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GLOBAL UNIQUENESS OF THE MINIMAL SPHERE

IN THE ATIYAH–HITCHIN MANIFOLD

CHUNG-JUN TSAI AND MU-TAO WANG

1. Introduction

In this note, we study submanifold geometry of the Atiyah–Hitchin manifold, a double cover

of the 2-monopole moduli space, which plays an important role in various settings such as the

supersymmetric background of string theory. When the manifold is naturally identified as the

total space of a line bundle over S2, the zero section is a distinguished minimal 2-sphere of

considerable interest. In particular, there has been a conjecture [10, Remark on p.262] about

the uniqueness of this minimal 2-sphere among all closed minimal 2-surfaces. We show that

this minimal 2-sphere satisfies the “strong stability condition” proposed in our earlier work [12],

and confirm the global uniqueness as a corollary.

2. The Atiyah–Hitchin manifold

We start by reviewing the geometry of the Atiyah–Hitchin manifold which is denoted by M

throughout this paper. The underlying manifold1 M is a degree −4 complex line bundle over

S2. Utilizing the standard charts on S2, z, w : C → S2 with z = 1/w, we consider the following

co-frame on the unit circle bundle (eiψ ∈ S1) over S2:

σ1 =
1

2

(

dψ + 2i
zdz̄ − z̄dz

1 + |z|2

)

, σ2 = Re

[

2 ei
ψ

2 dz

1 + |z|2

]

, σ3 = Im

[

2 ei
ψ

2 dz

1 + |z|2

]

.

Although there is ambiguity in the definitions of σ2 and σ3, (σ2)2, (σ3)2 and σ2 ∧ σ3 are well-

defined. In particular, (σ2)2+(σ3)2 = 4|dz|2

(1+|z|2)2
represents the standard round metric of constant

Gauss curvature 1 on S2. The 1-forms σ1, σ2 and σ3 satisfy the relation dσ1 = σ2 ∧ σ3, and its

cyclic permutations. On the other chart, (w,ϕ) = (1/z, ψ + 4arg z).
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The Riemannian metric on M takes the following form

ds2 = dr2 + a2(σ1)2 + b2(σ2)2 + c2(σ3)2 (2.1)

where a, b, c are functions in r ∈ [0,∞). Denoting by prime ( )′ the derivative with respect to

r, these coefficient functions a, b, and c are determined by the following system of ODE’s:

a′ =
a2 − (b− c)2

2bc
, b′ =

b2 − (c− a)2

2ca
, c′ =

c2 − (a− b)2

2ab
, (2.2)

with the initial conditions a(0) = 0, b(0) = −m, and c(0) = m for a positive constant m. The

manifold is oriented by dr ∧ σ1 ∧ σ2 ∧ σ3. The metric is complete and the variable r is the

geodesic distance to the zero section (r = 0) with respect to (2.1).

The zero section, r = 0, is a 2-sphere denoted by Σ and oriented by σ2 ∧ σ3. The induced

metric is round of radius m. Σ is the minimal sphere referred in the title of this paper.

Here are some other basic properties of the coefficient functions; see [2, ch.10 and 11]. When

r > 0, a and c are positive; b is negative. Moreover, a′, b′ and c′ are all positive. The explicit

forms of these functions can be found after a change of variable [2, Theorem 11.18]. However,

the explicit forms are not needed in this paper. The key to solve for the explicit solution of

(2.2) is to rewrite the equations as

(ca+ ab)′ =
2

abc
(ca)(ab) , (ab+ bc)′ =

2

abc
(ab)(bc) , (bc+ ca)′ =

2

abc
(bc)(ca) . (2.3)

The logarithmic derivative of Jacobi theta functions obey the same equations, up to the factor

2/(abc). Hence, the solution can be constructed from elliptic integrals.

2.1. The geometry near the zero section Σ. It is useful to write down the series expansions

of the coefficient functions at r = 0. With the initial condition a(0) = 0, −b(0) = m = c(0),

one deduces from (2.2) that

a(r) = 2r −
1

2m2
r3 +O(r4) ,

b(r) = −m+
1

2
r −

3

8m
r2 +O(r3) ,

c(r) = m+
1

2
r +

3

8m
r2 +O(r3) .

(2.4)

Here is an interesting point to make. The metric arises as the natural metric on the monopole

moduli space [2, ch.2 and 3], and is smooth. At first glance, it seems a little bit strange that

the expansions of b and c have both even and odd degree terms. To see why, let

q(r) = c(r)− b(r) and p(r) = c(r) + b(r) . (2.5)

Note that q(r) > 0 for any r ≥ 0, q(0) = 2m and p(0) = 0. When r > 0, (2.3) implies that

(a p)′ > 0, and thus p > 0. The metric (2.1) can be rewritten as

ds2 = dr2 +
a2

4

(

dψ + 2i
zdz̄ − z̄dz

1 + |z|2

)2

+
q2 + p2

4

4 |dz|2

(1 + |z|2)2
− (2 q p)Re

[

eiψ(dz)2

(1 + |z|2)2

]

.
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With aforementioned conditions, the smoothness of the metric near r = 0 is equivalent to that

a(r)/r, p(r)/r and q(r) are smooth functions in r2.

Equation (2.2) in terms of a, p, and q are

a′ =
2(a2 − q2)

p2 − q2
, q′ =

2q(p2 − a2)

a(p2 − q2)
, p′ = 2 +

2p(q2 − a2)

a(p2 − q2)
.

From these equations and the initial conditions, one derives that a and p = c + b are odd

functions in r, while q = c− b is an even function in r.

Remark 2.1. This property of a, p, q may not been seen in some of the radial parameters

used in the literature [1, 7, 2]. Those parameters are good to construct the explicit form of the

solution. However, at the zero section, those parameters only respect the Ck topology for some

k ∈ N, but not the smooth one.

2.2. Connections and the ASD Einstein equation. We briefly recall the convention for

connections and curvatures. For a Riemannian manifold with metric 〈 , 〉 and Levi-Civita con-

nection ∇, our convention for the Riemann curvature tensor is

R(X,Y,Z,W ) = 〈∇Z∇WY −∇W∇ZY −∇[Z,W ]Y ,X〉 .

Let {ei} be a local orthonormal frame. Denote the coefficient 1-forms of the Levi-Civita

connection by ωji : ∇ei = ωji ⊗ ej. Since the frame is orthonormal, ωji = −ωij. Throughout

this paper, we adopt the Einstein summation convention that repeated indexes are summed.

Denote the dual co-frame by {ωi}; the covariant derivative of the co-frame is ∇ωj = −ωji ⊗ ωi.

It follows that

dωj = −ωji ∧ ω
i .

The curvature form is

R
j
i = dωji − ωki ∧ ω

j
k . (2.6)

It is equivalent to the Riemann curvature tensor by the following relation:

R
j
i (X,Y ) = R(ej, ei,X, Y ) (2.7)

for any two tangent vectors X and Y .

For the Atiyah–Hitchin manifold M with the Riemannian metric given by (2.1), consider the

following orthonormal co-frame:

ω0 = −dr , ω1 = a σ1 , ω2 = b σ2 , ω3 = c σ3 . (2.8)

Note that ω0 ∧ ω1 ∧ ω2 ∧ ω3 is the positive orientation. Their exterior derivatives are

dω0 = 0 , dω1 = −
a′

a
ω0 ∧ ω1 +

a

bc
ω2 ∧ ω3 ,
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and the equations for dω2 and dω3 are similar. It follows that

ω1
0 = −

a′

a
ω1 ,

ω3
2 = −

1

2

b2 + c2 − a2

abc
ω1 ,

ω2
0 = −

b′

b
ω2 ,

ω1
3 = −

1

2

a2 + c2 − b2

abc
ω2 ,

ω3
0 = −

c′

c
ω3 ,

ω2
1 = −

1

2

a2 + b2 − c2

abc
ω3 .

(2.9)

It is known that on a simply-connected 4-manifold, the hyper-Kähler condition is equivalent

to 0 = R
1
0 + R

3
2 = R

2
0 + R

1
3 = R

3
0 + R

2
1. In terms of the curvature decomposition in four

dimensions, this means that only the anti-self-dual Weyl curvature could be non-zero. Note

that for (i, j, k) = (1, 2, 3) and its cyclic permutation,

R
i
0 +R

k
j = d(ωi0 + ωkj ) + (ωj0 + ωik) ∧ (ωk0 + ωji ) ,

and thus vanishes if

ωi0 + ωkj = −σi . (2.10)

From (2.9), this condition is exactly the equation (2.2). One can compare with the case of the

Eguchi–Hanson metric, where ωi0 + ωkj vanishes. See, for example, [11, Section 2].

2.3. Hyper-Kähler structure. Recall that the hyper-Kähler structure is characterized by

the existence of three linearly independent parallel self-dual 2-forms. With the orientation

ω0∧ω1∧ω2∧ω3, the space of self-dual 2-forms Λ2
+ is spanned by ω0∧ω1+ω2∧ω3, ω0∧ω2+ω3∧ω1,

and ω0 ∧ ω3 + ω1 ∧ ω2. From (2.10), the Levi-Civita connection on Λ2
+ reads:

∇(ω0 ∧ ω1 + ω2 ∧ ω3) = −σ3 ⊗ (ω0 ∧ ω2 + ω3 ∧ ω1) + σ2 ⊗ (ω0 ∧ ω3 + ω1 ∧ ω2) , (2.11)

∇(ω0 ∧ ω2 + ω3 ∧ ω1) = σ3 ⊗ (ω0 ∧ ω1 + ω2 ∧ ω3)− σ1 ⊗ (ω0 ∧ ω3 + ω1 ∧ ω2) ,

∇(ω0 ∧ ω3 + ω1 ∧ ω2) = −σ2 ⊗ (ω0 ∧ ω1 + ω2 ∧ ω3) + σ1 ⊗ (ω0 ∧ ω2 + ω3 ∧ ω1) .

We proceed to find three linearly independent parallel self-dual 2-forms. Consider the following

parametrization of SO(3):

S =
1

1 + |z|2







2Re(z) Im(e−i
ψ

2 + ei
ψ

2 z2) Re(e−i
ψ

2 − ei
ψ

2 z2)

2 Im(z) −Re(e−i
ψ

2 + ei
ψ

2 z2) Im(e−i
ψ

2 − ei
ψ

2 z2)

1− |z|2 2 Im(ei
ψ

2 z) −2Re(ei
ψ

2 z)






.

The Maurer–Cartan form is

S−1dS =







0 σ3 −σ2

−σ3 0 σ1

σ2 −σ1 0






,

which is exactly the connection 1-form in terms of the basis {ω0 ∧ ω1 + ω2 ∧ ω3, ω0 ∧ ω2 + ω3 ∧

ω1, ω0 ∧ ω3 + ω1 ∧ ω2}.
4



Three parallel self-dual 2-forms can be obtained by pairing the row vectors of S with the

above basis. It is easier to use the following expressions:

ω0 ∧ ω1 + ω2 ∧ ω3 = −adr ∧ σ1 +
p2 − q2

4

2idz ∧ dz̄

(1 + |z|2)2
, (2.12)

(ω0 ∧ ω2 + ω3 ∧ ω1) + i(ω0 ∧ ω3 + ω1 ∧ ω2) =
(p ei

ψ

2 dz − q e−i
ψ

2 dz̄) ∧ (dr − ia σ1)

1 + |z|2

where p and q are defined by (2.5). Then, the [3rd row] of S gives

1− |z|2

1 + |z|2

[

(p2 − q2)

4

2idz ∧ dz̄

(1 + |z|2)2
− adr ∧ σ1

]

− 2 Im

[

z̄ dz ∧
(

p (dr − ia σ1)
)

− q z̄ dz̄ ∧
(

e−iψ (dr − ia σ1)
)

(1 + |z|2)2

]

,

(2.13)

and [1st row] + i [2nd row] gives

2z

1 + |z|2

[

(p2 − q2)

4

2idz ∧ dz̄

(1 + |z|2)2
− adr ∧ σ1

]

− i
dz ∧

(

p (dr − ia σ1)
)

− q dz̄ ∧
(

e−iψ (dr − ia σ1)
)

(1 + |z|2)2

+ i
q z2dz ∧

(

eiψ (dr + ia σ1)
)

− z2 dz̄ ∧
(

p (dr + ia σ1)
)

(1 + |z|2)2
.

(2.14)

Recall that a(r) = 2r + rodd, p(r) = r + rodd and q(r) = 2m+ reven near r = 0. It follows that

the 2-forms (2.13) and (2.14) are indeed smooth.

From (2.13) and (2.14), one sees that the restrictions of the 2-forms to the zero section Σ

become

1− |z|2

1 + |z|2

[

−2im2 dz ∧ dz̄

(1 + |z|2)2

]

and
2z

1 + |z|2

[

−2im2 dz ∧ dz̄

(1 + |z|2)2

]

,

and thus Σ is the “twistor” sphere. Namely, it is the parameter space of the Kähler forms.

The restriction of any Kähler form on Σ has zero total integral. The homology class [Σ] is a

Lagrangian class with respect to any Kähler form.

Denote the complex structure corresponding to the self-dual 2-form given by the [i-th row]

of S by Ji, and the complex structure on Σ by JS2 . By regarding the embedding of Σ as a

map u : S2 → M , the above computation shows that Ji ◦ du = −xi du ◦ JS2 , where x1, x2,

and x3 are the standard coordinate functions on S2 satisfying x1 + ix2 = 2z/(1 + |z|2) and

x3 = (1− |z|2)/(1 + |z|2). In particular, the map u obeys

du ◦ JS2 = −x1 J1 ◦ du− x2 J2 ◦ du− x3 J3 ◦ du . (2.15)
5



2.4. Curvatures. We compute the curvature components of M in this section. Recalling the

formula of the R
1
0 component

R
1
0 = dω1

0 − ω2
0 ∧ ω

1
2 − ω3

0 ∧ ω
1
3

and substituting the connection forms from (2.9), we derive

R
1
0 =

a′′

a
ω0 ∧ ω1 − κ(a, b, c)ω2 ∧ ω3 ,

where κ(a, b, c) is defined by

κ(a, b, c) ≡
1

2(abc)2
[

2a4 − a2(b− c)2 − a3(b+ c) + a(b− c)2(b+ c)− (b+ c)2(b− c)2
]

.

(2.16)

On the other hand, from (2.2), it can be checked that a′′/a = κ(a, b, c), or R1001 = R2301,

a fact that can be derived alternatively from the hyper-Kähler condition. One verifies directly

that κ(a, b, c) = κ(a, c, b) and κ(a, b, c) + κ(c, a, b) + κ(b, c, a) = 0. Due to the formal cyclic

symmetry of (a, b, c), all the non-trivial components of the Riemann curvature tensor are listed

as follows (up to the symmetry of the curvature tensor).































R1001 = R2301 = R2332 = κ(a, b, c) =
a′′

a
,

R2002 = R3102 = R3113 = κ(b, c, a) =
b′′

b
,

R3003 = R1203 = R1221 = κ(c, a, b) =
c′′

c
.

(2.17)

2.5. Totally geodesic surfaces. In [2, ch.7 and 12], two kinds of totally geodesic surfaces are

introduced to study the geodesics of the ambient space [2, ch.13].

(i) In the formulation here, the first kind is the fiber of the −4-bundle. For example, set

z = 0. The induced metric is dr2 + a2

4 dψ
2.

(ii) The second kind is topologically a cylinder. For instance, consider (r eiψ, z) = (s e−2iθ, eiθ)

for (s, eiθ) ∈ R× S1. The induced metric is ds2 + c2dθ2 for s > 0, and ds2 + b2dθ2 for

s < 0. One may also take the S1-factor to be the great circle, {Im z = 0} or {Re z = 0},

and take the R
1-factor to be a line on the reiψ-plane with suitable direction.

Each of the above examples is holomorphic with respect to some complex structure. The readers

are directed to [2] for more discussions.
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3. Geometric properties of the minimal sphere

3.1. Strong stability. The Jacobi operator of the volume functional on a minimal submanifold

is J = (∇⊥)∗∇⊥ +R−A. The concrete form of the zeroth order part is

(R−A)(V ) =
∑

µ,ν



−
∑

ℓ

RℓµℓνV
µ −

∑

ℓ,k

hµℓkhνℓkV
µ



 eν

on a normal vector V =
∑

µ V
µeµ. Here, k, ℓ are indices for the orthonormal frame of the

tangential part, and µ, ν are for the normal part. In [12, Definition 3.1], a minimal submanifold

is said to be strongly stable if R−A is pointwise positive definite. It is clear that strong stability

implies strict stability, i.e. J is a positive operator. In [10, Proposition 5.5], the minimal sphere

Σ is shown to be strictly stable. We show that it is indeed strongly stable.

Proposition 3.1. The minimal sphere Σ in the Atiyah–Hitchin manifold is strongly stable.

Proof 1: direct computation. Note that the indices 2, 3 are tangential directions, and 0, 1 are

normal directions. According to (2.4) and (2.9), the components of its second fundamental

form are

1

2m
= −h022 = h033 = h123 = h132 and 0 = h023 = h032 = h122 = h133 .

In [2, Remark on p.37], Atiyah and Hitchin showed that Σ is not a totally geodesic by repre-

sentation theory. By plugging (2.4) into (2.16),

κ(a, b, c) = −
3

2m2
and κ(b, c, a) = κ(c, a, b) =

3

4m2
at r = 0 . (3.1)

With (2.17), the components of R−A are as follows.

−

3
∑

j=2

Rj0j0 −

3
∑

j,k=2

h0jkh0jk = R2002 +R3003 − (h022)
2 − (h033)

2 =
1

m2
,

−
3

∑

j=2

Rj1j1 −
3

∑

j,k=2

h1jkh1jk = R2112 +R3113 − (h123)
2 − (h132)

2 =
1

m2
,

and the off-diagonal part vanishes. Clearly, R−A is positive definite. �

There is a calculation-free argument. Here is the brief explanation.

Proof 2: special Lagrangian type argument. Although the minimal sphere can never be (special)

Lagrangian, the argument in [12, Appendix A.1] works as well. Note that for any p ∈ Σ, TpΣ

is a special Lagrangian plane with respect to some Calabi–Yau structure. For instance, when

|z| = 1, TpΣ is Lagrangian with respect to (2.13). Its phase with respect to (2.14) is basically

arg z. The computation in [12, Appendix A.1] is tensorial. By using the complex structure

determined by the holomorphic volume form (2.14), the computation works at any point with
7



|z| = 1. Since Σ is the twistor sphere, the argument works everywhere on Σ. It follows that

R−A, as a linear map on the normal bundle, is a multiple of the identity map. �

By applying [12, Theorem 6.2], the minimal sphere Σ is C1 stable under the mean curvature

flow.

Corollary 3.2. There exists an ε > 0 which has the following significance. For any surface Γ

satisfying supq∈Γ
(

r2(q) + (1 + (ω2 ∧ ω3)(TqΓ))
)

< ε, the mean curvature flow Γt with Γ0 = Γ

exists for all time, and converges smoothly to Σ as t→ ∞.

Here r is considered to be the distance function to the zero section and the 2-form −ω2 ∧ ω3

is parallel along geodesics normal to Σ by (2.9).

3.2. Estimates on the derivatives. In order to say some global property of the minimal

sphere, a better understanding on the coefficient functions is needed.

Lemma 3.3. The coefficient functions a, b, and c of the Atiyah–Hitchin metric (2.1) obey the

following relation.

1 >
r a′(r)

a(r)
>
r c′(r)

c(r)
>

−r b′(r)

b(r)
> 0

for any r > 0.

Proof. This lemma can be proved easily by using the theory established in [2, ch.9 and 10]. The

variable ξ in [2] is the geodesic distance r here. The key ingredients are summarized as follows.

Atiyah and Hitchin introduced the functions

x =
a

c
and y =

b

c
.

Both x and y can serve as the radial coordinate. In fact, they mainly use x as the variable in

[2, ch.10]. At r = 0, (x(0), y(0)) = (0,−1), and (x(r), y(r)) → (1, 0) as r → ∞. That is to say,

the domain of x is [0, 1); the domain of y is [−1, 0). When r > 0, the curve (x(r), y(r)) lies

entirely in the region

y < −1 + x , 0 < x < 1 , −1 < y < 0 . (3.2)

The bound y ≤ −1 + x is given by [2, Lemma 10.1]. From its proof, it is not hard to see that

the equality only happens at (x, y) = (0,−1), or r = 0. It is also illustrative to give their

expansions (2.4) near r = 0,

x(r) =
2

m
r −

1

m2
r2 +O(r3) and y(r) = −1 +

1

m
r −

1

2m2
r2 +O(r3) .

The equations (2.2) become

a′ =
x2 − (y − 1)2

2y
, b′ =

y2 − (x− 1)2

2x
, c′ =

1− (x− y)2

2xy
.

8



The derivatives of x(r) and y(r) are

x′ = −
1

c

(1− x)(1 + x− y)

y
and y′ = −

1

c

(1− y)(1 + y − x)

x
.

It follows from (3.2) that b′ > 0 when r > 0. We compute

c′

c
+
b′

b
=

1

c

1− x+ y

y
,

a′

a
−
c′

c
=
x′

x
=

1

c

(1− x)(1 + x− y)

x(−y)
.

According to (3.2), both quantities are positive when r > 0.

It remains to show that a ≥ r a′. With (2.4), a
a′

= r + 1
2m2 r

3 + O(r4) near r = 0. Hence,
a
a′
> r for sufficiently small r. The derivative of a

a′
−r in r is a

(a′)2
(−a′′). By invoking [2, Lemma

10.10], a′′ < 0 when r > 0. We will say something about their proof momentarily.

To sum up, a
a′
− r is monotone increasing in r, and is positive for small r. Therefore, it must

be positive for any r > 0. This finishes the proof of this lemma. �

It follows from (2.17) that

a′′ = aκ(a, b, c)

=
1

c

2x4 − x2(y − 1)2 − x3(1 + y) + x(1− y)2(1 + y)− (1− y)2(1 + y)2

2xy2

where κ is defined by (2.16). One can study the maximum of the numerator over the closure

of (3.2). It turns out that the maximum is 0, and is achieved only at (0,−1) and (1, 0). The

argument of [2, Lemma 10.10] is cleverer. They work with

a′′ =

(

x

y
+

1− x2 − y2

2y2
dy

dx

)

dx

dr
,

and analyze it according to whether dy
dx ≤ 1 or not. The sign of b′′ is examined in [2, Lemma

10.19]; it is negative when r > 0. For c′′, it is positive for small r, and negative for large r. See

[2, last paragraph on p.99]. Note that the notion of convexity/concavity in [2] is different from

the usual one. These convexity/concavity properties are directly related to the geometry of the

surfaces mentioned in section 2.5.

3.3. Calibration. We show that the minimal sphere is actually a minimizer of the area func-

tional. According to J. Lotay, this was known to M. Micallef. The theory of calibration can be

found in [8, §II.4].

Proposition 3.4. The minimal sphere Σ in the Atiyah–Hitchin manifold is a calibrated sub-

manifold. Therefore, it minimizes the area within its homology class.
9



Proof. The only task is to construct a closed 2-form of comass one, whose restriction on Σ

coincides with its area form. Take Θ = m2 σ2 ∧ σ3 = −m2

bc
ω2 ∧ ω3. From the expression

m2 σ2 ∧ σ3, it is easy to see that dΘ = 0 and Θ|Σ = dvolΣ.

It remains to check that comass one condition. According to Lemma 3.3, (bc)′ < 0 when

r > 0. It follows that bc ≤ −m2 for any r, which implies that Θ has comass one. �

3.4. Two-convexity of the distance function. In this section, we apply the barrier function

argument to prove the rigidity of the minimal sphere in the Atiyah–Hitchin manifold. Here is

a simple fact in linear algebra.

Lemma 3.5. Let Q be a symmetric matrix on R
n, with eigenvalues λn ≥ · · · ≥ λ2 ≥ λ1. Fix

k ∈ {1, · · · , n}. Then, the minimum of

{

trL(Q)
∣

∣ L ⊂ R
n is a vector subspace of dimension k

}

is exactly
∑k

j=1 λj.

Proof. Regard the domain as the Stiefel manifold. Suppose that extremum is achieved by L,

which has orthonormal basis {v1, · · · ,vk}. The Lagrange multiplier equation says that Qvj ∈ L

for any j ∈ {1, . . . , k}. That is to say, L is invariant under Q. This lemma follows from the

standard property of symmetric matrices. �

Definition 3.6. On a Riemannian manifold, a smooth function f is said to be k-convex at a

point p if the sum of the smallest k eigenvalues of Hess(f)|p is positive.

It turns out that there is a naturally defined (semi-) two-convex function on the Atiyah–

Hitchin manifold.

Theorem 3.7. In the Atiyah–Hitchin manifold M , the surface Σ is the only compact minimal

2-surface. Also, there exists no compact, three-dimensional, minimal submanifold.

Proof. Consider the square of the distance function to Σ with respect to (2.1). By (2.9),

dr2 = −2r ω0 ,

⇒ Hess(r2) = 2

(

ω0 ⊗ ω0 + r
a′

a
ω1 ⊗ ω1 + r

b′

b
ω2 ⊗ ω2 + r

c′

c
ω3 ⊗ ω3

)

.

Lemma 3.3 and Lemma 3.5 imply that r2 is two-convex when r > 0.

Another way to derive the two-convexity of r2, albeit only in a tubular neighborhood of Σ, is

to apply [12, Proposition 4.1], according to which strong stability of Σ implies that there exist

positive constants ε and δ such that

trLHess(r
2) ≥ δ r2

10



at any point p with r ∈ [0, ε), and any two-plane L ⊂ TpM . This can also be proved directly

by using the expansions (2.4), and switching back to the rectangular coordinate for the fibers.

The rest of the argument is almost the same as that for [11, Lemma 5.1]. Suppose that

N ⊂ M is a compact minimal submanifold with dimension no less than 2. It follows from the

semi-two-convextiy of r2 that

∆N (r2|N ) = trN (Hess(r
2)) ≥ 0 .

Appealing to the maximum principle, r2 must be a constant on N . Then, trN Hess(r2) vanishes.

This occurs only when r2 vanishes on N . �

In view of the recent work of [9], the uniqueness theorem extends to the weaker setting of

stationary integral varifolds.

Here are some further remarks:

(i) For the examples studied in [11], the minimal submanifolds are totally geodesic and

the corresponding r2 is (semi-one-) convex. It leads to a stronger rigidity phenomenon

which does not hold true in the Atiyah–Hitchin manifold.

(ii) For small r, the series expansion of Hess(r2) is derived for a general minimal submani-

fold in [12, Proposition 4.1]. The second fundamental form appears as the coefficients

of the linear term. Unless it is a totally geodesic, Hess(r2) cannot be semi-positive

definite for small r.

(iii) Bates and Montgomery [3] proved that the Atiyah–Hitchin manifold admits closed

geodesics, and thus cannot support any convex function.

(iv) It can be shown that those examples of closed minimal 2-spheres in hyper-Kähler

K3 surfaces constructed by Foscolo [6, Theorem 7.4] are indeed strongly stable. The

distance function to such a minimal 2-surface is locally two-convex, and thus a local

uniqueness theorem can be proved for these examples.

To say more, Foscolo proved that the minimal sphere still obeys (2.15). To validate

Proof 2 of Proposition 3.1, it remains to check that the minimal sphere has positive

Gaussian curvature. When the gluing parameter in [6] is sufficiently small, one can

argue by continuity that the Gaussian curvature is still positive.

(v) Dancer [5] constructed non-trivial deformations of the hyper-Kähler metric on M .

Recently, G. Chen and X. Chen [4] proved that Atiyah–Hitchin manifold and the

Dancer’s deformations are all the ALF-D1 manifolds. When the deformation parameter

is small, it can be shown that the minimal 2-sphere persists, and is still strongly stable

and locally unique. It is interesting to investigate the global uniqueness of the minimal

2-sphere in Dancer’s deformation.

(vi) The ALF-D0 manifold is the quotient of M by an isometric Z/2-action. The image of

Σ under the quotient map is a minimal RP2. Since the Z/2 action is isometric, the
11



corresponding statements of Proposition 3.1 and Theorem 3.7 still hold true. Namely,

the minimal RP2 is strongly stable, and is globally unique.
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