2j−1
rj−1

sin((2j − 1)θ + θj−1)

)
−(2j − 1)ϕ(r cos θ)

(
b2
r

cos θ − b1
r

sin θ

)
,

with

Fi,l = Fi,l(r, θ, θl−1) = ai(2l−1) cos((2l − 1)θ + θl−1) + ai(2l) sin((2l − 1)θ + θl−1).

We take ε0 sufficiently small, m arbitrarily large and

Dm =

{
(r, θ1, r1, . . . , θn−1, rn−1) ∈

(
1

m
,m

)
×
[
S1 ×

(
1

m
,m

)]n−1}
.

Then the vector field of system (13) is well defined and continuous on S1 × Dm ×
(−ε0, ε0). Moreover the system is 2π-periodic with respect to variable θ and locally
Lipschitz with respect to variables (r, θ1, r1, . . . , θn−1, rn−1).

Proof. In the variables (θ, r, θ1, r1, . . . , θn−1, rn−1) the differential system (4) becomes

θ̇ = 1 +
ε

r

[ n∑
l=1

rl−1

(
F2,l cos θ − F1,l sin θ

)
+ ϕ(r cos θ)(b2 cos θ − b1 sin θ)

]
,

ṙ = εH1(θ, r, θ1, r1, . . . , θn−1, rn−1),

ṙj−1 = εH2(j−1)(θ, r, θ1, r1, . . . , θn−1, rn−1),

θ̇j−1 = εH2j−1(θ, r, θ1, r1, . . . , θn−1, rn−1),

for j = 2, 3, . . . , n. Note that for ε = 0 , θ̇(t) > 0 and hence for |ε| 6= 0 sufficiently small
this property remains valid for each t when (θ, r, θ1, r1, . . . , θn−1, rn−1) ∈ S1×Dm. Now
we take θ as the new independent variable. The right-hand side of the new system is
well defined and continuous in S1×Dm× (−ε0, ε0) and it is 2π-periodic with respect to
the new variable θ and locally Lipschitz with respect to (r, θ1, r1, . . . , θn−1, rn−1). Now
system (8) can be obtained doing a Taylor series expansion in the parameter ε around
ε = 0. �
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The next step is to find the corresponding average function (10) of system (8) that
we denoted by h = (h1, h2, . . . , h2(n−1), h2n−1) : Dm → Rn−1 and it is defined by

h1 = h1(r, θ1, r1, . . . , θn−1, rn−1) =

∫ 2π

0
H1(r, θ1, r1, . . . , θn−1, rn−1)dθ,

h2(j−1) = h2(j−1)(r, θ1, r1, . . . , θn−1, rn−1) =

∫ 2π

0
H2(j−1)(r, θ1, r1, . . . , θn−1, rn−1)dθ,

h2j−1 = h2j−1(r, θ1, r1, . . . , θn−1, rn−1) =

∫ 2π

0
H2j−1(r, θ1, r1, . . . , θn−1, rn−1)dθ,

for j = 1, 2, . . . , n. To calculate these integrals we will use the following equalities∫ 2π

0
cos((2j − 1)θ + θj−1) sin((2l − 1)θ + θl−1)dθ = 0 for all integers l, j > 1,∫ 2π

0
cos((2j − 1)θ + θj−1) cos((2l − 1)θ + θl−1)dθ =

{
π if l = j,

0 if l 6= j,∫ 2π

0
sin((2j − 1)θ + θj−1) sin((2l − 1)θ + θl−1)dθ =

{
π if l = j,

0 if l 6= j,

and the next lemma.

For r > 0 and j = 1, 2, . . . , n we denote

Ij(r) =

∫ 2π

0
ϕ(r cos θ) cos((2j − 1)θ)dθ,

Jj(r) =

∫ 2π

0
ϕ(r cos θ) sin((2j − 1)θ)dθ,

where ϕ is the piecewise linear function (2).

Lemma 9. The integrals Ij and Jj(r) satisfy

Ij(r) =


πr if j = 1 and 0 < r ≤ 1,

0 if j > 1 and 0 < r ≤ 1,

K(r) if j = 1 and r > 1,

Lj(r) if j > 1 and r > 1;

Jj(r) = 0 for all j = 1, 2, . . . , n and r > 0.

where

Lj(r) =
2

j(2j − 1)2

(
(2j − 1)

√
−1 + r2 cos((2j − 1) arctan

√
−1 + r2)

− sin((2j − 1) arctan
√
−1 + r2)

)
,

K(r) = πr +
2

r

√
r2 − 1− 2r arctan(

√
r2 − 1).
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Proof. We consider two cases: 0 < r ≤ 1 and r > 1.

Case 1: 0 < r ≤ 1 In this case |r cos θ| ≤ 1 and hence ϕ(r cos θ) = r cos θ for all
θ ∈ [0, 2π]. Then if j = 1∫ 2π

0
ϕ(r cos θ) cos θdθ = r

∫ 2π

0
cos2 θdθ = πr,

and ∫ 2π

0
ϕ(r cos θ) sin θdθ = r

∫ 2π

0
cos θ sin θdθ = 0.

And if j > 1 then∫ 2π

0
ϕ(r cos θ) cos((2j − 1)θ)dθ = r

∫ 2π

0
cos θ cos((2j − 1)θ)dθ = 0,

∫ 2π

0
ϕ(r cos θ) sin((2j − 1)θ)dθ = r

∫ 2π

0
cos θ sin((2j − 1)θ)dθ = 0.

Case 2: r > 1 In this case choose θc ∈ (0, π/2) such that cos θc = 1/r. If j = 1 we
have

I1(r) =

∫ θc

0
cos θdθ + r

∫ π−θc

θc

cos2 θdθ −
∫ π+θc

π−θc
cos θdθ

+r

∫ 2π−θc

π+θc

cos2 θdθ +

∫ 2π

2π−θc
cos θdθ

= πr +
2

r

√
r2 − 1− 2r arctan(

√
r2 − 1).

The same reasoning can be applied to see that J1(r) = 0. If j > 1 then

Ij(r) =

∫ θc

0
cos((2j − 1)θ)dθ + r

∫ π−θc

θc

cos θ cos((2j − 1)θ)dθ −
∫ π+θc

π−θc
cos((2j − 1)θ)dθ

+r

∫ 2π−θc

π+θc

cos θ cos((2j − 1)θ)dθ +

∫ 2π

2π−θc
cos((2j − 1)θ)dθ

=
2

j(2j − 1)2

(
(2j − 1)

√
−1 + r2 cos((2j − 1) arctan

√
−1 + r2)

− sin((2j − 1) arctan
√
−1 + r2)

)
,

and Jj(r) = 0. �

With the results presented previously we are able to prove Theorem 1. Since we
can choose m sufficiently large to find the zeroes of the average function h in Dm it is
sufficient to look for them in (0,∞)× [S1 × (0,∞)]n−1. To calculate the expression of
the average function we consider again two cases.
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Case 1: 0 < r ≤ 1. In this case the system whose zeros can provide limit cycles of
system (4) is

(14)

h1 = (a11 + a22 + b1)πr,

h2 = (a33 + a44)πr1,

h3 = (a43 − a34 + 3(a12 − a21 − b2))π,
...

h2(n−1) = (a(2n−1)(2n−1) + a(2n)(2n)))πrn−1,

h2n−1 = (a(2n)(2n−1) − a(2n−1)(2n) + (2n− 1)(a12 − a21 − b2)π.

Note that the variables θ1, θ2, . . . , θn−1 does not appear explicitly into system (14).
Hence, if this system has zeros, it has a continuum of zeros. Therefore the assumption
(ii) of the averaging theory, presented in Theorem 5, is not satisfied and this theorem
does not provide any information about the limit cycles of system (13).

Case 2: r > 1. Now the system whose zeros can provide limit cycles of system (13) is

(15)

h1 = (a11 + a22)πr + b1K(r),

h2 = (a33 + a44)πr1 + (b3 cos θ1 + b4 sin θ2)L2(r),

h3 = (a43 − a34 + 3(a12 − a21))π−
3b2r1K(r)− r(b4 cos θ1 − b3 sin θ1)L2(r)

rr1
,

...

h2(n−1) = (a(2n−1)(2n−1) + a(2n)(2n))πrn−1+

(b2n−1 cos θn−1 + b2n sin θn−1)Ln(r),

h2n−1 = (a(2n)(2n−1) − a(2n−1)(2n) + (2n− 1)(a12 − a21))π−
(2n− 1)b2rn−1K(r)− r(b2n cos θn−1 − b2n−1 sin θn−1)Ln(r)

rrn−1
,



10 J. LLIBRE, R.D. OLIVEIRA AND C.A.B. RODRIGUES

For each j ∈ {2, 3, . . . , n} we will study the zeros of the system

h1 = (a11 + a22)πr + b1K(r),

h2(j−1) = (a(2j−1)(2j−1) + a(2j)(2j))πrj−1+

(b2j−1 cos θj−1 + b2j sin θj−1)Lj(r),

h2j−1 = (a(2j)(2j−1) − a(2j−1)(2j) + (2j − 1)(a12 − a21))π−
(2j − 1)b2rj−1K(r)− r(b2j cos θj−1 − b2j−1 sin θj−1)Lj(r)

rrj−1
,

Claim: The function K : (1,∞) → (π, 4) is a diffeomorphism. Indeed note that K is
twice differentiable with

K ′(r) = π − 2

√
r2 − 1

r2
− 2 arctan

√
r2 − 1,

and

K ′′(r) = − 4

r3
√
r2 − 1

< 0

which implies that K ′ is a strictly decreasing function. Moreover limr→∞K
′(r) =

0 what means that K ′(r) has a horizontal asymptote given by the axis r and then
K ′(r) ≥ 0. Suppose that there exists an r0 ∈ (1,∞) such that K ′(r0) = 0. Then
for all r > r0 we have K ′(r) < K ′(r0) = 0, contradiction. Therefore it follows that
K ′(r) 6= 0 for all r ∈ (1,∞) and the Inverse Function Theorem guarantees that K is
a local diffeomorphism and since that K is a injective function we obtain the global
diffeomorphism, ending the proof of this claim.

First we note that in order that the equation h1 = 0 has solutions with r > 1 it is
necessary that b1(a11 + a22) < 0. Moreover K ′′(r) < 0 implies that the graph of K is
convex. In the plane of the graph of K(r) the graph of (a11 + a22)πr is a straight line
passing through the origin and then both graphs can intersect at most in two points.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1

2

3

4

Figure 1. The graphic of the function K(r).
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But if some straight line intercept the graph of K(r) in two points then it cannot
pass through the origin, as we can see in Figure 1. Then the equation h1 = 0 has at
most one solution if r > 1, and since that K(r) is a diffeomorphism we can choose the
coefficients a11, a22 and b1 so that this solution exists. We denote this solution by r0
and we substitute it into the equations h2(j−1) = 0 and h2j−1 = 0. Defining

Aj = (a(2j−1)(2j−1) + a(2j)(2j))π, Bj = b2j−1Lj(r0), Cj = b2jLj(r0),

Dj = (a(2j)(2j−1) − a(2j−1)(2j) + (2j − 1)(a12 − a21))π −
1

r0
(2j − 1)b2K(r0),

uj = cos θj−1, vj = sin θj−1,

the system h2(j−1) = h2j−1 = 0 is equivalent to the system

Ajrj−1 +Bjuj + Cjvj = 0,

Djrj−1 + Cjuj −Bjvj = 0,

u2j + v2j − 1 = 0.

Using the two first equations we obtain

uj = −(AjBj + CjDj)rj−1
B2
j + C2

j

, vj =
(BjDj −AjCj)rj−1

B2
j + C2

j

.

Substituting these two expressions in the third equation we get

(A2
j +D2

j )r
2
j−1 −B2

j − C2
j = 0.

Therefore at most there is one solution rj−1 > 0, which provide a unique uj and vj .
Since we fixed an arbitrarily j to solve this system, the same reasoning can be applied
to each pair of equations h2(j−1) = 0 and h2j−1 = 0, concluding that system (15) has at
most one solution. Moreover taking conveniently the parameters of the initial system
(4) this solution exists and its Jacobian is not zero. Hence at most one limit cycle can
bifurcate from the periodic orbits of the center of system (5) when we perturbe it as in
system (4), and there are systems for which a such limit cycles exist. This completes
the proof of Theorem 1.

Now we present an explicit example of a continuous piecewise linear differential
system (4) in R4, and repeating for it the proof of Theorem 1 we will show it has one
limit cycle. Consider the following differential system

(16) ẋ = A0x+ ε(Ax+ ϕ(x1)b),
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where

A0 =



0 −1 0 0

1 0 0 0

0 0 0 −3

0 0 3 0


, A =



2 1 0 0

0 2 0 0

0 0 −2 −1

0 0 0
18π −

√
3

9π


, b =



− 24π

3
√

3 + 2π

1

9(3− 2
√

3π)

2

−1


.

Doing the change or variables x1 = r cos θ, x2 = r sin θ, x3 = r1 cos(3θ + θ1), x4
= r1 sin(3θ + θ1) and taking θ as the new independent variable we obtain the system
(17)

r′(θ) =
dr

dθ
= εH1(θ, r, θ1, r1) +O(ε2),

r′1(θ) =
dr1
dθ

= εH2(θ, r, θ1, r1) +O(ε2),

θ′1(θ) =
dθ1
dθ

= εH3(θ, r, θ1, r1) +O(ε2),

H1(θ, r, θ1, r1) = 2r + ϕ(r cos θ) sin θ + cos θ

(
r sin θ − 24πϕ(r cos θ)

3
√

3 + 2π

)
,

H2(θ, r, θ1, r1) = − 1

18π

(
18πϕ(r cos θ) sin(3θ + θ1) + 9πr1 sin(2(3θ + θ1))

+
√

3r1 + 81π(2
√

3π − 3)ϕ(r cos θ) cos(3θ + θ1)−

(
√

3− 36π)r1 cos(2(3θ + θ1))

)
,

H3(θ, r, θ1, r1) = sin2(3θ + θ1) + 2 sin(2(3θ + θ1))−
sin(2(3θ + θ1))

6
√

3π
+ 3 sin2 θ

−72πϕ(r cos θ) sin θ

3
√

3r + 2πr
− ϕ(r cos θ) cos(3θ + θ1)

r1
− 3ϕ(r cos θ) cos θ

r

+
9π
√

3ϕ(r cos θ) sin(3θ + θ1)

r1
− 27ϕ(r cos θ) sin(3θ + θ1)

2r1
.

After some computations the average function h = (h1, h2, h3) defined in (10) is

h1(r, θ1, r1) = 4πr − 24π

3
√

3 + 2π

(
πr +

2
√
r2 − 1

r
− 2r arctan(

√
r2 − 1)

)
,

h2(r, θ1, r1) =

√
3

3
sin θ1 +

3

2
(2
√

3π − 3)
√

3 cos θ1 −
√

3

9
r1,

h3(r, θ1, r1) =
9
√

3 sin θ1
2r1

− 9π sin θ1
r1

+

√
3 cos θ1
3r1

− 3

2

(√
3 +

2π

3

)
+ 4π.



LIMIT CYCLES OF CONTROL PIECEWISE LINEAR DIFFERENTIAL SYSTEMS 13

In order to solve the system h1 = h2 = h3 = 0 we can use the same reasoning applied in
the proof of Theorem 1 obtaining that (r∗, θ∗1, r

∗
1) = (2, π/2, 3) is a zero of the average

function. Moreover if J = J(r, θ1, r1) is the Jacobian matrix of h, then det J(2, π/2, 3) 6=
0 which implies that we have a simple zero. By Theorem 5 system (17) and consequently
system (16) has one limit cycle for |ε| > 0 sufficiently small.

4. Proof of Theorem 2

This section is devoted to prove Theorem 2. According to Theorem 7 the same kind
of arguments used for proving Theorem 1 can be applied to the discontinuous system
(6), obtaining that the average function h = (h1, h2, . . . , h2(n−1), h2n−1) : Dm → Rn−1
defined in (12) is

(18)

h1 = (a11 + a22)πr + b1Ĩ1,

h2(j−1) = (a(2j−1)(2j−1) + a(2j)(2j))πrj−1 + (b2j−1 cos θj−1 + b2j sin θj−1)Ĩj ,

h2j−1 = (a(2j)(2j−1) − a(2j−1)(2j) + (2j − 1)(a12 − a21))π−
(2j − 1)b2rj−1Ĩ1 − r(b2j cos θj−1 − b2j−1 sin θj−1)Ĩj

rrj−1
,

for j = 2, 3, . . . , n, where

Ĩj =


− 4

(2j − 1)
if j is even,

4

(2j − 1)
if j is odd.

In fact if we define

Ĩj =

∫ 2π

0
ψ(r cos θ) cos((2j − 1)θ)dθ,

J̃j =

∫ 2π

0
ψ(r cos θ) sin((2j − 1)θ)dθ,

where ψ is the piecewise linear function given by (3). Then we have that

Ĩj =

∫ 2π

0
ψ(r cos θ) cos((2j − 1)θ)dθ

=

∫ π/2

0
cos((2j − 1)θ)dθ −

∫ 3π/2

π/2
cos((2j − 1)θ)dθ +

∫ 2π

3π/2
cos((2j − 1)θ)dθ

= − 4

(2j − 1)
cos(jπ),
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and

J̃j =

∫ 2π

0
ψ(r cos θ) sin((2j − 1)θ)dθ

=

∫ π/2

0
sin((2j − 1)θ)dθ −

∫ 3π/2

π/2
sin((2j − 1)θ)dθ +

∫ 2π

3π/2
sin((2j − 1)θ)dθ

= − 4

(2j − 1)
sin(2jπ) cos(jπ) = 0.

Note that Ĩj is a constant real number different from zero, and hence h1 is a straight
line, and then system (18) has at most one positive zero. Moreover if we choose conve-
niently the coefficients b1 a11 and a22 we can find a simple positive zero of system (18).
This completes the proof of Theorem 2.

5. Proof of Theorems 3 and 4

Doing the change of coordinates

x1 = r cos θ, x2 = r sin θ,

x2j−1 = rj−1 cos(jθ + θj−1), x2j = rj−1 sin(jθ + θj−1) j ∈ {2, 3, . . . , n},

for j = 2, 3, . . . , n, to the continuous piecewise linear differential system (7), and work-
ing as in the proof of Theorem 1 we obtain that the average function h = (h1, h2, . . .,
h2n−1) defined in (10) now is given by

(19)

h1 = (a11 + a22)πr + b1I1(r),

h2(j−1) = (a(2j−1)(2j−1) + a(2j)(2j))πrj−1 + (b2j−1 cos θj−1 + b2j sin θj−1)Ij(r),

h2j−1 = (a(2j)(2j−1) − a(2j−1)(2j) + j(a12 − a21))π−
jb2rj−1I1(r)− r(b2j cos θj−1 − b2j−1 sin θj−1)Ij(r)

rrj−1
,

where

Ij(r) =

∫ 2π

0
ϕ(r cos θ) cos(jθ)dθ.

Using exactly the same arguments than in the proof of Lemma 9 is possible to prove
that

Ij(r) =


πr if j = 1 and 0 < r ≤ 1,

0 if j is even and 0 < r ≤ 1,

Lj(r) if j is odd and r > 1,

where

Lj(r) =
4

j(j2 − 1)

(
j
√
r2 − 1 cos(j arctan(

√
r2 − 1))− sin(j arctan(

√
r2 − 1))

)
.
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The simple zeros of system (19) provide the existence of limit cycles for system (7)
but since Ij(r) = 0 if j is even and r > 1, the variables θj−1, for j = 2, 4, 6, ... do not
appear in the system h1 = h2 = . . . = h2n−1 = 0, so either this system has no zeros, or
if it has zeros, then it has a continuum of zeros, and therefore the assumption (ii) of the
averaging Theorem 9 does not hold, and consequently the averaging theory cannot say
anything about the limit cycles of system (7). The same occurs for the case 0 < r ≤ 1.
So we conclude that, using the averaging theory of first order, we can say nothing about
the number of the limit cycles of system (7). This completes the proof of Theorems 3.

Now if we consider the discontinuous piecewise linear differential system (8), then
its average function h = (h1, h2, . . . , h2n−1) defined in (12) is

(20)

h1 = (a11 + a22)πr + b1Ĩ1,

h2(j−1) = (a(2j−1)(2j−1) + a(2j)(2j))πrj−1 + (b2j−1 cos θj−1 + b2j sin θj−1)Ĩj ,

h2j−1 = (a(2j)(2j−1) − a(2j−1)(2j) + j(a12 − a21))π−
jb2rj−1Ĩ1 − r(b2j cos θj−1 − b2j−1 sin θj−1)Ĩj

rrj−1
,

where

Ĩj =

∫ 2π

0
ψ(r cos θ) cos(jθ)dθ.

Again we have that

Ĩj =

∫ 2π

0
ψ(r cos θ) cos(jθ)dθ =

0 if j is even,

± 4

(2j − 1)
if j is odd,

and we can see that again either no zeros of the function h, or a continuum of zeros,
concluding that the averaging theory of first order given by Theorem 7 does not say
anything about the limit cycles of system (8). This completes the proof of Theorems
4.
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author is supported by a Projeto Temático FAPESP number 2014/00304-2. The third
author has a PhD fellowship from CNPq-Brazil.

References

[1] M.A. Aizerman, Theory of automatic control, Pergamon Press, 1963.
[2] A. Andronov, A. Vitt and S. Khaikin, Theory of Oscillations, Pergamon Press, Oxford, 1966.
[3] S. Barnett and R.G. Cameron, Introduction to mathematical control theory, 2nd edition,

Clarendon Press, Oxford, 1985.



16 J. LLIBRE, R.D. OLIVEIRA AND C.A.B. RODRIGUES

[4] M. di Bernardo, C.J. Budd, A.R. Champneys and P. Kowalczyk, Piecewise-smooth Dy-
namical Systems, Springer-Verlag London, Applied Mathematical Sciences, vol. 163, 2008.

[5] A. Buica and J. Llibre, Averaging methods for finding periodic orbits via Brouwer degree, Bull.
Sci. Math. 128 (2004), 7–22.

[6] A. Buica and J. Llibre, Bifurcation of limit cycles from a four-dimensional center in control
systems, Int. J. of Bifurcation and Chaos, 15 (2005), 2653–2662.

[7] C.A. Buzzi, J. Llibre, J.C. Medrado and J. Torregrosa, Bifurcation of limit cycles from a
center in R4 in resonance 1 : N , Dynamical Systems 24 (2009), 123–137.

[8] P.T. Cardin, T. de Carvalho and J. Llibre, Bifurcation of limit cycle from a n-dimensional
linear center inside a class of piecewise linear differential systems, Nonlinear Analysis: Theory,
Methods and Appl. 75 (2012), 143–152.

[9] C. Christopher and C. Li, Limit cycles in differential equations, Birkhauser, Boston, 2007.
[10] J.E. Gibson, Nonlinear automatic control, McGraw-Hill, New York, 1963.
[11] H.K. Khalil, Nonlinear systems, Macmillan, New York, 1992.
[12] J. Llibre and A. Makhlouf, Bifurcation of limit cycles from a 4–dimensional center in 1 : n

resonance, Applied Mathematics and Computation 215 (2009), 140–149.
[13] J. Llibre, D.D. Novaes and M.A. Teixeira, On the birth of limit cycles for non-smooth dy-

namical systems, Bull. Sci. Math. 139 (2015), 229–244.
[14] J. Llibre and A. Rodrigues On the limit cycles of the Floquet differential equation, Discrete

Contin. Dyn. Syst. Ser. B 19 (2014), 1129–1136.
[15] N.G. Lloyd, Degree theory, Cambridge Tracts in Math. vol. 73, Cam- bridge Univ. Press, Cam-

bridge, Great Britain, 1978.
[16] A.I. Mees, Dynamics of feedback systems, John Wiley & Sons, 1981.
[17] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, 2nd edition, Universitext,

Springer 1996.
[18] M. Vidyasagar, Nonlinear systems analysis, 2nd ed., Prentice-Hall, 1993.

1 Departament de Matematiques, Universitat Autònoma de Barcelona, 08193 Bellaterra,
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