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TWO ¢-SUMMATION FORMULAS AND ¢-ANALOGUES OF
SERIES EXPANSIONS FOR CERTAIN CONSTANTS

BING HE AND HONGCUN ZHAI

ABSTRACT. From two g-summation formulas we deduce certain series expan-
sion formulas involving the g-gamma function. With these formulas we can
give g-analogues of series expansions for certain constants.

1. INTRODUCTION

Throughout this paper we always assume that || < 1. The ¢-gamma function
I'y(x), first introduced by Thomae and later by Jackson, is defined as [5, p. 20]

(¢; 4)oo 1
1.1 T, (z) = ~Ldx (1 _ pyi-z
where (z; q)o is given by

o0

(z:0)00 = [T (1= 2a").

n=0

When ¢ — 1, the ¢g-gamma function reduces to the classical gamma function I'(x)
which is defined by [I]: for Re z > 0,

I(z) = / t* e tat.
0
From the definition of the ¢g-gamma function we know that

(";@)n  Tqlx+n)
(1.2) (T We R

where (z; q), is the g-shifted factorial given by

n—1

(z:90=1, (2;q)n = H(l — 2q") forn > 1.
k=0

We now extend the definition of (¢”; ¢),, to any complex .

Definition. For any complex «, we define the general ¢-shifted factorial by

Ty(z +a)

(1.3) (@"0)a = )

(1-9)°
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For brevity, we denote ((fm_’i?)i by (z]q)a, namely, (z|q)q = %. For any
non-negative integer n, we have
n—1
(@lg)n = H [z + klq
k=0

and

In particular,

(zlg)o = 1, (z[q)1 = [2lq, (z]@)-1 = o1,

Gosper in [7] introduced g-analogues of sinx and 7 :
(> %60 (6% 4% o

CHDES
(%)%
(¢:0%)%

sing(mx) = q(c”_l/z)2

and
mg = (1— q2>q1/4
They satisfy the following relations:

lim singz =sinz, limnr, ==
q—1 q—1

and

,
(1.4) T (2)lp(l —z) = mqw—lk
When ¢ — 1, the last identity reduces to the Euler reflection formula [I] (1.2.1)]:
T
P(z)l(1—2a)= Sn(ra)”

Ramanujan [I3] recorded without proof 17 series expansions for 1/, among
which, the proof of the first three was briefly sketched in [I2]. The first complete
proof of all 17 formulas was found by the Borwein brothers [3]. D.V. Chudnovsky
and G.V. Chudnovsky [4] proved some of the Ramanujan’s series representations
for 1/m independently and established new series as well. The readers can refer to
the paper [2] for the history of the Ramanujan-type series for 1/m. Recently, using
certain properties of the general rising shifted factorial and the gamma function,
Liu in [I0, T1] supplied many series expansion formula for 1/7. ¢-Analogues of two
Ramanujan-type series for 1/m were established by Guo and Liu [9] using ¢-WZ
pairs and some basic hypergeometric identities.

Our motivation for the present work emanates from [9) 10, IT]. In this paper
we shall deduce from two g-summation formulas certain series expansion formulas
involving the g-gamma function. These formulas allow us to give g-analogues of
series expansions for certain constants. These series expansion formulas are as
follows.
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Theorem 1.1. For any complex number a and Re(c —a — b) > 0 we have

i (@lg®)atn(l = alg®)btn o(c—a—tyn
]2 Te(c+n+1)

n=0
_ (alg®)a(l—alg®)lyz(c—a=b) o ) sing(ma)
(1 —al@®)ea(@d®es ° Te

where [nl]q! is given by
0! =1, [nly! = [[[k]g forn > 1.
k=1

Theorem 1.2. For Re(a+b+c+d+14+a—5—v—40) >0 we have

i (1= ¢*" 24729 (0]g®) atn (Bl (Vg n—c(6]¢*)n—a An
70 (1- qz)[n]qzl(l +a = Bl¢?)atbin(l + @ = ¥|¢*)atctn(l + @ = 61¢%)ardtn
CTe(l+a-Ble(l+a—yle(l+a—-0)lp2+a—B—v—9)
Fp(@lp(l+a—-F—-—7)Tp(l+a—-B-0Tep(l+a—y—19)
" (Bla*)-b(71a*)-c(0l¢*)—a(2 + & — B — 7 = 0|¢*)atbsctd—1

(1+a—=8=7¢*)atbtc(l + o = B =0|¢*)atp+a(l + @ =7 = 6]¢%)atctd’
where A=2(a+b+c+d+1+a—p5—v—19).

The next section is devoted to our proof of Theorems [[I] and In Section
we deduce g-analogues of certain series expansions for 1/7. In the last section
several g-analogues of series expansions for 72 are also obtained.

2. PROOF OF THEOREMS [Tl AND
Proof of Theorem [l Recall from [5 (1.5.1)] the ¢-Gauss summation formula:

@D (/0 Doc(e/ b
,;J(q;q) (C;q)n( fab)” = G awlc/abia)es” 17T

Making the substitutions: ¢ — ¢2, a — ¢%>*, b = ¢*°, ¢ — ¢*° in the above identity
and using (L)) and (L2) we have

i Ppz(a+n)2(0+n) 5y _ Tg(@)lg2(0)I2(c —a—b)
2

n

n]g2!T g2 (c +n) Fp(c—a)lp(c—0b)

n=0
Replacing a, b, ¢ by a + a, b+ 1 — «, ¢+ 1 respectively in the above formula we
get

oo

Z Fela+nt+a)lpb+ntl—a) 5 qpn
21 s ]2 pe(c+n+1)
_ Tpe(a+a)lpe(b+1—a)le(c—a—0b)

q
Fp(c—a+1—-a)lp(c—b+a)
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It follows from (L3]) that
Lye(a+a) = (alg?)alg (),
Te(b+1—a) = (1—alg®)ly(1—a),
Ty(a+n+0a) = (lg2)asnlg2 (),
Pp(b+n+1—0a)=(1—alg)penly(1—a),
Pple—a+1-a) = (1—alg®)ealp(1l - a),
Dya(e—b+a) = (alg®)esTye ().
Substituting these formulas into (Z1IJ) and simplifying we arrive at

i (lg®)a+n(1 = @lg*)p+n g2lema—bm (alg®)a(l = alg®)pTg2(c —a —b)
o ]2l p2(c+n+1) (1= fg?)e—a(]g?)c—pl 2 ()T (1 — )

From this identity and () we can deduce the result readily. This completes the
proof of Theorem [T.11 O
Proof of Theorem[1L.2. Recall the following summation formula for the basic hyper-
geometric series [5, (2.7.1)]:

(22) o6 aqa2 —qa®,b,c,d aq\ _ (ag,aq/be, ag/bd, ag/cd; q)o
2 0% \ab, —a? ag/b,ag/e,ag/d T bed) T (aq/b, aglc, aq]d, ag/bed; q)o’

where

a
ﬁ’ < 1 and g¢5 is the basic hypergeometric series given by
C

[e%S)
¢ <a’17a'27a'37a’4va'57a'6 q,z > (a15a25a3;a45a55a6;q)nzn
6¥5 s & - E

b17b27b37b47b5 0 (q,bl,b27b37b4,b5;q)n

Replacing (¢, a,b,c,d) by (¢2,¢**,¢*,¢**,¢*") in 22) and employing (L2) and

([L3) we have

(2:3)

Z q“““)r 2(a+n)lg2(b+n)Tg2(c+n)lg2(d + n) 2n(14+a—b—c—d)
= (1=@)n]eTe(l+a—b+n)le(l+a—ct+n)le(l+a—d+n)

_ I‘qz (b)rqz (C)qu (d)rqz (1 +a—b—c— d)
Tpe(l+a-b—clp(l+a—-b—dle(l+a—c—d)’
It follows from (I.I) that

Pz(a+n+a) = (ag*)arnlg2 (@), Doz (n = b+ B) = (Bla*)n—sTg2 (6),
Pez(n—c+7) = (Vg*)n-cLq2 (1), Doz (n — d + 8) = (8]¢*)n—al'g2 (),

Lg2(8 =) = (Bl¢*) -T2 (8), Tz (v — ) = (V|g?) L2 (7), T2 (8 — d) = (6]¢°)—aT'g2 (9),
Tpl@+b+n+l+a—p)=1+a-48l¢ )a+b+nF :(1+a—p),
Pelatetn+l+a—7)=0+a=9¢")aternl2(1+a—7),
Fela+d+n+1l+a—208)=14a—15¢")ararnlg2(1 +a =),

Telatbtetlta—B-9)=0+a-B8-7¢ )l 2(1+a—5—7),
Telatb+d+l+a—F-08)=(1+a—p8-0¢)arpsal(l+a—5-0),
Pelatetrd+lta—y=208)=(1+a—v=0¢*)areral2(1+a—7—9)
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and
Fp(a+b+c+d+l+a—-F—v—90)

=2+a—-B-7=0dartrera1lp2+a—B—v—9).
Making the substitutions: « > a+a, b = 8 —-b,¢c > ~v—¢, d — 6 —d in ([Z3)
and then substituting the above identities into the resulting equation we can easily
deduce the result. This finishes the proof of Theorem O

3. ¢-ANALOGUES OF CERTAIN SERIES EXPANSIONS FOR 1/m

In this section we employ Theorems[IT] and [[2] to deduce g-analogues of certain
series expansions for 1/7.

1
Setting a = 3 in Theorem [[T] and using the fact sin, g =1 we get
Theorem 3.1. For Re(c —a —b) > 0 we have
i (1/21¢%)a+n(1/200*)b1n_a(c—a—tyn _ (1/206})a(1/2¢*)Tg2(c —a—b) ¢"/*

"0 [n]g2!Tg2(c+n+ 1) (1/2¢%)c—a(1/2¢%)c—b Ty
We put a = b =0 and ¢ = [ in Theorem 3.1 to arrive at

Corollary 3.1. If 1 is positive integer, then
1/4

o (1/206))% o a
72) [n]qZ!(l|q2)n+1q - me(1/2]¢%)F

Example 3.1. (I = 1) We have

o (1/21¢*)% 5, (1+49)¢"*
Z[n]qz![nﬂ]qz!q T

n=

This expansion for 1/7, is a g-analogue of the series for 1/7 [0, p. 174]:
i (1/2)n 4
= nl(n+1)! 7

where (1/2),, is the shifted factorial given by

n—1

(1/2)0 =1, (1/2)n = [J(1/2+ k) forn > 1.

k=0
Actually, this expansion for 1/m, was also obtained by Guo [8] (1.8)].
Example 3.2. (I = 2) We have

oo

Z (1/206*5 (At e

n]e2!n+ 22! m(1+q+¢2)%

This series expansion for 1/m, can be considered as a g-analogue of the series for

1/7:
o~ _(1/2)2 16
;n!(n+2)! T on

We set @ = b= —1 and ¢ = [ in Theorem [B.1] to deduce
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Corollary 3.2. Ifl is a non-negative integer, then
(1/2|¢%)7 2(142) (n+1)
2'[1+7’L+ 1]q2'
_a +a)*[l + 1]q2!2 9/4
7T¢1(1/2|‘12)l2+1
Example 3.3. (I = 0) We have
219%) 4n 1+¢q)*
(1+Q)+Q+Z /|Q)q4+4 ( Q)q9/4'

+ 1] 2! Tq

P+l + 12 + T+ 1 +1], 'Z )

This series expansion for 1/m, can be regarded as a g-analogue of the series for
1/ 6l p. 174]:

> 1/2 16

Example 3.4. (I=1) We have

- 1/2|¢%)} (14 ¢)°(1 +¢%)?
2(140)2(1402) 4+ + (1442 ( n 6n+6 _ 9/4
¢ (1+a) (I+a)+a + (14 >;[n+1]q2![n+2]qz!q (1 +q+ )

This expansion for 1/7, is also a g-analogue of the series for 1/7 :

(122 256
9+2 T = —,
+ ; n+1D(n+2)! 97

Remark 3.1. Besides those formulas displayed in Theorem B.I]and its consequences,
we can give some other new series expansions for 1/m, with the change of a. We
shall not display them out one by one in this paper.

Theorem 3.2. For Re(a + b+ c+d) > 0 we have

o0

Z (1- q4n+2a+1)(1/2|q2)a+n(1/2|q2)n—b(1/3|q2)n—0(2/3|q2)n—dq2(a+b+c+d)n
ne0 (1- qz)[n]qz {(1¢?)a+b+n(7/616%) atc+n(5/614) atd+n

_ (1/2|q2)—b(1/3|q2)—0(2/3|q2)—d(1|q2)a+b+c+d—l ) [1/6]112(‘]4/37q2/3§q2)ooq1/4'

(1/3|q2)a+b+d(2/3|q2)a+b+6(1/2|q2)a+c+d (ql/S, q5/3§ qz)ooﬂq
Proof. Tt follows from (L4) that
(3.1) 2,(1/2) = mgq~ /%,
(/300 (2/3) = s,
T2 (7/6)T 42 (5/6) = [1/6] 2T g2 (1/6)T g2 (5/6)
- 51nq(7r/6) [1/6]2g 7>/,

Then, by the definition of sin,,

L2(7/6)T'42(5/6) _ sing(m/3) [1/6] 2ql/12 _ (q4/37 % q2)00[1/6]q2

T2 (1/3)02(2/3)  sing(m/6) " " (@'/%, 673 ¢%) 0

Therefore, the result follows easily by setting (o, 8,v,9) = (1/2,1/2,1/3,2/3) in

Theorem [[2] and applying the identities I';(1) = 1, (3] and B2). O
Taking (a,b,c,d) = (1,0,0,0) in Theorem B.2] we can get

(3.2)
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Example 3.5. We have
i (1 —g™*) (1 — ¢ *1)(1/2|¢*)7 (1/31¢*)n(2/3]4*)n 2n
= (=) (1 = ¢ +2)([nlg21)*(7/6]¢?)14n(5/6]¢%)14n
B [1/6]q2 (q4/37 q2/3; q2)ooq1/4
- [1/8]212/3]2[1/2)2 (413, 473 4 ooy

This series expansion for 1/m, can be regarded as a g-analogue of the series for
1/m:

i (4n +3)(2n +1)(1/2)7(1/3)n(2/3)n V3B
(n+1)(6n + 1)(6n + 5)(6n + 7)(n))2(1/6),(5/6), 67

Putting (a,b,¢,d) = (0,0,0,1) in Theorem 321 we can deduce that
Example 3.6. We have

¢*/® i 1—q4"“)(1/2|q) (1/31¢*)n(2/31¢*)n-1 a1,
(1+q)[1/3]42[5/6]2 = (1 —q*)([n]g2))?(7/6]q%)n(5/6]%)14n
[1/6](1 ( 4/37q2/3;q2)ooq11/12
TUAERL e (@R ¢ oy

This series expansion for 1/m, can be considered as a g-analogue of the series for
1/7:

5 i 4n+1 1/2> (1/)a(2/3ns 5
18 —~ )?(7/6)n(5/6)14n V3r
4. ¢-ANALOGUES OF SERIES EXPANSIONS FOR 72

In this section we use Theorem [[2to give g-analogues of some series expansions
for 2.

Theorem 4.1. For Re(a+b+c+d—1/2) > 0 we have

i 4n+2a)(1|q Jatn—1(1/2¢*)n-(1/2]g*)n—c(1/2]g*)n- dq2(a+b+c+d)n n
n—0 1 - q 2'(1/2|q )a+b+n(1/2|q )a+c+n(1/2|q )a+d+n

Wq(1/2|qz)—b(1/2|q2)—c(1/2qu)—d(1/2|q2)a+b+c+d—1
(1|q2)a+b+cfl(1|q2)a+b+d71(1|q2)a+c+d71q1/2

Proof. It can be dedeuced from I'j(x + 1) = [z]¢I'4(2) and Theorem [[2 that
i (1-
n—O q2 1] 2'(1 +a = Bl¢*)atbtn(1 + @ =7[¢*)atetn(l + @ = 01¢*)atdin
CTe(+a—-BTe(l+a—y)Tpl+a—-0)p2+a—B—v—90)
CTe(a+DleC+a—B—9)le22+a—-B-Te22+a—7—46)

(Bla*)-b(714*)-c(0l¢*)-a(2 + & = B — 7 = 8|¢*)asbrcrd—1

2+a—B=7atbre—1(2+a = B=0lg*)atp+d-1(2 + a =7 = [¢*)atcrd—1
Then the result follows readily from by setting («, 8,7,0) = (0,1/2,1/2,1/2) in the

above identity and applying the identities I'y(1) = 1 and (BI]). O
Taking (a, b, c,d) = (1,0,0,0) in Theorem A.T] we can obtain

g 20+2) (@ + 116 asn—1(B18°)n—(116*)n—c(0]¢*)n—a An
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Example 4.1. We have

i 1+q2"+1)q m
PRIESDE (1 — @2)2¢\ /2"

This series expansion for wg can be regarded as a g-analogue of the series for 72 :

- =T
e (m+1)2 8

Actually, this expansion for 77 has been obtained by Sun [14] (1.2)].

Setting (a, b, c,d) = (1,1,1,0) in Theorem ATl we can derive
Example 4.2. We have
i 1 +q2n+1)q5n B 7-‘—2(1 +q+q2)q3/2
2021 — @2 2(1— g2 3)2 (1 + ¢2)(1— ¢2)°

This series expansion for wg can also be considered as a g-analogue of the series

for w2 :

i 1 372
— (2n—1)2(2n+1)2(2n +3)* 256

Putting (a,b,¢,d) = (1,1,1,1) in Theorem [4.1] we can deduce

Example 4.3. We have

(1+q9¢* i (14 ¢t g™
(1 _ q)5(1 _ q3)3 — (1 _ q2n71)3( 2n+1)2(1 2n+3)

m(l+q+)1+q+3+¢ +q)q5/2
(1+¢2)3(1—q%)8

is also a g-analogue of the series for 72 :

This series expansion for wg

1 1 1572
27 ; (2n —1)3(2n 4+ 1)2(2n +3) 4096
Remark 4.1. Besides those formulas displayed in Theorems B.2] and 4.1 and their
consequences, we can give a general series expansion for 1/ wg by taking («, 8,7,0) =
(1/2,1/2,1/2,1/2) in Theorem L2} from which many series expansions for 1/72 can
be deduced. We shall not display them out one by one in this work.
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