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Abstract

Let n ≥ 3, and let Bn
1 be the standard n–dimensional cross-polytope (i.e. the

convex hull of standard coordinate vectors and their negatives). We show that there
exists a symmetric convex body Gm in R

n such that the Banach–Mazur distance
dBM(Bn

1 ,Gm) satisfies dBM(Bn
1 ,Gm) ≥ n5/9 log−C n, where C > 0 is a universal

constant. The body Gm is obtained as a typical realization of a random polytope
in R

n with 2m := 2nC vertices (for a large constant C). The result improves upon
an earlier estimate of S. Szarek which gives dBM(Bn

1 ,Gm) ≥ cn1/2 log n (with a
different choice of m). This shows in a strong sense that the cross-polytope (or the
cube [−1, 1]n) cannot be an “approximate” center of the Minkowski compactum.

1 Introduction

The Minkowski (or the Banach–Mazur) compactum Mn is defined as the collection of all
origin-symmetric n–dimensional convex bodies equipped with the distance function

dBM(K,L) := inf
{
d ≥ 1 : ∃T ∈ GLn(R) such that K ⊂ T (L) ⊂ dK

}

(in this note, we do not consider non-symmetric bodies). The classical theorem of F. John
[6] asserts that dBM(K,Bn

2 ) ≤
√
n for all K ∈ Mn, where Bn

2 is the standard Euclidean
ball. The question of estimating sup

K∈Mn

dBM(K,Bn
∞) (or, equivalently, sup

K∈Mn

dBM(K,Bn
1 ))

has attracted considerable attention of researchers. Here and in what follows, by Bn
p

(1 ≤ p ≤ ∞) we denote the unit ball of space ℓnp ; in particular, Bn
∞ = [−1, 1]n and

Bn
1 = conv {±e1, . . . ,±en}, where e1, e2, . . . , en is the standard vector basis in R

n.
Currently best upper bound for the quantity sup

K∈Mn

dBM(K,Bn
1 ) is Cn5/6 due to A. Gi-

annopoulos [4] (we refer to earlier results of J. Bourgain–S. Szarek [1] and S. Szarek–
M. Talagrand [13] giving upper estimates n exp(−c

√
log n) and Cn7/8, respectively, as

well as to a result of P. Youssef [14] for estimate with improved constant 2n5/6). The
connection of the problem with the property of restricted invertibility of matrices and the
proportional Dvoretzky–Rogers factorization has been intensively explored in literature;
we refer, among others, to papers [1, 13, 4, 14, 3, 10, 11].

∗Princeton University, NJ; email: kt12@math.princeton.edu. The research is partially supported by
the Simons Foundation.
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For the lower bound, the only available result up to this writing, due to S. Szarek,
asserts that sup

K∈Mn

dBM(K,Bn
1 ) ≥ c

√
n logn for a universal constant c > 0 [12]. The proof

of the lower estimate in [12] involves two crucial ingredients. First is construction of a
family of random polytopes which, together with an ε–net argument and some probabilis-
tic relations, reduces the problem to studying relative positions of independent Gaussian
vectors in R

n. In a different form, such construction was first used in context of geomet-
ric functional analysis by E. Gluskin [5] and allowed him to solve a crucial problem of
estimating the diameter of the Minkowski compactum (we refer to survey [8] for more
information; see also [7] for more recent applications of Gluskin’s construction). The sec-
ond element of Szarek’s proof is an estimate of singular values of the standard Gaussian
matrix which can be viewed as a non-asymptotic analog of the Marchenko–Pastur law [9]
for the spectrum of sample covariance matrices, with very strong probability bounds.

The result of S. Szarek shows that the cross-polytope (or the cube) cannot be a “center”
of the Minkowski compactum similar to the Euclidean ball. However, the result leaves
open a possibility that the distance of any convex body to the cube is bounded above by
the square root of dimension times a polylogarithmic multiple. A conjecture of A. Naor
(personal communication) that the bound obtained in [12] is suboptimal, is confirmed in
the main result of this note (see also [13, remark 2] for related discussion).

Theorem A. Let n ≥ 3 and let m := n3. Further, let Gm be the random symmet-
ric polytope constructed as the convex hull of 2m vectors ±G1,±G2, . . . ,±Gm where
G1, G2, . . . , Gm are independent standard Gaussian (N(0, Idn)) vectors in R

n. Then with
positive probability dBM(Gm, B

n
1 ) ≥ n5/9 log−C n. Here, C > 0 is a universal constant.

The starting point of our proof is the same as in the S. Szarek’s work [12]: we con-
struct Gluskin’s random polytope Gm to estimate its Banach–Mazur distance to an n–
dimensional cross-polytope. However, instead of working with singular values we develop
a combination of geometric and probabilistic arguments to “directly” estimate the Gaus-
sian measure of cross-polytopes inscribed into a given realization of Gluskin’s polytope.

The structure of the paper is the following: in Section 2 we recall those elements of
Szarek’s construction [12] that are also used in the present paper. In Section 3 we give
a high-level overview of our strategy, which comprises two essential parts: constructing a
special event of probability close to one which catches the geometric properties useful for
us and estimating the Gaussian measure of cross-polytopes from a special class. The event
is constructed in Section 4, while the Gaussian measure of cross-polytopes is computed
in Section 5. Finally, in Section 6 we choose parameters and complete the proof.

2 Preliminaries

Let us start with basic notation. Given a finite set I, we denote its cardinality by |I|.
The convex hull of a set of points S in a linear space is denoted by conv (S). Given a
matrix A, its columns are denoted by col1(A), col2(A), . . . Given a vector v, let supp v
be its support. For two convex bodies K and L, K + L denotes their Minkowski sum.
Further, for any set K in R

n and an m×n matrix A, by A(K) we denote the linear image
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of K in R
m. Let (Ω,P) be a probability space. For any random variable/vector/matrix ξ

on Ω, by ξ(ω) we denote the realization of ξ at a point ω ∈ Ω.
We introduce several global parameters:

A large integer n; a number m ≥ n2; ε ∈ (0, 1/2] and ρ ≥ 1.

In what follows, m will be responsible for the geometry of our random polytope (we will
take 2m to be the number of generating vectors in Gluskin’s polytope in R

n); ε will be
used to define a net (discretization) on a set of linear operators; ρ will serve as a lower
bound for the Banach–Mazur distance of the Gluskin polytope to a cross-polytope.

We will impose additional assumptions on the parameters in various statements below;
the parameters will be explicitly chosen at the end of the note at the optimization stage.

Let Gi, i ≤ m be jointly independent standard Gaussian vectors in R
n, and Γ be the

n × m standard Gaussian matrix with columns Gi. We define the random symmetric
convex body Gm as the convex hull of ±Gi, i ≤ m. These random convex polytopes,
introduced to high-dimensional convex geometry by E. Gluskin [5] (the original definition
was slightly different), turned out extremely useful.

2.1 Discretization

All observations in this subsection, up to minor modifications, repeat those from [12].

To show that there is a symmetric convex set with the Banach–Mazur distance to Bn
1

at least ρ, it is sufficient to show that

P
{
There is a symmetric cross-polytope P with ρGm ⊃ ρP ⊃ Gm

}
< 1. (1)

By Caratheodory’s theorem, for a given point ω ∈ Ω of the probability space, any cross-
polytope P inscribed into the realization Gm(ω), can be represented as P = Γ(ω)A(Bn

1 )
for an m × n matrix A (determined by ω) such that the cardinality of support of every
column of A is at most n and the ℓn1–norm of each column at most one. Define the class
Am,n of matrices A in R

m×n satisfying the conditions

|supp coli(A)| ≤ n; ‖coli(A)‖1 ≤ 1; i ≤ n.

With this definition, (1) would follow as long as we show that the event

E∗ :=
{
There is A ∈ Am,n such that ρΓA(Bn

1 ) ⊃ Gm

}

has probability strictly less than one.
Further, define a discretization of Am,n as follows. Let N ⊂ Am,n be the set of all

m×n matrices A = (aij) in Am,n such that ε−1aij ∈ Z for all indices i, j. It is easy to see
that for any A = (aij) ∈ Am,n there is A′ = (a′ij) ∈ N such that max

i,j
|aij − a′ij | < ε.

We have the following elementary lemma:

Lemma 2.1. Let parameters m,n, ρ, ε satisfy the additional assumptions m ≤ n10 and
ερn2 ≤ 1. Denote by E2.1 the event

E2.1 :=
{
There is A ∈ N such that 2ρΓA(Bn

1 ) ⊃ Gm

}
.

Then P(E∗) ≤ P(E2.1) + 2−n.

3



Proof. Assume that the difference E∗ \ E2.1 is non-empty, and fix any ω ∈ E∗ \ E2.1. Let
r ≥ 0 be the largest real number such that rBn

2 ⊂ Gm(ω), and let A = A(ω) = (aij)
be a matrix in Am,n such that ρΓ(ω)A(ω)(Bn

1 ) ⊃ Gm(ω). Take A′ = (a′ij) ∈ N with
max
i,j

|aij − a′ij| < ε and supp coli(A
′) ⊂ supp coli(A), i ≤ n. It is not difficult to see

that Γ(ω)A′(Bn
1 ) + εnmax

j≤m
‖Gj(ω)‖2Bn

2 ⊃ Γ(ω)A(Bn
1 ). Indeed, take any x ∈ Γ(ω)A(Bn

1 );

then x =
∑n

i=1 αiΓ(ω)coli(A) for some (α1, . . . , αn) ∈ Bn
1 . Set y :=

∑n
i=1 αiΓ(ω)coli(A

′)
and observe that ‖Γ(ω)coli(A′ − A)‖2 ≤ εnmax

j≤m
‖Gj(ω)‖2, i ≤ n. Hence, ‖x − y‖2 ≤

εnmax
j≤m

‖Gj(ω)‖2, so x ∈ Γ(ω)A′(Bn
1 ) + εnmax

j≤m
‖Gj(ω)‖2Bn

2 .

The above inclusion, together with the definition of r, gives

Γ(ω)A′(Bn
1 ) + εnmax

j≤m
‖Gj(ω)‖2

ρ

r
Γ(ω)A(Bn

1 ) ⊃ Γ(ω)A(Bn
1 ).

This implies that εnmax
j≤m

‖Gj(ω)‖2 ρ
r
> 1

2
, since otherwise we would have Γ(ω)A′(Bn

1 ) ⊃
1
2
Γ(ω)A(Bn

1 ), which is impossible as ω /∈ E2.1. Next, observe that the definition of r implies
that there is u ∈ Sn−1 such that |〈u,Gi(ω)〉| ≤ r for all i ≤ m whence smin(Γ(ω)

T ) ≤ r
√
m.

Summarizing, we showed that the difference E∗ \ E2.1 is contained in the event

{
εnmax

j≤m
‖Gi‖2

ρ
√
m

smin(ΓT )
>

1

2

}
.

Standard, by now, concentration properties for ‖Gi‖2 and smin(Γ
T ) (see, for example, [2,

Theorem II.6 and Theorem II.13]), together with our assumptions on parameters, imply
the result.

2.2 Distances to random linear spans

The next lemma is an elementary application of standard concentration results for Gaus-
sian variables. We provide the proof for Reader’s convenience. Recall that Γ is the “global
object” of the proof defined as the n × m standard Gaussian matrix with columns Gi,
i ≤ m.

Lemma 2.2 (Distances to linear spans). There are universal constants C2.2, c2.2 > 0 with
the following property. Assume that n ≥ C2.2, n/2 ≤ u ≤ n, 1 ≤ k ≤ u/2, τ ≥ C2.2,
δ ∈ (1/k, 1]; and fix any m×u non-random matrix B of full rank u such that each column
has Euclidean norm at most one. Denote Hi := Γ(coli(B)), i ≤ u. Further, for any
permutation σ of [u] let Eσ be the event that
∣∣{i : u− k + 1 ≤ i ≤ u, dist(Hσ(i), span{Hσ(j), j ≤ i− 1}) ≤ τ

√
n− u+ k

}∣∣ ≥ (1− δ)k.

Then P(Eσ) ≥ 1 − e−c2.2τ2δ(n−u+k)k and, moreover, P(
⋂

σ∈Πu

Eσ) ≥ 1 − uk e−c2.2τ2δ(n−u+k)k,

where Πu is the set of all permutations on [u].

Proof. Since the linear span of {Hσ(j), j ≤ u− k} is completely determined by Γ and the
set {σ(j), u ≥ j ≥ u− k + 1}, it is enough to show the first assertion of the lemma: that
for any fixed permutation σ of [u] the probability of the event
∣∣{i : u− k + 1 ≤ i ≤ u, dist(Hσ(i), span{Hσ(j), j ≤ i− 1}) ≤ τ

√
n− u+ k

}∣∣ ≥ (1− δ)k

4



is bounded from below by 1− e−cτ2δ(n−u+k)k, for an appropriate universal constant c > 0.
Fix a permutation σ and any subset I ⊂ {u− k+ 1, . . . , u} of cardinality ⌈δk⌉. Basic

properties of the Gaussian distribution (specifically, rotational invariance), together with
the definition of Hi’s, immediately imply that there exists a decomposition

Hσ(i) = H̃σ(i) + Ĥσ(i), i ≤ u,

such that for every i > 1, H̃σ(i) is a linear combination of Hσ(j)’s, j < i (i.e. belongs to

their linear span), while Ĥσ(i) is a non-zero multiple of the standard Gaussian vector in

R
n independent from {Hσ(j), j < i}, with E‖Ĥσ(i)‖22 ≤ n. In particular, conditioned on

any (i− 1)–dimensional realization of span{Hσ(j), j < i}, the distance

dist(Ĥσ(i), span{Hσ(j), j < i}) = dist(Hσ(i), span{Hσ(j), j < i})

is equidistributed with the Euclidean norm of a multiple of the standard Gaussian vector
in R

n−i+1 (with the multiplication coefficient not greater than one). Thus, applying a
standard concentration inequality for Lipschitz functions in the Gauss space (see, for
example, [2, Theorem II.6]), we get

P
{
dist(Hσ(i), span{Hσ(j), j < i}) > τ

√
n− u+ k for all i ∈ I

}
≤ e−c′τ2(n−u+k)|I|

for a suitable universal constant c′ > 0. Taking the union bound over all possible choices
of I, we get that the event

∣∣{i : u− k + 1 ≤ i ≤ u, dist(Hσ(i), span{Hσ(j), j < i}) ≤ τ
√
n− u+ k

}∣∣ ≥ (1− δ)k

has probability at least 1− δ−δke−c′τ2δ(n−u+k)k. The result follows.

3 Decomposition and structuring

In this section we develop a way to estimate from above probability of the event E2.1

from the previous section. The approach is significantly different from the one in paper
[12]. One of main challenges of the net-based approach is to control probabilities in a
way that admits some sort of a union bound. If the cardinality of the net N introduced
in the previous section were very small, we would be able to bound the probability of
E2.1 simply by summing up probability estimates of inclusion 2ρΓA(Bn

1 ) ⊃ Gm for each
A ∈ N . However, the size of N is greater than 2n

2

and this approach would require to
take rather small value for ρ to make sure the summation produces a number less than
one.

To deal with this issue, we will partition every matrix A from N into a matrix with
“very sparse” columns and a matrix with columns of small Euclidean norms. We introduce
another global parameter α ∈ (0, 1/2] whose value will be determined at the optimization
stage. Let x be a vector in R

m. We say that x is of type (α+) if ‖x‖1 ≤ 1, and |supp x| ≤
1/α. Further, x is of type (α−) if |supp x| ≤ n, ‖x‖1 ≤ 1 and ‖x‖2 <

√
α. Roughly

speaking, type (α+) corresponds to very sparse vectors while (α−) consists of moderately
sparse vectors of small Euclidean norm. It is easy to see that any vector y ∈ R

m with
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‖y‖1 ≤ 1 and with cardinality of support at most n can be decomposed into the sum
y1 + y2, where y1 is of type (α+), y2 is of type (α−), and y1, y2 have disjoint supports.

Define two mappings F1,F2 : N → N as follows: given A = (aij) ∈ N , let F1(A) be
the m × n matrix with entries aij1|aij |≥α, where 1|aij |≥α is the indicator of the boolean
expression “|aij| ≥ α”. Further, we set F2(A) to be the m × n matrix with entries
aij1|aij |<α. Finally, set F(A) to be the m × 2n matrix obtained by concatenating F1(A)
and F2(A). Obviously, A(Bn

1 ) ⊂ F(A)(2B2n
1 ) for any A ∈ N . This elementary relation

turns out extremely useful in our context. It shows that every point of the random
cross-polytope ΓA(Bn

1 ) is a convex combination of random vectors of two types: vectors
which are α−1–sparse linear combinations of Gi’s and vectors which have relatively small
expected Euclidean norms. The number of vectors of the first type is relatively small
(because of the α−1–sparsity of corresponding linear combinations) allowing an efficient
net-argument. At the same time, vectors of the second type are “short”, which enables us
to control their influence even though the number of corresponding linear combinations
is relatiely large.

In the following lemma we formulate sufficient conditions which allow us to bound the
Banach–Mazur distance between the Gluskin polytope Gm and an n-dimensional cross-
polytope.

Lemma 3.1 (Decomposition). Let E be an event of non-zero probability having the follow-
ing structure: E =

⋂
A∈N

EA, where for every A ∈ N the event EA is measurable with respect

to σ-algebra generated by vectors Gj, with j ∈ ⋃
i≤n

supp coli(A). Let G̃ be the standard

Gaussian vector in R
n independent from Γ. Then

P(E2.1 ∩ E) ≤ |N |max
A∈N

sup
ω∈EA

P
({

ω′ ∈ Ω : For some I ⊂ [2n] with |I| = n we have

G̃(ω′) ∈ 4ρ
(
conv

{
± coli(Γ(ω)F(A)), i ∈ I

}) })m−n2

.

Proof. Pick any point ω ∈ E2.1 ∩ E (we assume that the intersection is non-empty as
otherwise there is nothing to prove). In view of the definition of E2.1, there is A =
A(ω) ∈ N such that for any j ≤ m we have Gj(ω) ∈ 2ρΓ(ω)A(Bn

1 ) ⊂ 4ρΓ(ω)F(A)(B2n
1 ).

By Caratheodory’s theorem, this implies that there is a subset I = I(ω, j) ⊂ [2n] of
cardinality n such that

Gj(ω) ∈ 4ρ
(
conv

{
± coli(Γ(ω)F(A)), i ∈ I

})
.

In what follows, we are only interested in indices j ∈ [m] \ ⋃
i≤n

supp coli(A), which will

6



enable us to use independence. In view of the above, we get

P(E2.1 ∩ E) ≤ P
({

∃A ∈ N such that for any j /∈ ⋃
i≤n

supp coli(A)

and some I = I(j) ⊂ [2n] with |I| = n we have

Gj ∈ 4ρ
(
conv

{
± coli(ΓF(A)), i ∈ I

}) }
∩ E

)

≤ |N | max
A∈N

P
({

For any j /∈ ⋃
i≤n

supp coli(A) and some

I = I(j) ⊂ [2n] with |I| = n we have

Gj ∈ 4ρ
(
conv

{
± coli(ΓF(A)), i ∈ I

}) }
∩ EA

)
.

Observe that, by the conditions on EA, vectors Gj, j /∈ ⋃
i≤n

supp coli(A), are independent

from EA and ΓF(A). Thus, the last expression can be estimated from above by

|N |max
A∈N

sup
ω∈EA

P
({

ω′ ∈ Ω : For some I ⊂ [2n] with |I| = n we have

G̃(ω′) ∈ 4ρ
(
conv

{
± coli(Γ(ω)F(A)), i ∈ I

}) })m−n2

.

The last lemma provides a very useful mechanism of bounding probability P(E2.1) from
above. Indeed, if the events EA are such that for any ω ∈ EA we have

P
({

ω′ ∈ Ω : For some I ⊂ [2n] with |I| = n we have

G̃(ω′) ∈ 4ρ
(
conv

{
± coli(Γ(ω)F(A)), i ∈ I

}) })
≤ 1/2, (2)

then, by choosing m sufficiently large (so that the power m − n2 is big enough) we will
beat the cardinality of N and obtain an upper estimate for P(E2.1 ∩ E). If, at the same
time, the probability of E is close to one, this will imply upper bounds for P(E2.1). Thus,
the rest of the argument consists of two major steps:

• Find an appropriate event E∩ =
⋂

A∈N
EA satisfying conditions of Lemma 3.1;

• Show that for any A ∈ N and ω ∈ EA we have (2).

4 Constructing event E∩
We define the following parametric family of cross-polytopes in R

n. Given 1 ≤ k ≤ n and
h > 0, define

K(k, h) — collection of all origin-symmetric cross-polytopes T ⊂ R
n

having the following structure: T = conv {±x1,±x2, . . . ,±xn}, where
for each permutation σ of [n] we have:∣∣{i : n− k + 1 ≤ i ≤ n, dist(xσ(i), span{xσ(j), j < i}) ≤ h

}∣∣ ≥ k/4.

7



Further, let s, s̃, τ, δ be parameters satisfying n ≥ s ≥ s̃ ≥ 1 and τ ≥ C2.2. For every
matrix A ∈ N define two events E1

A(s, s̃) and E2
A(s̃, δ, τ) as follows:

E1
A(s, s̃) :=

{
For every I1 ⊂ [n], I2 ⊂ {n+ 1, . . . , 2n} with |I1 ∪ I2| = n, |I1| ≥ n− s̃,

such that vectors coli(ΓF(A)), i ∈ I1 ∪ I2, are linearly independent, we

have conv {±coli(ΓF(A)), i ∈ I1 ∪ I2} ∈ K(s, C2.2

√
2s)

}

and

E2
A(s̃, δ, τ) :=

{
For every I1 ⊂ [n], I2 ⊂ {n+ 1, . . . , 2n} with |I1 ∪ I2| = n, |I2| > s̃, such

that vectors coli(ΓF(A)), i ∈ I1 ∪ I2, are linearly independent, we have∣∣{i ∈ I2 : dist(coli(ΓF(A)), span{colj(ΓF(A)), j ∈ (I1 ∪ I2) ∩ [i− 1]})
≤ τ

√
α|I2|

}∣∣ ≥ (1− δ)|I2|
}
.

Set EA := E1
A ∩ E2

A and E∩ :=
⋂

A∈N
EA (for brevity, we sometimes suppress the list of

parameters). It is not difficult to see that by the definition of EA (regardless of the values
of the parameters), the event is measurable with respect to the σ-algebra generated by Gj ,
with j ∈ ⋃

i≤n

supp coli(A). Thus, the intersection E∩ satisfies conditions of Lemma 3.1. In

the next two lemmas, which conclude this section, we will show that, with an appropriate
choice of parameters, the event E∩ has probability close to one.

Lemma 4.1. There is a universal constant C4.1 > 0 with the following property. Assume
that m/ε ≤ n10, 1 > δ ≥ (logn)−1, n ≥ s̃ ≥ log2 n and, additionally, assume that τ ≥ C2.2

is such that

min

(
τ 2δs̃2α

n
,
τ 2δs̃

n

)
≥ C4.1 logn.

Then

P
( ⋂

A∈N
E2
A(s̃, δ, τ)

)
≥ 1− 1

n
.

Proof. Fix any p ∈ {0, 1, . . . , n} and consider the collection Tp of all m × n matrices B
satisfying the following condition: there is A ∈ N such that B is a submatrix of F(A),
where the first p columns of B are from F1(A) and the last n−p columns are from F2(A).
Obviously, the set Tp is contained within the collection T ′

p of all m×n matrices where the
first p columns are of type (α+), the last n−p columns are of type (α−), and, additionally,
all entries of the matrix are from εZ. It is not difficult to see that the cardinality of T ′

p

(hence, Tp) can be bounded from above as

|T ′
p| ≤

((
m

⌊α−1⌋

)
(ε/3)−1/α

)p((
m

n

)
(ε/3)−n

)n−p

.

We need to show that probability of the event
⋂

A∈N
E2
A, that is, the event

{
For any p ∈ {0, 1, . . . , n− s̃− 1} and any B ∈ Tp of full rank, we have
∣∣{p+ 1 ≤ i ≤ n : dist(coli(ΓB), span{colj(ΓB), j < i}) ≤ τ

√
α(n− p)

}∣∣
≥ (1− δ)(n− p)

}
,

8



is close to one. Take any p ∈ {0, 1, . . . , n − s̃ − 1}. By the definition of Tp, we have
‖coli(B)‖2 ≤

√
α for all B ∈ Tp and i > p. Hence, in view of Lemma 2.2, for any B ∈ Tp

of full rank we have

P
{∣∣{p+ 1 ≤ i ≤ n : dist(coli(ΓB), span{colj(ΓB), j < i})
≤ τ

√
α(n− p)

}∣∣ ≥ (1− δ)(n− p)
}
≥ 1− e−c2.2τ2δ(n−p)2 .

This immediately implies

P
( ⋂

A∈N
E2
A

)
≥ 1−

n−s̃−1∑

p=0

((
m

⌊α−1⌋

)
(ε/3)−1/α

)p((
m

n

)
(ε/3)−n

)n−p

e−c2.2τ2δ(n−p)2

=: 1−
n−s̃−1∑

p=0

Jp.

A direct computation shows that for every p ∈ {0, 1, . . . , n− s̃− 1}, we have

Jp ≤
(
3eαm

ε

)α−1p(
3em

εn

)n(n−p)

e−c2.2τ2δ(n−p)2 .

Note that, by the assumptions on the parameters assuming the constant C4.1 is sufficiently
large), we have

c2.2τ
2δ(n− p)2 ≥ 2

(
α−1p log

3eαm

ε
+ n(n− p) log

3em

εn

)
,

whence Jp ≤ e−c2.2τ2δ(n−p)2/2. Summing over all admissible p, we get the result.

Lemma 4.2. There is a universal constant C4.2 with the following property. Assume that
m/ε ≤ n10, n ≥ s ≥ 4s̃ ≥ 4 log2 n, and that s̃2α

n
≥ C4.2 log n. Then

P
( ⋂

A∈N
E1
A(s, s̃)

)
≥ 1− 1

n
.

Proof. Let Tp be defined the same way as in the proof of Lemma 4.1. For any p =
n− s̃, n− s̃+ 1, . . . , n, denote by Projp : R

n → R
n the orthogonal projection onto first p

standard coordinate vectors and observe that the set of matrices

Qp :=
{
BProjp : B ∈ Tp

}

has cardinality

|Qp| ≤
((

m

⌊α−1⌋

)
(ε/3)−1/α

)p

≤
(
3eαm

ε

)α−1p

.

Further, observe that the intersection
⋂

A∈N
E1
A(s, s̃) coincides with the event

n⋂
p=n−s̃

Ep, where

Ep :=
{
For every A ∈ N , I1 ⊂ [n], I2 ⊂ {n + 1, . . . , 2n} with |I1 ∪ I2| = n, |I1| = p,

such that vectors coli(ΓF(A)), i ∈ I1 ∪ I2, are linearly independent, we

have conv {±coli(ΓF(A)), i ∈ I1 ∪ I2} ∈ K(s, C2.2

√
2s)

}
.
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In turn, probability of each event Ep can be bounded from below by probability of the
event

E ′
p :=

{
For any B ∈ Qp of rank p and any permutation σ of [p] we have
∣∣{i : p− s+ 1 ≤ i ≤ p, dist(colσ(i)(ΓB),

span{colσ(j)(ΓB), j ≤ i− 1}) ≤ C2.2

√
2s
}∣∣ ≥ s/2

}
.

Let us prove the last assertion. Take any ω ∈ E ′
p\Ω0, where Ω0 is the event (of probability

zero) that for some A ∈ N , ΓF(A) contains an n×n submatrix of deficient rank. Further,
let σ be any permutation of [n]; let A ∈ N and let I1 ⊂ [n], I2 ⊂ {n + 1, . . . , 2n} with
|I1 ∪ I2| = n, |I1| = p. Denote by B the m × n matrix with first p columns coincident
with coli(F(A)), i ∈ I1 (with ordering of columns preserved), and last n−p zero columns.
Clearly, B ∈ Qp. Define permutation σ′ of [p] is such a way that σ−1(σ′(ℓ)) is increasing
with ℓ on [p]. By the definition of event E ′

p, we have that there are at least s/2 indices
i ∈ {p− s+ 1, . . . , p} such that

dist(colσ′(i)(Γ(ω)B), span{colσ′(j)(Γ(ω)B), j ≤ i− 1}) ≤ C2.2

√
2s.

Let R : I1 ∪ I2 → [n] be the order-preserving bijection and set xi := colR−1(i)(Γ(ω)F(A)),
i ≤ n. Then the last condition can be rewritten as

dist(xσ′(i′), span{xσ′(j), j ≤ i′ − 1}) ≤ C2.2

√
2s for at least s/2 ind. i′ ≥ p− s+ 1. (3)

The conditions on p and s̃ imply that the set S := {σ(i) : n − s + 1 ≤ i ≤ n} ∩ [p] has
cardinality at least s− s̃ ≥ 3s/4. Further, for any i with σ(i) ∈ S we have σ(i) = σ′(i′),
where, by the definition of σ′, necessarily i′ ≥ p − (n − i) ≥ p − s + 1, and, moreover,
span{xσ′(j), j ≤ i′ − 1} ⊂ span{xσ(j), j ≤ i− 1}. In particular, we have

dist(xσ(i), span{xσ(j), j ≤ i− 1}) ≤ dist(xσ′(i′), span{xσ′(j), j ≤ i′ − 1}).

This, together with (3), implies that

dist(xσ(i), span{xσ(j), j ≤ i− 1}) ≤ C2.2

√
2s for at least s/4 indices i ≥ n− s + 1,

whence ω ∈ Ep. Thus, indeed P(Ep) ≥ P(E ′
p).

Applying Lemma 2.2 (with δ := 1/2, u := p, k := s, τ := C2.2) and taking the union
over all B ∈ Qp, we get

P(E ′
p) ≥ 1− ns e−c2.2C2

2.2
s2/2

(
3eαm

ε

)α−1n

≥ 1− e−c2.2C2

2.2
s2/4,

where the last relation follows by the assumptions on parameters. Taking the union bound
over admissible p, we get the result.
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5 Gaussian measure of tilted cross-polytopes

Let us recall our proof strategy as outlined in Section 3. We have constructed the event
E∩ =

⋂
A∈N

EA and essentially showed in Lemmas 4.1 and 4.2 that under an appropriate

choice of parameters E∩ has probability close to one. As the second step of the proof,
we will show that (again, with appropriately chosen parameters) each ω ∈ EA = E1

A ∩ E2
A

satisfies (2). Clearly, (2) can be interpreted as a statement about the Gaussian measure
of a union of cross-polytopes of the form 4ρ conv

{
± coli(Γ(ω)F(A)), i ∈ I

}
, where I is a

subset of [2n] of cardinality n. We will estimate the measure of each such cross-polytope in
one of the two ways depending on the cardinality of the set I∩ [n]. When I∩ [n] is “large”
(that is, vast majority generating vectors of the cross-polytope are realized as α−1–sparse
combinations of columns of Γ(ω), assuming an appropriate rescaling), we will use the
condition that ω ∈ E1

A, whence the cross-polytope is from the class K. The Gaussian
measure of such polytopes is computed below in Lemma 5.4, the central statement of this
section. In the other case, when I ∩ [n] is “not very large”, we will use the assumption
ω ∈ E2

A, which allows a relatively simple upper bound for the measure (essentially owing
to the fact that the expected norm of the columns of ΓF2(A) is rather small). The above
description does not include the process of optimizing all the involved parameters, which
we leave for the last section.

The next lemma is elementary; its proof is given for Reader’s convenience.

Lemma 5.1. Let P = conv {±x1,±x2, . . . ,±xn} be a symmetric non-degenerate cross-
polytope in R

n, and let di := dist(xi, span{xj, j < i}), i ≤ n. Further, let 1 ≤ r ≤ n, and
let P ′ = conv {±y1,±y2, . . . ,±yn} be a symmetric cross-polytope in R

n such that yi = xi

for i ≤ r; ‖yi‖2 = di for i = r+1, . . . , n, and vectors yi, i ≥ r+1, are mutually orthogonal
and orthogonal to span{xj , j ≤ r}. Then γn(P

′) ≥ γn(P ).

Proof. The lemma can be proven inductively on r, starting with r = n. Namely, we
will construct a sequence of cross-polytopes Pn, Pn−1, . . . , Pr, with Pr being an orthogonal
transformation of P ′ and Pn an orthogonal transformation of P , such that γn(Pn) ≤
γn(Pn−1) ≤ · · · ≤ γn(Pr).

At w-th step (r + 1 ≤ w ≤ n, in this argument we step backwards), let Pw be a
cross-polytope generated by {yw1 , yw2 , . . . , ywn } where ywi , i = w + 1, . . . , n are mutually
orthogonal and orthogonal to span{ywj , j ≤ w}. Denote by zw the orthogonal projection
of yww onto the linear span of span{ywj , j < w}, and let P s

w be the symmetric cross-polytope
generated by vectors {ywj , j 6= w} ∪ {zw + (zw − yww)}. Observe that P s

w is an orthogonal
transformation of Pw (reflection with respect to hyperplane orthogonal to zw − yww). Now,
let Pw−1 be generated by vectors {ywj , j 6= w} ∪ {zw − yww}. It is not difficult to see that
Pw−1 can be represented as

Pw−1 :=
{1

2
(v1 + v2) : v1 ∈ Pw, v2 ∈ P s

w, 〈v1, zw − yww〉 = 〈v2, zw − yww〉
}
.

This, together with log-concavity of the Gaussian distribution, implies that γn(Pw−1) ≥
γn(Pw), and the result follows.

As a corollary of the last lemma, we obtain
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Lemma 5.2. Let P = conv {±x1,±x2, . . . ,±xn} be a symmetric cross-polytope in R
n

such that for some 1 ≤ r < n and some 0 < h we have

dist(xi, span{xj , j < i}) ≤ h, i ≥ r + 1.

Then γn(P ) ≤
(

eh
n−r

)n−r
.

Proof. In view of the previous lemma, we can assume without loss of generality that
xi = hei, i ≥ r+1, and that the linear span of {xj , j ≤ r} coincides with span{e1, . . . , er}.
Let G̃ = (g̃1, . . . , g̃n) be the standard Gaussian vector in R

n. Clearly, the event G̃ ∈ P
implies that

n∑

i=r+1

|g̃i| ≤ h.

Thus,

P{G̃ ∈ P} ≤ (2π)−(n−r)/2 (2h)
n−r

(n− r)!
≤ (2π)−(n−r)/2−1/2(2h)n−r

(n− r)n−r+1/2er−n
≤

(
eh

n− r

)n−r

.

The result follows.

As an immediate consequence of the last lemma, we get

Lemma 5.3. Let P = conv {±x1,±x2, . . . ,±xn} be a symmetric cross-polytope such that
for some h > 0, δ ∈ (0, 1/2] and 1 ≤ k ≤ n we have

∣∣{i : n− k + 1 ≤ i ≤ n, dist(xi, span{xj , j < i}) ≤ h
}∣∣ ≥ (1− δ)k.

Then γn(P ) ≤
(
2eh
k

)(1−δ)k
.

Estimates analogous to Lemma 5.3 are easily available for cross-polytopes fromK(k, h).
Indeed, appropriately rearranging the generating vectors, we obtain that for any cross-
polytope P from K(k, h) we have γn(P ) ≤ e−c′k as long as h ≤ c′k, for some universal
constant c′ > 0. However, these estimates (with such a condition on h) are absolutely
useless in our context: they are too weak because they do not take into consideration
invariance of K(k, h) under permutations of the generating vectors. Applying a more
elaborate argument, we can derive a much stronger statement, which is the core of our
approach.

Lemma 5.4 (Gaussian measure of tilted cross-polytopes from K(k, h)). Let

P = conv {±x1, . . . ,±xn} ∈ K(k, h),

with 1 ≤ k ≤ n and h ≤ c5.4n. Then γn(P ) ≤ 2e−c5.4k, for a universal constant c5.4 > 0.

Proof. Let G̃ be the standard Gaussian vector in R
n, and let Ẽ be the event that G̃ ∈

P . Denote q := γn(P ) = P(Ẽ). Conditioned on Ẽ , there is a (random) vector v =
(v1, . . . , vn) ∈ R

n with ‖v‖1 ≤ 1 such that

G̃ =
n∑

i=1

vixi.
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As E
( n∑
i=1

|vi| | Ẽ
)
≤ 1, there is a non-random subset I ⊂ [n] of cardinality k such that

E
(∑
i∈I

|vi| | Ẽ
)

≤ k/n, whence, by Markov’s inequality, there is an event E ′ ⊂ Ẽ of

probability at least q/2 such that

∑

i∈I
|vi| ≤

2k

n

everywhere on E ′. Without loss of generality (since the definition of the class K is invariant
under permutations of generating vectors), we can assume that I = {n − k + 1, . . . , n}.
Now, for any ω ∈ E ′ we have

G̃(ω) =
n∑

i=1

vi(ω)xi = 4
n−k∑

i=1

vi(ω)

4
xi + 4

n∑

i=n−k+1

nvi(ω)

4k

(k
n
xi

)
,

where, setting v′i :=
vi
4
for i ≤ n−k and v′i :=

nvi
4k

for i > n−k, we get ‖(v′1, . . . , v′n)‖1 ≤ 1.
Thus, if we define non-random cross-polytope P ′ as

P ′ := 4 conv
{
± x1, . . . ,±xn−k,±kxn−k+1/n, . . . ,±kxn/n

}
,

then
P{G̃ ∈ P ′} ≥ q/2.

On the other hand, appropriately rearranging the generating vectors and using the defi-
nition of the class K(k, h), we get that there is a presentation

P ′ := conv {±y1, . . . ,±yn}

where for the last ⌈k/4⌉ vectors yi we have

dist(yi, span{yj, j < i}) ≤ 4kh

n
, i = n− ⌈k/4⌉+ 1, . . . , n.

Finally, applying Lemma 5.2 to P ′, we obtain

q/2 ≤ e−c′k,

for a universal constant c′ > 0.

6 Completion of the proof

We assume that n is a large positive integer, and set ε := n−3; m := n3. Although
parameter ρ will be determined at the very last stage, we assume that ρ ≤ n, whence
ερn2 ≤ 1. Thus, applying Lemma 2.1, we get that, in order to prove (1), it is sufficient
to show that the event E2.1 from Lemma 2.1 has probability strictly less than 1− 2−n.

Let δ := log−1 n and let parameters s, s̃, τ, α satisfy

n ≥ s ≥ 4s̃ ≥ 4 log2 n;
s̃2α

n
≥ C4.2 logn; min

(
τ 2s̃2α

n
,
τ 2s̃

n

)
≥ C4.1 log

2 n. (4)
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Let EA = E1
A(s, s̃) ∩ E2

A(s̃, δ, τ) (A ∈ N ) and E∩ :=
⋂

A∈N
EA be defined as in Section 4.

Lemmas 4.1 and 4.2, together with assumptions (4), imply that P(E∩) ≥ 1− 2
n
. Hence,

applying Lemma 3.1, we get

P(E2.1) ≤ |N |max
A∈N

sup
ω∈EA

P
({

ω′ ∈ Ω : For some I ⊂ [2n] with |I| = n we have

G̃(ω′) ∈ 4ρ
(
conv

{
± coli(Γ(ω)F(A)), i ∈ I

}) })m−n2

+
2

n
.

It is not difficult to see that, with our choice of m, ε, the cardinality of the set N of
matrices can be estimated as

|N | ≤
((

m

n

)
(ε/3)−n

)n

≤ eCn2 logn

for an appropriate universal constant C > 0. Thus, if we show that (for a specific choice
of parameters) for every matrix A ∈ N and ω ∈ EA we have

P
({

ω′ ∈ Ω : For some I ⊂ [2n] with |I| = n we have

G̃(ω′) ∈ 4ρ
(
conv

{
± coli(Γ(ω)F(A)), i ∈ I

}) })
≤ 1/2, (5)

this would imply that P(E2.1) is close to zero, and we will obtain (1). For the rest of
the proof, we are concerned with finding values for parameters so that condition (5) is
satisfied.

The definition of the event EA implies that for every ω ∈ EA and I ⊂ [2n], the cross-
polytope T := conv

{
± coli(Γ(ω)F(A)), i ∈ I

}
satisfies one of the three conditions:

• T is degenerate, whence P{ω′ ∈ Ω : G̃(ω′) ∈ 4ρ T} = 0;

• T ∈ K(s, C2.2

√
2s) (if |I ∩ [n]| ≥ n− s̃);

• |I ∩ [n]| < n− s̃ and

∣∣{i ∈ I \ [n] : dist(coli(Γ(ω)F(A)), span{colj(Γ(ω)F(A)), j ∈ I ∩ [i− 1]})
≤ τ

√
α|I \ [n]|

}∣∣ ≥ (1− δ)|I \ [n]|.

Observe that for each p = 0, 1, . . . , n, there are
(
n
p

)2
ways to choose a subset I ⊂ [2n]

of cardinality n and with |I ∩ [n]| = p. Thus, in order to satisfy (5), it is sufficient to have

n−s̃−1∑

p=0

(
n

p

)2

sup
{
P
{
ω′ : G̃(ω′) ∈ 4ρP

}
, P ∈ U

}

+

n∑

p=n−s̃

(
n

p

)2

sup
{
P
{
ω′ : G̃(ω′) ∈ 4ρP

}
, P ∈ K(s, C2.2

√
2s)

}
≤ 1

2
.
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Here, U denotes the collection of all cross-polytopes P = conv {±x1,±x2, . . . ,±xn} such
that

∣∣{i : p+1 ≤ i ≤ n, dist(xi, span{xj , j < i}) ≤ τ
√

α(n− p)
}∣∣ ≥ (1− δ)(n− p). For

any p ≤ n− s̃− 1 and P ∈ U , we get, by Lemma 5.3, that

P
{
G̃ ∈ 4ρP

}
≤

(
8eρτ

√
α(n− p)

n− p

)(1−δ)(n−p)

.

Further, for p ≥ n− s̃ and P ∈ K(s, C2.2

√
2s) we obtain, by Lemma 5.4,

P
{
G̃ ∈ 4ρP

}
≤ 2e−c5.4s,

provided that 4C2.2ρ
√
2s ≤ c5.4n.

Summarizing, condition (5) is satisfied whenever we have a set of parameters s, s̃, τ, α, ρ
satisfying conditons (4), together with condition 4C2.2ρ

√
2s ≤ c5.4n and condition

n−s̃−1∑

p=0

(
n

p

)2(8eρτ
√

α(n− p)

n− p

)(1−δ)(n−p)

+ 2

n∑

p=n−s̃

(
n

p

)2

e−c5.4s ≤ 1

2
.

It is not difficult to see that

n∑

p=n−s̃

(
n

p

)2

e−c5.4s ≤ (s̃+ 1)

(
en

s̃

)2s̃

e−c5.4s ≤ 1

n
,

as long as s ≥ Cs̃ logn for a sufficiently large universal constant C > 0. Further,

n−s̃−1∑

p=0

(
n

p

)2(8eρτ
√

α(n− p)

n− p

)(1−δ)(n−p)

≤ 1

n

as long as n2ρτ
√
α

s̃5/2
≤ c for a sufficiently small universal constant c > 0. Thus, condition

(5) is satisfied whenever our set of parameters satisfies the relations

n ≥ s ≥ Cs̃ logn ≥ 4C log3 n; 4C2.2ρ
√
2s ≤ c5.4n;

s̃2α

n
≥ C4.2 log n;

min

(
τ 2s̃2α

n
,
τ 2s̃

n

)
≥ C4.1 log

2 n;
n2ρτ

√
α

s̃5/2
≤ c.

Our goal is to find the largest possible ρ so that the above conditions can be satisfied.
Setting

τ :=
√

C4.1 lognmax
(√

n/s̃,
√
n/(s̃2 α)

)
,

we get that we can take

ρ := c′ min
(
n/

√
s,

1

log n

s̃3

n5/2
√
α
,

1

logn

s̃7/2

n5/2

)

for a small enough universal constant c′ > 0. Since it is better for us to take α as small as
possible, we can take α := C′n logn

s̃2
for a large enough universal constant C ′ > 0. Plugging

15



in and optimizing over s̃, s (up to logarithmic multiples, we should take s, s̃ of order
n8/9), we get the result.
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