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RADIAL SYMMETRY OF POSITIVE ENTIRE SOLUTIONS OF A
FOURTH ORDER ELLIPTIC EQUATION WITH A SINGULAR
NONLINEARITY

ZONGMING GUO, LONG WEI, AND FENG ZHOU

ABSTRACT. The necessary and sufficient conditions for a regular positive entire
solution u of the biharmonic equation:

(0.1) —A*u=u? inRNV (N >3), p>1

to be a radially symmetric solution are obtained via the moving plane method
(MPM) of a system of equations. It is well-known that for any a > 0, ([0.)
admits a unique minimal positive entire radial solution u,(r) and a family of non-
minimal positive entire radial solutions u,(r) such that ue(0) = u,(0) = a and
ug(r) > u,(r) for r € (0,00). Moreover, the asymptotic behaviors of u,(r) and
uq(r) at r = oo are also known. We will see in this paper that the asymptotic
behaviors similar to those of u,(r) and u,(r) at 7 = co can determine the radial
symmetry of a general regular positive entire solution u of (UIl). The precisely
asymptotic behaviors of u(x) and —Awu(x) at |z| = co need to be established such
that the moving-plane procedure can be started. We provide the necessary and
sufficient conditions not only for a regular positive entire solution u of (0.]) to be
the minimal entire radial solution, but also for u to be a non-minimal entire radial
solution.

1. INTRODUCTION

We consider radial symmetry of positive entire solutions of the equation
(1.1) — A’u=u"? inRY,

where N =3, 1 <p<3and N >4, p> 1. The necessary and sufficient conditions
for a positive entire solution of (1)) to be a positive entire radially symmetric
solution are established.

Equation (L)) has been extensively studied in recent years, see, for example, [1], 2]
3, 151, 9] 3], [14) 17, 19, 20}, 21] and the references therein. It arises in the study of the
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deflection of charged plates in electrostatic actuators in the modeling of electrostatic
micro-electromechanical systems (MEMS) (see [I8, 22] and the references therein).
It is known from [5] that for N =3 and 1 < p < 3; N >4 and p > 1 (LI admits a

singular entire radial solution:
Us(r) = Lr®, r=|x|,

where and in the following,
4 1

(1.2) a:m, L=[a2—a)(N—-2+a)(N—4+a)] 7.

Moreover, for any a > 0, there is a unique b := b(a) > 0 such that the problem

{ —A?u=u"? in R,

(1.3) u(0) = a, w/(0) = 0, Au(0) = b, u"(0) =0

has a unique positive radial solution wu, ;(r) satisfying

(1.4) lim r~%u, 3(r) = L.

r—00

It is also known from [5] that for any b < b, (I3) does not admit an entire radial
solution; for any b > b, (IL3) admits a unique entire radial solution w,(r") which
has the growth rate O(r?) at r = co. Therefore we see that the behaviors of the
minimal and non-minimal entire solutions at oo are different. A comparison principle
(Lemma 3.2 in [20]) ensures that u,p > u, 5 in (0, 00) for b > b. These imply that for
any a > 0, u,; is the (unique) minimal positive entire radial solution of (LI]) and
{Uap};>j are a family of entire non-minimal radial solutions of (ILI)). Meanwhile, the
comparison principle also implies that for any b; > by > b, Ugpy > Uqp, i (0,00).
The stability of positive entire solutions of (I.I]) has also been studied in [I4] and
the references therein.

In this paper, we are interested in the relationship between the radial symmetry
and the asymptotic behavior at co of a positive entire solution of (LL1]). We will see
that if a positive regular entire solution u of ((LT]) admits the asymptotic behavior as
that of the minimal entire radial solution of (I.1l), it is actually the minimal entire
radial solution of (L)) with respect to some z, € RY. Meanwhile, if a positive
regular entire solution u of (LI) admits the asymptotic behavior as that of a non-
minimal entire radial solution of (L], it is actually a non-minimal entire radial
solution of (I.I]) with respect to some x, € RY.

Our main results are the following theorems.
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Theorem 1.1. Let u € CHRYN) be a positive entire solution of (L1) and

(1,242], for N =3 or 5,
(1.5) peq (1,3]U(7,00), for N =4,
(1, 00), for N > 6.

Then w is the minimal radial entire solution of (ILTl) with the initial value u(x,) at
some x, € RY (i.e. u(x) = u(r) with r = |z — x.|) if and only if

(1.6) lim [|x|_°‘u(:v) - L] —0.

|x|—00

Our results for p = 7 and N = 4; p € (522, p*) and N = 3, 4 or 5 are a little

different, where we denote

3 for N =3

N+3 ! !

(1.7) pt = ;N 7, for N =4,
5— 00, for N = 5.

Theorem 1.2. Let p = 7 and N = 4; u € CYR*) be a positive entire solution of
([CI). Then w is the minimal radial entire solution of (LIl) with the initial value
u(z,) at some x, € R if and only if there exists 0 < ¢y < % such that

(1.8) 2| u(z) — L = 0<|x\_60> as |z] — oo.

Theorem 1.3. Let p € (évt\?,p )y and N = 3, 4 or 5; u € CYRY) be a positive

entire solution of (LI)). Then u is the minimal radial entire solution of (LLT]) with
the initial value u(z,) at some x, € RY if and only if

(1.9) 2| u(z) — L = 0<\x|5_N_2°‘> as |z — oo.

Note that 5 — N — 2a € (—1,0) when N =3, 4 or 5 and p € (342, p*).

The following theorem provides the necessary and sufficient conditions for a pos-
itive entire solution of (L.I)) to be a non-minimal positive radial entire solution of
(1.

Theorem 1.4. Let u € C4H(RY) be a positive entire solution of (L)) with N = 3
and 1 <p < 3; N >4 andp > 1. Then u is an entire radial solution about some
x, € RN, but is not the minimal positive entire radial solution about x, of (LI, if
and only if there exists D > 0 such that
(1.10) Jim [|:L'|_2u(1') - D] —0.

Tr|—00
The constant D then determines a particular non-minimal positive entire radial
solution.

Theorems [[LTHI.4] show that the asymptotic behavior given in (L6]), (L8]), (L9)) or

(LI0) near oo of a positive entire solution u of (I.I]) determines its radial symmetry
3



with respect to some z, € RY, which seem to be the first such kinds of results for

problem (L]).

Let us comment on some related results. The semilinear equations

N +2
(P) —Au=w’ mRY (N>3), p>
N —2
and
(Q) Au=u"? inRY (N >2), p>0

have been studied in the past few decades. Some sufficient conditions for a regular
positive entire solution of (P) and (Q) to be an entire radial solution are given in
[25] for (P) provided p € (82, T£1) and in [I5] for (Q) provided p > 0 respectively.
The results in [25] were generalized to p > % for N > 5 in [10]. Recently, the

necessary and sufficient conditions for an entire solution u of the equation
(P) Ay = 8(N — 2)(N —4)e* in RY (N > 5)

to be the entire radial solution of (P;) with the initial value at some z, € RY are
provided in [I1]. Note that (LI can be written to the following system of equations:
—Au = w in RV
(L.11) { —Aw=—-u"? in RN?
As in [11], we use the moving plane method for a system of equations to obtain our
results, but we need to do more delicate estimates for the solution v and Awu near oo,
since (Q) has a more complicated structure of solutions than (P1). We discuss not
only the minimal solution but also the non-minimal solutions in this paper. Such
estimates we need to do are more complicated since they rely on two parameters p
and N. Moreover, for the non-minimal entire radial solution case, the asymptotic
behavior (ILI0) is not enough to make the moving-plane procedure works, we need
to obtain more detailed information of the asymptotic behavior of u based on (L10).
To know more information of the positive entire solutions with asymptotic behavior

(LE) near oo, we use a Kelvin type transformation:

(112 oy) = lel “u(a) =L, y= 105

and make a fundamental estimate for
(1.13) W(s) = (/ w?(s, 9)d9> .
SNfl

where s = |y| = £, r = |z|, w(s,0) := v(s,0) — v(s) and

B(s) = — / o(s,0)d0, wy_1 = |SV1].
GN-1

WN-1
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The key point is to show that W (s) is Lipschitz continuous, or Hélder continuous
in some case, in a neighborhood of s = 0.

In Sections 2-5, we deal with positive entire solutions u of (LLI]) with the asymp-
totic behavior (ILL6]). In the last section, we deal with positive entire solutions u of
(LI) with (LI0). In Section 2, we first introduce some preliminary results about
the eigenvalues and eigenfunctions of A% ~v_1- Then, using the Kelvin-type transfor-
mation given in (.I2)) we obtain the information of v(y) near y = 0. In Section 3,
we derive an important estimate for W (s) (given in (L.I3])) near s = 0. In Section 4,
some estimates for T(s) and v(s, ) near s = 0 are obtained. We present the proofs
of Theorems [T.1] and [[L3in Section 5. Finally, we prove Theorem [[L4] in Section
6. In this paper, we use C' to denote a positive constant which may change line by

line.

2. PRELIMINARIES

In this section, we present some results which will be useful in the following
proofs. We use the spherical coordinates © = (r,0) as usual. First, let us to show

the following lemma (see Lemma 2.1 in [11]).

Lemma 2.1. Let (A, Q(60)) be a pair of eigenvalue and eigenfunction of the equation
(2.1) — Agn1Q = Q.

Then (A?,Q(0)) is a pair of eigenvalue and eigenfunction of the equation

(2.2) AinQ = 0Q.

Conversely, if (o, Q(0)) is a pair of eigenvalue and eigenfunction of (2.2) with o # 0,
then o > 0 and (c¥/2,Q(0)) is a pair of eigenvalue and eigenfunction of (Z.I).

It is known from [4] that for N > 3, the eigenvalues of the equation (2.I]) are
given by

(2.3) Ne=k(N+k—2), k>0, keN

with multiplicity

(N =24 2k)(N — 3+ k)!

KI(N — 2)!
5
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Then Lemma 2.1] implies that the eigenvalues of the equation (2.2)) are A2 with the

same multiplicity. In particular, we have
Ao =0, my=1, Q)(f) =——

M=N=1, m=N, Q) =25, 1<j<N (=m),
Az = 2N.

Therefore, if w € H*(S™~1) is orthogonal to @Y, i.e. W = 0, we have
/ Vowl2dd > (N — 1)/ w2dh,
SN*I SN*I

and

/ | Agw|?do > (N—1)2/ w?do.
SN-—1

gN-1

The boot-strap argument implies that for 1 < j < my,

(2.5) max |Q5(0)| < Dy, max|(Q})o(6)| < B

where
(2.6) Dp=Cl4+X N+ N+ ...+ 7)), E=CL4+X N+ +...+A])

with C' > 0 being independent of k and 7 > 1, 74 > 1 being positive integers such
that 2r > N — 1, 2, > N.
In Sections 2-5, we assume that u € C*(R") is a positive entire solution of (L))

with (L@). Introducing the Kelvin-type transformation:

a x
(2.7) v(y) = |z~ u(z) - L, y= e [ >0,
we see that u(z) = u(r,0), v(y) = v(s, 0) with s = |y| = r~! and

Aly = [0 +2(N =110 + (N - 1)(N —3)r 20> — (N — 1)(N — 3)r—30,

(8 — 2N Ay + (2N — 6)r 3040, + 202007 + r—4A§] u,

with the notations 9, = % and O = gﬂ—z for 2 < m < 4. Direct calculations imply
that

v — 2(N — 7+ 2a)s'0%v + (N? + 6aN + 6a* — 16N — 36a + 51)s 2020
—(N =5+ 2a)(2Na + 2a* — 3N — 10a + 9)s20,v
+ala—2)(N+a—2)(N+a—4)s v+ L) —2(N -5+ 2a)s > Ag(dsv)
+2(Na +a? — N — da +4)s  Agv + 25 2A(0%v) + s 1 Ajv

= —rg_aAiu = _TS—au—p = _S—8+a(p+1) ('U + L)—p.
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Since L = [a(2 —a)(N =2+ «a)(N — 4+ oz)]_P% and o = ﬁ, we have
(2.8)
Div —2(N = 74 2a)s7'd2v + (N? + 6aN + 6a* — 16N — 36a + 51)s~20%v
—(N =5 +2a)2Na + 2a* — 3N — 10a + 9)s30,v
—2(N =5 +2a)s3A8¢(0sv) + 2(Na+ a? — N — da + 4)s™ 4 Agv
+25720g(0%0) + s+ A% — (p+ 1)s AL~y + 574 f(v) = 0,

where f(t) = (t + L) — L7 + pL=*Y¢t = O(#?) for t near 0. Note that f(t) is
real analytic at t = 0 and satisfies f(0) = f/(0) = 0, f”(0) = p(p + 1)L~®*2) > 0.
Therefore, the study of the behavior of u near |x| = oo is converted to the study of
the behavior of v of the equation (2.8]) near |y| = 0.

Lemma 2.2. Let u € CHRY) be a positive entire solution of (LI) and let v be
given in (210). Suppose that

(2.9) |z|"%u(z) — L =0 as |z| = oo.

Then for any integer £ > 0 there exist constants M = M(u) > 0, s* = s*(u) > 0
such that

M
(2.10) lim v(y) =0, |[V(y)| <= fors=]yl <s"
ly|—0 S

Proof. The estimates in (2.10) follow from (2.9) by standard elliptic theory. O

By Lemma [2.2], we are reduced to study solutions of (2.8)) satisfying (ZI0). There-
fore, we will assume that (2.I0) holds in Sections 2-5.

Define
(2.11) w(s, ) =wv(s,0) —0(s),
where
o(s) = w;_l /S (s 008, wy =[SV

Lemma 2.3. Let v be a solution of ([2.8). Then v and w satisfy

O —2(N — 7+ 2a)s™ 0%
+ (N? + 6aN + 6a® — 16N — 36a + 51)s 20°D
— (N =5+ 2a)(2Na + 2a* — 3N — 10a + 9)s 20,0

—(p+1)s LT+ 57 f(0) = 0
7
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and
Otw — 2(N — 7+ 2a)s 0w
+ (N? + 6aN + 6a* — 16N — 36a + 51)s 20w
(2.13) — (N —=5+2a)(2Na+2a? — 3N — 10a + 9)s 20w
+2(Na+a? — N —4da +4)s *Agw — 2(N — 5+ 2a)s 3 Ag(9,w)
+ 2520 (O2w) + s AGw — (p+ 1)s T L™ w + s g(w) = 0,

respectively, where

g(w) = f(v) = f(v) = f'((s,0)w(s,0) — F'(E(s,0))w(s,0)
and £(s, 0) is between v(s,0) and v(s).

Proof. Since
1

WN-1

Ryv — / Agv(s, 0)d0 = 0,
GN-1

direct calculations derive (2.12]) and (2.13]). Moreover, we have

gw) = f(v) = fv) = f(v) = f(0) = (f(v) = f(0))
= f,(6(37 9))'&[](8, 9) - f/(g(sa 9))111(8, 9)

for some £(s, 0) between v(s, ) and T(s). Where

(2.14) f(€(5,0)) = pL="FY — ple(s,0) + L]77FD > 0,
If we define
C(s) = max f(£(s,0)),
we see that ((s) — 0 as s — 0. O

To end this section, we notice that since w(s,-) € H?(SV1) ¢ L?*(SN~1) and
wW=0,

oo Mg

(2.15) w(s, 0) =Y > wh(s)Q4(0),
k=1 j=1
where {QV(0),Q1(9),...,Qr, (0),Q%(0),Q3(0),...,Q2%,(0),Q3(0),...} is the stan-

dard normalized basis of H*(SV 1), i.e., [on1 Q{(0)Q7,(0)d0 = 0 if i # j or [ # m,
||Q; || 2(sn-1y = 1 which is consisted by all the eigenfunctions of the operator —Agn-
or A%y, in H*(SN~1). Note that {Q1(0),...,QN(6)} is the basis of the eigenspace

Hy of A%y, corresponding to the eigenvalue (N — 1)2.
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3. A PRIORI ESTIMATE OF W (s) FOR s NEAR 0

In this section, we establish some fundamental estimates of W (s) for s near 0,
where W (s) is defined by

(3.1) Wi(s) = ( /S . wz(s,e)dﬁ)%.

We will see that the Lipschitz continuity of W (s) at the origin is crucial in proving
the expansion of u near oo, which can be used to obtain the symmetry of u by the

moving-plane method.

Proposition 3.1. For N > 3, there ezist 0 < sop < min{1, s*} (s* is given in Lemma

22), 0 < <1 and C > 0 independent of s such that for s € (0, so),
(3.2)

C's, for N and p satisfying (L3) or p=7 and N =4 with (L),
W(s) <

CsP, Jorp e (222, p*) and N = 3,4,5,

where p* is given by (LT).

In fact, § = |ﬁ§1)| = 15— N —2a| € (0,1) is given by (B.35) below when p €
(222 p*) and N = 3,4,5.)

Proof. Let Q?(Q) (1 <j<mg k=172 ...) be an eigenfunction of —Agn-1 corre-
sponding to A, = k(N + k — 2). From Lemma 23] we see that w}(s) satisfies the
equation
(3.3)
(wf)(‘l)(s) —2(N -7+ 2a)s_1(wf)(3)(s)
+ (N? + 6aN + 6a” — 16N — 36cr + 51 — 2X;,) s> (w})"(s)
— [(N =5+ 2a)2Na +2a° — 3N — 10a + 9) — 2(N — 5+ 20) A | s> (wh)'(s)
+ M —2(Na+a®> = N —da+4)N — (p+ 1)L~ P s 4wk = 575 (s),
where

) = [P0l 00w

which can be controlled by |gF(s)| < ((s)W(s), here ¢(s) = 0 and W(s) — 0 as
s — 0.

Note that g¥(s) and w?(s) are Fourier’s coefficients of f'(£)w(s, ) and w(s, 6)
respectively. Moreover,

(3.4) 1 (€)w(s, O)l| Lasn-1) < C(s)llw(s, O) || agsn-1) = os(D)lwl| p2esn-1)
and W(s) = >, Z;nz’“l(wf(s))Q]%. Therefore, for any (7, k) fixed and s sufficiently

small, to estimate W (s), we only need to assume

(3.5) 195 (s)| = o5 (1)|w] (s)]-
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In fact, from (B.4)), the expression of w(s,#) given by (2Z.I5) and

F&w(s,0)=>" Zg;?(s)cg’f(e)
we see that . i
D (g = 0u(1) 30D (wh(s)?

Therefore, there are two cases:
(i) 1956 = oAl (1) 1g(s)] # 0u(Dlu(s)].
For any fixed s € (0, s*), denote
Gs={(j,k) : 1 <j <my, k> 1 such that (i) holds},

Bs ={(j,k) : 1 <j <my, k> 1 such that (ii) holds}.
We claim that there exists C' > 0 independent of j,k and s such that for any
s € (0,s™) and any (j, k) € By,
(3.6) 195 (s)] > Clwf(s)],
where 0 < s** < s* (s* is given in Lemma [2.2)). Suppose not, there exists ¢, — 0,
Sp — 0 asn — oo and (j,, k,) € By, such that
1957 (sn)| < calw] (s0)].
This implies
|gf:(sn)| = osn(1)|wf:(sn)| for n large enough,
which contradicts (jy, k,) € Bs,. Therefore, for any s € (0, s**),

oo Mg

Yo fOP <0 Y 1gis)P <ol YD ()P

(4,k)€B (j,k)€B k=1 j=1
Therefore, without loss of generality, we assume that (3.5]) holds for 0 < s < s
any k> 1and 1 < j < my.
Let t = —Ins, 25(t) = w¥(s). Then 2§ (t) satisfies the equation
(25) () + 2(N — 4+ 2a) ()P (¢)
+[N? 4+ 6aN + 6a* — 10N — 24a + 20 — 2] (25)"(t)
+2(N —4420)(Nao— N —da+ o + 2 — M) (25)'(t)
+[A —2(Na+a®> = N —da+4)\, — (p+ D)L= 2k(t) = gh(t),

where gF(t) = gF(e™"). We also know from ((s) and g¥(s) that

)

(3.7)

(3.8) 35D < COW(B),
where
(3.9) Ct):=C(e)—0, and W(t):=W(e") =0 ast— oo.
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The corresponding characteristic polynomial of (3.7)) is
B+ 2(N — 44 2a)3% + (N? + 6aN + 6a* — 10N — 24 + 20
(3.10) —20;) B2 +2(N —4+2a)(Na— N —da+a?+2— X\)f3
422 —2(Na+a?— N —4a+ 4\, — (p+ 1)L~ ) =0
and using the MATLAB, the four roots of (B.I0]) are given by

4= N =20+ 4+ (N - 24202 + 4y/7

v =5 )
1
D= (1= N 20— \Ja+ (N -2+ 20 +4¢—)
(3.11) , %
5(4 N =20+ /4 + (N - 2+ 2k)? )
1
5(4 N =20 — /44 (N 2+ 2k)? V).
where
(3.12) pr=(N—=2+2k)?*+pa(2—a)(N—-2+a)(N —4+a).
We first analyze the four roots B](-k),j =1,2,3,4for k=1,2,.... Note that
(3.13) a€(1,2), for N=3,1<p<3; a€(0,2), for N>4, p>1.

Then, we see from ([B.12) that pp > 0 for £ =1,2,.... Set
Ty = [4+ (N — 2+ 2k)*)* — 16p;.
Noticing that pa = 4 — «, we have
2—a)(N+a—4)<(N—-2)? (4—a)(N+a-2)<(N+2)>%
Thus
Ty = [(N—242k)?* 4] —-16(4 —a)(2—a)(N+a—2)(N +a—4)
> [N?—4> — (N —2)*(N+2)>>0

for N=3andp € (1,3); N >4and p>1and any k = 1,2,.... This indicates that
BJ(» are real numbers for kK = 1,2, .... Therefore, taking into account the expressions

in (B.110) of ﬁj(k), we have demonstrated the following statement.
Claim 1. For any k > 1; N = 3 and p € (1,3); N > 4 and p > 1, the roots
ﬁj(»k) (j =1,2,3,4) are real numbers. Moreover,

8 <8 < < B
Remark 3.2. For N =3 and p € (1,3); N > 4 and p > 1, noticing that
(3.14) 4—2a0—N<0 and 4+ (N+2k—2)*—(4—2a—N)*>0,
we find from (BI1]) that
(3.15) 5§k) < @ik) <0< ﬂk) for any k > 1.
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We now determine the sign of 5§k> for any k£ > 2.
Claim 2. For any k > 2, 5§k> >0 when N=3and pe (1,3); N>4and p > 1.
In fact, by (B14), we see that ﬁék) > () is equivalent to
Ty o= [4+ (N +2k —2)? = (4 — 20 — N)?]* = 16p;, > 0,
for any k> 2 when N =3 and p € (1,3); N >4 and p > 1. Writing T}, as
T, = 16(k—a)(k+2—a)(N+a—2+k)(N+a—4+k)
—162—a)(4 —a)(N+a—-2)(N +a—4).
Therefore Claim 2 follows since we have
k—a>2—-a>0, N+a—-2+k>N+a—-2>0,
k+2—a>4—a>0, N+a—-4+k>N+a—4>0.

For the root ﬁik), we have the following assertion.

Claim 3. For any k > 2, @Ek) < —1lfor N=3and pe (1,3); N >4 and p > 1.
By the expression of ﬁik), we have

1
(3.16) g’“)+1=§[6—zv—2a—\/4+(N+2k—2)2—4m].

Obviously, ﬁik)jtl < 0Owhen N > 6 and p > 1, and even in the case of N € {3,4,5}

and 6 — N —2a <0,ie pe€ (1, %] On the other cases, we see that @(‘k) +1<0
is equivalent to

0<6-N—2a <[4+ (N+2 22— 4/pr.

So to obtain our claim, it’s sufficient to show that

T = [4+(N—|—2k—2)2—(6—N—2a)2]2—16pk>O.
Since
T, = 16k+1—-a)(k+3—a)(N+a+k—-3)(N+a+k-25)
—162—a)d—a)(N+a—-2)(N+a—4).
We find again Tj, > 0 for any k > 2 and p € (2,3) with N = 3; p > 222 with
N = 4,5 from the facts
k+1—a>2—a>0, N+a+k—-3>N+a—-2>0,
k+3—a>4—a>0, N+a+k—-5>N+a—4>0.

Consequently, the Claim 3 is derived from all these arguments.

Remark 3.3. It follows from Claims 1-3 that for N =3 and p € (1,3); N > 4 and
p>1;any k > 2,

(3.17) ﬁék) < ﬁi’“) <-1<0< ﬁék) < ﬁ%k).
12



Moreover, we deduce from the expressions of 6§k) that

(k+1 < ﬁ ZElc+1) < @&k) <1
(k—i—l S ﬁ §k+1) S 5§k)
and
ékﬂ) — ék) — —1 as k — oo,
ikﬂ) — (k) — -1 ask— oo,
ékH) — (k) —1 as k — 00.

Now we investigate the details of ﬁj , 7 =1,2,3,4. Recalling that p* is given by
(L7), we have:
Claim 4. The following inequalities hold for k = 1:

€ (1,242], N =3,4,5;

(1,00), N =6;
Bél) < Bﬁl) =-1< ﬁél) <0< Bfl), for p € (242, p*) and N = 3,4, 5;
BV <V =-1<BP =0<pY,  forp=7and N = 4;
BV <« gV = _1<0<pM < BY, forpe (7,00) and N = 4.
For k =1, from the expressions of
=N +(4—-0a)2—a)(N—-2+a)(N —4+a),

a direct calculation shows that

Vi+ (V) — |N — 6+ 2a

B < o < B0 = ~1 <0< Y, fm{pe

and therefore

1
5§1>:§[4—N—2a—|N—6+2a|],

1
5§1>:§[4—N—2a+|zv—6+2a\].

As before, we have obviously N — 6 + 2o« > 0 when N > 6 or N € {3,4,5} and

pe (1,5 +]\2,) which implies

B =5-N—-2a<-1=p".
This combining with Claim 1 and (815 yields that
BN < BV < gV = —1 <0< Y.
We obtain also for p € [£42,p*) and N =3, 4 or 5,
B =-1<5-N—2a=p"
andwhenN:4,p:p*—N—N—7

Y =-1<0=p"
13



when N =4, p> M3 =7,

BV =—-1<0<5-N—2a=pY

Combining with Claim 1 and Remark B2 we prove that Claim 4 holds.
We continue the proof of Proposition B.1]
For any & > 2, from the equation satisfied by z and the ODE theory, we see

that, for any T" > — In s™*, there exist constants Afz, BF (i =1,2,3,4) such that for
t>1T,

4
(3.18) A0 = 3[4 4 B / A =0gh()ds].

i=1 T
where A;“Z (1 =1,2,3,4) depend on T and Bi(k), but BF (i = 1,2,3,4) depend only
on ﬁi(k). More precisely, the detailed calculations show that
F]Ifl(T)

A= e
(B =B )(By = B3 )BT —By7)
k k
A;‘c@:[ CIEG (f)j"l(Tik) CIF O %’2@()@ (k)} e
(59— 5 (B — B (AP — P (8 — ) (P — )
k
Aja = [ GG (le;’l(T)(m GG
(B3 =By )(Bs — B2 )(B37 —By7)
4 FfQ(T) 4 Fﬁg(T) ]e_gék)T
(B = e =8 (8 - BY) ’
k
Aja = [ ® a0 (Z;;’I(sz ® a0
(B — By )(;k—Tz )(Bi — 3;%@)
T e
where
F(T) = (0 — B89)(0, — B (0, — B1)24(T),
Ffy(T) = (8 = B37)(0, — B17) 24 (T),
F(T) = (9, — B)25(T)
and

1
k_ .
BF = Hiﬁ-(’“) myol Vie {1,2,3,4}.
J#i i J
Since w(s, )—)Oauss—>0Jr Wehavez()—>0ast—>oo Moreover, gF(t) — 0 as
t — 00. I’cfollowsfromﬁ1 >53 >0 for k>2; N=3and p € (1,3); N >4 and
p > 1 that

/ g g5 (s)ds — 0, / =) gi(s)ds — 0 as t — oc.
t t
14



By means of th = fTOO — ftoo, we rewrite z"?(t) in the following form:
Zi;(t) _ Mk ik )t+Mk gk )t+Ak Bk t_l_Ak Bt

J
—Bf/ . lk)(t_s)g;c(s)ds . B:];f/ e (k)(t s)g;f( )d
t t

t
+B§/ 2095k (s )ds+Bk/ 095k (s)ds,
T T

where

RN ON
MjlflejleBf/T e h gk( )dr, ng—A 3+Bk/T By gf( )dr.

The fact that 2/ (t) — 0 as t — oo implies MF, = MF; = 0. Therefore,

K k) k) g(k)
)y = A;zeﬁz T8y (t=T) 4 A;?, BT B (t-T)

oo k)
—Bt [ gy - B [ g
t t
A L (k) .
(3.19) +B2/ By (t—) ( )dT—I—B / B4 (t—T)gj (T)dT.
T T

We now establish the estimate of 2%(t) with k > 1, 1 < j < my. We start with
k>2,1<7<my and claim that
(3.20) 24(8)] = O(ke 1))

for ¢ > T. For any fixed (k,j), if 2§(t) = 0, this is trivial. Assume that 2 (t) # 0
for t € [T, 00) in the following, it is known from (B.5]) that

(3.21) 55 ()] = 0,(1)|25(t)| for t € (T, 00).
It follows from Lemma 22 and (3.19) that, for ¢ € (T, 00),

t
50 < ok 0 /T o, (1)] 24 ()| dr

J

(3.22) +C / %" =)0, (1)]25(7) dr.
t

Note that

e ;k)(t—‘l') S 66§k)(t—7')’ and e ék)(t T) S 664(1k)(t_7—) for T S t

Note also that for ¢ = 1,3 and any fixed t > T,

| / AT () dr| < / 50, (1) 2k (7)|dr

and for £ = 2,4,
t t
| / gk ()| < / 0, (1) 2 (7)dr.
T

15



It follows from (3.22) and arguments similar to those in [11] that
(3.23) |25(t)] = O (ke -1y

for t € (T',00). This implies that our claim (B.20) holds for 2¥(t) # 0. Therefore,
our claim (B:20) holds.

We now establish the estimate of 2]1 (t) with 1 < 7 < my.

We first consider the estimate for N = 4, which can be split to four cases: (i)

€ (1,3]; (ii) p € (3,7); (iii) p € (7,00) and (iv) p = 7.
For the case (i), it is known from Claim 4 that ﬁél) < ﬁf) < - (1) <0< ﬁ
The fact z;(t) — 0 as t — oo implies that z; () can be written in the form
Zi(t) = Aj,e gt + Ajge™ +A1»’4eﬁil)t
—B11/ BV (=) ( )ds+31/ BV (k- )g]( )ds
t T

t t
+B! / =951 (s)ds + B / A=) gl (5)ds.
T

T

Arguments similar to those in the proof of ([3.:20) imply that, for 1 < j < m; and
t>1T,

(3.24) |7 ()] = O(e™* 7).

For the case (ii), we see from Claim 4 that 55” < BAEI) =-1< Bg(,l) <0< ﬁ{l).
Therefore,

()

(1)
Z(t) = Aj,e” 4 Algef Tt 4 A e

t
[T g+ ) [ i)
t T
t ) t
+ B / s 079Gl (s)ds + By / ~=)gl(s)ds.

T T
Similarly, we have that, for 1 < j <mj and t > T,

(3.25) 21(1)] = O 1)),

For the case (iii), Claim 4 shows us that Bél) < Bﬁl) =-1<0< ﬁél) < ﬁ{l)
Then,

zjl(t) = A1265é1)t+A

°°<1>s sy,
-5 | %“wxm—%/ A3 (5)ds
t

t
+B21/ 57 gl (s )ds+B1/ ~=)gl(s)ds.
T T

By the method analogous to that used above, for 1 < j <mj and t > T, we get

(3.26) |z ()] = O(e 1),

16



For the case (iv), we know that ﬁél) < @El) =-1< ﬁél) =0< ﬁfl). Then

()t_l_Al —t

B[ g sds - By [ its)ds
t t

t t
) () ~ -
+B§/ e’ (t_s)g;(s)ds+Bi/ (= S)g]( )ds.
T

T

2(t) = A;,

Similarly, we have that, for 1 < j <mj and t > T,

(3.27) 24(8)] = Oe-1) +C/ l02(1)21(s)|ds,

where C' > 0 which depends only on Bf and Bj but independent of T'. Let

K(t) = /too |z}(s)|ds.

Then we can obtain that K () is bounded provided that the condition in ([.§)) holds.
In fact, it follows from (L8) that there is 0 < ¢ < 55 such that, for s near 0,

lw(s, 0)|* < Cs*°.

Consequently,

k0 = [ wcs ([ wicom)
< C’/s ¢ td¢ = 6—006_5“ < 0,
0

which implies that for any 0 < € < g¢/C,
lim e““ K (t) = 0.

t—o00

On the other hand, it follow from the definition of K (t) that for ¢ sufficiently large,
—K'(t) = |2j(1)] < O(e™"71) + Cek (1)
We can easily see that
K(t) = O(e” D),
This and (3.27) imply
(3.28) |z ()] = O(e 1),

. - 2
Now, let W(t) = £, 5™ |26 (1)|. Then W(t) = (Zz"le;ﬁl(zf)z(t)) < W(t).
For the cases (i), (iii) and (iv), we see from (3.20), (3.:24), (3.20), (3.27) that

(3.29) W) <W(t) <0 (e_t) +0 ( i kemy,eft =T >>.

k=2
17



Let T = 10T. We obtain that, for ¢t > T™,

(3.30) Z ]{;mkeﬁik)(t—T) _ O(eﬁf)(t—T)).

k=2

To see ([B.30), we notice that, for any ¢ > T* (we may enlarge T™),

s
ikt 1)mk+1k€ e o= (t=1) g B Dy oy -
k— 00 l{:mkeﬁi )(t—T) k—o00 kmy,

N | —

Since Bf) < —1, we easily have that, for t > T,

(3.31) W(t)=0(e™).

Let so = e~1". We see from (B.31)) that there exists C' > 0 such that,
(3.32) Wi(s) <Cs for 0 < s < sp.

Arguments similar to the above imply that we can obtain
(3.33) W(t) =0 (eﬁé”t)

for the case (ii). Note that Bél) € (—1,0) in this case.
For N =3 or N > 5, processing the same procedure as above, we can obtain
(3.34)

( pe(,6_—J§$] when N = 3 or 5,
4 pe(1,3]U(7,00)  when N =4,
W(t) = O™, for p=71, when N = 4 with (L8],
p € (1,00) when N > 6;
\ O(eﬁiﬂl)t), for p € (252, p") when N =3, 4 or 5,

where p* is given by (1), B?El) =5—N—2a € (—1,0) when p € ((]),V_—Jr]\z,,p*) and
N =3, 4 or 5. Choosing

(3.35) B=18"|=N+2a-5 pe (X2 p*)and N =3, 4 or 5,

we see that 0 < 3 < 1 in this case. Since W (s) = W (t) and t = — In s, we obtain the
conclusions of Proposition Bl from (3.:34)). This completes the proof of Proposition
B.11 O

4. ESTIMATES FOR ¥(s), v(s,0) NEAR s =0 AND EXPANSIONS OF u(r, ) NEAR
r =00
This section is devoted to establish some estimates for T(s) and v(s, ) near s = 0
which enable us to obtain expansions of positive entire solutions wu(r, ) of (LI]) at

T = OQ.
18



We begin our analysis by recalling the equation satisfied by 7(s). From Lemma
2.3 we see that

oW —2(N = 7+ 20a)s™ "0 + (N? + 60N + 60 — 16N — 360 + 51)s 0"
—(N =5+2a)2Na+2a* —3N — 10a + 9)s 37 — (p+ 1)s 1L~ g
=57 [f®) = F)] - s/ @)

and
1@ -T0)| < —— [ 1)~ sw)las
WN-1 JgN-1
1
< 2)?
<ol(f,.)]
o(s),  for N and p satistying (L3) or p =7, N = 4 with (L§)),

B o(sﬁ), for p € (éY_—Jr]?,,p*) and N =3, 4 or 5,

where /3 is given in (3:35).

Let t = —Ins and Z(t) = v(s). Then Z(t) satisfies

ZW +2(N + 20— 4)z2®) + (N2 + 6Na + 60 — 10N — 24a + 20)z"
+2(N +2a —4)(Na+a? — N —4a+2)7 — (p+ 1)L~z
(4.1) —f(Z)+o(1)et,  for N and p satisfying (L5
_ or p="Tand N =4 with (LJ),

—f(2) +o(1)e P, forpe (822 p*) and N =3, 4 or 5.

The corresponding characteristic polynomial of ([A.1]) is

B4+ 2(N +2a — 4)B% + (N? + 6Na + 60 — 10N — 24a + 20) 5
(4.2) +2(N + 20 —4)(Na+a®> = N —da+2)8 — (p+ 1)L~ P = .

Comparing (4.2)) with (3.I0), it is easy to see that the four roots of (4.2]) are given
by ﬁj(p) corresponding to A\g = 0 for j = 1,2, 3,4, are given in (3.I1]). Denote

(4.3) By =8 forj=1,2,34.
From the expression of 3;, we have that, for N =3 andp € (1,3); N >4 and p > 1,
(44) 51,52€R and 62<2—N—Oé<—1<0<61.

As to the roots (33, B4, we have:
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Claim 5. When N = 3 and p € (1,3); N > 4 and p > 1, the following estimates
for B3 and 4 hold:

pe(lp), N=3;
S _]-7 fOI' b S (ch]a N € [57 12]a

ﬁi’nﬁﬁl S Ra 54 S 637 63 P c (1,00), N Z 13’

€ (—1,0), for  pe[p3,3), N=3;
( pEEpé,]%], N =3;
B p € (1,3], N =4;
= -1 for p € (pe, 7], N =5;

Bsa=Ll+qi gR, ( p € (pe,0), N €[6,12];

pe(3,p3), N=3
€ (—1,0), for p € (3,00), N = 4;
\ p 6 (77 OO)? N = 5

Where p., pi, p3 are given in (EIT) and (&3] below.
We now introduce the function

B(p, N) = [4+ (N = 2)°)% — 16y,

where py = pilp=o is given in (B.12). For N = 3, solving equation A(p,3) = 0, we
obtain four foots:

L 5 —V13-3V17 > 5+ V13-3V17
(45) B VB —svr ' 3 /B_svir

s 5+ V13+3V17 . 5= V13+3V17

B Brsv Y 34vBisvin
It is easy to check that p3 < pi < 1 < p} < p? < 3. A simple calculation shows
h(1;3) =9 > 0. So, we deduce that
hp 3){ >0, for p e (1,p3]U[p3,3),
’ <0, for p € (p3,p3)-
This implies that (3, 8, € R for p € (1,pi] U [p3,3) and B3, 34 & R for p € (pi, p3).
For N = 3 and p € (pi,p3), we have

1 €(=3,—1  forpe(ps 3]
46 % = §R = — — 27 39 Y
(4.6) (B3) (B1) 9 Oz{ € (- ’_%) for p € (g’p%)
For N =3 and p € (1, pi]U[p%,3), we see from the representations of 33 and 3, that

B4 < B3. Moreover,

(4.7) B1< fB3<—1, for N=3andpe (1,pi;

(4.8) By < B3 €(—1,0), for N=3and p € [p3,3).
20



To see (A1), we have

(4.9) 534—1:%[3—204—1-\/5—4\/1+pa(2—a)(a2—1)].
Note that 3 —2a < 0 and 5 — (3 — 2a)? > 0 for p € (1, pl]. Then
128(p — 1)(p — 3)
(p+1)?
This implies 53+ 1 < 0 and thus (4.7) holds. To see (48], we notice that 3 —2a > 0
for p € [p3,3). Tt follows from (£9) that 83 +1 > 0, i.e. B3 > —1. We also know
that, for p € [p2,3), 1 —2a < 0,5 — (1 — 2a)? > 0 and
128(p+5)(p—1)(p—3)
(p+1)°

[5— (3 —2a)%? — 16[1 + pa(2 — a)(a? - 1)] = < 0.

[5—(1—2a)** —16[1 +pa(2 — a)(a® —1)] = <0.

These imply that S35 < 0. Therefore, (4.8]) holds.
For N =4 and p > 1, we have h(p,4) = —% < 0. This implies that
B3, B4 € R. At this time,

(4.10) R(B3) = R(Bs) = —« { § (__11, 0) g i 2 E:l% i]o’).

For5 < N < 12and p > 1, a direct calculations imply that the equation A(p, N) =

0 has only one root p, in (1,00) and

N+2—+/44+ N2 —4/N?+ Hy
6—N++/4+N2—4y/N2+ Hy

(4.11) p. = with Hy = (N(N — 4)/4)%

Moreover,

h(1,N) = N*(N — ) > 0,
B(p, N)|peoo = (N — 4)(N2 — 144) + 16(N — 20) < 0.

Hence, when 5 < N < 12,

> 0, for p € (1, pe),
h(pa N) = 07 for P = De,
<0, for p € (pe, 0),

which implies that s, 84 € R for p € (1, pc); B3lp=p. = Bilp=p. =2 — zﬁ — % < -1
and (3, B4 € R for p € (p., 00).
When 5 < N <12 and p € (p.,00), B34 := €+ qi and it is easy to find that
N[ =1 for p € (p.,00), N € [6,12],

(4.12) E:%(ﬁgA):Q_a_? p € (pe, 7, N=5;
€(-1,—3) forp>7, N=5.

When 5 < N <12 and p € (1, p.], we have

1
Byt 1= 6~ 20— N+ \/4+ (N —2) — 4/70].
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Note that, in this case, 6 — 2a — N < 0,

44+ (N—-2—-6-20—N)?=4+42—-a)(N —4+a)>0,

and
[4+ (N —2)* - (6—2a— N)*? — 16p,
(4.13) =5 i61)2 (N = 1)[(4N —19)p* + (p* +2p — 3)N + 10p — 3] < 0.

So, we conclude that 3 < 8y < —1 for 5 < N < 12 and p € (1, p.].

When N > 13 and p > 1, a simple calculation shows that the equation g—z =0 has
no any solution in (1,00), which implies that 83, 54 € R. From the form of 5 + 1
and (LI3), we obtain that 54 < f3 < —1.

Our claim 5 follows from the above discussions.

In view of (@), the ODE theory and arguments similar to those in section 3
imply that, for N =4 and p > 1; N € [5,12] and p € (p,, 00),

Z(t) = MeP" 4 Ay + Agze' cos(qt) + Ase sin(qt)
t

B /00 P95, %(s))ds + Bs / =% cos[q(t — s)|h(s,Z(s))ds

¢ T
t t

(4.14) —I-Bz/ P29 (s5,%(s))ds + B4/ ! sin[q(t — s)]h(s, Z(s))ds;
T T

for N=3and p e (1,pi]U[p3,3); N €[5,12] and p € (1,p.]; N > 13 and p > 1,
g(t) = M1€Blt + A2662t + A3€B3t + A4€B4t

00 t
—31/ eﬁl(t_s)h(s,i(s))dstBg/ 2= (s,2(s))ds
t

T
t t

(4.15) +Bg/ eﬁS(t_s)h(s,i(s))ds—l—B4/ A=) (s, %2(s))ds,
T T

where ¢ and ¢ are given in Claim 5,

O(Z%) + o,(1)e™t,  for N and p satisfying (LH)

h(t,z(t)) = or p= %3 and N > 6 with (L),
OF*) +o(1)e P, for pe (522,p), N =3,5.

Note that f(z) = O(z%). Since zZ(t) — 0 as t — oo, we see that, for N = 3 and
p€ (pi,p?); N=4and p>1; N € [5,12] and p € (p., 00),

o0 t
IZ(t)| < O(eét) + C’/ eﬁl(t—3)|h(s,2(s))|ds + C'/ eg(t_s)\h(s,z(s)ﬂds,
¢ T
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and, for N = 3 and p € (1,pi] U [p3,3); N € [5,12] and p € (1,p.]; N > 13 and
p>1,

t

IZ(t)| < O(eﬁ3t) + C/ eﬁl(t_5)|h(s,§(s))|d8 + C/ 653(t_8)|h(8,2(s))|d8,

t T
where C' > 0 is independent of T. Note that we have also used the fact G < (.
Arguments similar to those in the proof of Proposition 3.1l imply that

pE (p3,p3), N=3;

(4.16) |Z(t)] = O(e"), ie. [o(s)]=0(s7"), for pE€(l,0), N =4;
p € (pe,00), N €[5,12]

and
[Z(t)| = O(e™),
p e (LpUlps3), N=3;
(4.17) ie. [0(s)]=0(s™), for p € (1,p.], N € [5,12];
p € (1,00), N € [13,00).
The fact v(s,8) = T(s) + w(s, ), Proposition B.1] , (AI7) and Claim 5 yield
that
Nt2)
O(s), for p € (1, 575], N = 3,4,5;
] p € (1,00), N > 6;
(4.18) [v(s,0)| = 4 O(s”),  for p € (%, p), N =3,4,5;

where ¢ = 2—a—% € (~1,0) is given in Claim 5 and § = 18| =5—N—2a € (0,1)
for p € (%,p*) and N = 3,4,5, which is given in (3.35). We have also used the
facts —1 < ¥ < ﬁél) <0 forpe (%,p*) and N = 3,4,5; —1 < 33 < Bél) < 0 for
p € [p3,3) and N = 3. Moreover, since

[f() = f@)] = p[(€ + L)""*V — L V]Jw| = O(|¢])|w],

where £(s,60) = yw(s,0) + (1 —v)v(s) with v € (0, 1), the estimate similar to (£.I8])
yields that

for p € (1,&],]\7 =3,4,5;
Ols), pe (1,000, N >6;
(4.19) §(s,0) =4 O(s”),  for pe (§3,p"), N =3,4,5;
O(s7"), for p e (7,00), N = 4;
p="7,N =4 with (LS.



Therefore

O(s?) for p € (1, éV_—Jr]\z,],N =3,4,5;
"’ p € (1,00),N = 6;
(4.20) |f(v) = f@)] =1 O(s*),  for pe (22,p"), N =3,4,5;
O(st=%), for pe (7,00), N = 4;
p="7,N =4 with (L8).

Consequently, we have the following lemma.

Lemma 4.1. Let v be a solution to (2.8). Then there exists M = M(v) > 0 such
that for p € (1,%%2] and N =3, 4, 5; p € (1,00) and N > 6,

T6—N
(4.21) w(s)| < Ms, [0'(s)| <M, [v"(s)] < Ms™!
and
(4.22) / v?(s,0)d0 < Ms?
GN-1
Forp e (éV_—Jr]?,,p*) and N = 3,4,5,
(4.23) w(s)| < Ms®, [7/(s)] < MsPY, ['(s)] < MsP?
and
(4.24) /N v3(s,0)do < Ms*, B=N+20—5¢€(0,1);
gN-1
Forpe (7,00) and N =4; p=17 and N = 4 with (L),
(4.25) 5(s)| < Ms™*, |0/(s)| < Ms~ 9 |5"(s)| < Ms™ 3+,
and
(4.26) / W2 (s,6)d8 < Ms~.
gN-1

where€:2—a—%<0.

Proof. Proof of this lemma is similar to that of Lemma 4.1 in [I1]. We omit the
details here. O

Proposition 4.2. Suppose that k > 0 is an integer and v is a solution of (2.8).
Then there exist 0 < sg < 1 and M = M(v, k) > 0 (independent of s) such that for

pE(l,éY_—JFJ\Q,] and N =3,4,5;p€ (1,00) and N > 6,

(4.27) max | D*v(y)| < Ms'™".

Forp e (3£2,p*) and N = 3,4,5,

(4.28) 1|rn‘ax | D v(y)| < MsP*.
yl=s

Forpe (7,00) and N =4; p="7 and N = 4 with (L),

(4.29) r‘n|ax | D u(y)| < Ms™",
yl=s
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Proof. We only show (£.27)). The proofs of (4.28)) and (4.29]) are similar. We first ob-
tain (L27) for the case of & = 0. If we define z(t, ) = w(s, 0) = X2, 7™ wh (s)Q%(0),
we see that

oo my oo Mg
t,0)] < k(¢ kg < APAGIE
gﬁmn_;;mm£%@w_;;kmm

where Dy, is given in (Z5). Arguments similar to those in the proof of Proposition
B imply that there exist C' > 0 independent of t and 7™ > 1 such that, for t > T*,

oo my 00
Z Z Dk|zf(t)| = O(Z kmkaeB‘(*k)(t_T)) + O(e_(t_T)) < Ce™
k=1 j=1 k=2
(note that limy_, 4 % = 1) and hence
max |z(¢,0)| < Ce™,
fesSN-1
(4.30) max |w(s,0)| < Cs

feSN-1

for 0 < s < sp:= e 7 . Therefore, ([E2T) with 7 = 0 can be obtained from ([#30)
and the fact that v(s,0) = w(s,0) + v(s).

To obtain (4.27) completely, it is enough to show (427) for k = 1. The other
cases are essentially the same by differentiating w(s,#). We only need to show
[Vuw(y)| < C. Since |Vw|? = w? + %|wg|?, we need to present the estimates of w?
and |wg|®. We see that w,(s,0) = X2, X7 (w¥) (s)Q%(6), then

0o  my

k
(481 mas fu(s,0) < 30D Dal(wh) (9]
k=1 j=1
For each Ay = k(N +k —2) and 1 < j < my,, we see from the expression of z(t) in
BI9) and (wh)(s) = —(2%)(t)e! (t = —Ins) that for 0 < s < s,

j j
Dyl (wh) (s)] < Mys™ 7+ for k> 2
and
Dyl(w!(s)] < M.
These and (437]) imply that there is M; = M;(v, s9) > 0 independent of s such
that, for s € (0, s¢),

4.32 s(s,0)] < M.

(4.32) ,ax |ws(s,0)] < M,

Note that B +1 < 0 for k > 2. Since |wy(s,0)| < S ST [wh(s)|[(QF)el, we
also obtain that there exists My = Ms(v,s9) > 0 independent of s such that for
s € (0, sp),

(4.33) max |wy(s,0)] < Mas.

feSN-1
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(Again by limy_, W‘#f% = 1.) Therefore, for s € (0, s¢),

1 ~
(4.34) mas [V (y)|* = max |uf + luwol?| < AT,

where M = M? + M2. Together with (&2I)),, we see that (27) holds for x = 1.
This completes the proof of this proposition. O

To study the properties of v, we introduce a new function

(4.35) (s, 0) = w(i’ %)
It follows from the above arguments that
(1, 252] when N = 3 or 5,
. _ peq (1,3]U(7,00) when N =4,
(4.36) |w(s,0)] =0O(1), for (1. 00) when N > 6.

p=T7and N =4 with (L)
For p € (éV_—Jr]\z,,p*), N =3, 4 or 5, from (L9) we have
lvu(s,0)| = o(sB) for s near 0,
where 3 = |ﬁ§1)| =N +2a—5¢€ (0,1). There holds in this case
(4.37) B(s)| = o(s%), |w(s,0)| = o(s?) for s near 0.
Arguments similar to those in the proof of Proposition [3.1] imply that
Wi(s) = O(S‘B‘(*l)‘) for s near 0.

Since 8" = —1 for p € (222 p*) and N = 3, 4, 5, we see that |w(s,0)] = O(1) also
holds when p € (£42,p*) and N = 3, 4, 5 with (L9).
Taking account of equation (2.13]), we see that w(s, ) satisfies the equation:

(4.38)
020+ 2(9 — 2o — N)s™ 12w
+ (N? 4+ 6aN + 6a* — 22N — 48a + 93)s 20w
— (N +2a — )(2aN +2a® — 1da — 5N + 21)s 30,
— [(N +2a—5)(2Na+2a* — 3N — 10a +9) + (p+ 1)L~ "] s~
+2(Na +a® — 6a — 2N + 9)s " Agtd + 2(7 — 2a — N) s> Ay (0s10)
sT2Np(020) + sTHAGW

@) = f)] = sTHF(EG 0)w — f(E(s, 0))a].
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Now we write
oo Mg

(4.39) (s, 0) = Z Z Wk (5)Q(0),

where w¥(s) = s™'w(s). Tt is clear that E = 0. Then, @%(s) satisfies

(wj)(4) +2(9—-2a— N)s_l(u?’?)(g)

J

+ (N? + 6aN + 60” — 22N — 48 + 93 — 2X;)s~ > (wh)”

J

— (N 420 — 7)(2aN + 20° — 14a — 5N + 21 — 2\, )s > (@}

+[(5—N —2a)2Na + 20> = 3N — 10a + 9) — (p+ 1)L~ @*Y
—2(Na+a® = 2N — 6o+ 9\ + Aj] s 'af
= s Yo (1)l

where A\, = k(N + k — 2) and

(4.40)

Ni2| N —
O(s), for p € (1, 575], N = 3,4,5;
) p € (1,00),N > 6;
(4.41) 0s(1) = ¢ o(s?), for p € (F22,p*), N = 3,4,5 with (L3);
O(s7"), for pe (7,00), N = 4;
p="T7,N =4 with (L§]).

Let t = —Ins and 5?( ) = W} *(s). Then zk(t) satisfies the following equation:
(Z5)@ 4 2(N — 6+ 20)(25)® 4 (N + 6aN + 60> — 16N — 36 + 50
—2M) (ZN)" + 2(N + 20 — 6)(Na + o — 6a — 2N + 7 — \)(Z5)
(4.42) +[(5— N —2a)(2Na + 20 — 3N — 10a +9) — (p + 1) L=+
—2(Na+a? = 2N — 6o+ 9)\p + A7) 2

where

(4.43) (1) = o(e‘Bt), for p €

The corresponding polynomial of (£.42]) is

B*+2(N — 6+ 2a)53% + (N? + 6aN + 6a% — 16N — 36a + 50 — 2X) 52
+2(N 420 — 6)(Na+ a? — 6 — 2N + 7 — \)3
+(5—=N —2a)(2Na + 2a% = 3N — 10a + 9) — (p + 1) L=+

—2(Na+a? 2N —6a+ 9\, + A\; = 0.
27
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Solving this equation, we obtain four roots:
BY =8 1, j=1,2,3,4,

where ﬁ](k) is given in (BIT]). It follows from Claims 1-4 in the proof of Proposition
B.1] that

Bék)<5£k)<0<ﬁ~§k)<5§k) fork>2; N=3and pe (1,3); N >4 and p>1

and
DV =0<p) <p? for N=3,5pe (X2 p);
N =4, pe( ,00);
N—345p (1N—N]
From (3.23) and Claim 3, we see that for k > 2,
(4.45) llmw()—() for N=3and pe (1,3); N >4 and p > 1.

s—0

Moreover, [@36) and @37) imply that [w](s)| (1 < j < my) is bounded for s near
0, that is, |Zj(¢)| is bounded for ¢ near oo, provided that N and p satisfy (L3)) or
N =4 and p =7 with (L8); N = 3,4,5 and p € ({2, p*) with (LJ). It follows
from (A42]) that, for ¢ sufficiently large,

50y

~ 3(1)
40 =+ AL

A s o\~ t 5D (4 ey~
(4.46) _Bl/ M0 e )z;(s)d5+B21/ e?2 (=90 e )z (s)ds

T
t
+ B! / O(e~*)z(s)ds + B / 0 (6702 (5)ds
T

for N > 6 and p € (1,00); N = 3,4,5 and p € (1, Y2];

2H(t) =CL + ALy
1 L o - ) . .
(4.47) —Bi/ A0 ! )Z}(S)ds—B;i/ 550 ()2 (s)ds

t t
t

t
+ B! / %"= 0 ()3} (s)ds + By / O(e")z! (s)ds
T T
for N=4and p>7; N =4 and p = 7 with (L.8]);
1 1 (1)
Z(t) =Cj + Aj,e !

51 (g B ~ AW _fin
(4.48) —Bi/t o )z;(s)ds—B;i/t ¢85 (=) o(eP%) 21 () ds
t N t R
B} [ Ao ) s+ B[ ole )2 )

T
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for N = 3,4,5 and p € (§22,p*) with (LJ). These imply @}(s) — C; (a con-

stant, maybe 0) as s — 0. Recalling that Q1(0),..., QL () are the eigenfunctions

mi

corresponding to Ay = N — 1, we have that
(4.49) w(s,0) = V(0) as s — 0,

for N and p satisfy (LH); N =4 and p = 7 with (L8); N = 3,4,5 and p € (§52,p*)

with (9). Here V(6) is 0 or one of the first eigenfunctions of —A on S¥=1 i.e.
AV +(N-1)V =0, V=0
Moreover, it is known from Lemma 8.1 of [25] that
(4.50) V(0) =0-x
c GN-1.
Combining what have been dlslmllssed above with Lemma (.1 and Proposition [£.2]

for some =y € RY fixed and 0 =

we have established the following asymptotic expansions near y = 0 for solutions of
@.3).
Theorem 4.3. Let v be a solution of (Z8) and w be given by (L35). Suppose that N

and p satisfy (LH); N =4 and p =7 with (L8); N =3,4,5 and p € (évt\?,p ) with

(LA). Then v(y) =7v(s) + sw(s, ) where v(s), w(s,d) have the following properties
and
(i) T satisfies

[5(s)] = O(s), [v(s)] = O(1), ["(s)] =O(s")

for N =345 andp € (1,222]; N > 6 andpE(l 00);

[5(s)] = O(s7), [7'(s)] = O(s~ D), [0"(s)] = O(s~“+?)
for N =4 andp € (7,00); N =4 and p =T with (LJ);
[5(s)] = o(s”), [T(s)| = o(s" 1), ["(s)| = o(s"?)
for N =3,4,5 and p € (X2, p*) with (L9).

6 N Y p
(i1) For any nonnegative integers k and k1, there exists a positive constant M =

M (v, k, K1) such that
"Dy Diw(s, 0)| < M,y € By, :={y: [yl <so}, y#0.
Moreover, w satisfies
(4.51) lin%zb(s, 0) =V (0) wuniformly in C*(SN71),
5
where V(0) is 0 or one of the first eigenfunctions of —Ag on SNL.
Using transformation (2.7)) and arguments similar to those in the proof of Theorem

5.1 of [11], we obtain immediately from Theorem [£.3that the asymptotic expansions

for positive entire solutions of (I.I]) at oo.
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Theorem 4.4. Let N and p satisfy (LH); N =4 and p =7 with (L8); N = 3,4,5
and p € (322 p*) with (L9). Assume that u is a positive entire solution of (L)
with ([L6l). Then (u, —Au) admits the expansion:

u(z) =r*|L+e(r)+ M},

(4.52) '
w(r) = ~Bu(r) = =7 [La(N +0 ~2) + ¢1(r) + W:’ )

where
(453) { o1(r) = 120" + (N +2a — )ry' + (N + a — 2)p,

U1(r,0) = r*P, + (N + 20 — 3)rth, + (o — 1) (N 4+ a — 3) + 1 *Age).
Furthermore, the following properties for v, 1, w1, are satisfied:

(i) o(r) = r=u(r)— L, and there exist Ry (:= s;') and a constant M = M (u) > 0
such that, for N = 3,4,5 and p € (1,2%2]; N > 6 and p € (1,00),

P 6-N
(4.54) lo(r)] < Mrh, [/ (r)] < M2, ["(r)| < Mr™> forr > Ry,
(4.55) |y (r)] < Mr~* forr > Ry.
For N=4 andp € (7,00); N =4 and p =7 with (LY),
(4.56) ()] < Mr', |@'(r)] < Mr™h " (r)| < Mr*™? for v > Ry,
(4.57) | (r)] < Mr" forr > R.

For N = 3,4,5 and p € (552, p*) with (L9),

458) ()| =o(r™P), &) = oY), |"(r)] = o(r ") forr > Ry,

(4.59) L) = o(r™P) forr > Ry.

(i1) Let k and k1 be two non-negative integers. Then there ezists a positive con-
stant M = M (u, k, k1) such that

(4.60) |r"Dy* Driap(r,0)] < M, |i1(r,8)] < M  forr > Ry.

(11i) Let k be a non-negative integer. Then 1(r,0) tends to V(0) uniformly in
C*(SN=Y) as r — oo, where V(0) is given by ({{.50).

5. PROOFS OF THEOREMS [[LTHT. 3]

In this section, we present the proofs of Theorems [[LIHI.3| by using the well known
moving plane method.
For v € R, define the hyperplane:

TVZ{I:(Ilax2>"'>$N) ERN | 1’1:7}
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For any = € R, denote the reflection point of z about Y., by z7, i.e.
= (27 — 1, T2, 7$N)'
We have the following lemma by using Theorem .41

Lemma 5.1. Assume that N and p satisfy (LH); N = 4 and p = 7 with (LI);

N =3,4,5 and p € (2£2 p*) with ([L9). Let u be a positive entire solution of (L))

satisfying (LO), (L8) and (LI) respectively. Then,
(i) if ¥ € R — v and {27} — oo with x] < 7, then
|xj‘2—a

(5.1) ]1520 . " [u(z]) — u((xj)y)} = —2aly — 2(x)1,

where (xq)y s the first component of xo given in ([E50).
(i1) Denote vy = —(“ZL)I. Then there ezists a constant M = M (u) > 0 such that

L
0 () >0,

(5.2) o

if x1 >+ 1 and |z| > M.

Proof. For N = 3,4, 5 and p € (1, %}; N > 6 and p > 1, the proof of this lemma
is similar to that of Lemma 6.2 of [15]. For N =4 and p > 7; N = 4 and p = 7 with
(C8); N =3,4,5 and p € (%,p*) with (.9), we can obtain the conclusions from
the decay rates of ¢(r), v1(r), ¥(r,0) and 1 (r,0) in Theorem 4. In fact, we only

need to replace the estimate:
1
|27]*=2(y — a1)
in the proof of Lemma 6.2 in [I5], by
1 [ . . . .
. - 80(|93]|)|93]|a—80(|(93])”|)|(93])”|"}
=2 — 2])
_{O(|xj|£)A—>0 as j — oo for N=4,p>7 N =4, p="7with (L8));

O(|z7]7") = 0 as j — oo for N = 3,4,5, p € (222 p*) with (L9),

here we have used (4.50) and (A58). This completes the proof of this lemma. [

(£ = £ (@] = O(|27] ™) = 0 as j — o0

Assume w(z) = —Au(x) and rewrite (L)) in the following form:

—Au=w in RV,
(5-3) { —Aw=—u"? in RV,

Let us recall Lemma 4.2 in [23] due to Troy. We obtain readily that
Lemma 5.2. Let v € R and u be a positive entire solution of (LIl). Suppose that
u(z) <wu(x?), u(z) Zu@), wx) <w(z?) ifz <7.
Then

(5.4) u(z) < u(z?), w(x§1< w(z”) ifxy <~y



and
ou ow
8—%(33) >0, 8—%(

where x7 is the reflection point of x with respect to 1.

(5.5) z) >0, onY,,

As a consequence of Lemma [5.2], we have the following result.

Lemma 5.3. Let v € R, N and p satisfy (LH); N = 4 and p = 7 with (L3J);

N =3,4,5 and p € (§2£2,p*) with ([L9). Let u be a positive entire solution of (L))

satisfying (LO), (LY) and (L9) respectively. If
u(z) <wu(z?), u(r)Zu(x) forx <7,
then
(5.6) u(z) <u(zx?), wr)<w@) forz <7.
Proof. Since u(z) < u(z?), u(x) # u(z?) for x; < 7, we deduce that
Alw(z) —w(@)] =uP(x) —uP(7) >0 ifz; < 7.
It follows from (A52)-(A60) that
w(x) —w(x?) -0 as |z| — oo.
Moreover, w(z) = w(z”) on YT,. The maximum principle yields
w(z) —w(x?) <0 if zy < 7.
It follows from Lemma that our conclusions in (5.6) hold. O
Proofs of Theorems [1.1], and [1.3
We first show the sufficiency of these theorems. The main idea of the proof is
similar to those in [11], 25]. We claim that there exists 7' > 0 such that
(5.7) u(z) <u(z?), wr)<w(x’) forvy >+ and z; < 7.
Suppose for contradiction that (5.7]) does not hold. Then by Lemma [5.3] there exist
two sequences {7/} — oo and {2’} with 2/ < 47 such that
(5.8) w(@) > uy)), v =), j=1,2,....

Thanks to 3’ tends to oo, we see that u(y’) tends to infinity. In turn |27| — co. By

Lemma [5.1, we must have

: T
] S’Yo—l—lz—(aogl

+ 1 for j large enough.
Thus, it follows that, for any v, > vy + 1,

u(x?) > u(yj) > u((2?)") for j large,
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since (xj)'{j > (27)]* for j large and u(z) — oo as |z| — oo. On the other hand,

using Lemma [5.1] again, we conclude that

w J) _ Jym _ —
0< -|u(@’) —u((@”)")| = —2aly — 2(zo)1 <0,
=T

since ] < ;. This is a contradiction and (57) follows.

The rest of the proof is same as that of Theorem 1.1 in [II] and [25] for the
sufficiency of Theorems [I.1], and [I.3l We omit them here.

We now show the necessity of Theorems [T} [.2] and [[L3] Without loss of general-
ity, we assume x, = 0. Then, the necessity of Theorem [Tl follows from Proposition
8 of [5]. To show the necessity of Theorems and [[.3] we first show a lemma,

which describes the behavior of the unique minimal positive radial entire solution

of (L)) at oc.

Lemma 5.4. Assume N =3 andp € (1,3); N >4 andp € (1,00). Letu € C*RY)
be the minimal positive radial entire solution of (IL1l). Then as r = |x| — oo, there
holds:

O(r*%) for N =3 andp € (p},p}); N € [4,12] and p € (pe, o0);
u(r) = Lre+q O(r~**) for N € [5,12] and p € (1,p.); N = 13 and p € (1, 00);
O(r53+°‘) for N =3 andp € [pga 3),

where B3 = %(1 — 20+ \/5 —4y/1+pa(2 — a)(a? — 1)) given by (4.3)).

Proof. In radial coordinate r = |z|, (LI)) can be written to: for r € (0, c0),
u(4) + Mu”/ + (N — 1)(N — 3)u// B (N - 1)(N — 3)ul B

—u~P,

r 72 r3
For the minimal positive radial entire solution u(r) of (I.T), we know from [5] that

it satisfies (I4).

Inspired by [6] [7, 8, 12} [16], 24], we introduce the Emden-Fowler transformation
r=ce, m(t)=eule") - L, teR.
Under this transformation, (ILT]) becomes to
m® +2(N + 2a — 4)m” + (N? + 6Na + 60 — 10N — 24a + 20)m”
(5.9 +2(N +2a —4)(Na+ao®> — N —4a+2)m' — (p+ 1)L~ PVm + g(m) = 0,
where g(m) = (m + L) — L™ + pL~®*Ym. Note that (L4) indicates
lim m(t) =0,

t—00
so for |t] large enough, g(m) = O(m?). Comparing ([T)) with (5.9), we find that they
have the same characteristic polynomial (4.2]) and the eigenvalues ; (7 = 1,2, 3,4)
given in Section 4. Taking account of the properties of §; given in (4.4]) and Claim
5, we obtain the presentations of m(t), which are similar to ([AI4) and (AI5) in
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Section 4 except that h(s, z(s)) is replaced by g(w). The same arguments imply
that
(5.10)
O(e?) forp € (pl,p?) and N = 3; p € (1,00) and N = 4;
p € (pe,0) and N € [5,12];
O(ePst) for p € (1,pi] U [p3,3) and N =3; p € (1,p] and N € [5,12];
p € (1,00) and N € [13, 00).

Im(t)] =

Note that £ =2 —a — 5 and 85 = 1 <1—2a+\/5—4\/1+p0z(2—a)(a2—1))
when N = 3. We obtain our desired results by using (4.4 and Claim 5 again. [

We continue to show the necessity of Theorems and [L3l It follows from
Lemma [5.4] that if u is the minimal positive radial entire solution of (ILTI), then, for

r sufficiently large, there holds

(5.11)
o(rf), for p e (2,p3) and N = 3; p € (3,7 and N = 4;
r~%u(r)—L = p € (7,00) and N = 5;
O(r), for p € [p%,3) and N = 3.

On the other hand, we can easily check that, for p € [p2,3) and N = 3,
By < —f=5-3-2a<0.
For (3,p3) and N =3; pe€ (3,7) and N = 4; p € (7,00) and N =5,
Ez?—%—a<5—N—2a:—B<0

and for p="7 and N =4,
N 1
€:2—E—a:—§<—eo,

where ¢, is given in Theorem It follows from (5.I]) that for r sufficiently large,
o(rd=N=2a), for p € (3,3) and N =3; p e (3,7) and N = 4;

r~%u(r)— L = p € (7,00) and N = 5;

o(r=<), for p="7and N = 4.
This completes the proof of the necessity of Theorems[I.2land [[.3 and then completes
the proof of Theorems [T and [L3 O

6. PROOF OF THEOREM [1.4]

In this section, we present the proof of Theorem [[L4l To do this, we first obtain
the asymptotic behavior of a non-minimal positive radial entire solution of (L.I]).

We know from [5] that when N =3 and 1 < p < 3; N > 4 and p > 1, for any
34



fixed a > 0 and oo > b > I;, (L3) admits a unique non-minimal positive radial entire

solution wu, () such that
T 2Uq(1) € (A1, Ay) for r sufficiently large,

where 0 < 4; < Ay < .

The following proposition presents the asymptotic behavior of u,(r) at r = oco.

Proposition 6.1. There exists d > 0 (d depends on a and b) such that, for r near

00,
d+ O(r~N=21nr), zfp—g,
(6.2)
(S +0(r ™), ifp# T and min{N —2,2(p — 1)} #2;
L+ O(r*nr), ifp# T and min{N —2,2(p— 1)} = 2;
P U(r) =4 5= +0(r ?), ifp=1% and N > 5;
iN+O(rllnr) ifp=2 and N = 3;
{ 5= +O0(r2(Inr)?), ifp=2and N =4,
where kK = min{2, N—-22(p—1)}.

Proof. We first show
d

(6.3) Augp(r) = d, 7 2ugu(r) — o 8T 0o

It is easily seen from the equation in (L3) that Awu,,(r) is decreasing in (0, 00).
Therefore, there are three cases for Au,,(7):

(1) Augp(r) — —e < 0 (e may be +00) as r — o0,

(i) Augp(r) — 0 as r — oo,

(iil) Augp(r) = d >0 asr — oo.

We show that the cases (i) and (ii) do not happen. Since

1 2uq(r) € (Ay, Ay) for r sufficiently large,

we have that
(6.4) lim, ., 7 2uqp(r) > A > 0.

If (i) occurs, we see that for any small € > 0, there is an R = R(e) > 1 such that
(6.5) Augp(r) < —e+¢€ for r > R.

(We may assume 0 < e < co. If e = 0o, we can choose any 0 < e; < oo such that
(6.5) holds.) This implies

, 1 —e + €
PNy fr) — BVl (B) < SEED o8 )
and PN ( )
/ Bl / —e+e —
Up (1) < mua,b(R) T (r— RYr!=N)



Therefore,

Uap(T) < ugp(R) + (r2N _ 2N

(—e+ RV , n 2-N
) (r R).
This implies

lim, oot 2tgp(r) < —% <0

by sending € to 0. This contradicts to (€.4]).
If (ii) occurs, arguments similar to those in the proof of case (i) imply that

lim, oo g (1) < 0.

This also contradicts to (6.4]).
Therefore, case (iii) occurs. Clearly using the arguments similar to those in the
proof of case (i), we can prove that

Ii 2 a = A’
R T

and then the limits in (6.3)) hold.

To prove the identities in (6.1]), we define v(r) = Au(r) — d. We omit a,b from
Uqp in the following. Then v(r) — 0 as r — oo and v(r) satisfies the equation
Av(r) = A%u(r) = —uP. Tt follows from (6.3)) that, for r near +oo,

Av(r) = O(r=?).
This implies that
20" (r) + (N — 1)ro/(r) = O(r209),
Making the transformations:
w(t) =ov(r), t=Inr,
we have that, for ¢ near oo, w(t) satisfies the equation:
w"(t) + (N — 2)w'(t) = O(e21=P1),
The ODE theory implies that for 7" > 1 sufficiently large and ¢t > T,

w(t) = M1+A26(2_N)t—Bl/ O(e21=Pt)ds
t

t
+B, / e2=Nt=9) 0 (21-P)3) g,
T

Note that By and Bs are independent of T'. Since w(t) — 0 as t — oo, we have that
M; = 0 and we easily see that

o Ofe- min{N—2, 2(p—1)}t), if p #
0| oo, i
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This implies that the identities in (6.I]) hold. To see the identities in ([6.2]), we define
o(r) =r72u(r) — 5%. Then o(r) — 0 as 7 — oo and o(r) satisfies the equation
O (,r,— min{N -2, 2(p—1)}) if P 7& N
2. 1 / ’ 2
+ (N +3)rd +2Np=A —d=
et (N 3)rd+ 2Ne = Aulr) { O (r~™-21n ), if p =2

Making the transformations:

2(t) = o(r), t=Inr,
we have that, for ¢ near oo, z(t) satisfies the equation
O (e~ mintN=22-D}) = jf £ N
O (te-V-21) it p— .
Arguments similar to those in the proof of (6.I]) imply that for ¢ near +oo,
( O(e "), if p# & and min{N —2,2(p — 1)} # 2,
(te™t), ifp# T and min{N —2,2(p— 1)} =2,
(e72), if p=% and N > 5,
(
(

2() + (N +2)2'() + 2N 2(t) = {

2

@)
2(t) =4 O
O (te ), if p=2and N = 3,

2

[ O (%), ifp=3and N =4,
where £ = min{2, N — 2,2(p — 1)}. This implies that the identities in (6.2) hold.
Since u(r) = r?o(r) + 5%, we have that

A(r?o(r)) = Au(r) —d > 0 for r € (0, 00).
If we define w(r) := r?0(r), we see that w'(0) = 0 and hence
W'(r) >0 for r € (0,00).
The proof of this proposition is completed. O

Remark 6.2. We can easily see that for any fixed a > 0, d := d(a,b) > 0 for
b € (b,00) is an increasing function of b with

lim d(a,b) = 0.
b—bt
We also know that
lim d(a,b) = co.
b—o00

Proof of Theorem [1.4l

Without loss of generality, we assume x, = 0 in Theorem [[L4. The necessity
follows from Proposition

To prove the sufficiency of Theorem [I.4, we need to know more information on
the asymptotic behavior of an entire solution u € C*(RY) of (ILT)) satisfying (I.I0).
The main idea is similar to that of the proof of the sufficiency of Theorem [l

Let v € CHRY) be an entire solution of (LI). We introduce the Kelvin-type
transformation:
(6.6) o(y) = la| Pu(x) =D, y=.
37
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Then v(y) = v(s,0) with s = |y| = r~! satisfies v(s,0) — 0 as s — 0 and the
equation:

02 —2(N = 3)s 1020 + (N — 1)(N — 3)s 20?0 — (N — 1)(N — 3)s *d,v
+2Ns  Agv — 2(N — 1)s72Ap(05v) + 257 20g(92v) + s Ajv
(6.7) 5 0 (y 4 D)P =

Define
w(s, ) =wv(s,0) —0(s),

o(e) |SN1|/

Then v and w respectively satisfy
W — 2(N — 3)sWyss + (N — 1)(N — 3)s 20,5 — (N — 1)(N — 3)s7%7,
(6.8) +5 (v + D) =0

and

where

Otw — 2(N — 3)s 10w + (N — 1)(N — 3)s 20?w — (N — 1)(N — 3)s*0w
+2Ns * Agw — 2(N — 1)s72Ap(0w) + 257 2Ag(9%w) + s Ajw

(6.9) —s1g(w) =0,
where
g(w) = s*2(v4+ D) P — s 2(v+ D)p

= 27D [((v +D)?— (v + D)‘p> + ((@ +D)? — (v+ D)—p)]
= —ps™ Y [(€(s,0) + D) Du(s, 0) — (€[5, 6) + D) Vu(s,0)]
and £(s,0) is between v(s,#) and v(s). If we define

Cls) = ma |~ ps"0 D (E(5,0) + D) = ps?0 ) max |(€(5,6) + D)7
we see that
(6.10) C(s) = O(s**~V) for s near 0.

Note that £(s,0) — 0 as s — 0.
Since w(s) = 0, we have the expansion:

oo my

=22 uj(s)

i=1 j=1

), Q3(0),...,Q2,(0),Q3(0),...} is given in Section
1

<ji<my satlsﬁes the equation

where {Q1(0), Q3(0), ..., Qp, (6

2. We also see that w’ (s) Wlth

(W)@ = 2(N = 3)s™H(w])sus + [(N = (N = 3) = 2Xi] 52 (w]) s
—(N = 1[N =3 =2\]s 3 (w))s — (2NN — A7)s ™)

(6.11) =s'gi(s),
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where \; = i(N+i—2),7 =0, 1,2, ... are the eigenvalues of the equation —Agn-1Q) =
AQ given by (2.3]) and

g5(s) = /S 9(w)Q;(0)do = —p / s (E(s,0) + D) w(s, 0)Q5(0)do.

SN-1
We see that
135(s)| < CC(s)W (s) = O(s*®»~ Y)W (s) for s near 0,

1
where W (s) = <fstl w2(s,9)d9> g
Similar to Proposition Bl we have the following result.

Proposition 6.3. For N =3 and 1 < p < 3; N > 4 and p > 1, there exist a
sufficiently small 0 < sg < % and C > 0 independent of s such that for s € (0, sg),

(6.12) Wi(s) < Cs.
Proof. Let t = —Ins, 25(t) = wj(s). Then 2!(t) satisfies the equation
(2@ + 2N (20)ye + (N? + 2N — 4 — 2X0)(21)y + 2N (N — 2 — X)) (21),
(613)  —M@N - M) = fi),
where f/(t) = gi(e™"). The corresponding polynomial of ([6.13) is
(6.14) v* +2N1? + (N? + 2N — 4 —2X)v* + 2N(N — 2 — \)v — Ni(2N — \;) = 0.

Using the Matlab, we obtain four roots of (G.14):
(6.15)

v = %(2—N+\/(N—2)2+4)\i), V) = %(2—]\7— \/(N—2)2+4)\i),
e :%<—2—N+\/(N—2)2+4)\,~), e :%<—2—N—\/(N—2)2+4)\,~).

Therefore, we have
(6.16) W =i S =2-N—i ) =i—2 JS=-N—-i

We easily see that
(@)

(4) (@)

l/f)<1/2 <vy <.
For ¢ =1,
V{l) =1, Vél) =1—N, Vél) =—1, Vﬁ(tl) =—-N-1

and

Vil) < I/él) < I/él) =-1<0< l/fl).
For ¢ = 2,

O 2 P — N, P — 0, P — N -2

and

Vf) < 1/52) <-1< I/§2) =0< 1/%2).
For i > 3, we see that

U <) < —1 <0< ) <0,
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For i > 3, we see from (6.I3) and ODE theory that for any 7" > 1, there are
constants A”,, B!, (k=1,2,3,4) such that, for t > T,

4 t

. . (1) : (©) i

Zi(t) = E [A;»’ke”k t—l—B,i/T e’r (t_T)f;»(T)dT :
k=1

(i

where each A; i depends on 7" and 1/,(:), but each Bj depends only on v, ), Therefore,

(¢
3

. . (4) . ) . (i) . (i)
) 7\[2 vyt 7\ [2 Ve 't 7 vy 't 7 v, 't

—Bi/ e“§i)(t‘7>f;(¢)dT—B§/ 6V§i)(t_7)f;(7‘)d7‘
t t
t t
(6.17) +B; / e fi(7)dr + B / ) fi(r)dr
T T

by using that f; = [ — [7°. Note that

6.18 e”ii)(t_T)fo T)dT — 0, e”éi)(t_ﬂf? T)dT — 0 as t — oo.
j j
t

t

Moreover, the facts that Vii) < Véi) <0andt—7>0for 7 € (T,t) imply that
0 b
| et s < [ el el pwar
T T
The facts that 0 < Véi) < Vfi) and t — 7 < 0 for 7 € (t,00) imply that

| et g < [ et

Therefore, since 2(t) — 0 as t — oo, we see that M}, = M/, = 0 and there is

C' > 0 depending only on B} (k= 1,2,3,4) but independent of T" such that
. t ) 00 .
(1) <0 + C / e 7| fi(7)|dr + C / &) fi(r) | dr.
T ¢

Arguments similar to those in the proof of (3.20) imply that

(6.19) 12 (t)] = O(ies D))

J

fort >T and1>3,1< 75 <m,.
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For ¢ =1, it is known that v, (< l/él) < 1/?(, l=_1<0< 1/(1) = 1. The fact that
zj(t) = 0 as t — oo implies that z;(t) can be written in the form

”t

]() Al )t—i—A l/3t_|_A

[e¢) t

—Bll/e”il)(t_T)f]-l(T)dT—l—Bé/e”él)(t_T)fJ-l(T)dT

t T
t t

)
+ B, /e"él)(t_T)fjl(T)dT + B} /6V41 (t_T)fjl(T)dT.
T T
Arguments similar to those in the proof of (G.I9) imply that

(6.20) |2 ()] = O(e™"" 1)
fort >T and 1 <j < my.

For i = 2, it is known that 1/9 < 1/52) -1< 1/3(,) =0< 1/(2). The fact that
25(t) = 0 as t — oo implies that 27(t) can be written in the form

(2) (2)
G(t) = At AT,

_B%/ 1/1 t7f2 dT—32/f2
t

t t
+B3 / ¢ £2(7)dr + B? / A 127 dr
T T
Similarly, noting (6.I0) we have

(6.21) 22(t)] = O ") (= O(e VD))

for t > T and 1 < j < my. Therefore, if we set Z(t) = W(s) with ¢t = —Ins,
arguments similar to those in the proof of ([B.31]) imply that

(6.22) Z(t)=0(e™)

for ¢t > T, and T* = 107"
Let so = e~ . We see from (6.22)) that there exists C' > 0 such that for 0 < s < s,

(6.23) Wi(s) < Cs.
This completes the proof of this proposition. O

Lemma 6.4. Let v be a solution of 61). Then there exist constant 0 < sy < 15
cmdM M(v) > 0 such that for N =3 and 1 < p < 3; N > 4 and p > 1;
(O So)

(6.24)
[u(s)| < Ms, [7'(s)| < M, [v"(s)] < Ms™! for p > %
[O(s)] < Ms'™, [0'(s)] < Ms™, [7"(s)] < Ms™=¢ forp=3,
0(s)] < Ms* P~V [/(s)] < M@=V @"(s)] < Ms*PD72 forl<p<?



where 0 < € < ﬁ 18 sufficiently small, and
M s? forp>3

(6.25) [ vsoan s M0 oyt
5 Ms*®P=1) forl<p<32

Proof. We recall that v(s) satisfies the equation
) —2(N = 3)s Waes + (N — 1)(N = 3)s D, — (N — 1)(N — 3)s~77,
—5~h(m) = s~ {Ao) — h(F)),
where h(v) = s*P=D (v + D)7 and
|A(

=) < = [ () = h()1d8 < o(W(s) = ofs).
N-1 Jgn-1
Let Z(t) = U(s), t = —Ins. Then Z(¢) satisfies the equation

(6.26) W + 2N () + (N2 + 2N — 4)(2)y + 2N (N — 2)(2), = h(2) 4+ o(e™),

Note that h(z) = s2P~D(z + D)™P = O(e~ P~ for ¢ near co. The corresponding
polynomial of (6.28]) is

4

: vi+ 2NV + +2N —4)v° + —2)v = 0.
6.27 Y 42NV 4+ (N? 42N — 4)v? + 2N(N — 2 0
The four roots of (6.27)) are:

(625) P A B Y

The ODE theory implies
Z(t) = M+ Age™ + Azem WDt 4 g e

00 t
/ T)dT + By / —2(t—- T)f(T)dT
T

t

(629) +Bg/ —(N=2)(t—7) )dT+B4/ —N(t—T)T(T)dT’
T

T

where f(t) = h(Z(t))+o(e™?). The fact that Z(t) — 0 as t — oo implies that M; = 0.
Notice that f(t) = O(e~™n{2—1)11) " we see from (6.29) that there exists 7' >> 1
such that for ¢ > T,

O(e™), for p > 2,

(6.30)  |Z(t)| =4 O(e==9),  forp=2 and sufficiently small 0 < € <
O(e~2P=D8) " for 1 < p <3

100 ?

(Note that when N = 3 and p = 2, the term | [, e ™V=2(=10(e=2-D7)dr| <
O(e "Int).) This implies that (6.24), holds. Differentiating (6.29) with respect to

t once and twice respectively and noticing 7'(s) = —Z'(t)e! and v”(s) = [Z"(t) +
Z'(t)]e*, we easily see that ([6.24), and (6.24), hold. Note that v(s,0) = w(s,0) +
v(s), we obtain (6.25). This completes the proof of this lemma. O
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Lemma 6.5. Let 7 > 0 be an integer and let v be a solution of ([6.7]).

exist 0 < 59 < % and M = M(v,T,s9) > 0 such that for s € (0, sg),
Mst—™ forp>32
(6.31) :‘al'ax\DT v(y)| < Mst— forp=3,
! Ms*P=D=7  for1 <p<3.

Proof. Similar to the proof of Proposition

Let
w(s,d)

S

w(s,0) =
Then w(s, #) satisfies the equation
4

—(N —1)(N — 3)s b + 25 2 Ap1 — 2(N — 3)s 3 Ay(0,)
(6.32) 425 2Ag(0%W) + s A — s g(w) = 0,

where

040 — 2(N = 5)s7 102w + (N — 3)(N — 7)s20%w + (N — 1)(N —

g(@) = —ps* P V[(&(s,0) + D) " Vw — (&(s,0) + D)=+ D],

where £(s, 0) is between v(s, ) and o(s, #). We also have

oo my

=SS @i (9)Qi0),  wis) = w3f’.

i=1 j=1

Then, w)(s) satisfies the equation:

Then there

3)s 20

(@5)W = 2(N = 5)s7(@0))sss + [(N = 3)(N = 7) = 2\i]s™2()) s

+[(N —1)(N =3) 4+ (2N — 6)>\i]s‘3(u?§-)s
(6.33) +[—(N = 1)(N = 3) = 2X; + Af]s ) = s g;(s),
where g%(s) = [gn_1 9(w0)Q}(0)df. We also know that
95(5)] < O(s*P )W (s),
where W (s) = ([qn 1 [W0(s, 0)[2d0)Y/2.

Let Z!(t ) w'(s), t = —Ins, Z(t) = W(s). We see that Z!(t) satisfies the equation

(for t near co):

(Z)® + 2(N = 2)(Z)e + (N? — 4N +2 — 2,) (2

—2[N — 2+ (N = 2)A] (D) + [-(N = 1)(N — 3) — 2X; + X]Z

(6.34) = g;(t),
where gi(t) = gi(s) and |g}(t)| < O(e —2(=D Z(t). Since Z(t) = ' Z(t) = O(1) (see
Proposition [6.3), we see that |G:(t)] = O(e®= ). The corresponding polynomial
of (6.34) is

V4 2(N = 2)0° 4+ (N? — 4N +2 — 2\ — 2[N — 2+ (N = 2)\]v
(6.35) +[=(N = 1)(N —=3) =2\ + ] =0,
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which has four roots:
P =0 11 k=1,2,3,4,
ie.,
(6.36) P =it1, N =3-N—i A =i-1, {"=1-N—i.
Since for each (i,7), |24(t)| is bounded, arguments similar to those in the proof of

Proposition 6.3 imply that 2,57 [Z(t)| — 0 as t — oo. We see that, for i = 1,
the four roots are given by

V=2 oV =2-N, =0, 7’ =N

Thus

PV < 5V

< Uy (1)

<-1<0=0" <
and
el

Z(t) = C+ A, e "+ A e
B /OO il)(t T) —2(p—1)t)d7_ _ B; /OO 0(6—2(p—1)t)d7_
t

t
+B) “IO(e 21 )d7-+—l31J/ A0V ar,
T T
This implies that Zj(t) — A; (A; is a constant, maybe 0) as t — oo. Since
Q1(0),...,Q,, (0) are the elgenfunctlons corresponding to the eigenvalue A\; = N —1,
and thus we see that
(6.37) il_r%w(s 0) =V (0).

In conclusion, we have the following theorem.

Theorem 6.6. Let v be a solution of (671) and w be given in (632). Then we have
(1) v(y) = 0(s) + sw(s, ) satisfies

[0(s)] < Ms, ['(s)] < M, 0" (s)| < Ms™ forp>3,
B(s) < Msi~,  [7(s)| < Ms—, [0"(s)| < Ms~ forp=3,
[o(s)| < Ms>P- 1), W'(s)| < Ms2P=D=10 ["(s)| < Ms*P~D=2 for1<p< 3.

(i1) For any non-negative integers T and 1, there exists M = M (v, T,71) > 0 such
that

(6.38) D DTy < M, y € Bu, y 40,
where By, = {y € RY : |y| < so}. Moreover, W satisfies
(6.39) £1_r>r(1] w(s, ) =V (0),
uniformly in C™(SN=1), where V(0) is given by ([{.50).

We obtain from Theorem [6.6] the asymptotic expansion of u(x) near |z| = co.
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Theorem 6.7. Let N =3 and 1 < p < 3; N >4 and p > 1; u be a solution of
(LI satisfying (LIQ). Then u admits the expansion:

(6.41) w(z) == —Au(r) = —2ND + &(r) + m(:, 0)

where
&i(r) = —[r*¢" + (N + 3)r¢’ + 2N¢],
m(r,0) = =[r*n + (N + 1)rn, + (N = 1)y + Q).
Moreover, the following properties are satisfied:
(i) £(r) = r~2u(r) — D and there exist Ry (:= sy') > 0 and a constant M =
M(u) > 0 such that, for r > Ry,

(6.42)
§(r)| < Mr~t, &) < Mr2, |§(r)] < Mr— forp> 3
()| < Mr=(=9 | (r)] < Mr=C=9 |7 (r)| < Mr=B=9 forp =3,
() <M _2(” D, &' (r)| < Mr=2P+t " (r)| < Mr _2” forl<p<3
Myt forp>32
(6.43) (S < § Mr==9  forp=3,

—2(p—1 3
Myr—2=1) Jor 1 <p<3.

(i1) Let T and 11 be two non-negative integers. Then there exists a positive constant
M := M(u,T,7) such that, for r > Ry,

(6.44) ¥ Dy Dn(r, 6)] < M,

(6.45) m(r, 0)] < M.

(i1i) Let T be a non-negative integer. Then n(r,0) tends to V(0) uniformly in
CT(SN=Y) as r — oo, where V(0) is given by ({{.50).

Completion of the proof of Theorem [1.4]
We first write (L)) to a system of equations:

—Au = v, in RV,
(6.46) { —Av=—u"P, in RV,

We now start the procedure of moving-plane. As a consequence of the expansions
of u(z) in Theorem [6.7] we have the following lemma.

Lemma 6.8. Let N =3 and 1 <p < 3; N >4 and p > 1; u be a solution of (LT

satisfying (LIQ). Then, '
i) If v/ € R — ~ and {27} — oo with 2’ < ~7, then
1

(6.47) lim L N u(2?) — U((SL’])V)] = —4Dv — 2(z0)1,

j—o0 fyj — le

where (xg)y s the first component of xo given in ({.50).
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(i1) Define

(350)

4 =
(6 8) Yo oD

Then there exists a constant M = M(u) > 0 such that

(6.49) 88_u>0 if 1 >0+ 1 and |x| > M.
X1

Proof. To prove (6.47)), without loss of generality, we assume that

lim - e st
J—roo |:1:]|

For simplicity, we also assume that v/ = v, j = 1,2, ... since the following arguments
work equally well for the sequence {/}. Using the the expansion of u in (6.40), we
have

[ @] = = [p(wr - 1))
= [lPe(a)) — 1@y Peq D]
T
b [l ), %) = 1@ (17, (0]
= I+ 11+ 111
We have
D(a’2 = |(2/)"[?2) = —4Dy(y - i)
and hence

[ = —4D~.
We also have that there is §; between |27| and |(27)”] such that

4(y — o)

o PE(a]) — () PE()71) = (265608 + B8] o

and in turn

4y(y — o)
oul

7] + |(2

1T = —— |28 + B 6]
T
O(|z;|7') =0, for p > 2
= O(|z;|~=9) =0, forp=3,
O(|z;|72=D) -0, forl<p<?
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as j — 00, since % — 1 as j — 0o. Here we have used the estimates of £(r) and

¢'(r) in (©42). We now write
i = @) [Lw‘\ - ‘(gjj)v‘]

J

7T

2L ), @) w1y @)
v —‘551

LR (7], 0%) = (||, (67)7)]
TN

= [IL+ 111+ 111;.

As before, by (6.44]) and arguments similar to those in the proof of (8.11) in Lemma
5.2 of [25], we obtain that 1], = O(|z/|™') — 0 as j — oo, [1Iy = O(|27|7!) — 0
as j — oo and I113 — —2(xg); as j — oo. These imply that (6.47) holds.
To prove (6.49), we use (6.47). Suppose that (6.49) is false. Then there exists a
sequence {2/} — oo such that
ou

8—551( 1) <0, 21 >y+1, VjeN.

It follows that there exists a sequence of bounded positive numbers {d;} such that

u(@?) > u(zq,), x4, = 2/ +(2d;,0,...,0), Vj€N.

Let
o :x{+dj >x{.
We have
1 . .
(6.50) N [u(a:’) . u((xﬂ)'v)] >0, VjeN.
v —

There are two possibilities:
lim infy/ < co, lim 4/ = co.
j—o0o j—o0

If the first case occurs, we choose a convergent subsequence of {7/} (still denoted
by {7’}) with the limit v > 7o + 1 and apply (6.47) and (6.48) to obtain

lim —— [u(a?) — u((a?))] = ~4D7 — 2(zo)y < 4D <0

This contradicts (6.50). We can derive a contradiction for the second case similarly.
The proof is a little variant of the proof of Lemma 8.2 of [25]. Thus, neither the
first nor the second case can occur and (6.49) holds. This completes the proof of
this lemma. U

To complete the proof of the sufficiency, we use moving-plane arguments of the
system of equations (6.46). The proof is exactly the same as the proof of Theorem

1.1. We omit the details here. O
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Remark 6.9. We conjecture that the following conclusion holds: If u € C4(RY) is
an entire solution of (1) with N =3 and1 <p <3 or N>4 andp > 1, then u
is the minimal radial entire solution of (L) about some x, € RY, if and only if

(6.51) |z| 2u(z) = 0 as |z| — oo.

This conjecture implies that if u is an entire solution of (1)) and (6.51]) holds for
u, then u must have the exact asymptotic behavior at oco:

|z|"u(x) — L as |z| — oo,

where o and L are given in (L2).
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