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Abstract

It is an important task to construct quantum maximum-distance-separable
(MDS) codes with good parameters. In the present paper, we provide six
new classes of q-ary quantum MDS codes by using generalized Reed-Solomon
(GRS) codes and Hermitian construction. The minimum distances of our
quantum MDS codes can be larger than q

2 + 1. Three of these six classes
of quantum MDS codes have longer lengths than the ones constructed in [1]
and [2], hence some of their results can be easily derived from ours via the
propagation rule. Moreover, some known quantum MDS codes of specific
lengths can be seen as special cases of ours and the minimum distances of
some known quantum MDS codes are also improved as well.

Keywords: Quantum codes, quantum Singleton bound, quantum MDS codes, gener-
alized Reed-Solomon codes, Hermitian construction

1 Introduction

Quantum error-correcting codes play an important role in quantum computing and quan-
tum communication. Just as in classical coding theory, one central theme in quantum
error-correction is the construction of quantum codes that have good parameters. In [3],
Calderbank et al. presented an effective method to construct nice quantum codes by using
some mathematical techniques which made it possible to construct quantum codes from
classical codes over F2 or F4. Rains [4], Ashikhmin and Knill [5] then generalized their re-
sults to the nonbinary cases. In particular, one can construct quantum codes via classical
codes with Euclidean or Hermitian self-orthogonality properties.

Let q be a prime power. A q-ary quantum code is just a vector subspace of the Hilbert
space (Cq)

⊗
n ∼= Cqn , where C is the field of complex numbers and n is called the length

of the quantum code. We use ((n,K, d))q or [[n, k, d]]q to denote a q-ary quantum code of
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length n, dimensionK and minimum distance d, where k = logq K. An [[n, k, d]]q quantum

code can detect up to d−1 quantum errors and correct up to ⌊d−1
2 ⌋ quantum errors. Thus

for fixed n and k, it is desirable to construct [[n, k, d]]q-quantum codes with minimum
distance d as large as possible. However, similar to the classical Singleton bound, the
parameters of an [[n, k, d]]q quantum code have to satisfy the quantum Singleton bound:

Lemma 1. ([4, 5, 7] Quantum Singleton Bound) For any [[n, k, d]]q quantum code, we
have

2d ≤ n− k + 2.

A quantum code achieving this quantum Singleton bound is called a quantum maximum-
distance-separable (MDS) code. Just as in the classical case, it is desirable to find more
constructions of quantum MDS codes.

In 2001, Ashikhmin and Knill [5] gave the following useful theorem for constructing
quantum stabilizer codes from classical codes.

Theorem 1. (Hermitian Construction) If there exists an [n, k, d]q2-linear code C with
C⊥H ⊆ C, where C⊥H is the Hermitian dual code of C, then there exists an [[n, 2k−n,≥
d]]q-quantum code.

Note that the Hermitian dual code of an MDS code is still an MDS code. So we replace
the code C by its Hermitian dual C⊥H in Theorem 1 and obtain the following corollary
for the quantum MDS codes.

Corollary 1. (Hermitian Construction for Quantum MDS Codes) If there exists an
[n, k, n − k + 1]q2-MDS code C with C ⊆ C⊥H , then there exists an [[n, n − 2k, k + 1]]q-
quantum MDS code.

Given a quantum MDS code, we can obtain a new quantum code with smaller length
and minimum distance by the following lemma.

Lemma 2. ([6] Propagation Rule) If there exists an [[n, n − 2d + 2, d]]q-quantum MDS
code, then there exists an [[n − 1, n− 2d+ 3, d− 1]]q-quantum MDS code.

In the past decade, a lot of research work has been done for construction of quantum
MDS codes and several new families of quantum MDS codes have been found by employing
different methods. If the classical MDS conjecture is true, then there are no q-ary quantum
MDS codes of length n exceeding q2 + 1 except when q is even and d = 4 or d = q2 in
which case n ≤ q2 + 2 (see [7]). Quantum MDS codes of length up to q + 1 have been
constructed for all possible dimensions through classical Euclidean self-orthogonal codes
(see [8, 9, 10]). Since the constraint of Euclidean self-orthogonality, the minimum distance
of these quantum MDS codes is less than or equal to q

2+1. Thus Hermitian self-orthogonal
codes are applied to construct quantum MDS codes with larger minimum distance. Some

quantum MDS codes of length n with specific values n = q2 + 1, q2, q
2+1
2 and minimum

distance d > q/2+1 are obtained (see [9, 11, 12]). Due to their elegant algebraic structures,
constacyclic codes, pseudo-cyclic codes and generalized Reed-Muller codes are also used
to construct some quantum MDS codes of length n with q+1 < n ≤ q2 +1 and relatively
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large minimum distance (see [12, 13, 14, 15, 16, 17, 18, 19, 20]). In [21], Li et al. first
presented a unified framework for constructing quantum MDS codes by employing the
classical generalized Reed-Solomon (GRS) codes. Jin et al. [22], Jin and Xing [10, 23]
generalized and developed the method in [21], and constructed several new families of
quantum MDS codes with flexible parameters. Since then, GRS codes have been widely
applied for constructing quantum MDS codes with minimum distance larger than q

2 + 1
in recent years (see [24, 1, 2, 25]).

In this paper, we will construct some new quantum MDS codes with relatively large
minimum distance through classical Hermitian self-orthogonal GRS codes. The key point
of constructing Hermitian self-orthogonal GRS codes is to find suitable evaluation points
a1, a2, . . . , an ∈ Fq2 , such that a certain system of homogenous equations over Fq2 related
to these evaluation points has solutions over F∗

q (see Lemma 3 and Remark 1). In [23],
Jin and Xing first chose a class of multiplicative subgroups of F∗

q2
as the evaluation points

to construct Hermitian self-orthogonal GRS codes. In [1, 2], the authors generalized the
method of [23] and considered some multiplicative subgroups of F∗

q2
and their cosets as

the evaluation points. In the present paper, we consider some multiplicative subgroups of
F∗

q2
and their cosets with more general parameters. Moreover, we add the zero element

into them so that we can provide more constructions of new quantum MDS codes with
longer lengths. Consequently, some known results can be easily derived from ours by the
propagation rule of Lemma 2. More precisely, we provide some [[n, n−2k, k+1]]q-quantum
MDS codes with the following parameters:

(i) n = 1 + r q2−1
s

, and 1 ≤ k ≤ r q−1
s
, where s | (q − 1) and 1 ≤ r ≤ s (See Theorem 2);

(ii) n = 1 + r q2−1
2s+1 , and 1 ≤ k ≤ (s + 1) q+1

2s+1 − 1, where q > 2, (2s + 1) | (q + 1) and
1 ≤ r ≤ 2s + 1 (See Theorem 3 (i));

(iii) n = 1+ (2t+1) q
2−1

2s+1 , and 1 ≤ k ≤ (s+ t+ 1) q+1
2s+1 − 1, where q > 2, (2s+ 1) | (q +1)

and 0 ≤ t ≤ s− 1 (See Theorem 3 (ii));

(iv) n = 1 + r q2−1
2s , and 1 ≤ k ≤ (s + 1) q+1

2s − 1, where 2s | (q + 1) and 2 ≤ r ≤ 2s (See
Theorem 4 (i));

(v) n = 1+(2t+2) q
2−1
2s , and 1 ≤ k ≤ (s+t+1) q+1

2s −1, where 2s | (q+1) and 0 ≤ t ≤ s−2
(See Theorem 4 (ii));

(vi) n = (2t + 1) q
2−1
2s , and 1 ≤ k ≤ (s + t) q+1

2s − 2, where 2s | (q + 1) and 1 ≤ t ≤ s − 1
(See Theorem 5).

We make some remarks as follows:

1. The minimum distances of quantum MDS codes of cases (i)-(vi) can be larger than
or equal to q

2 + 1 (for case (i), we let r
s
≥ q

2(q−1));

2. Applying the propagation rule (see Lemma 2) for cases (i), (iv) and (v), we obtain
the results presented in [2, Theorem 4.12], [1, Theorem 4.2] and [2, Theorem 4.8],
respectively;
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3. The case (ii) extends the result of [24, Theorem 3.2 (i)] where a stricter condition
gcd(r, q) = 1 is required;

4. When r = 2t + 1 (resp. r = 2t + 2) and t > 0, the codes from case (iii) (resp.
(v)) have the same length but larger minimum distance than that of case (ii) (resp.
(iv));

5. When t ≥ 2, the quantum MDS codes from case (vi) have larger minimum distance
than that of [1, Theorem 4.2].

We list some examples of [[n, n−2k, k+1]]q-quantumMDS codes from our constructions
as follows.

(i) 5 | (q − 1), n = 1 + 4
5 (q

2 − 1), 1 ≤ k ≤ 4
5(q − 1);

(ii) 5 | (q + 1), n = 1 + 2
5 (q

2 − 1), 1 ≤ k ≤ 3
5(q + 1)− 1;

(iii) 7 | (q + 1), n = 1 + 5
7 (q

2 − 1), 1 ≤ k ≤ 6
7(q + 1)− 1;

(iv) 4 | (q + 1), n = 1 + 3
4 (q

2 − 1), 1 ≤ k ≤ 3
4(q + 1)− 1;

(v) 6 | (q + 1), n = 1 + 2
3 (q

2 − 1), 1 ≤ k ≤ 5
6(q + 1)− 1;

(vi) 8 | (q + 1), n = 7
8(q

2 − 1), 1 ≤ k ≤ 7
8 (q + 1)− 2.

To the best of our knowledge, all the above quantum MDS codes are new.
The rest of this paper is organized as follows. In Section 2, we recall some basic results

about Hermitian self-orthogonality and generalized Reed-Solomon codes. In Sections 3, 4,
5 and 6, we present six new classes of quantum MDS codes from generalized Reed-Solomon
codes. We conclude this paper in Section 7.

2 Preliminaries

In this section, we briefly review some basic results about Hermitian self-orthogonality and
generalized Reed-Solomon (GRS for short) codes. In addition, some technical lemmas for
our constructions are also presented.

Let q be a prime power. Let Fq be the finite field with q elements and F∗
q be the

multiplicative group of nonzero elements of Fq. A q-ary [n, k, d]-linear code is just a vector
subspace of Fn

q with dimension k and minimum Hamming distance d, and n is called the
length of the code. It is well known that n, k and d have to satisfy the Singleton bound:
d ≤ n − k + 1. A code achieving the Singleton bound is called a maximum distance
separable (MDS) code.

Throughout this paper, we denote the all zero vector by 0. For a vector c = (c1, . . . , cn) ∈
Fn
q2
, we denote by ci the vector (ci1, . . . , c

i
n). And 00 is set to be 1. For any two vectors

x = (x1, . . . , xn) ∈ Fn
q2

and y = (y1, . . . , yn) ∈ Fn
q2
, the usual Euclidean product of x and
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y is defined as 〈x,y〉 ,
∑n

i=1 xiyi. For a linear code C of length n over Fq2 , the Euclidean
dual code of C is defined as

C⊥ := {x ∈ Fn
q2 : 〈x, c〉 = 0, for all c ∈ C},

and the Hermitian dual code of C is defined as

C⊥H := {x ∈ Fn
q2 : 〈x, c

q〉 = 0, for all c ∈ C}.

The code C is called Hermitian self-orthogonal if C ⊆ C⊥H . It is easy to show that
C⊥H = (C(q))⊥, where C(q) = {cq : c ∈ C}. For a matrix A = (aij) over Fq2 , we denote

by A(q) the matrix (aqij). Let C be a linear code over Fq2 with a generator matrix G, then

G(q) is a generator matrix of C(q) hence a parity-check matrix of C⊥H .
Choose n distinct elements a1, . . . , an of Fq2 and n nonzero elements v1, . . . , vn of F∗

q2
.

Put a = (a1, . . . , an) and v = (v1, . . . , vn). Then the generalized Reed-Solomon code over
Fq2 associated to a and v is defined as follows.

GRSk(a,v) , {(v1f(a1), . . . , vnf(an))

: f(x) ∈ Fq2 [x], and deg(f(x)) ≤ k − 1}.

It is well known that the code GRSk(a,v) is a q2-ary [n, k, n − k + 1]-MDS code. A
generator matrix of GRSk(a,v) is given by

Gk(a,v) =








v1 v2 · · · vn
v1a1 v2a2 · · · vnan
...

...
. . .

...

v1a
k−1
1 v2a

k−1
2 · · · vna

k−1
n








.

From the above discussion, we can easily obtain the following useful lemma, which was
also given in [1, 2, 23].

Lemma 3. ([1, 2, 23]) Let a1, . . . , an be n pairwise distinct elements of Fq2 and let
v1, . . . , vn be n nonzero elements of F∗

q2
. Put a = (a1, . . . , an) and v = (v1, . . . , vn). Then

the GRS code GRSk(a, v) is Hermitian self-orthogonal if and only if 〈aqi+j , vq+1〉 = 0, for
all 0 ≤ i, j ≤ k − 1.

Remark 1. If we set u = (u1, u2, . . . , un) := v
q+1, then u ∈ (F∗

q)
n. Thus from Lemma 3,

to construct a Hermitian self-orthogonal MDS code, it is sufficient to make sure that the
system of homogenous equations 〈aqi+j,u〉 = 0 (for all 0 ≤ i, j ≤ k − 1) over Fq2 has a
solution u ∈ (F∗

q)
n.

Before giving our constructions, we need two technical lemmas. The first lemma
provides a sufficient condition under which a certain system of homogenous equations
over Fq2 has solutions over F∗

q.

Lemma 4. Suppose r > 0. Let A be an r × (r + 1) matrix over Fq2 and satisfy the

following two properties: 1) any r columns of A are linearly independent; 2) A(q) is row
equivalent to A. Then the following system of homogenous equations AuT = 0

T has a
solution u = (u0, u1, . . . , ur) ∈ (F∗

q)
r+1.
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Proof. From Property 1), the rank of A is equal to r. By Property 2) and [23, Theorem
2.2], the system of homogenous equations AuT = 0T has a nonzero solution u ∈ (Fq)

r+1.
Let C be the linear code over Fq2 with generator matrix A. Then C is an [r + 1, r, 2]-
MDS code from Property 1) and u is a nonzero codeword of C⊥. Note that C⊥ is an
[r+1, 1, r+1]-MDS code, thus u ∈ (F∗

q2
)r+1, hence u ∈ (F∗

q)
r+1. The lemma is proved.

The second lemma is given as follows.

Lemma 5. (i) Suppose (2s+1) | (q+1) and m = q2−1
2s+1 . Let 1 ≤ k ≤ (s+1+ t) q+1

2s+1 − 1,
where 0 ≤ t ≤ s − 1. Then for any 0 ≤ i, j ≤ k − 1, m | (qi + j) if and only if
qi+ j ∈ {0, (s − t+ 1)m, (s − t+ 2)m, . . . , (s+ t)m}.

(ii) Suppose 2s | (q+1) and m = q2−1
2s . Let 1 ≤ k ≤ (s+1+t) q+1

2s −1, where 0 ≤ t ≤ s−2.
Then for any 0 ≤ i, j ≤ k − 1, m | (qi+ j) if and only if qi+ j ∈ {0, (s − t)m, (s −
t+ 1)m, . . . , (s + t)m}.

Proof. We only need to prove Part (i) since the proof of Part (ii) is completely similar.
According to the conditions, it is easy to see that k ≤ q−1. Hence, for any 0 ≤ i, j ≤ k−1

, we have qi+ j < (q + 1)k ≤ q2 − 1. Suppose (i, j) 6= (0, 0). If qi+ j = ℓm = ℓ q
2
−1

2s+1 , then
0 < ℓ < 2s+ 1. Note that

qi+ j = ℓ
q2 − 1

2s + 1
= q

(
ℓ(q + 1)

2s+ 1
− 1

)

+

(

q −
ℓ(q + 1)

2s+ 1

)

.

Thus

i =
ℓ(q + 1)

2s+ 1
− 1, j = q −

ℓ(q + 1)

2s+ 1
.

If ℓ ≥ s+ 1 + t, then

i =
ℓ(q + 1)

2s + 1
− 1 ≥ (s+ 1 + t)

q + 1

2s + 1
− 1 ≥ k,

which contradicts to the assumption that i ≤ k − 1;
If ℓ ≤ s− t, then

j = q −
ℓ(q + 1)

2s+ 1
≥ (s+ 1 + t)

q + 1

2s + 1
− 1 ≥ k,

which contradicts to the assumption that j ≤ k − 1.
Thus s− t+ 1 ≤ ℓ ≤ s+ t. The conclusion follows.

3 Quantum MDS codes of length n = 1 + r
q2−1

s
,

where s | (q − 1)

In this section, we construct a class of quantum MDS codes of length n = 1+r q2−1
s

, where
s | (q − 1) and 1 ≤ r ≤ s. We first prove the following lemma.
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Lemma 6. Let x1, . . . , xr be r pairwise distinct nonzero elements of Fq. Then the system
of equations 





u0 + u1 + · · ·+ ur = 0

x1u1 + x2u2 + · · ·+ xrur = 0

...

xr−1
1 u1 + xr−1

2 u2 + · · ·+ xr−1
r ur = 0

(1)

has a solution u , (u0, u1, . . . , ur) ∈ (F∗
q)

r+1.

Proof. Let

A =








1 1 1 · · · 1
0 x1 x2 · · · xr
...

...
...

. . .
...

0 xr−1
1 xr−1

2 · · · xr−1
r








.

Then the system (1) of equations is equivalent to the following equation

AuT = 0T .

Note that any r columns of A form a Vandermonde matrix, which is invertible. Thus any
r columns of A are linearly independent. Since x1, . . . , xr ∈ Fq, A

(q) = A. The conclusion
then follows from Lemma 4.

Set m = q2−1
s

. Let θ ∈ Fq2 be an m-th primitive root of unity, and let 〈θ〉 be the
cyclic subgroup of F∗

q2
generated by θ. Let β1, . . . , βr ∈ F∗

q2
such that {βi〈θ〉}

r
i=1 represent

distinct cosets of F∗

q2
/〈θ〉. Put

a = (0, β1, β1θ, . . . , β1θ
m−1, . . . , βr, βrθ, . . . , βrθ

m−1) ∈ Fn
q2 .

Set
v = (v0, v1, . . . , v1

︸ ︷︷ ︸

m times

, . . . , vr, . . . , vr
︸ ︷︷ ︸

m times

),

where v0, v1, . . . , vr ∈ F∗

q2
. Then

〈a0,vq+1〉 = vq+1
0 + (vq+1

1 + · · ·+ vq+1
r )m. (2)

And for any (i, j) 6= (0, 0), we have

〈aqi+j ,vq+1〉 =

r∑

ℓ=1

βqi+j
ℓ vq+1

ℓ

m−1∑

ν=0

θν(qi+j),

thus
〈aqi+j ,vq+1〉 = 0, when m ∤ (qi+ j),

and

〈aqi+j,vq+1〉 = m

r∑

ℓ=1

βqi+j
ℓ vq+1

ℓ , when m | (qi+ j). (3)

Now, our first construction is given as follows.
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Theorem 2. Let q be a prime power. Suppose s | (q−1) and 1 ≤ r ≤ s. Put n = 1+r q2−1
s

.

Then for any 1 ≤ k ≤ r q−1
s
, there exists an [[n, n− 2k, k + 1]]q-quantum MDS code.

Proof. Keep the notations as above. Let xℓ = βm
ℓ , for ℓ = 1, . . . , r. Then x1, . . . , xr

are pairwise distinct. Indeed, if xℓ = xℓ′ for some 1 ≤ ℓ 6= ℓ′ ≤ r, then ( βℓ

βℓ′
)
q2−1

s = 1

hence βℓ

βℓ′
∈ 〈θ〉. This is impossible since βℓ and βℓ′ lie in two distinct cosets of F∗

q2
/〈θ〉.

Note that (q + 1) | m, so xℓ ∈ Fq. Then, according to Lemma 6, there exists a vector
u = (u0, u1, . . . , ur) ∈ (F∗

q)
r+1 which is a solution of the system (1) of equations.

For i = 1, 2, . . . , r, we let vi ∈ F∗

q2
such that vq+1

i = ui and let v0 ∈ F∗

q2
such that

vq+1
0 = u0m. Then from Eq. (2),

〈a0,vq+1〉 = vq+1
0 + (vq+1

1 + · · ·+ vq+1
r )m

= u0m+ (u1 + · · ·+ ur)m = 0.

Since 1 ≤ k ≤ r q−1
s
, qi+ j ≤ (q+1)(k − 1) < r q2−1

s
= rm. Thus, for any 0 ≤ i, j ≤ k− 1,

m | (qi+j) only if qi+j = µm for some 0 ≤ µ ≤ r−1. Thus by Eq. (3), when qi+j = µm
(1 ≤ µ ≤ r − 1), we have

〈aqi+j,vq+1〉 = m

r∑

ℓ=1

βµm
ℓ vq+1

ℓ = m

r∑

ℓ=1

xµℓ uℓ = 0.

In summary,
〈aqi+j ,vq+1〉 = 0, for all 0 ≤ i, j ≤ k − 1.

By Lemma 3, GRSk(a,v) is a Hermitian self-orthogonal MDS code with parameters
[n, k, n − k + 1]. The conclusion then follows from Corollary 1.

Remark 2. When r
s
> q

2(q−1) , the quantum codes constructed in Theorem 2 have minimum

distance r q−1
s

+ 1 > q
2 + 1.

Applying the propagation rule (see Lemma 2) for Theorem 2, we immediately obtain
the following corollary which is one of main results in [2].

Corollary 2. ([2, Theorem 4.12]) Let q be a prime power. Let s | (q − 1) and 1 ≤ r ≤ s.

Put n = r q2−1
s

. Then for any 1 ≤ k ≤ r q−1
s

−1, there exists an [[n, n−2k, k+1]]q-quantum
MDS code.

On the other hand, taking r = s in Theorem 2, we obtain the following known result.

Corollary 3. ([9]) Let q be a prime power. Then for any 1 ≤ k ≤ q − 1, there exists a
[[q2, q2 − 2k, k + 1]]q-quantum MDS code.

In the following example, a new family of quantum MDS codes is given by Theorem
2.

Example 1. Let (r, s) = (4, 5) in Theorem 2. Then when 5 | (q − 1), there exists an
[[1 + 4

5(q
2 − 1), 1 + 4

5(q
2 − 1)− 2k, k + 1]]q quantum MDS code for any 1 ≤ k ≤ 4

5(q − 1).
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4 Quantum MDS codes of length n = 1 + r
q2−1

2s+1
,

where (2s + 1) | (q + 1)

In this section, we construct quantum MDS codes of length n = 1+r q2−1
2s+1 , where (2s+1) |

(q+1). If r = 2s+1, then n = q2. The q-ary quantum MDS codes of length q2 have been
already constructed in [9] (see also Corollary 3). To simplify the following discussion, we

assume that 1 ≤ r < 2s + 1. Set m = q2−1
2s+1 . Before giving our construction, we need the

following lemmas.

Lemma 7. Suppose that q > 2 and r ≥ 1. Then there exist u0, u1, . . . , ur ∈ F∗
q such that

r∑

i=0

ui = 0.

Proof. We prove this lemma by induction on r. If r = 1, this is trivial. For r ≥ 2, by
induction, the equation

∑r
i=0 ui = 0 has solutions u0, . . . , ur−2, (ur−1 + ur) := u ∈ F∗

q.
Now, take ur−1 ∈ F∗

q\{u} and ur = u− ur−1 6= 0. The desired conclusion follows.

Lemma 8. Suppose (2s+ 1) | (q +1) and m = q2−1
2s+1 . Let ω be a primitive element of Fq2

and r = 2t+ 1, where 0 ≤ t ≤ s− 1. Then the following system of equations







r∑

ℓ=0

uℓ = 0

r∑

ℓ=1

ωℓµmuℓ = 0, for µ = s− t+ 1, . . . , s+ t,

(4)

has a solution u , (u0, u1, . . . , ur) ∈ (F∗
q)

r+1.

Proof. Let α = ωm be a primitive (2s+1)-th root of unity and let a = s− t+1. It is easy
to verify that αa+ν 6= αa+ν′ 6= 1 for any 0 ≤ ν 6= ν ′ ≤ r − 2. Let

A =










1 1 1 · · · 1
0 αa α2a · · · αra

0 αa+1 α2(a+1) · · · αr(a+1)

...
...

...
. . .

...

0 αa+r−2 α2(a+r−2) · · · αr(a+r−2)










be an r × (r + 1) matrix over Fq2 . Then the system (4) of equations is equivalent to the
following equation

AuT = 0T .

For any 1 ≤ i ≤ r + 1, let Ai be the r × r matrix obtained from A by deleting the i-th
column. Then

9



det(A1) = (α(r−1)a+
(r−1)(r−2)

2 ) det(B1) 6= 0,

where

B1 =








1 1 1 · · · 1

1 αa α2a · · · α(r−1)a

...
...

...
. . .

...

1 αa+r−2 α2(a+r−2) · · · α(r−1)(a+r−2)








,

and for 2 ≤ i ≤ r + 1
det(Ai) = bi det(Bi) 6= 0,

where bi = αa · · ·α(i−1)aα(i+1)a · · ·αra and

Bi =






1 ··· 1 1 ··· 1
α ··· αi−1 αi+1

··· αr

α2
··· α2(i−1) α2(i+1)

··· α2r

...
. . .

...
...

. . .
...

αr−2
··· α(i−1)(r−2) α(i+1)(r−2)

··· αr(r−2)




 .

Hence any r columns of A are linearly independent. On the other hand, since (2s + 1) |
(q + 1), we have

αi(a+j)q = α−i(s−t+1+j) = αi(s+t−j) = αi(a+r−2−j),

for any 1 ≤ i ≤ r and 0 ≤ j ≤ r − 2. Thus A is row equivalent to A(q). The conclusion
then follows from Lemma 4.

Let ω be a primitive element of Fq2 and θ = ω2s+1 be a primitive m-th root of unity

(m = q2−1
2s+1 ). It is easy to verify that

ωi1θj1 6= ωi2θj2

for any 1 ≤ i1 6= i2 ≤ r and 0 ≤ j1 6= j2 ≤ m− 1. Put

a = (0, ω, ωθ, . . . , ωθm−1, . . . , ωr, ωrθ, . . . , ωrθm−1) ∈ Fn
q2 .

Set
v = (v0, v1, . . . , v1

︸ ︷︷ ︸

m times

, . . . , vr, . . . , vr
︸ ︷︷ ︸

m times

),

where v0, v1, . . . , vr ∈ F∗

q2
. Similar to the discussion before Theorem 2, we have

〈a0,vq+1〉 = vq+1
0 + (vq+1

1 + · · ·+ vq+1
r )m. (5)

For any (i, j) 6= (0, 0),

〈aqi+j ,vq+1〉 = 0, when m ∤ (qi+ j),

and

〈aqi+j,vq+1〉 = m
r∑

ℓ=1

ωℓ(qi+j)vq+1
ℓ , when m | (qi+ j). (6)

Now, we present our second construction as follows.
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Theorem 3. Let q > 2 be a prime power, (2s + 1) | (q + 1) and 1 ≤ r < 2s + 1. Put

n = 1 + r q2−1
2s+1 .

(i) For any 1 ≤ k ≤ (s + 1) q+1
2s+1 − 1, there exists an [[n, n − 2k, k + 1]]q-quantum MDS

code.

(ii) If r = 2t + 1, where 0 ≤ t ≤ s − 1, then for any 1 ≤ k ≤ (s + 1 + t) q+1
2s+1 − 1, there

exists an [[n, n− 2k, k + 1]]q-quantum MDS code.

Proof. Keep the notations as above.

(i): Suppose 1 ≤ k ≤ (s + 1) q+1
2s+1 − 1. By Lemma 7, there exist u0, u1, . . . , ur ∈ F∗

q

such that
r∑

i=0

ui = 0.

For i = 1, 2, . . . , r, let vi ∈ F∗

q2
such that vq+1

i = ui and let v0 ∈ F∗

q2
such that vq+1

0 = u0m.

Then by Eq. (5),
〈a0,vq+1〉 = u0m+ (u1 + · · ·+ ur)m = 0.

Taking t = 0 in Lemma 5 (i), we obtain that m | (qi+ j) if and only if (i, j) = (0, 0). Thus
from the above discussion,

〈aqi+j ,vq+1〉 = 0, for all 0 ≤ i, j ≤ k − 1.

By Lemma 3, GRSk(a,v) is a Hermitian self-orthogonal MDS code with parameters
[n, k, n − k + 1]. Part (i) then follows from Corollary 1.

(ii): Suppose r = 2t + 1, where 0 ≤ t ≤ s − 1 and 1 ≤ k ≤ (s + t + 1) q+1
2s+1 − 1. By

Lemma 8, there exist u0, u1, . . . , ur ∈ F∗
q which satisfy the system (4) of equations. For

i = 1, 2, . . . , r, let vi ∈ F∗

q2
such that vq+1

i = ui and let v0 ∈ F∗

q2
such that vq+1

0 = u0m.

Then by Eq. (6),
〈a0,vq+1〉 = u0m+ (u1 + · · ·+ ur)m = 0.

By Lemma 5 (i), m | (qi+j) if and only if qi+j ∈ {0, (s−t+1)m, (s−t+2)m, . . . , (s+t)m}.
Thus by Eq. (6), when qi+ j = µm (s− t+ 1 ≤ µ ≤ s+ t), we have

〈aqi+j ,vq+1〉 = m

r∑

ℓ=1

ωℓµmvq+1
ℓ = m

r∑

ℓ=1

ωℓµmuℓ = 0.

Hence
〈aqi+j,vq+1〉 = 0,

for all 0 ≤ i, j ≤ k−1. By Lemma 3, GRSk(a,v) is a Hermitian self-orthogonal MDS code
with parameters [n, k, n− k + 1]. Part (ii) then also follows from Corollary 1.
The proof of this theorem is completed.

Remark 3. i) The minimum distance of the quantum codes constructed in Theorem 3
can be larger than q

2 + 1.
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ii) Part (i) of Theorem 3 extends the result of [24, Theorem 3.2 (i)] where a stricter
condition gcd(r, q) = 1 is required.

iii) When r = 2t+ 1 and 1 ≤ t ≤ s− 1, the quantum codes from Part (ii) of Theorem 3
have larger minimum distance than that of Part (i).

Shi et al. [2, Theorem 4.2] constructed a family of quantum MDS codes of length

n = r q2−1
2s+1 , where r = 2t + 2 is even. For r = 2t + 1 odd, applying the propagation rule

(see Lemma 2) for Theorem 3 (ii), we can immediately obtain the following result.

Corollary 4. Let q > 2 be a prime power, (2s + 1) | (q + 1) and 0 ≤ t ≤ s − 1. Put

n = (2t+1) q
2
−1

2s+1 . Then for any 1 ≤ k ≤ (s+1+t) q+1
2s+1−2, there exists an [[n, n−2k, k+1]]q-

quantum MDS code.

Remark 4. Jin et al. [24, Theorem 3.2 (ii)] constructed a family of q-ary quantum MDS

codes with parameters [[r q2−1
2s+1 , r

q2−1
2s+1 − 2k, k + 1]], for any k ≤ (s + 1) q+1

2s+1 − 1, where

(2s+1) | (q+1) and gcd(r, q) > 1. If t ≥ 1 and 2s+1 6= q+1, then (s+1+ t) q+1
2s+1 − 1 ≥

(s+ 1) q+1
2s+1 and hence the quantum codes of Corollary 4 have larger minimum distance.

Example 2. In this example, we give some new quantum MDS codes from Theorem 3.

(i) Let (r, s) = (2, 2) in Theorem 3 (i). Then, when 5 | (q+1), there exists a [[1 + 2
5(q

2 −
1), 1 + 2

5(q
2 − 1)− 2k, k + 1]]q quantum MDS code for any 1 ≤ k ≤ 3

5 (q + 1)− 1;

(ii) Let (r, s) = (5, 3) in Theorem 3 (ii). Then, when 7 | (q+1), there exists a [[1+ 5
7(q

2−
1), 1 + 5

7(q
2 − 1)− 2k, k + 1]]q quantum MDS code for any 1 ≤ k ≤ 6

7 (q + 1)− 1.

5 Quantum MDS codes of length n = 1 + r
q2−1

2s
,

where 2s | (q + 1)

In this section, we construct quantumMDS codes of length n = 1+r q2−1
2s , where 1 ≤ r ≤ 2s

and 2s | (q + 1). If r = 2s, then n = q2; If r = s = 1, then n = q2+1
2 . The q-ary

quantum MDS codes of lengths q2 and q2+1
2 have been already constructed in [9] and [12],

respectively. To simplify the following discussion, we assume that r < 2s and s > 1. In

this section, we denote m := q2−1
2s . We first provide two technical lemmas as follows.

Lemma 9. Suppose that q is odd and r ≥ 2. Then the following system of equations







r∑

k=0

uk = 0

r∑

i=1

(−1)iui = 0

(7)

has a solution u , (u0, u1, . . . , ur) ∈ (F∗
q)

r+1.

12



Proof. Note that the system (7) of equations is equivalent to

u0 +

r∑

i=1,i odd

(2ui) = u0 +

r∑

j=2,j even

(2uj) = 0.

The conclusion then follows from Lemma 7.

According to Lemma 4, we can prove the following lemma similarly as Lemma 8.
Hence, we omit the details of the proof.

Lemma 10. Suppose 2s | (q + 1). Let ω be a primitive element of Fq2 and r = 2t + 2,
where 0 ≤ t ≤ s− 2. Then the following system of equations







r∑

ℓ=0

uℓ = 0

r∑

ℓ=1

ωℓµmuℓ = 0, µ = s− t, s− t+ 1, . . . , s + t,

has a solution u , (u0, u1, . . . , ur) ∈ (F∗
q)

r+1.

Let ω be a primitive element of Fq2 and θ = ω2s be a primitive m-th root of unity.
Put

a = (0, ω, ωθ, . . . , ωθm−1, . . . , ωr, ωrθ, . . . , ωrθm−1) ∈ Fn
q2 .

Now, we give our third construction as follows.

Theorem 4. Let q be a prime power, 2s | (q + 1) and 2 ≤ r < 2s. Put n = 1 + r q2−1
2s .

(i) For any 1 ≤ k ≤ (s + 1) q+1
2s − 1, there exists an [[n, n − 2k, k + 1]]q-quantum MDS

code.

(ii) If r = 2t + 2, where 0 ≤ t ≤ s − 2, then for any 1 ≤ k ≤ (s + t + 1) q+1
2s − 1, there

exists an [[n, n− 2k, k + 1]]q-quantum MDS code.

Proof. By employing Lemmas 3, 8 and 10, the theorem can be proved similarly as Theorem
3. We omit the details.

Remark 5. i) The minimum distance of quantum codes constructed in Theorem 4 can
be larger than q

2 + 1.

ii) When r = 2t + 2 and 1 ≤ t ≤ s − 2, the quantum codes from Part (ii) of Theorem 4
have larger minimum distance than that of Part (i).

Applying the propagation rule (see Lemma 2) for Theorem 4 (i) and (ii), we immedi-
ately obtain the following corollaries which were given in [1] and [2], respectively.

Corollary 5. ([1, Theorem 4.2]) Let q be a prime power, 2s | (q+1) and 2 ≤ r < 2s. Put

n = r q2−1
2s . Then for any 1 ≤ k ≤ (s+1) q+1

2s −2, there exists an [[n, n−2k, k+1]]q-quantum
MDS code.
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Corollary 6. ([2, Theorem 4.8]) Let q be a prime power, 2s | (q+1) and 0 ≤ t ≤ s−2. Put

n = (2t+2) q
2−1
2s . Then for any 1 ≤ k ≤ (s+t+1) q+1

2s −2, there exists an [[n, n−2k, k+1]]q-
quantum MDS code.

Example 3. In this example, we give some new quantum MDS codes from Theorem 4.

(i) Let (r, s) = (3, 2) in Theorem 4 (i). Then, when 4 | (q+1), there exists a [[1 + 3
4(q

2 −
1), 1 + 3

4(q
2 − 1)− 2k, k + 1]]q quantum MDS code for any 1 ≤ k ≤ 3

4 (q + 1)− 1;

(ii) Let (r, s) = (4, 3) in Theorem 4 (ii). Then, when 6 | (q+1), there exists a [[1+ 2
3(q

2−
1), 1 + 2

3(q
2 − 1)− 2k, k + 1]]q quantum MDS code for any 1 ≤ k ≤ 5

6 (q + 1)− 1.

6 Quantum MDS codes of length n = (2t + 1)q
2−1

2s
,

where 2s | (q + 1)

Suppose 2s | (q + 1) and 0 ≤ t ≤ s − 1. In [2, Theorem 4.8], Shi et al. constructed a

family of quantum MDS codes of length (2t + 2) q
2−1
2s (see Corollary 6). In this section,

we contribute to construct a family of quantum MDS codes of length (2t+1) q
2
−1
2s . Before

giving our construction, we need the following lemmas.

Lemma 11. Suppose that 3 ≤ τ < q+1. Let M be a (τ−2)×τ matrix over Fq2 and satisfy

the following two properties: 1) M and M (q) are row equivalent; 2) any τ − 2 columns of
M are linearly independent. Then the following equation

Mx
T = 0

T

has a solution x = (x1, x2, . . . , xτ ) ∈ (F∗
q)

τ .

Proof. Let M1 (resp. Mτ ) be the (τ − 2) × (τ − 1) matrix obtained from M by deleting
the first (resp. the last) column. From the conditions, we obtain that M1 and Mτ satisfy
the properties in Lemma 4 (let r = τ − 1). Thus the following two equations

M1u
T = 0T , Mτv

T = 0T

have nonzero solutions u = (u2, u3, . . . , uτ ) ∈ (F∗
q)

τ−1 and v = (v1, v2, . . . , vτ−1) ∈ (F∗
q)

τ−1,
respectively. Since τ < q + 1, we may choose an element α ∈ F∗

q\{
u2
v2
, . . . , uτ−1

vτ−1
}. Let

x = (0,u)− α(v, 0), then x ∈ (F∗
q)

τ and

MxT =

(
0

M1u
T

)

+

(
Mτv

T

0

)

= 0T .

The lemma is proved.

Lemma 12. Suppose 2s | (q+ 1) and m = q2−1
2s . Let ω be a primitive element of Fq2 and

r = 2t+ 1, where 1 ≤ t ≤ s− 1. Then the following system of equations

r∑

ℓ=1

ωℓ(µm−q−1)uℓ = 0, for µ = s− t+ 1, . . . , s + t− 1, (8)

has a solution u , (u1, u2, . . . , ur) ∈ (F∗
q)

r.
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Proof. Denote α = ωm, η = ω−q−1 and a = s− t+ 1. Then α2s = 1 and η ∈ Fq. Let

M =








αaη α2aη2 · · · αraηr

αa+1η α2(a+1)η2 · · · αr(a+1)ηr

...
...

. . .
...

αa+r−3η α2(a+r−3)η2 · · · αr(a+r−3)ηr








be an (r − 2) × r matrix over Fq2 . Then the system (8) of equations is equivalent to the
following equation

MuT = 0T . (9)

Since 2s | (q + 1), we have

(αi(a+j)ηi)q = αqi(a+j)ηqi = α−i(s−t+1+j)ηi

= αi(s+t−1−j)ηi = αi(a+r−3−j)ηi,

for any 1 ≤ i ≤ r and 0 ≤ j ≤ r − 3. Thus M is row equivalent to M (q). Let Mij

(1 ≤ i 6= j ≤ r) be the (r − 2)× (r − 2) matrix obtained from M by deleting the i-th and
j-th columns. It is not hard to verify that det(Mij) 6= 0. Thus by Lemma 11, Eq. (9) has
a solution u ∈ (F∗

q)
r. The lemma is proved.

Set m = q2−1
2s . Let ω be a primitive element of Fq2 and θ = ω2s be a primitive m-th

root of unity. Put

a = (ω, ωθ, . . . , ωθm−1, . . . , ωr, ωrθ, . . . , ωrθm−1) ∈ Fn
q2 .

Set
v = (v1, v1θ, . . . , v1θ

m−1, . . . , vr, vrθ, . . . , vrθ
m−1),

where v1, . . . , vr ∈ F∗

q2
. Then

〈aqi+j,vq+1〉 =

r∑

ℓ=1

ωℓ(qi+j)vq+1
ℓ

m−1∑

ν=0

θν(qi+j+q+1).

Thus
〈aqi+j ,vq+1〉 = 0, when m ∤ (qi+ j + q + 1),

and

〈aqi+j ,vq+1〉 = m
r∑

ℓ=1

ωℓ(qi+j)vq+1
ℓ , when m | (qi+ j + q + 1). (10)

Now, we give our last construction as follows.

Theorem 5. Let q be a prime power. Suppose 2s | (q + 1) and r = 2t + 1, where

1 ≤ t ≤ s − 1. Put n = r q2−1
2s . Then for any 1 ≤ k ≤ (s + t) q+1

2s − 2, there exists an
[[n, n− 2k, k + 1]]q-quantum MDS code.
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Proof. Keep the notations as above. By Lemma 12, there exist u1, . . . , ur ∈ F∗
q such that

r∑

ℓ=1

ωℓ(µm−q−1)uℓ = 0,

for all s − t + 1 ≤ µ ≤ s + t − 1. For 1 ≤ i ≤ r, we let vi ∈ F∗

q2
such that vq+1

i = ui.

Note that qi+ j + q+1 = q(i+1)+ (j +1). We can prove similarly as Lemma 5 (ii) that
m | (qi+j+q+1) if and only if qi+j+q+1 ∈ {(s−t+1)m, (s−t+2)m, . . . , (s+t−1)m}.
Hence from Eq. (10), when qi+ j + q + 1 = µm (s− t+ 1 ≤ µ ≤ s+ t− 1), we have

〈aqi+j,vq+1〉 = m

r∑

ℓ=1

ωℓ(µm−q−1)vq+1
ℓ

= m

r∑

ℓ=1

ωℓ(µm−q−1)uℓ = 0.

Thus
〈aqi+j ,vq+1〉 = 0, for all 0 ≤ i, j ≤ k − 1.

By Lemma 3, GRSk(a,v) is a Hermitian self-orthogonal MDS code with parameters
[n, k, n − k + 1]. Theorem 5 then follows from Corollary 1.

According to Theorem 5 and Corollary 6, we obtain the following corollary.

Corollary 7. Let q be a prime power. Suppose 2s | (q+1) and 3 ≤ r ≤ 2s. Put n = r q2−1
2s .

Then for any 1 ≤ k ≤ (s + ⌈ r−1
2 ⌉) q+1

2s − 2, there exists an [[n, n − 2k, k + 1]]q-quantum
MDS code.

Remark 6. Zhang and Ge [1, Theorem 4.2] (see also Corollary 5) constructed a family of

q-ary quantum MDS codes with parameters [[r (q2−1)
2s , r (q2−1)

2s −2k, k+1]], k ≤ (s+1) q+1
2s+1−2,

where 2s | (q + 1). If r ≥ 4, then (s + ⌈ r−1
2 ⌉) q+1

2s − 1 > (s + 1) q+1
2s − 1 and hence the

quantum codes of Corollary 7 have larger minimum distance.

In the following example, a new family of quantum MDS codes is given from Theorem
5.

Example 4. Let (r, s) = (7, 4) in Theorem 5. Then, when 8 | (q + 1), there exists a
[[78 (q

2 − 1), 78(q
2 − 1)− 2k, k + 1]]q quantum MDS code for any 1 ≤ k ≤ 7

8(q + 1)− 2.

7 Conclusion

In this paper, we have constructed six new classes of q-ary quantum MDS codes by using
Hermitian self-orthogonal GRS codes. Most of our quantum MDS codes have minimum
distance larger than q

2 + 1. Some quantum MDS codes presented in [1] and [2] can be
easily derived from ours via the propagation rule. We also generalize and improve some
results in [1],[2], and [24].
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