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TWO q-SUMMATION FORMULAS AND q-ANALOGUES OF

SERIES EXPANSIONS FOR CERTAIN CONSTANTS

BING HE AND HONGCUN ZHAI

Abstract. From two q-summation formulas we deduce certain series expan-
sion formulas involving the q-gamma function. With these formulas we can
give q-analogues of series expansions for certain constants.

1. Introduction

Throughout this paper we always assume that |q| < 1. The q-gamma function
Γq(x), first introduced by Thomae and later by Jackson, is defined as [5, p. 20]

(1.1) Γq(x) =
(q; q)∞
(qx; q)∞

(1− q)1−x,

where (z; q)∞ is given by

(z; q)∞ =

∞
∏

n=0

(1− zqn).

When q → 1, the q-gamma function reduces to the classical gamma function Γ(x)
which is defined by [1]: for Re x > 0,

Γ(x) =

∫

∞

0

tx−1e−tdt.

From the definition of the q-gamma function we know that

(1.2)
(qx; q)n
(1− q)n

=
Γq(x+ n)

Γq(x)
,

where (z; q)n is the q-shifted factorial given by

(z; q)0 = 1, (z; q)n =

n−1
∏

k=0

(1− zqk) for n ≥ 1.

We now extend the definition of (qx; q)n to any complex α.

Definition. For any complex α, we define the general q-shifted factorial by

(1.3) (qx; q)α =
Γq(x+ α)

Γq(x)
(1− q)α
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For brevity, we denote
(qx; q)α
(1− q)α

by (x|q)α, namely, (x|q)α =
Γq(x + α)

Γq(x)
. For any

non-negative integer n, we have

(x|q)n =

n−1
∏

k=0

[x+ k]q

and

(x|q)−n =
Γq(x − n)

Γq(x)
=

(1− q)n

(qx−n; q)n
,

where [z]q is the q-integer defined by

[z]q =
1− qz

1− q
.

In particular,

(x|q)0 = 1, (x|q)1 = [x]q, (x|q)−1 =
1

[x− 1]q
.

Gosper in [7] introduced q-analogues of sinx and π :

sinq(πx) := q(x−1/2)2 (q
2−2x; q2)∞(q2x; q2)∞

(q; q2)2
∞

and

πq := (1− q2)q1/4
(q2; q2)2

∞

(q; q2)2
∞

.

They satisfy the following relations:

lim
q→1

sinq x = sinx, lim
q→1

πq = π

and

(1.4) Γq2(x)Γq2 (1− x) =
πq

sinq(πx)
qx(x−1).

When q → 1, the last identity reduces to the Euler reflection formula [1, (1.2.1)]:

Γ(x)Γ(1 − x) =
π

sin(πx)
.

Ramanujan [13] recorded without proof 17 series expansions for 1/π, among
which, the proof of the first three was briefly sketched in [12]. The first complete
proof of all 17 formulas was found by the Borwein brothers [3]. D.V. Chudnovsky
and G.V. Chudnovsky [4] proved some of the Ramanujan’s series representations
for 1/π independently and established new series as well. The readers can refer to
the paper [2] for the history of the Ramanujan-type series for 1/π. Recently, using
certain properties of the general rising shifted factorial and the gamma function,
Liu in [10, 11] supplied many series expansion formula for 1/π. q-Analogues of two
Ramanujan-type series for 1/π were established by Guo and Liu [9] using q-WZ
pairs and some basic hypergeometric identities.

Our motivation for the present work emanates from [9, 10, 11]. In this paper
we shall deduce from two q-summation formulas certain series expansion formulas
involving the q-gamma function. These formulas allow us to give q-analogues of
series expansions for certain constants. These series expansion formulas are as
follows.
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Theorem 1.1. For any complex number α and Re(c− a− b) > 0 we have

∞
∑

n=0

(α|q2)a+n(1− α|q2)b+n

[n]q2 !Γq2(c+ n+ 1)
q2(c−a−b)n

=
(α|q2)a(1− α|q2)bΓq2(c− a− b)

(1− α|q2)c−a(α|q2)c−b
q−α(α−1) · sinq(πα)

πq
,

where [n]q! is given by

[0]q! = 1, [n]q! =

n
∏

k=1

[k]q for n ≥ 1.

Theorem 1.2. For Re(a+ b+ c+ d+ 1 + α− β − γ − δ) > 0 we have

∞
∑

n=0

(1− q4n+2a+2α)(α|q2)a+n(β|q2)n−b(γ|q2)n−c(δ|q2)n−d

(1− q2)[n]q2 !(1 + α− β|q2)a+b+n(1 + α− γ|q2)a+c+n(1 + α− δ|q2)a+d+n
qAn

=
Γq2(1 + α− β)Γq2(1 + α− γ)Γq2(1 + α− δ)Γq2 (2 + α− β − γ − δ)

Γq2(α)Γq2 (1 + α− β − γ)Γq2(1 + α− β − δ)Γq2(1 + α− γ − δ)

× (β|q2)−b(γ|q2)−c(δ|q2)−d(2 + α− β − γ − δ|q2)a+b+c+d−1

(1 + α− β − γ|q2)a+b+c(1 + α− β − δ|q2)a+b+d(1 + α− γ − δ|q2)a+c+d
,

where A = 2(a+ b+ c+ d+ 1 + α− β − γ − δ).

The next section is devoted to our proof of Theorems 1.1 and 1.2. In Section
3 we deduce q-analogues of certain series expansions for 1/π. In the last section
several q-analogues of series expansions for π2 are also obtained.

2. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Recall from [5, (1.5.1)] the q-Gauss summation formula:

∞
∑

n=0

(a; q)n(b; q)n
(q; q)n(c; q)n

(

c/ab
)n

=
(c/a; q)∞(c/b; q)∞
(c; q)∞(c/ab; q)∞

, |c/ab| < 1.

Making the substitutions: q → q2, a → q2a, b → q2b, c → q2c in the above identity
and using (1.1) and (1.2) we have

∞
∑

n=0

Γq2(a+ n)Γq2(b+ n)

[n]q2 !Γq2(c+ n)
q2(c−a−b)n =

Γq2(a)Γq2(b)Γq2 (c− a− b)

Γq2(c− a)Γq2(c− b)
.

Replacing a, b, c by a + α, b + 1 − α, c+ 1 respectively in the above formula we
get

(2.1)

∞
∑

n=0

Γq2(a+ n+ α)Γq2(b + n+ 1− α)

[n]q2 !Γq2(c+ n+ 1)
q2(c−a−b)n

=
Γq2(a+ α)Γq2 (b+ 1− α)Γq2 (c− a− b)

Γq2(c− a+ 1− α)Γq2 (c− b + α)
.
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It follows from (1.3) that

Γq2(a+ α) = (α|q2)aΓq2(α),

Γq2(b + 1− α) = (1− α|q2)bΓq2(1− α),

Γq2(a+ n+ α) = (α|q2)a+nΓq2(α),

Γq2(b+ n+ 1− α) = (1− α|q2)b+nΓq2(1− α),

Γq2(c− a+ 1− α) = (1− α|q2)c−aΓq2(1− α),

Γq2(c− b+ α) = (α|q2)c−bΓq2(α).

Substituting these formulas into (2.1) and simplifying we arrive at
∞
∑

n=0

(α|q2)a+n(1 − α|q2)b+n

[n]q2 !Γq2(c+ n+ 1)
q2(c−a−b)n =

(α|q2)a(1 − α|q2)bΓq2(c− a− b)

(1− α|q2)c−a(α|q2)c−bΓq2(α)Γq2 (1− α)
.

From this identity and (1.4) we can deduce the result readily. This completes the
proof of Theorem 1.1. �

Proof of Theorem 1.2. Recall the following summation formula for the basic hyper-
geometric series [5, (2.7.1)]:

(2.2) 6φ5

(

a, qa
1

2 ,−qa
1

2 , b, c, d

a
1

2 ,−a
1

2 , aq/b, aq/c, aq/d
; q,

aq

bcd

)

=
(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

,

where

∣

∣

∣

∣

aq

bcd

∣

∣

∣

∣

< 1 and 6φ5 is the basic hypergeometric series given by

6φ5

(

a1, a2, a3, a4, a5, a6
b1, b2, b3, b4, b5

; q, z

)

=

∞
∑

n=0

(a1, a2, a3, a4, a5, a6; q)n
(q, b1, b2, b3, b4, b5; q)n

zn.

Replacing (q, a, b, c, d) by (q2, q2a, q2b, q2c, q2d) in (2.2) and employing (1.2) and
(1.3) we have
(2.3)
∞
∑

n=0

(1− q4n+2a)Γq2(a+ n)Γq2(b+ n)Γq2(c+ n)Γq2(d+ n)

(1 − q2)[n]q2 !Γq2(1 + a− b+ n)Γq2(1 + a− c+ n)Γq2(1 + a− d+ n)
q2n(1+a−b−c−d)

=
Γq2(b)Γq2(c)Γq2 (d)Γq2(1 + a− b− c− d)

Γq2(1 + a− b− c)Γq2 (1 + a− b− d)Γq2 (1 + a− c− d)
.

It follows from (1.1) that

Γq2(a+ n+ α) = (α|q2)a+nΓq2(α),Γq2 (n− b+ β) = (β|q2)n−bΓq2(β),

Γq2(n− c+ γ) = (γ|q2)n−cΓq2(γ),Γq2(n− d+ δ) = (δ|q2)n−dΓq2(δ),

Γq2(β − b) = (β|q2)−bΓq2(β),Γq2(γ − c) = (γ|q2)−cΓq2(γ),Γq2(δ − d) = (δ|q2)−dΓq2(δ),

Γq2(a+ b+ n+ 1 + α− β) = (1 + α− β|q2)a+b+nΓq2(1 + α− β),

Γq2(a+ c+ n+ 1+ α− γ) = (1 + α− γ|q2)a+c+nΓq2(1 + α− γ),

Γq2(a+ d+ n+ 1 + α− δ) = (1 + α− δ|q2)a+d+nΓq2(1 + α− δ),

Γq2(a+ b+ c+ 1 + α− β − γ) = (1 + α− β − γ|q2)a+b+cΓq2(1 + α− β − γ),

Γq2(a+ b+ d+ 1 + α− β − δ) = (1 + α− β − δ|q2)a+b+dΓq2(1 + α− β − δ),

Γq2(a+ c+ d+ 1 + α− γ − δ) = (1 + α− γ − δ|q2)a+c+dΓq2(1 + α− γ − δ)
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and
Γq2(a+ b+ c+ d+ 1 + α− β − γ − δ)

= (2 + α− β − γ − δ|q2)a+b+c+d−1Γq2(2 + α− β − γ − δ).

Making the substitutions: a → a + α, b → β − b, c → γ − c, d → δ − d in (2.3)
and then substituting the above identities into the resulting equation we can easily
deduce the result. This finishes the proof of Theorem 1.2. �

3. q-Analogues of certain series expansions for 1/π

In this section we employ Theorems 1.1 and 1.2 to deduce q-analogues of certain
series expansions for 1/π.

Setting α =
1

2
in Theorem 1.1 and using the fact sinq

π

2
= 1 we get

Theorem 3.1. For Re(c− a− b) > 0 we have

∞
∑

n=0

(1/2|q2)a+n(1/2|q2)b+n

[n]q2 !Γq2(c+ n+ 1)
q2(c−a−b)n =

(1/2|q2)a(1/2|q2)bΓq2(c− a− b)

(1/2|q2)c−a(1/2|q2)c−b
· q

1/4

πq
.

We put a = b = 0 and c = l in Theorem 3.1 to arrive at

Corollary 3.1. If l is positive integer, then

∞
∑

n=0

(1/2|q2)2n
[n]q2 !(l|q2)n+1

q2ln =
q1/4

πq(1/2|q2)2l
.

Example 3.1. (l = 1) We have

∞
∑

n=0

(1/2|q2)2n
[n]q2 ![n+ 1]q2 !

q2n =
(1 + q)2q1/4

πq
.

This expansion for 1/πq is a q-analogue of the series for 1/π [6, p. 174]:

∞
∑

n=0

(1/2)2n
n!(n+ 1)!

=
4

π
,

where (1/2)n is the shifted factorial given by

(1/2)0 = 1, (1/2)n =

n−1
∏

k=0

(1/2 + k) for n ≥ 1.

Actually, this expansion for 1/πq was also obtained by Guo [8, (1.8)].

Example 3.2. (l = 2) We have

∞
∑

n=0

(1/2|q2)2n
[n]q2 ![n+ 2]q2 !

q4n =
(1 + q)4q1/4

πq(1 + q + q2)2
.

This series expansion for 1/πq can be considered as a q-analogue of the series for
1/π :

∞
∑

n=0

(1/2)2n
n!(n+ 2)!

=
16

9π
.

We set a = b = −1 and c = l in Theorem 3.1 to deduce
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Corollary 3.2. If l is a non-negative integer, then

q2(1 + q)2[l + 1]q2 + q2l+4 + [l + 1]q2 !

∞
∑

n=1

(1/2|q2)2n
[n+ 1]q2 ![l + n+ 1]q2 !

q2(l+2)(n+1)

=
(1 + q)2[l + 1]q2 !

2

πq(1/2|q2)2l+1

q9/4.

Example 3.3. (l = 0) We have

q2(1 + q)2 + q4 +

∞
∑

n=1

(1/2|q2)2n
[n+ 1]q2 !2

q4n+4 =
(1 + q)4

πq
q9/4.

This series expansion for 1/πq can be regarded as a q-analogue of the series for
1/π [6, p. 174]:

5 +

∞
∑

n=1

(1/2)2n
(n+ 1)!2

=
16

π
.

Example 3.4. (l = 1) We have

q2(1+q)2(1+q2)+q6+(1+q2)

∞
∑

n=1

(1/2|q2)2n
[n+ 1]q2 ![n+ 2]q2 !

q6n+6 =
(1 + q)6(1 + q2)2

πq(1 + q + q2)2
q9/4.

This expansion for 1/πq is also a q-analogue of the series for 1/π :

9 + 2
∞
∑

n=1

(1/2)2n
(n+ 1)!(n+ 2)!

=
256

9π
.

Remark 3.1. Besides those formulas displayed in Theorem 3.1 and its consequences,
we can give some other new series expansions for 1/πq with the change of α. We
shall not display them out one by one in this paper.

Theorem 3.2. For Re(a+ b+ c+ d) > 0 we have

∞
∑

n=0

(1− q4n+2a+1)(1/2|q2)a+n(1/2|q2)n−b(1/3|q2)n−c(2/3|q2)n−d

(1− q2)[n]q2 !(1|q2)a+b+n(7/6|q2)a+c+n(5/6|q2)a+d+n
q2(a+b+c+d)n

=
(1/2|q2)−b(1/3|q2)−c(2/3|q2)−d(1|q2)a+b+c+d−1

(1/3|q2)a+b+d(2/3|q2)a+b+c(1/2|q2)a+c+d
· [1/6]q2(q

4/3, q2/3; q2)∞q1/4

(q1/3, q5/3; q2)∞πq
.

Proof. It follows from (1.4) that

Γ2
q2(1/2) = πqq

−1/4,(3.1)

Γq2(1/3)Γq2(2/3) =
πq

sinq(π/3)
q−2/9,

Γq2(7/6)Γq2(5/6) = [1/6]q2Γq2(1/6)Γq2(5/6)

=
πq

sinq(π/6)
[1/6]q2q

−5/36.

Then, by the definition of sinq,

(3.2)
Γq2(7/6)Γq2(5/6)

Γq2(1/3)Γq2(2/3)
=

sinq(π/3)

sinq(π/6)
[1/6]q2q

1/12 =
(q4/3, q2/3; q2)∞[1/6]q2

(q1/3, q5/3; q2)∞
.

Therefore, the result follows easily by setting (α, β, γ, δ) = (1/2, 1/2, 1/3, 2/3) in
Theorem 1.2 and applying the identities Γq(1) = 1, (3.1) and (3.2). �

Taking (a, b, c, d) = (1, 0, 0, 0) in Theorem 3.2 we can get
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Example 3.5. We have
∞
∑

n=0

(1 − q4n+3)(1 − q2n+1)(1/2|q2)2n(1/3|q2)n(2/3|q2)n
(1− q2)(1− q2n+2)([n]q2 !)2(7/6|q2)1+n(5/6|q2)1+n

q2n

=
[1/6]q2(q

4/3, q2/3; q2)∞q1/4

[1/3]q2 [2/3]q2 [1/2]q2(q1/3, q5/3; q2)∞πq
.

This series expansion for 1/πq can be regarded as a q-analogue of the series for
1/π :

∞
∑

n=0

(4n+ 3)(2n+ 1)(1/2)2n(1/3)n(2/3)n
(n+ 1)(6n+ 1)(6n+ 5)(6n+ 7)(n!)2(1/6)n(5/6)n

=

√
3

6π
.

Putting (a, b, c, d) = (0, 0, 0, 1) in Theorem 3.2 we can deduce that

Example 3.6. We have

q2/3

(1 + q)[1/3]q2 [5/6]q2
−

∞
∑

n=1

(1− q4n+1)(1/2|q2)2n(1/3|q2)n(2/3|q2)n−1

(1 − q2)([n]q2 !)2(7/6|q2)n(5/6|q2)1+n
q2n

=
[1/6]q2

[1/3]2q2 [1/2]q2
· (q

4/3, q2/3; q2)∞q11/12

(q1/3, q5/3; q2)∞πq
.

This series expansion for 1/πq can be considered as a q-analogue of the series for
1/π :

1− 5

18

∞
∑

n=1

(4n+ 1)(1/2)2n(1/3)n(2/3)n−1

(n!)2(7/6)n(5/6)1+n
=

5√
3π

.

4. q-Analogues of series expansions for π2

In this section we use Theorem 1.2 to give q-analogues of some series expansions
for π2.

Theorem 4.1. For Re(a+ b+ c+ d− 1/2) > 0 we have

∞
∑

n=0

(1 − q4n+2a)(1|q2)a+n−1(1/2|q2)n−b(1/2|q2)n−c(1/2|q2)n−d

(1− q2)[n]q2 !(1/2|q2)a+b+n(1/2|q2)a+c+n(1/2|q2)a+d+n
q2(a+b+c+d)n−n

=
π2
q(1/2|q2)−b(1/2|q2)−c(1/2|q2)−d(1/2|q2)a+b+c+d−1

(1|q2)a+b+c−1(1|q2)a+b+d−1(1|q2)a+c+d−1q1/2

Proof. It can be dedeuced from Γq(x+ 1) = [x]qΓq(x) and Theorem 1.2 that

∞
∑

n=0

(1− q4n+2a+2α)(α+ 1|q2)a+n−1(β|q2)n−b(γ|q2)n−c(δ|q2)n−d

(1− q2)[n]q2 !(1 + α− β|q2)a+b+n(1 + α− γ|q2)a+c+n(1 + α− δ|q2)a+d+n
qAn

=
Γq2(1 + α− β)Γq2(1 + α− γ)Γq2(1 + α− δ)Γq2 (2 + α− β − γ − δ)

Γq2(α + 1)Γq2(2 + α− β − γ)Γq2(2 + α− β − δ)Γq2(2 + α− γ − δ)

× (β|q2)−b(γ|q2)−c(δ|q2)−d(2 + α− β − γ − δ|q2)a+b+c+d−1

(2 + α− β − γ|q2)a+b+c−1(2 + α− β − δ|q2)a+b+d−1(2 + α− γ − δ|q2)a+c+d−1
.

Then the result follows readily from by setting (α, β, γ, δ) = (0, 1/2, 1/2, 1/2) in the
above identity and applying the identities Γq(1) = 1 and (3.1). �

Taking (a, b, c, d) = (1, 0, 0, 0) in Theorem 4.1 we can obtain
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Example 4.1. We have

∞
∑

n=0

(1 + q2n+1)qn

(1− q2n+1)2
=

π2
q

(1− q2)2q1/2
.

This series expansion for π2
q can be regarded as a q-analogue of the series for π2 :

∞
∑

n=0

1

(2n+ 1)2
=

π2

8
.

Actually, this expansion for π2
q has been obtained by Sun [14, (1.2)].

Setting (a, b, c, d) = (1, 1, 1, 0) in Theorem 4.1 we can derive

Example 4.2. We have

∞
∑

n=0

(1 + q2n+1)q5n

(1− q2n−1)2(1 − q2n+1)2(1− q2n+3)2
=

π2
q (1 + q + q2)q3/2

(1 + q2)(1− q2)6
.

This series expansion for π2
q can also be considered as a q-analogue of the series

for π2 :
∞
∑

n=0

1

(2n− 1)2(2n+ 1)2(2n+ 3)2
=

3π2

256
.

Putting (a, b, c, d) = (1, 1, 1, 1) in Theorem 4.1 we can deduce

Example 4.3. We have

(1 + q)q3

(1− q)5(1− q3)3
−

∞
∑

n=1

(1 + q2n+1)q7n

(1 − q2n−1)3(1 − q2n+1)2(1− q2n+3)3

=
π2
q (1 + q + q2)(1 + q + q2 + q3 + q4)q5/2

(1 + q2)3(1− q2)8
.

This series expansion for π2
q is also a q-analogue of the series for π2 :

1

27
−

∞
∑

n=1

1

(2n− 1)3(2n+ 1)2(2n+ 3)3
=

15π2

4096
.

Remark 4.1. Besides those formulas displayed in Theorems 3.2 and 4.1 and their
consequences, we can give a general series expansion for 1/π2

q by taking (α, β, γ, δ) =

(1/2, 1/2, 1/2, 1/2) in Theorem 1.2, from which many series expansions for 1/π2
q can

be deduced. We shall not display them out one by one in this work.
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