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RADIAL SYMMETRY OF POSITIVE ENTIRE SOLUTIONS OF A

FOURTH ORDER ELLIPTIC EQUATION WITH A SINGULAR

NONLINEARITY

ZONGMING GUO, LONG WEI, AND FENG ZHOU

Abstract. The necessary and sufficient conditions for a regular positive entire
solution u of the biharmonic equation:

(0.1) −∆2u = u−p in R
N (N ≥ 3), p > 1

to be a radially symmetric solution are obtained via the moving plane method
(MPM) of a system of equations. It is well-known that for any a > 0, (0.1)
admits a unique minimal positive entire radial solution ua(r) and a family of non-
minimal positive entire radial solutions ua(r) such that ua(0) = ua(0) = a and
ua(r) ≥ ua(r) for r ∈ (0,∞). Moreover, the asymptotic behaviors of ua(r) and
ua(r) at r = ∞ are also known. We will see in this paper that the asymptotic
behaviors similar to those of ua(r) and ua(r) at r = ∞ can determine the radial
symmetry of a general regular positive entire solution u of (0.1). The precisely
asymptotic behaviors of u(x) and −∆u(x) at |x| = ∞ need to be established such
that the moving-plane procedure can be started. We provide the necessary and
sufficient conditions not only for a regular positive entire solution u of (0.1) to be
the minimal entire radial solution, but also for u to be a non-minimal entire radial
solution.

1. Introduction

We consider radial symmetry of positive entire solutions of the equation

(1.1) −∆2u = u−p in R
N ,

where N = 3, 1 < p < 3 and N ≥ 4, p > 1. The necessary and sufficient conditions

for a positive entire solution of (1.1) to be a positive entire radially symmetric

solution are established.

Equation (1.1) has been extensively studied in recent years, see, for example, [1, 2,

3, 5, 9, 13, 14, 17, 19, 20, 21] and the references therein. It arises in the study of the
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deflection of charged plates in electrostatic actuators in the modeling of electrostatic

micro-electromechanical systems (MEMS) (see [18, 22] and the references therein).

It is known from [5] that for N = 3 and 1 < p < 3; N ≥ 4 and p > 1 (1.1) admits a

singular entire radial solution:

Us(r) = Lrα, r = |x|,

where and in the following,

(1.2) α =
4

p+ 1
, L =

[

α(2− α)(N − 2 + α)(N − 4 + α)
]− 1

p+1 .

Moreover, for any a > 0, there is a unique b̃ := b(a) > 0 such that the problem

(1.3)

{

−∆2u = u−p in R
N ,

u(0) = a, u′(0) = 0, ∆u(0) = b, u′′′(0) = 0

has a unique positive radial solution ua,b̃(r) satisfying

(1.4) lim
r→∞

r−αua,b̃(r) = L.

It is also known from [5] that for any b < b̃, (1.3) does not admit an entire radial

solution; for any b > b̃, (1.3) admits a unique entire radial solution ua,b(r) which

has the growth rate O(r2) at r = ∞. Therefore we see that the behaviors of the

minimal and non-minimal entire solutions at∞ are different. A comparison principle

(Lemma 3.2 in [20]) ensures that ua,b > ua,b̃ in (0,∞) for b > b̃. These imply that for

any a > 0, ua,b̃ is the (unique) minimal positive entire radial solution of (1.1) and

{ua,b}b>b̃ are a family of entire non-minimal radial solutions of (1.1). Meanwhile, the

comparison principle also implies that for any b1 > b2 > b̃, ua,b1 > ua,b2 in (0,∞).

The stability of positive entire solutions of (1.1) has also been studied in [14] and

the references therein.

In this paper, we are interested in the relationship between the radial symmetry

and the asymptotic behavior at ∞ of a positive entire solution of (1.1). We will see

that if a positive regular entire solution u of (1.1) admits the asymptotic behavior as

that of the minimal entire radial solution of (1.1), it is actually the minimal entire

radial solution of (1.1) with respect to some x∗ ∈ R
N . Meanwhile, if a positive

regular entire solution u of (1.1) admits the asymptotic behavior as that of a non-

minimal entire radial solution of (1.1), it is actually a non-minimal entire radial

solution of (1.1) with respect to some x∗ ∈ R
N .

Our main results are the following theorems.
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Theorem 1.1. Let u ∈ C4(RN) be a positive entire solution of (1.1) and

(1.5) p ∈











(1, N+2
6−N

], for N = 3 or 5,

(1, 3] ∪ (7,∞), for N = 4,

(1,∞), for N ≥ 6.

Then u is the minimal radial entire solution of (1.1) with the initial value u(x∗) at
some x∗ ∈ R

N (i.e. u(x) = u(r) with r = |x− x∗|) if and only if

(1.6) lim
|x|→∞

[

|x|−αu(x)− L
]

= 0.

Our results for p = 7 and N = 4; p ∈ (N+2
6−N

, p∗) and N = 3, 4 or 5 are a little

different, where we denote

(1.7) p∗ :=
N + 3

5−N
=







3, for N = 3,
7, for N = 4,
∞, for N = 5.

Theorem 1.2. Let p = 7 and N = 4; u ∈ C4(R4) be a positive entire solution of
(1.1). Then u is the minimal radial entire solution of (1.1) with the initial value
u(x∗) at some x∗ ∈ R

4 if and only if there exists 0 < ǫ0 <
1
10

such that

(1.8) |x|−αu(x)− L = o
(

|x|−ǫ0
)

as |x| → ∞.

Theorem 1.3. Let p ∈ (N+2
6−N

, p∗) and N = 3, 4 or 5; u ∈ C4(RN ) be a positive

entire solution of (1.1). Then u is the minimal radial entire solution of (1.1) with
the initial value u(x∗) at some x∗ ∈ R

N if and only if

(1.9) |x|−αu(x)− L = o
(

|x|5−N−2α
)

as |x| → ∞.

Note that 5−N − 2α ∈ (−1, 0) when N = 3, 4 or 5 and p ∈ (N+2
6−N

, p∗).

The following theorem provides the necessary and sufficient conditions for a pos-

itive entire solution of (1.1) to be a non-minimal positive radial entire solution of

(1.1).

Theorem 1.4. Let u ∈ C4(RN) be a positive entire solution of (1.1) with N = 3
and 1 < p < 3; N ≥ 4 and p > 1. Then u is an entire radial solution about some
x∗ ∈ R

N , but is not the minimal positive entire radial solution about x∗ of (1.1), if
and only if there exists D > 0 such that

(1.10) lim
|x|→∞

[

|x|−2u(x)−D
]

= 0.

The constant D then determines a particular non-minimal positive entire radial
solution.

Theorems 1.1-1.4 show that the asymptotic behavior given in (1.6), (1.8), (1.9) or

(1.10) near ∞ of a positive entire solution u of (1.1) determines its radial symmetry
3



with respect to some x∗ ∈ R
N , which seem to be the first such kinds of results for

problem (1.1).

Let us comment on some related results. The semilinear equations

(P ) −∆u = up in R
N (N ≥ 3), p >

N + 2

N − 2

and

(Q) ∆u = u−p in R
N (N ≥ 2), p > 0

have been studied in the past few decades. Some sufficient conditions for a regular

positive entire solution of (P) and (Q) to be an entire radial solution are given in

[25] for (P) provided p ∈ (N+2
N−2

, N+1
N−3

) and in [15] for (Q) provided p > 0 respectively.

The results in [25] were generalized to p ≥ N
N−4

for N ≥ 5 in [10]. Recently, the

necessary and sufficient conditions for an entire solution u of the equation

(P1) ∆2u = 8(N − 2)(N − 4)eu in R
N (N ≥ 5)

to be the entire radial solution of (P1) with the initial value at some x∗ ∈ R
N are

provided in [11]. Note that (1.1) can be written to the following system of equations:

(1.11)

{

−∆u = w in R
N ,

−∆w = −u−p in R
N .

As in [11], we use the moving plane method for a system of equations to obtain our

results, but we need to do more delicate estimates for the solution u and ∆u near ∞,

since (Q) has a more complicated structure of solutions than (P1). We discuss not

only the minimal solution but also the non-minimal solutions in this paper. Such

estimates we need to do are more complicated since they rely on two parameters p

and N . Moreover, for the non-minimal entire radial solution case, the asymptotic

behavior (1.10) is not enough to make the moving-plane procedure works, we need

to obtain more detailed information of the asymptotic behavior of u based on (1.10).

To know more information of the positive entire solutions with asymptotic behavior

(1.6) near ∞, we use a Kelvin type transformation:

(1.12) v(y) = |x|−αu(x)− L, y =
x

|x|2
and make a fundamental estimate for

(1.13) W (s) :=
(

∫

SN−1

w2(s, θ)dθ
)

1
2
,

where s = |y| = 1
r
, r = |x|, w(s, θ) := v(s, θ)− v(s) and

v(s) =
1

ωN−1

∫

SN−1

v(s, θ)dθ, ωN−1 = |SN−1|.
4



The key point is to show that W (s) is Lipschitz continuous, or Hölder continuous

in some case, in a neighborhood of s = 0.

In Sections 2–5, we deal with positive entire solutions u of (1.1) with the asymp-

totic behavior (1.6). In the last section, we deal with positive entire solutions u of

(1.1) with (1.10). In Section 2, we first introduce some preliminary results about

the eigenvalues and eigenfunctions of ∆2
SN−1 . Then, using the Kelvin-type transfor-

mation given in (1.12) we obtain the information of v(y) near y = 0. In Section 3,

we derive an important estimate forW (s) (given in (1.13)) near s = 0. In Section 4,

some estimates for v(s) and v(s, θ) near s = 0 are obtained. We present the proofs

of Theorems 1.1, 1.2 and 1.3 in Section 5. Finally, we prove Theorem 1.4 in Section

6. In this paper, we use C to denote a positive constant which may change line by

line.

2. Preliminaries

In this section, we present some results which will be useful in the following

proofs. We use the spherical coordinates x = (r, θ) as usual. First, let us to show

the following lemma (see Lemma 2.1 in [11]).

Lemma 2.1. Let (λ,Q(θ)) be a pair of eigenvalue and eigenfunction of the equation

(2.1) −∆SN−1Q = λQ.

Then (λ2, Q(θ)) is a pair of eigenvalue and eigenfunction of the equation

(2.2) ∆2
SN−1Q = σQ.

Conversely, if (σ,Q(θ)) is a pair of eigenvalue and eigenfunction of (2.2) with σ 6= 0,
then σ > 0 and (σ1/2, Q(θ)) is a pair of eigenvalue and eigenfunction of (2.1).

It is known from [4] that for N ≥ 3, the eigenvalues of the equation (2.1) are

given by

(2.3) λk = k(N + k − 2), k ≥ 0, k ∈ N

with multiplicity

(2.4) mk =
(N − 2 + 2k)(N − 3 + k)!

k!(N − 2)!
.
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Then Lemma 2.1 implies that the eigenvalues of the equation (2.2) are λ2k with the

same multiplicity. In particular, we have

λ0 = 0, m0 = 1, Q0
1(θ) ≡ 1√

|SN−1|
,

λ1 = N − 1, m1 = N, Q1
j (θ) =

xj |SN−1

‖xj |SN−1‖L2
, 1 ≤ j ≤ N (:= m1),

λ2 = 2N.

Therefore, if w ∈ H2(SN−1) is orthogonal to Q0
1, i.e. w = 0, we have

∫

SN−1

|∇θw|2dθ ≥ (N − 1)

∫

SN−1

w2dθ,

and
∫

SN−1

|∆θw|2dθ ≥ (N − 1)2
∫

SN−1

w2dθ.

The boot-strap argument implies that for 1 ≤ j ≤ mk,

(2.5) max
SN−1

|Qk
j (θ)| ≤ Dk, max

SN−1
|(Qk

j )θ(θ)| ≤ Ek,

where

(2.6) Dk := C(1 + λk + λ2k + . . .+ λτk), Ek := C(1 + λk + λ2k + . . .+ λτ1k )

with C > 0 being independent of k and τ ≥ 1, τ1 ≥ 1 being positive integers such

that 2τ > N − 1, 2τ1 > N .

In Sections 2-5, we assume that u ∈ C4(RN) is a positive entire solution of (1.1)

with (1.6). Introducing the Kelvin-type transformation:

(2.7) v(y) = |x|−αu(x)− L, y =
x

|x|2 , r = |x| > 0,

we see that u(x) = u(r, θ), v(y) = v(s, θ) with s = |y| = r−1 and

∆2
xu =

[

∂4r + 2(N − 1)r−1∂3r + (N − 1)(N − 3)r−2∂2r − (N − 1)(N − 3)r−3∂r

+(8− 2N)r−4∆θ + (2N − 6)r−3∆θ∂r + 2r−2∆θ∂
2
r + r−4∆2

θ

]

u,

with the notations ∂r =
∂
∂r

and ∂mr = ∂m

∂rm
for 2 ≤ m ≤ 4. Direct calculations imply

that

∂4sv − 2(N − 7 + 2α)s−1∂3sv + (N2 + 6αN + 6α2 − 16N − 36α+ 51)s−2∂2sv

−(N − 5 + 2α)(2Nα + 2α2 − 3N − 10α + 9)s−3∂sv

+α(α− 2)(N + α− 2)(N + α− 4)s−4(v + L)− 2(N − 5 + 2α)s−3∆θ(∂sv)

+2(Nα + α2 −N − 4α+ 4)s−4∆θv + 2s−2∆(∂2sv) + s−4∆2
θv

= −r8−α∆2
xu = −r8−αu−p = −s−8+α(p+1)(v + L)−p.

6



Since L = [α(2− α)(N − 2 + α)(N − 4 + α)]−
1

p+1 and α = 4
p+1

, we have

(2.8)
∂4sv − 2(N − 7 + 2α)s−1∂3sv + (N2 + 6αN + 6α2 − 16N − 36α+ 51)s−2∂2sv

−(N − 5 + 2α)(2Nα+ 2α2 − 3N − 10α+ 9)s−3∂sv

−2(N − 5 + 2α)s−3∆θ(∂sv) + 2(Nα + α2 −N − 4α+ 4)s−4∆θv

+2s−2∆θ(∂
2
sv) + s−4∆2

θv − (p+ 1)s−4L−(p+1)v + s−4f(v) = 0,

where f(t) = (t + L)−p − L−p + pL−(p+1)t = O(t2) for t near 0. Note that f(t) is

real analytic at t = 0 and satisfies f(0) = f ′(0) = 0, f ′′(0) = p(p + 1)L−(p+2) > 0.

Therefore, the study of the behavior of u near |x| = ∞ is converted to the study of

the behavior of v of the equation (2.8) near |y| = 0.

Lemma 2.2. Let u ∈ C4(RN) be a positive entire solution of (1.1) and let v be
given in (2.7). Suppose that

(2.9) |x|−αu(x)− L→ 0 as |x| → ∞.

Then for any integer ℓ ≥ 0 there exist constants M = M(u) > 0, s∗ = s∗(u) > 0
such that

(2.10) lim
|y|→0

v(y) = 0, |∇ℓv(y)| ≤ M

sℓ
for s = |y| ≤ s∗.

Proof. The estimates in (2.10) follow from (2.9) by standard elliptic theory. �

By Lemma 2.2, we are reduced to study solutions of (2.8) satisfying (2.10). There-

fore, we will assume that (2.10) holds in Sections 2-5.

Define

(2.11) w(s, θ) = v(s, θ)− v(s),

where

v(s) =
1

ωN−1

∫

SN−1

v(s, θ)dθ, ωN−1 = |SN−1|.

Lemma 2.3. Let v be a solution of (2.8). Then v and w satisfy

∂4sv − 2(N − 7 + 2α)s−1∂3sv

+ (N2 + 6αN + 6α2 − 16N − 36α+ 51)s−2∂2sv

− (N − 5 + 2α)(2Nα+ 2α2 − 3N − 10α+ 9)s−3∂sv

− (p+ 1)s−4L−(p+1)v + s−4f(v) = 0

(2.12)
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and

∂4sw − 2(N − 7 + 2α)s−1∂3sw

+ (N2 + 6αN + 6α2 − 16N − 36α+ 51)s−2∂2sw

− (N − 5 + 2α)(2Nα+ 2α2 − 3N − 10α+ 9)s−3∂sw

+ 2(Nα + α2 −N − 4α + 4)s−4∆θw − 2(N − 5 + 2α)s−3∆θ(∂sw)

+ 2s−2∆θ(∂
2
sw) + s−4∆2

θw − (p+ 1)s−4L−(p+1)w + s−4g(w) = 0,

(2.13)

respectively, where

g(w) := f(v)− f(v) = f ′(ξ(s, θ))w(s, θ)− f ′(ξ(s, θ))w(s, θ)

and ξ(s, θ) is between v(s, θ) and v(s).

Proof. Since

∆θv =
1

ωN−1

∫

SN−1

∆θv(s, θ)dθ = 0,

direct calculations derive (2.12) and (2.13). Moreover, we have

g(w) = f(v)− f(v) = f(v)− f(v)− (f(v)− f(v))

= f ′(ξ(s, θ))w(s, θ)− f ′(ξ(s, θ))w(s, θ)

for some ξ(s, θ) between v(s, θ) and v(s). Where

(2.14) f ′(ξ(s, θ)) = pL−(p+1) − p[ξ(s, θ) + L]−(p+1) ≥ 0.

If we define

ζ(s) := max
θ∈SN−1

f ′(ξ(s, θ)),

we see that ζ(s) → 0 as s→ 0. �

To end this section, we notice that since w(s, ·) ∈ H2(SN−1) ⊂ L2(SN−1) and

w = 0,

(2.15) w(s, θ) =
∞
∑

k=1

mk
∑

j=1

wk
j (s)Q

k
j (θ),

where {Q0
1(θ), Q

1
1(θ), . . . , Q

1
m1

(θ), Q2
1(θ), Q

2
2(θ), . . . , Q

2
m2

(θ), Q3
1(θ), . . .} is the stan-

dard normalized basis of H2(SN−1), i.e.,
∫

SN−1 Q
i
l(θ)Q

j
m(θ)dθ = 0 if i 6= j or l 6= m,

‖Qi
j‖L2(SN−1) = 1 which is consisted by all the eigenfunctions of the operator−∆SN−1

or ∆2
SN−1 in H2(SN−1). Note that {Q1

1(θ), . . . , Q
1
N (θ)} is the basis of the eigenspace

H1 of ∆2
SN−1 corresponding to the eigenvalue (N − 1)2.
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3. A priori estimate of W (s) for s near 0

In this section, we establish some fundamental estimates of W (s) for s near 0,

where W (s) is defined by

(3.1) W (s) =
(

∫

SN−1

w2(s, θ)dθ
)

1
2
.

We will see that the Lipschitz continuity of W (s) at the origin is crucial in proving

the expansion of u near ∞, which can be used to obtain the symmetry of u by the

moving-plane method.

Proposition 3.1. For N ≥ 3, there exist 0 < s0 < min{1, s∗} (s∗ is given in Lemma

2.2), 0 < β̂ < 1 and C > 0 independent of s such that for s ∈ (0, s0),
(3.2)

W (s) ≤
{

Cs, for N and p satisfying (1.5) or p = 7 and N = 4 with (1.8),

Csβ̂, for p ∈ (N+2
6−N

, p∗) and N = 3, 4, 5,

where p∗ is given by (1.7).

In fact, β̂ = |β(1)
3 | = |5 − N − 2α| ∈ (0, 1) is given by (3.35) below when p ∈

(N+2
6−N

, p∗) and N = 3, 4, 5.)

Proof. Let Qk
j (θ) (1 ≤ j ≤ mk, k = 1, 2, . . .) be an eigenfunction of −∆SN−1 corre-

sponding to λk = k(N + k − 2). From Lemma 2.3, we see that wk
j (s) satisfies the

equation

(wk
j )

(4)(s)− 2(N − 7 + 2α)s−1(wk
j )

(3)(s)

+
(

N2 + 6αN + 6α2 − 16N − 36α + 51− 2λk
)

s−2(wk
j )

′′(s)

−
[

(N − 5 + 2α)(2Nα + 2α2 − 3N − 10α+ 9)− 2(N − 5 + 2α)λk
]

s−3(wk
j )

′(s)

+
[

λ2k − 2
(

Nα + α2 −N − 4α + 4
)

λk − (p+ 1)L−(p+1)
]

s−4wk
j = s−4gkj (s),

(3.3)

where

gkj (s) =

∫

SN−1

f ′(ξ(s, θ))w(s, θ)Qk
j (θ)dθ,

which can be controlled by |gkj (s)| ≤ ζ(s)W (s), here ζ(s) → 0 and W (s) → 0 as
s→ 0.

Note that gkj (s) and wk
j (s) are Fourier’s coefficients of f ′(ξ)w(s, θ) and w(s, θ)

respectively. Moreover,

(3.4) ‖f ′(ξ)w(s, θ)‖L2(SN−1) ≤ ζ(s)‖w(s, θ)‖L2(SN−1) = os(1)‖w‖L2(SN−1)

and W (s) = [
∑∞

k=1

∑mk

j=1(w
k
j (s))

2]
1
2 . Therefore, for any (j, k) fixed and s sufficiently

small, to estimate W (s), we only need to assume

(3.5) |gkj (s)| = os(1)|wk
j (s)|.
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In fact, from (3.4), the expression of w(s, θ) given by (2.15) and

f ′(ξ)w(s, θ) =
∞
∑

k=1

mk
∑

j=1

gkj (s)Q
k
j (θ),

we see that
∞
∑

k=1

mk
∑

j=1

(gkj (s))
2 = os(1)

∞
∑

k=1

mk
∑

j=1

(wk
j (s))

2.

Therefore, there are two cases:

(i) |gkj (s)| = os(1)|wk
j (s)|; (ii) |gkj (s)| 6= os(1)|wk

j (s)|.
For any fixed s ∈ (0, s∗), denote

Gs = {(j, k) : 1 ≤ j ≤ mk, k ≥ 1 such that (i) holds},
Bs = {(j, k) : 1 ≤ j ≤ mk, k ≥ 1 such that (ii) holds}.

We claim that there exists C > 0 independent of j, k and s such that for any
s ∈ (0, s∗∗) and any (j, k) ∈ Bs,

(3.6) |gkj (s)| ≥ C|wk
j (s)|,

where 0 < s∗∗ ≤ s∗ (s∗ is given in Lemma 2.2). Suppose not, there exists cn → 0,
sn → 0 as n→ ∞ and (jn, kn) ∈ Bsn such that

|gknjn (sn)| ≤ cn|wkn
jn
(sn)|.

This implies

|gknjn (sn)| = osn(1)|wkn
jn
(sn)| for n large enough,

which contradicts (jn, kn) ∈ Bsn. Therefore, for any s ∈ (0, s∗∗),

∑

(j,k)∈B

|wk
j (s)|2 ≤ C−2

∑

(j,k)∈B

|gkj (s)|2 ≤ os(1)
∞
∑

k=1

mk
∑

j=1

|wk
j (s)|2.

Therefore, without loss of generality, we assume that (3.5) holds for 0 < s ≤ s∗∗ ,
any k ≥ 1 and 1 ≤ j ≤ mk.

Let t = − ln s, zkj (t) = wk
j (s). Then z

k
j (t) satisfies the equation

(3.7)

(zkj )
(4)(t) + 2(N − 4 + 2α)(zkj )

(3)(t)

+
[

N2 + 6αN + 6α2 − 10N − 24α+ 20− 2λk
]

(zkj )
′′(t)

+2(N − 4 + 2α)(Nα−N − 4α+ α2 + 2− λk)(z
k
j )

′(t)

+
[

λ2k − 2(Nα + α2 −N − 4α + 4)λk − (p+ 1)L−(p+1)
]

zkj (t) = g̃kj (t),

where g̃kj (t) = gkj (e
−t). We also know from ζ(s) and gkj (s) that

(3.8) |g̃kj (t)| ≤ ζ̃(t)W̃ (t),

where

(3.9) ζ̃(t) := ζ(e−t) → 0, and W̃ (t) :=W (e−t) → 0 as t→ ∞.
10



The corresponding characteristic polynomial of (3.7) is

(3.10)

β4 + 2(N − 4 + 2α)β3 +
(

N2 + 6αN + 6α2 − 10N − 24α+ 20

−2λk
)

β2 + 2(N − 4 + 2α)(Nα−N − 4α + α2 + 2− λk)β

+λ2k − 2(Nα + α2 −N − 4α + 4)λk − (p+ 1)L−(p+1) = 0

and using the MATLAB, the four roots of (3.10) are given by

(3.11)











































β
(k)
1 =

1

2

(

4−N − 2α+
√

4 + (N − 2 + 2k)2 + 4
√
ρk

)

,

β
(k)
2 =

1

2

(

4−N − 2α−
√

4 + (N − 2 + 2k)2 + 4
√
ρk

)

,

β
(k)
3 =

1

2

(

4−N − 2α+
√

4 + (N − 2 + 2k)2 − 4
√
ρk

)

,

β
(k)
4 =

1

2

(

4−N − 2α−
√

4 + (N − 2 + 2k)2 − 4
√
ρk

)

,

where

(3.12) ρk = (N − 2 + 2k)2 + pα(2− α)(N − 2 + α)(N − 4 + α).

We first analyze the four roots β
(k)
j , j = 1, 2, 3, 4 for k = 1, 2, . . .. Note that

(3.13) α ∈ (1, 2), for N = 3, 1 < p < 3; α ∈ (0, 2), for N ≥ 4, p > 1.

Then, we see from (3.12) that ρk > 0 for k = 1, 2, . . .. Set

Tk := [4 + (N − 2 + 2k)2]2 − 16ρk.

Noticing that pα = 4− α, we have

(2− α)(N + α− 4) ≤ (N − 2)2, (4− α)(N + α− 2) ≤ (N + 2)2.

Thus

Tk = [(N − 2 + 2k)2 − 4]2 − 16(4− α)(2− α)(N + α− 2)(N + α− 4)

≥ [N2 − 4]2 − (N − 2)2(N + 2)2 ≥ 0

for N = 3 and p ∈ (1, 3); N ≥ 4 and p ≥ 1 and any k = 1, 2, . . .. This indicates that

β
(k)
j are real numbers for k = 1, 2, . . .. Therefore, taking into account the expressions

in (3.11) of β
(k)
j , we have demonstrated the following statement.

Claim 1. For any k ≥ 1; N = 3 and p ∈ (1, 3); N ≥ 4 and p > 1, the roots

β
(k)
j (j = 1, 2, 3, 4) are real numbers. Moreover,

β
(k)
2 < β

(k)
4 ≤ β

(k)
3 < β

(k)
1 .

Remark 3.2. For N = 3 and p ∈ (1, 3); N ≥ 4 and p > 1, noticing that

(3.14) 4− 2α−N < 0 and 4 + (N + 2k − 2)2 − (4− 2α−N)2 > 0,

we find from (3.11) that

(3.15) β
(k)
2 < β

(k)
4 < 0 < β

(k)
1 for any k ≥ 1.

11



We now determine the sign of β
(k)
3 for any k ≥ 2.

Claim 2. For any k ≥ 2, β
(k)
3 > 0 when N = 3 and p ∈ (1, 3); N ≥ 4 and p > 1.

In fact, by (3.14), we see that β
(k)
3 > 0 is equivalent to

T̂k :=
[

4 + (N + 2k − 2)2 − (4− 2α−N)2
]2 − 16ρk > 0,

for any k ≥ 2 when N = 3 and p ∈ (1, 3); N ≥ 4 and p > 1. Writing T̂k as

T̂k = 16(k − α)(k + 2− α)(N + α− 2 + k)(N + α− 4 + k)

−16(2− α)(4− α)(N + α− 2)(N + α− 4).

Therefore Claim 2 follows since we have

k − α ≥ 2− α > 0, N + α− 2 + k ≥ N + α− 2 > 0,

k + 2− α ≥ 4− α > 0, N + α− 4 + k ≥ N + α− 4 > 0.

For the root β
(k)
4 , we have the following assertion.

Claim 3. For any k ≥ 2, β
(k)
4 < −1 for N = 3 and p ∈ (1, 3); N ≥ 4 and p > 1.

By the expression of β
(k)
4 , we have

(3.16) β
(k)
4 + 1 =

1

2

[

6−N − 2α−
√

4 + (N + 2k − 2)2 − 4
√
ρk

]

.

Obviously, β
(k)
4 +1 < 0 whenN ≥ 6 and p > 1, and even in the case ofN ∈ {3, 4, 5}

and 6−N − 2α ≤ 0, i.e. p ∈ (1, N+2
6−N

]. On the other cases, we see that β
(k)
4 + 1 < 0

is equivalent to

0 < 6−N − 2α <
√

4 + (N + 2k − 2)2 − 4
√
ρk.

So to obtain our claim, it’s sufficient to show that

T̃k :=
[

4 + (N + 2k − 2)2 − (6−N − 2α)2
]2

− 16ρk > 0.

Since

T̃k = 16(k + 1− α)(k + 3− α)(N + α+ k − 3)(N + α+ k − 5)

−16(2− α)(4− α)(N + α− 2)(N + α− 4).

We find again T̃k > 0 for any k ≥ 2 and p ∈ (5
3
, 3) with N = 3; p > N+2

6−N
with

N = 4, 5 from the facts

k + 1− α ≥ 2− α > 0, N + α + k − 3 ≥ N + α− 2 > 0,

k + 3− α ≥ 4− α > 0, N + α + k − 5 ≥ N + α− 4 > 0.

Consequently, the Claim 3 is derived from all these arguments.

Remark 3.3. It follows from Claims 1-3 that for N = 3 and p ∈ (1, 3); N ≥ 4 and
p > 1; any k ≥ 2,

(3.17) β
(k)
2 < β

(k)
4 < −1 < 0 < β

(k)
3 < β

(k)
1 .
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Moreover, we deduce from the expressions of β
(k)
j that

β
(k+1)
2 < β

(k)
2 < 0, β

(k+1)
4 < β

(k)
4 < −1,

β
(k+1)
3 > β

(k)
3 > 0, β

(k+1)
1 > β

(k)
1 > 0

and
β
(k+1)
2 − β

(k)
2 → −1 as k → ∞,

β
(k+1)
4 − β

(k)
4 → −1 as k → ∞,

β
(k+1)
3 − β

(k)
3 → 1 as k → ∞.

Now we investigate the details of β
(1)
j , j = 1, 2, 3, 4. Recalling that p∗ is given by

(1.7), we have:

Claim 4. The following inequalities hold for k = 1:

β
(1)
2 < β

(1)
4 ≤ β

(1)
3 = −1 < 0 < β

(1)
1 , for

{

p ∈ (1, N+2
6−N

], N = 3, 4, 5;
p ∈ (1,∞), N ≥ 6;

β
(1)
2 < β

(1)
4 = −1 < β

(1)
3 < 0 < β

(1)
1 , for p ∈ (N+2

6−N
, p∗) and N = 3, 4, 5;

β
(1)
2 < β

(1)
4 = −1 < β

(1)
3 = 0 < β

(1)
1 , for p = 7 and N = 4;

β
(1)
2 < β

(1)
4 = −1 < 0 < β

(1)
3 < β

(1)
1 , for p ∈ (7,∞) and N = 4.

For k = 1, from the expressions of

ρ1 = N2 + (4− α)(2− α)(N − 2 + α)(N − 4 + α),

a direct calculation shows that
√

4 + (N)2 − 4
√
ρ1 = |N − 6 + 2α|

and therefore

β
(1)
3 =

1

2

[

4−N − 2α− |N − 6 + 2α|
]

,

β
(1)
4 =

1

2

[

4−N − 2α + |N − 6 + 2α|
]

.

As before, we have obviously N − 6 + 2α > 0 when N ≥ 6 or N ∈ {3, 4, 5} and
p ∈ (1, N+2

6−N
), which implies

β
(1)
4 = 5−N − 2α < −1 = β

(1)
3 .

This combining with Claim 1 and (3.15) yields that

β
(1)
2 < β

(1)
4 < β

(1)
3 = −1 < 0 < β

(1)
1 .

We obtain also for p ∈ [N+2
6−N

, p∗) and N = 3, 4 or 5,

β
(1)
4 = −1 ≤ 5−N − 2α = β

(1)
3 < 0;

and when N = 4, p = p∗ = N+3
5−N

= 7,

β
(1)
4 = −1 < 0 = β

(1)
3 ;
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when N = 4, p > N+3
5−N

= 7,

β
(1)
4 = −1 < 0 < 5−N − 2α = β

(1)
3 < 1.

Combining with Claim 1 and Remark 3.2, we prove that Claim 4 holds.
We continue the proof of Proposition 3.1.
For any k ≥ 2, from the equation satisfied by zkj and the ODE theory, we see

that, for any T > − ln s∗∗, there exist constants Ak
j,i, B

k
i (i = 1, 2, 3, 4) such that for

t > T ,

(3.18) zkj (t) =

4
∑

i=1

[

Ak
j,ie

β
(k)
i t +Bk

i

∫ t

T

eβ
(k)
i (t−s)g̃kj (s)ds

]

,

where Ak
j,i (i = 1, 2, 3, 4) depend on T and β

(k)
i , but Bk

i (i = 1, 2, 3, 4) depend only

on β
(k)
i . More precisely, the detailed calculations show that

Ak
j,1 =

F k
j,1(T )

(β
(k)
1 − β

(k)
2 )(β

(k)
1 − β

(k)
3 )(β

(k)
1 − β

(k)
4 )

e−β
(k)
1 T ,

Ak
j,2 =

[ F k
j,1(T )

(β
(k)
2 − β

(k)
1 )(β

(k)
2 − β

(k)
3 )(β

(k)
2 − β

(k)
4 )

+
F k
j,2(T )

(β
(k)
2 − β

(k)
3 )(β

(k)
2 − β

(k)
4 )

]

e−β
(k)
2 T ,

Ak
j,3 =

[ F k
j,1(T )

(β
(k)
3 − β

(k)
1 )(β

(k)
3 − β

(k)
2 )(β

(k)
3 − β

(k)
4 )

+
F k
j,2(T )

(β
(k)
3 − β

(k)
2 )(β

(k)
3 − β

(k)
4 )

+
F k
j,3(T )

(β
(k)
3 − β

(k)
4 )

]

e−β
(k)
3 T ,

Ak
j,4 =

[ F k
j,1(T )

(β
(k)
4 − β

(k)
1 )(β

(k)
4 − β

(k)
2 )(β

(k)
4 − β

(k)
3 )

+
F k
j,2(T )

(β
(k)
4 − β

(k)
2 )(β

(k)
4 − β

(k)
3 )

+
F k
j,3(T )

(β
(k)
4 − β

(k)
3 )

+ zkj (T )
]

e−β
(k)
4 T ,

where
F k
j,1(T ) = (∂t − β

(k)
2 )(∂t − β

(k)
3 )(∂t − β

(k)
4 )zkj (T ),

F k
j,2(T ) = (∂t − β

(k)
3 )(∂t − β

(k)
4 )zkj (T ),

F k
j,3(T ) = (∂t − β

(k)
4 )zkj (T )

and

Bk
i =

∏

j 6=i

1

β
(k)
i − β

(k)
j

, ∀i ∈ {1, 2, 3, 4}.

Since w(s, ·) → 0 as s → 0+, we have zkj (t) → 0 as t → ∞. Moreover, g̃kj (t) → 0 as

t → ∞. It follows from β
(k)
1 > β

(k)
3 > 0 for k ≥ 2; N = 3 and p ∈ (1, 3); N ≥ 4 and

p > 1 that
∫ ∞

t

eβ
(k)
1 (t−s)g̃kj (s)ds→ 0,

∫ ∞

t

eβ
(k)
3 (t−s)g̃kj (s)ds→ 0 as t→ ∞.
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By means of
∫ t

T
=

∫∞

T
−
∫∞

t
, we rewrite zkj (t) in the following form:

zkj (t) = Mk
j,1e

β
(k)
1 t +Mk

j,3e
β
(k)
3 t + Ak

j,2e
β
(k)
2 t + Ak

j,4e
β
(k)
4 t

−Bk
1

∫ ∞

t

eβ
(k)
1 (t−s)g̃kj (s)ds− Bk

3

∫ ∞

t

eβ
(k)
3 (t−s)g̃kj (s)ds

+Bk
2

∫ t

T

eβ
(k)
2 (t−s)g̃kj (s)ds+Bk

4

∫ t

T

eβ
(k)
4 (t−s)g̃kj (s)ds,

where

Mk
j,1 = Ak

j,1 +Bk
1

∫ ∞

T

e−τβ
(k)
1 g̃kj (τ)dτ, Mk

j,3 = Ak
j,3 +Bk

3

∫ ∞

T

e−τβ
(k)
3 g̃kj (τ)dτ.

The fact that zkj (t) → 0 as t→ ∞ implies Mk
j,1 =Mk

j,3 = 0. Therefore,

zkj (t) = Ak
j,2e

β
(k)
2 T eβ

(k)
2 (t−T ) + Ak

j,4e
β
(k)
4 T eβ

(k)
4 (t−T )

−Bk
1

∫ ∞

t

eβ
(k)
1 (t−τ)g̃kj (τ)dτ − Bk

3

∫ ∞

t

eβ
(k)
3 (t−τ)g̃kj (τ)dτ

+Bk
2

∫ t

T

eβ
(k)
2 (t−τ)g̃kj (τ)dτ +Bk

4

∫ t

T

eβ
(k)
4 (t−τ)g̃kj (τ)dτ.(3.19)

We now establish the estimate of zkj (t) with k ≥ 1, 1 ≤ j ≤ m1. We start with
k ≥ 2, 1 ≤ j ≤ mk and claim that

(3.20) |zkj (t)| = O(keβ
(k)
4 (t−T ))

for t > T . For any fixed (k, j), if zkj (t) ≡ 0, this is trivial. Assume that zkj (t) 6≡ 0
for t ∈ [T,∞) in the following, it is known from (3.5) that

(3.21) |g̃kj (t)| = ot(1)|zkj (t)| for t ∈ (T,∞).

It follows from Lemma 2.2 and (3.19) that, for t ∈ (T,∞),

|zkj (t)| ≤ O
(

keβ
(k)
4 (t−T )

)

+ C

∫ t

T

eβ
(k)
4 (t−τ)oτ (1)|zkj (τ)|dτ

+C

∫ ∞

t

eβ
(k)
3 (t−τ)oτ (1)|zkj (τ)|dτ.(3.22)

Note that

eβ
(k)
1 (t−τ) ≤ eβ

(k)
3 (t−τ), and eβ

(k)
2 (t−τ) ≤ eβ

(k)
4 (t−τ) for τ ≤ t.

Note also that for ℓ = 1, 3 and any fixed t > T ,
∣

∣

∣

∫ ∞

t

eβ
(k)
ℓ

(t−τ)g̃kj (τ)dτ
∣

∣

∣
≤

∫ ∞

t

eβ
(k)
ℓ

(t−τ)oτ (1)|zkj (τ)|dτ

and for ℓ = 2, 4,
∣

∣

∣

∫ t

T

eβ
(k)
ℓ

(t−τ)g̃kj (τ)dτ
∣

∣

∣
≤

∫ t

T

eβ
(k)
ℓ

(t−τ)oτ (1)|zkj (τ)|dτ.
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It follows from (3.22) and arguments similar to those in [11] that

(3.23) |zkj (t)| = O(keβ
(k)
4 (t−T ))

for t ∈ (T,∞). This implies that our claim (3.20) holds for zkj (t) 6≡ 0. Therefore,
our claim (3.20) holds.

We now establish the estimate of z1j (t) with 1 ≤ j ≤ m1.
We first consider the estimate for N = 4, which can be split to four cases: (i)

p ∈ (1, 3]; (ii) p ∈ (3, 7); (iii) p ∈ (7,∞) and (iv) p = 7.

For the case (i), it is known from Claim 4 that β
(1)
2 < β

(1)
4 ≤ −1 = β

(1)
3 < 0 < β

(1)
1 .

The fact z1j (t) → 0 as t→ ∞ implies that z1j (t) can be written in the form

z1j (t) = A1
j,2e

β
(1)
2 t + A1

j,3e
−t + A1

j,4e
β
(1)
4 t

−B1
1

∫ ∞

t

eβ
(1)
1 (t−s)g̃1j (s)ds+B1

2

∫ t

T

eβ
(1)
2 (t−s)g̃1j (s)ds

+B1
3

∫ t

T

e−(t−s)g̃1j (s)ds+B1
4

∫ t

T

eβ
(1)
4 (t−s)g̃1j (s)ds.

Arguments similar to those in the proof of (3.20) imply that, for 1 ≤ j ≤ m1 and
t > T ,

(3.24) |z1j (t)| = O(e−(t−T )).

For the case (ii), we see from Claim 4 that β
(1)
2 < β

(1)
4 = −1 < β

(1)
3 < 0 < β

(1)
1 .

Therefore,

z1j (t) = A1
j,2e

β
(1)
2 t + A1

j,3e
β
(1)
3 t + A1

j,4e
−t

−B1
1

∫ ∞

t

eβ
(1)
1 (t−s)g̃1j (s)ds+B1

2

∫ t

T

eβ
(1)
2 (t−s)g̃1j (s)ds

+B1
3

∫ t

T

eβ
(1)
3 (t−s)g̃1j (s)ds+B1

4

∫ t

T

e−(t−s)g̃1j (s)ds.

Similarly, we have that, for 1 ≤ j ≤ m1 and t > T ,

(3.25) |z1j (t)| = O(eβ
(1)
3 (t−T )).

For the case (iii), Claim 4 shows us that β
(1)
2 < β

(1)
4 = −1 < 0 < β

(1)
3 < β

(1)
1 .

Then,

z1j (t) = A1
j,2e

β
(1)
2 t + A1

j,4e
−t

−B1
1

∫ ∞

t

eβ
(1)
1 (t−s)g̃1j (s)ds− B1

3

∫ ∞

t

eβ
(1)
3 (t−s)g̃1j (s)ds

+B1
2

∫ t

T

eβ
(1)
2 (t−s)g̃1j (s)ds+B1

4

∫ t

T

e−(t−s)g̃1j (s)ds.

By the method analogous to that used above, for 1 ≤ j ≤ m1 and t > T , we get

(3.26) |z1j (t)| = O(e−(t−T )).
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For the case (iv), we know that β
(1)
2 < β

(1)
4 = −1 < β

(1)
3 = 0 < β

(1)
1 . Then

z1j (t) = A1
j,2e

β
(1)
2 t + A1

j,4e
−t

−B1
1

∫ ∞

t

eβ
(1)
1 (t−s)g̃1j (s)ds− B1

3

∫ ∞

t

g̃1j (s)ds

+B1
2

∫ t

T

eβ
(1)
2 (t−s)g̃1j (s)ds+B1

4

∫ t

T

e−(t−s)g̃1j (s)ds.

Similarly, we have that, for 1 ≤ j ≤ m1 and t > T ,

(3.27) |z1j (t)| = O(e−(t−T )) + C

∫ ∞

t

|os(1)z1j (s)|ds,

where C > 0 which depends only on B1
1 and B1

3 but independent of T . Let

K(t) =

∫ ∞

t

|z1j (s)|ds.

Then we can obtain that K(t) is bounded provided that the condition in (1.8) holds.
In fact, it follows from (1.8) that there is 0 < ε0 <

1
10

such that, for s near 0,

|w(s, θ)|2 ≤ Cs2ε0.

Consequently,

K(t) =

∫ s

0

ζ−1|w1(ζ)|dζ ≤
∫ s

0

ζ−1
(

∫

SN−1

w2(ζ, θ)dθ
)

1
2
dζ

≤ C

∫ s

0

ζε0−1dζ =
C

ε0
e−ε0t <∞,

which implies that for any 0 < ǫ < ε0/C,

lim
t→∞

eCǫtK(t) = 0.

On the other hand, it follow from the definition of K(t) that for t sufficiently large,

−K ′(t) = |z1j (t)| ≤ O(e−(t−T )) + CǫK(t).

We can easily see that

K(t) = O(e−(t−T )).

This and (3.27) imply

(3.28) |z1j (t)| = O(e−(t−T )).

Now, let Ŵ (t) = Σ∞
k=1Σ

mk

j=1|zkj (t)|. Then W̃ (t) =
(

Σ∞
k=1Σ

mk

j=1(z
k
j )

2(t)
)1/2

≤ Ŵ (t).

For the cases (i), (iii) and (iv), we see from (3.20), (3.24), (3.26), (3.27) that

(3.29) W̃ (t) ≤ Ŵ (t) ≤ O
(

e−t
)

+O
(

∞
∑

k=2

kmke
β
(k)
4 (t−T )

)

.
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Let T ∗ = 10T . We obtain that, for t > T ∗,

(3.30)
∞
∑

k=2

kmke
β
(k)
4 (t−T ) = O(eβ

(2)
4 (t−T )).

To see (3.30), we notice that, for any t > T ∗ (we may enlarge T ∗),

lim
k→∞

(k + 1)mk+1e
β
(k+1)
4 (t−T )

kmkeβ
(k)
4 (t−T )

= e−(t−T ) lim
k→∞

(k + 1)mk+1

kmk

= e−(t−T ) <
1

2
.

Since β
(2)
4 < −1, we easily have that, for t > T∗,

(3.31) W̃ (t) = O(e−t).

Let s0 = e−T ∗

. We see from (3.31) that there exists C > 0 such that,

(3.32) W (s) ≤ Cs for 0 < s < s0.

Arguments similar to the above imply that we can obtain

(3.33) W̃ (t) = O
(

eβ
(1)
3 t

)

for the case (ii). Note that β
(1)
3 ∈ (−1, 0) in this case.

For N = 3 or N ≥ 5, processing the same procedure as above, we can obtain
(3.34)

W̃ (t) =



























O(e−t), for















p ∈ (1, N+2
6−N

] when N = 3 or 5,
p ∈ (1, 3] ∪ (7,∞) when N = 4,
p = 7, when N = 4 with (1.8),
p ∈ (1,∞) when N ≥ 6;

O(eβ
(1)
3 t), for p ∈ (N+2

6−N
, p∗) when N = 3, 4 or 5,

where p∗ is given by (1.7), β
(1)
3 = 5 − N − 2α ∈ (−1, 0) when p ∈ (N+2

6−N
, p∗) and

N = 3, 4 or 5. Choosing

(3.35) β̂ = |β(1)
3 | = N + 2α− 5, p ∈ (N+2

6−N
, p∗) and N = 3, 4 or 5,

we see that 0 < β̂ < 1 in this case. Since W (s) = W̃ (t) and t = − ln s, we obtain the
conclusions of Proposition 3.1 from (3.34). This completes the proof of Proposition
3.1. �

4. Estimates for v(s), v(s, θ) near s = 0 and expansions of u(r, θ) near

r = ∞

This section is devoted to establish some estimates for v(s) and v(s, θ) near s = 0

which enable us to obtain expansions of positive entire solutions u(r, θ) of (1.1) at

r = ∞.
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We begin our analysis by recalling the equation satisfied by v(s). From Lemma

2.3, we see that

v(4) − 2(N − 7 + 2α)s−1v(3) +
(

N2 + 6αN + 6α2 − 16N − 36α + 51)s−2v′′

−(N − 5 + 2α)(2Nα+ 2α2 − 3N − 10α+ 9)s−3v′ − (p+ 1)s−4L−(p+1)v

= s−4
[

f(v)− f(v)
]

− s−4f(v)

and

∣

∣

∣
f(v)− f(v)

∣

∣

∣
≤ 1

ωN−1

∫

SN−1

|f(v)− f(v)|dθ

≤ os

[(

∫

SN−1

w2
)

1
2
]

=

{

o(s), for N and p satisfying (1.5) or p = 7, N = 4 with (1.8),

o(sβ̂), for p ∈ (N+2
6−N

, p∗) and N = 3, 4 or 5,

where β̂ is given in (3.35).

Let t = − ln s and z(t) = v(s). Then z(t) satisfies

(4.1)

z(4) + 2(N + 2α− 4)z(3) + (N2 + 6Nα + 6α2 − 10N − 24α + 20)z′′

+2(N + 2α− 4)(Nα + α2 −N − 4α+ 2)z′ − (p+ 1)L−(p+1)z

=







−f(z) + ot(1)e
−t, for N and p satisfying (1.5)

or p = 7 and N = 4 with (1.8),

−f(z) + ot(1)e
−β̂t, for p ∈ (N+2

6−N
, p∗) and N = 3, 4 or 5.

The corresponding characteristic polynomial of (4.1) is

β4 + 2(N + 2α− 4)β3 + (N2 + 6Nα + 6α2 − 10N − 24α + 20)β2

+2(N + 2α− 4)(Nα + α2 −N − 4α+ 2)β − (p+ 1)L−(p+1) = 0.(4.2)

Comparing (4.2) with (3.10), it is easy to see that the four roots of (4.2) are given

by β
(0)
j corresponding to λ0 = 0 for j = 1, 2, 3, 4, are given in (3.11). Denote

(4.3) βj = β
(0)
j for j = 1, 2, 3, 4.

From the expression of βj, we have that, for N = 3 and p ∈ (1, 3); N ≥ 4 and p > 1,

(4.4) β1, β2 ∈ R and β2 < 2−N − α < −1 < 0 < β1.

As to the roots β3, β4, we have:
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Claim 5. When N = 3 and p ∈ (1, 3); N ≥ 4 and p > 1, the following estimates

for β3 and β4 hold:

β3, β4 ∈ R, β4 ≤ β3, β3















≤ −1, for







p ∈ (1, p13], N = 3;
p ∈ (1, pc], N ∈ [5, 12];
p ∈ (1,∞), N ≥ 13;

∈ (−1, 0), for p ∈ [p23, 3), N = 3;

β3,4 = ℓ± qi 6∈ R, ℓ







































≤ −1, for















p ∈ (p13,
5
3
], N = 3;

p ∈ (1, 3], N = 4;
p ∈ (pc, 7], N = 5;
p ∈ (pc,∞), N ∈ [6, 12];

∈ (−1, 0), for







p ∈ (5
3
, p23), N = 3;

p ∈ (3,∞), N = 4;
p ∈ (7,∞), N = 5.

Where pc, p
1
3, p

2
3 are given in (4.11) and (4.5) below.

We now introduce the function

~(p,N) := [4 + (N − 2)2]2 − 16ρ0,

where ρ0 = ρk|k=0 is given in (3.12). For N = 3, solving equation ~(p, 3) = 0, we

obtain four foots:

(4.5)

p13 =
5−

√

13− 3
√
17

3 +
√

13− 3
√
17
, p23 =

5 +
√

13− 3
√
17

3−
√

13− 3
√
17
,

p33 =
5 +

√

13 + 3
√
17

3−
√

13 + 3
√
17
, p43 =

5−
√

13 + 3
√
17

3 +
√

13 + 3
√
17
.

It is easy to check that p33 < p43 < 1 < p13 < p23 < 3. A simple calculation shows

~(1; 3) = 9 > 0. So, we deduce that

~(p, 3)

{ ≥ 0, for p ∈ (1, p13] ∪ [p23, 3),

< 0, for p ∈ (p13, p
2
3).

This implies that β3, β4 ∈ R for p ∈ (1, p13] ∪ [p23, 3) and β3, β4 6∈ R for p ∈ (p13, p
2
3).

For N = 3 and p ∈ (p13, p
2
3), we have

(4.6) ℜ(β3) = ℜ(β4) =
1

2
− α

{

∈ (−3
2
,−1] for p ∈ (p13,

5
3
],

∈ (−1,−1
2
) for p ∈ (5

3
, p23).

For N = 3 and p ∈ (1, p13]∪ [p23, 3), we see from the representations of β3 and β4 that

β4 < β3. Moreover,

(4.7) β4 ≤ β3 < −1, for N = 3 and p ∈ (1, p13];

(4.8) β4 ≤ β3 ∈ (−1, 0), for N = 3 and p ∈ [p23, 3).
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To see (4.7), we have

(4.9) β3 + 1 =
1

2

[

3− 2α +

√

5− 4
√

1 + pα(2− α)(α2 − 1)
]

.

Note that 3− 2α < 0 and 5− (3− 2α)2 > 0 for p ∈ (1, p13]. Then

[5− (3− 2α)2]2 − 16[1 + pα(2− α)(α2 − 1)] =
128(p− 1)(p− 3)

(p+ 1)2
< 0.

This implies β3+1 < 0 and thus (4.7) holds. To see (4.8), we notice that 3−2α > 0

for p ∈ [p23, 3). It follows from (4.9) that β3 + 1 > 0, i.e. β3 > −1. We also know

that, for p ∈ [p23, 3), 1− 2α < 0, 5− (1− 2α)2 > 0 and

[5− (1− 2α)2]2 − 16[1 + pα(2− α)(α2 − 1)] =
128(p+ 5)(p− 1)(p− 3)

(p+ 1)3
< 0.

These imply that β3 < 0. Therefore, (4.8) holds.

For N = 4 and p > 1, we have ~(p, 4) = −1024p(p+3)(p−1)
(p+1)4

< 0. This implies that

β3, β4 6∈ R. At this time,

(4.10) ℜ(β3) = ℜ(β4) = −α
{

≤ −1 for p ∈ (1, 3],
∈ (−1, 0) for p ∈ (3,∞).

For 5 ≤ N ≤ 12 and p > 1, a direct calculations imply that the equation ~(p,N) =

0 has only one root pc in (1,∞) and

(4.11) pc =
N + 2−

√

4 +N2 − 4
√
N2 +HN

6−N +
√

4 +N2 − 4
√
N2 +HN

, with HN = (N(N − 4)/4)2.

Moreover,

~(1, N) = N2(N − 4)2 > 0,
~(p,N)|p=∞ = (N − 4)(N2 − 144) + 16(N − 20) < 0.

Hence, when 5 ≤ N ≤ 12,

~(p,N)







> 0, for p ∈ (1, pc),
= 0, for p = pc,
< 0, for p ∈ (pc,∞),

which implies that β3, β4 ∈ R for p ∈ (1, pc]; β3|p=pc = β4|p=pc = 2− 4
pc+1

− N
2
< −1

and β3, β4 6∈ R for p ∈ (pc,∞).

When 5 ≤ N ≤ 12 and p ∈ (pc,∞), β3,4 := ℓ± qi and it is easy to find that

(4.12) ℓ = ℜ(β3,4) = 2− α− N

2







≤ −1 for p ∈ (pc,∞), N ∈ [6, 12],
p ∈ (pc, 7], N = 5;

∈ (−1,−1
2
) for p > 7, N = 5.

When 5 ≤ N ≤ 12 and p ∈ (1, pc], we have

β3 + 1 =
1

2

[

6− 2α−N +
√

4 + (N − 2)2 − 4
√
ρ0

]

.
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Note that, in this case, 6− 2α−N < 0,

4 + (N − 2)2 − (6− 2α−N)2 = 4 + 4(2− α)(N − 4 + α) > 0,

and

[4 + (N − 2)2 − (6− 2α−N)2]2 − 16ρ0

= − 16

(p + 1)2
(N − 1)[(4N − 19)p2 + (p2 + 2p− 3)N + 10p− 3] < 0.(4.13)

So, we conclude that β3 ≤ β4 < −1 for 5 ≤ N ≤ 12 and p ∈ (1, pc].

When N ≥ 13 and p > 1, a simple calculation shows that the equation ∂~
∂p

= 0 has

no any solution in (1,∞), which implies that β3, β4 ∈ R. From the form of β3 + 1

and (4.13), we obtain that β4 ≤ β3 < −1.

Our claim 5 follows from the above discussions.

In view of (4.1), the ODE theory and arguments similar to those in section 3

imply that, for N = 4 and p > 1; N ∈ [5, 12] and p ∈ (pc,∞),

z(t) = M1e
β1t + A2e

β2t + A3e
ℓt cos(qt) + A4e

ℓt sin(qt)

−B1

∫ ∞

t

eβ1(t−s)h(s, z(s))ds+B3

∫ t

T

eℓ(t−s) cos[q(t− s)]h(s, z(s))ds

+B2

∫ t

T

eβ2(t−s)h(s, z(s))ds+B4

∫ t

T

eℓ(t−s) sin[q(t− s)]h(s, z(s))ds;(4.14)

for N = 3 and p ∈ (1, p13] ∪ [p23, 3); N ∈ [5, 12] and p ∈ (1, pc]; N ≥ 13 and p > 1,

z(t) = M1e
β1t + A2e

β2t + A3e
β3t + A4e

β4t

−B1

∫ ∞

t

eβ1(t−s)h(s, z(s))ds+B2

∫ t

T

eβ2(t−s)h(s, z(s))ds

+B3

∫ t

T

eβ3(t−s)h(s, z(s))ds+B4

∫ t

T

eβ4(t−s)h(s, z(s))ds,(4.15)

where ℓ and q are given in Claim 5,

h(t, z(t)) =







O(z2) + ot(1)e
−t, for N and p satisfying (1.5)

or p = N+3
N−5

and N ≥ 6 with (1.8),

O(z2) + ot(1)e
−β̂t, for p ∈ (N+2

6−N
, p∗), N = 3, 5.

Note that f(z) = O(z2). Since z(t) → 0 as t → ∞, we see that, for N = 3 and

p ∈ (p13, p
2
3); N = 4 and p > 1; N ∈ [5, 12] and p ∈ (pc,∞),

|z(t)| ≤ O(eℓt) + C

∫ ∞

t

eβ1(t−s)|h(s, z(s))|ds+ C

∫ t

T

eℓ(t−s)|h(s, z(s))|ds,
22



and, for N = 3 and p ∈ (1, p13] ∪ [p23, 3); N ∈ [5, 12] and p ∈ (1, pc]; N ≥ 13 and

p > 1,

|z(t)| ≤ O(eβ3t) + C

∫ ∞

t

eβ1(t−s)|h(s, z(s))|ds+ C

∫ t

T

eβ3(t−s)|h(s, z(s))|ds,

where C > 0 is independent of T . Note that we have also used the fact β2 < ℓ.

Arguments similar to those in the proof of Proposition 3.1 imply that

(4.16) |z(t)| = O(eℓt), i.e. |v(s)| = O(s−ℓ), for







p ∈ (p13, p
2
3), N = 3;

p ∈ (1,∞), N = 4;
p ∈ (pc,∞), N ∈ [5, 12]

and

|z(t)| = O(eβ3t),

i.e. |v(s)| = O(s−β3), for







p ∈ (1, p13] ∪ [p23, 3), N = 3;
p ∈ (1, pc], N ∈ [5, 12];
p ∈ (1,∞), N ∈ [13,∞).

(4.17)

The fact v(s, θ) = v(s) + w(s, θ), Proposition 3.1, (4.16), (4.17) and Claim 5 yield

that

(4.18) |v(s, θ)| =























O(s),
for p ∈ (1, N+2

6−N
], N = 3, 4, 5;

p ∈ (1,∞), N ≥ 6;

O(sβ̂), for p ∈ (N+2
6−N

, p∗), N = 3, 4, 5;
O(s−ℓ), for p ∈ (7,∞), N = 4;

p = 7, N = 4 with (1.8).

where ℓ = 2−α−N
2
∈ (−1, 0) is given in Claim 5 and β̂ = |β(1)

3 | = 5−N−2α ∈ (0, 1)

for p ∈ (N+2
6−N

, p∗) and N = 3, 4, 5, which is given in (3.35). We have also used the

facts −1 < ℓ < β
(1)
3 < 0 for p ∈ (N+2

6−N
, p∗) and N = 3, 4, 5; −1 < β3 < β

(1)
3 < 0 for

p ∈ [p23, 3) and N = 3. Moreover, since

|f(v)− f(v)| = p
∣

∣(ξ + L)−(p+1) − L−(p+1)
∣

∣|w| = O(|ξ|)|w|,

where ξ(s, θ) = γw(s, θ) + (1− γ)v(s) with γ ∈ (0, 1), the estimate similar to (4.18)

yields that

(4.19) |ξ(s, θ)| =























O(s),
for p ∈ (1, N+2

6−N
], N = 3, 4, 5;

p ∈ (1,∞), N ≥ 6;

O(sβ̂), for p ∈ (N+2
6−N

, p∗), N = 3, 4, 5;
O(s−ℓ), for p ∈ (7,∞), N = 4;

p = 7, N = 4 with (1.8).
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Therefore

(4.20) |f(v)− f(v)| =























O(s2),
for p ∈ (1, N+2

6−N
], N = 3, 4, 5;

p ∈ (1,∞), N ≥ 6;

O(s2β̂), for p ∈ (N+2
6−N

, p∗), N = 3, 4, 5;
O(s1−ℓ), for p ∈ (7,∞), N = 4;

p = 7, N = 4 with (1.8).

Consequently, we have the following lemma.

Lemma 4.1. Let v be a solution to (2.8). Then there exists M = M(v) > 0 such
that for p ∈ (1, N+2

6−N
] and N = 3, 4, 5; p ∈ (1,∞) and N ≥ 6,

(4.21) |v(s)| ≤Ms, |v′(s)| ≤M, |v′′(s)| ≤ Ms−1

and

(4.22)

∫

SN−1

v2(s, θ)dθ ≤Ms2;

For p ∈ (N+2
6−N

, p∗) and N = 3, 4, 5,

(4.23) |v(s)| ≤Msβ̂ , |v′(s)| ≤Msβ̂−1, |v′′(s)| ≤Msβ̂−2

and

(4.24)

∫

SN−1

v2(s, θ)dθ ≤Ms2β̂ , β̂ = N + 2α− 5 ∈ (0, 1);

For p ∈ (7,∞) and N = 4; p = 7 and N = 4 with (1.8),

(4.25) |v(s)| ≤ Ms−ℓ, |v′(s)| ≤Ms−(1+ℓ), |v′′(s)| ≤Ms−(2+ℓ),

and

(4.26)

∫

SN−1

v2(s, θ)dθ ≤Ms−2ℓ.

where ℓ = 2− α− N
2
< 0.

Proof. Proof of this lemma is similar to that of Lemma 4.1 in [11]. We omit the
details here. �

Proposition 4.2. Suppose that κ ≥ 0 is an integer and v is a solution of (2.8).
Then there exist 0 < s0 < 1 and M = M(v, κ) > 0 (independent of s) such that for
p ∈ (1, N+2

6−N
] and N = 3, 4, 5; p ∈ (1,∞) and N ≥ 6,

(4.27) max
|y|=s

|Dκv(y)| ≤Ms1−κ.

For p ∈ (N+2
6−N

, p∗) and N = 3, 4, 5,

(4.28) max
|y|=s

|Dκv(y)| ≤Msβ̂−κ.

For p ∈ (7,∞) and N = 4; p = 7 and N = 4 with (1.8),

(4.29) max
|y|=s

|Dκv(y)| ≤Ms−ℓ−κ.
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Proof. We only show (4.27). The proofs of (4.28) and (4.29) are similar. We first ob-
tain (4.27) for the case of κ = 0. If we define z(t, θ) = w(s, θ) = Σ∞

k=1Σ
mk

j=1w
k
j (s)Q

k
j (θ),

we see that

max
θ∈SN−1

|z(t, θ)| ≤
∞
∑

k=1

mk
∑

j=1

|zkj (t)| max
θ∈SN−1

|Qk
j (θ)| ≤

∞
∑

k=1

mk
∑

j=1

Dk|zkj (t)|,

where Dk is given in (2.5). Arguments similar to those in the proof of Proposition
3.1 imply that there exist C > 0 independent of t and T ∗ ≫ 1 such that, for t ≥ T ∗,

∞
∑

k=1

mk
∑

j=1

Dk|zkj (t)| = O
(

∞
∑

k=2

kmkDke
β
(k)
4 (t−T )

)

+O
(

e−(t−T )
)

≤ Ce−t

(note that limk→∞
(k+1)mk+1Dk+1

kmkDk
= 1) and hence

max
θ∈SN−1

|z(t, θ)| ≤ Ce−t,

(4.30) max
θ∈SN−1

|w(s, θ)| ≤ Cs

for 0 < s < s0 := e−T ∗

. Therefore, (4.27) with τ = 0 can be obtained from (4.30)
and the fact that v(s, θ) = w(s, θ) + v(s).

To obtain (4.27) completely, it is enough to show (4.27) for κ = 1. The other
cases are essentially the same by differentiating w(s, θ). We only need to show
|∇w(y)| ≤ C. Since |∇w|2 = w2

s +
1
s2
|wθ|2, we need to present the estimates of w2

s

and |wθ|2. We see that ws(s, θ) = Σ∞
k=1Σ

mk

j=1(w
k
j )

′(s)Qk
j (θ), then

(4.31) max
θ∈SN−1

|ws(s, θ)| ≤
∞
∑

k=1

mk
∑

j=1

Dk|(wk
j )

′(s)|.

For each λk = k(N + k − 2) and 1 ≤ j ≤ mk, we see from the expression of zkj (t) in

(3.19) and (wk
j )

′(s) = −(zkj )
′(t)et (t = − ln s) that for 0 < s < s0,

Dk|(wk
j )

′(s)| ≤ M̃ks
−(β

(k)
4 +1) for k ≥ 2

and

D1|(w1
j )

′(s)| ≤ M̃1.

These and (4.31) imply that there is M1 = M1(v, s0) > 0 independent of s such
that, for s ∈ (0, s0),

(4.32) max
θ∈SN−1

|ws(s, θ)| ≤M1.

Note that β
(k)
4 + 1 < 0 for k ≥ 2. Since |wθ(s, θ)| ≤ Σ∞

k=1Σ
mk

j=1|wk
j (s)||(Qk

j )θ|, we
also obtain that there exists M2 = M2(v, s0) > 0 independent of s such that for
s ∈ (0, s0),

(4.33) max
θ∈SN−1

|wθ(s, θ)| ≤M2s.
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(Again by limk→∞
(k+1)mk+1Ek+1

kmkEk
= 1.) Therefore, for s ∈ (0, s0),

(4.34) max
|y|=s

|∇w(y)|2 = max
|y|=s

[

w2
s +

1

s2
|wθ|2

]

≤ M̂,

where M̂ = M2
1 +M2

2 . Together with (4.21)2, we see that (4.27) holds for κ = 1.
This completes the proof of this proposition. �

To study the properties of v, we introduce a new function

(4.35) w̃(s, θ) =
w(s, θ)

s
.

It follows from the above arguments that

(4.36) |w̃(s, θ)| = O(1), for















p ∈







(1, N+2
6−N

] when N = 3 or 5,
(1, 3] ∪ (7,∞) when N = 4,
(1,∞) when N ≥ 6,

p = 7 and N = 4 with (1.8)

For p ∈ (N+2
6−N

, p∗), N = 3, 4 or 5, from (1.9) we have

|v(s, θ)| = o(sβ̂) for s near 0,

where β̂ = |β(1)
3 | = N + 2α− 5 ∈ (0, 1). There holds in this case

(4.37) |v(s)| = o(sβ̂), |w(s, θ)| = o(sβ̂) for s near 0.

Arguments similar to those in the proof of Proposition 3.1 imply that

W (s) = O(s|β
(1)
4 |) for s near 0.

Since β
(1)
4 = −1 for p ∈ (N+2

6−N
, p∗) and N = 3, 4, 5, we see that |w̃(s, θ)| = O(1) also

holds when p ∈ (N+2
6−N

, p∗) and N = 3, 4, 5 with (1.9).

Taking account of equation (2.13), we see that w̃(s, θ) satisfies the equation:

∂4s w̃ + 2(9− 2α−N)s−1∂3s w̃

+ (N2 + 6αN + 6α2 − 22N − 48α+ 93)s−2∂2s w̃

− (N + 2α− 7)(2αN + 2α2 − 14α− 5N + 21)s−3∂sw̃

−
[

(N + 2α− 5)(2Nα + 2α2 − 3N − 10α + 9) + (p+ 1)L−(p+1)
]

s−4w̃

+ 2(Nα + α2 − 6α− 2N + 9)s−4∆θw̃ + 2(7− 2α−N)s−3∆θ(∂sw̃)

+ 2s−2∆θ(∂
2
s w̃) + s−4∆2

θw̃

= s−5[f(v)− f(v)] = s−4[f ′(ξ(s, θ))w̃ − f ′(ξ(s, θ))w̃].

(4.38)
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Now we write

(4.39) w̃(s, θ) =
∞
∑

k=1

mk
∑

j=1

w̃k
j (s)Q

k
j (θ),

where w̃k
j (s) = s−1wk

j (s). It is clear that w̃ = 0. Then, w̃k
j (s) satisfies

(w̃k
j )

(4) + 2(9− 2α−N)s−1(w̃k
j )

(3)

+ (N2 + 6αN + 6α2 − 22N − 48α+ 93− 2λk)s
−2(w̃k

j )
′′

− (N + 2α− 7)(2αN + 2α2 − 14α− 5N + 21− 2λk)s
−3(w̃k

j )
′

+
[

(5−N − 2α)(2Nα + 2α2 − 3N − 10α + 9)− (p+ 1)L−(p+1)

− 2(Nα + α2 − 2N − 6α + 9)λk + λ2k
]

s−4w̃k
j

= s−4os(1)w̃
k
j ,

(4.40)

where λk = k(N + k − 2) and

(4.41) os(1) =























O(s),
for p ∈ (1, N+2

6−N
], N = 3, 4, 5;

p ∈ (1,∞), N ≥ 6;

o(sβ̂), for p ∈ (N+2
6−N

, p∗), N = 3, 4, 5 with (1.9);
O(s−ℓ), for p ∈ (7,∞), N = 4;

p = 7, N = 4 with (1.8).

Let t = − ln s and z̃kj (t) = w̃k
j (s). Then z̃

k
j (t) satisfies the following equation:

(z̃kj )
(4) + 2(N − 6 + 2α)(z̃kj )

(3) + (N2 + 6αN + 6α2 − 16N − 36α + 50

− 2λk)(z̃
k
j )

′′ + 2(N + 2α− 6)(Nα + α2 − 6α− 2N + 7− λk)(z̃
k
j )

′

+
[

(5−N − 2α)(2Nα + 2α2 − 3N − 10α + 9)− (p+ 1)L−(p+1)

− 2(Nα + α2 − 2N − 6α+ 9)λk + λ2k
]

z̃kj

= ot(1)z̃
k
j ,

(4.42)

where

(4.43) ot(1) =























O(e−t),
for p ∈ (1, N+2

6−N
], N = 3, 4, 5;

p ∈ (1,∞), N ≥ 6;

o(e−β̂t), for p ∈ (N+2
6−N

, p∗), N = 3, 4, 5 with (1.9);
O(eℓt), for p ∈ (7,∞), N = 4;

p = 7, N = 4 with (1.8).

The corresponding polynomial of (4.42) is

β̃4 + 2(N − 6 + 2α)β̃3 + (N2 + 6αN + 6α2 − 16N − 36α+ 50− 2λk)β̃
2

+ 2(N + 2α− 6)(Nα + α2 − 6α− 2N + 7− λk)β̃

+ (5−N − 2α)(2Nα + 2α2 − 3N − 10α + 9)− (p+ 1)L−(p+1)

− 2(Nα + α2 − 2N − 6α+ 9)λk + λ2k = 0.

(4.44)
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Solving this equation, we obtain four roots:

β̃
(k)
j = β

(k)
j + 1, j = 1, 2, 3, 4,

where β
(k)
j is given in (3.11). It follows from Claims 1-4 in the proof of Proposition

3.1 that

β̃
(k)
2 < β̃

(k)
4 < 0 < β̃

(k)
3 < β̃

(k)
1 for k ≥ 2; N = 3 and p ∈ (1, 3); N ≥ 4 and p > 1

and
β̃
(1)
2 < β̃

(1)
4 = 0 < β̃

(1)
3 < β̃

(1)
1 , for N = 3, 5, p ∈ (N+2

6−N
, p∗);

N = 4, p ∈ (3,∞);

β̃
(1)
2 < β̃

(1)
4 ≤ β̃

(1)
3 = 0 < β̃

(1)
1 , for N ≥ 6, p ∈ (1,∞);

N = 3, 4, 5, p ∈ (1, N+2
6−N

].

From (3.23) and Claim 3, we see that for k ≥ 2,

(4.45) lim
s→0

w̃k
j (s) = 0, for N = 3 and p ∈ (1, 3); N ≥ 4 and p > 1.

Moreover, (4.36) and (4.37) imply that |w̃1
j (s)| (1 ≤ j ≤ m1) is bounded for s near

0, that is, |z̃1j (t)| is bounded for t near ∞, provided that N and p satisfy (1.5) or

N = 4 and p = 7 with (1.8); N = 3, 4, 5 and p ∈ (N+2
6−N

, p∗) with (1.9). It follows

from (4.42) that, for t sufficiently large,

z̃1j (t) = C1
j + A1

j,2e
β̃
(1)
2 t + A1

j,4e
β̃
(1)
4 t

− B1
1

∫ ∞

t

eβ̃
(1)
1 (t−s)O(e−s)z̃1j (s)ds+B1

2

∫ t

T

eβ̃
(1)
2 (t−s)O(e−s)z̃1j (s)ds

+B1
3

∫ t

T

O(e−s)z̃1j (s)ds+B1
4

∫ t

T

eβ̃
(1)
4 (t−s)O(e−s)z̃1j (s)ds

(4.46)

for N ≥ 6 and p ∈ (1,∞); N = 3, 4, 5 and p ∈ (1, N+2
6−N

];

z̃1j (t) =C
1
j + A1

j,2e
β̃
(1)
2 t

− B1
1

∫ ∞

t

eβ̃
(1)
1 (t−s)O(eℓs)z̃1j (s)ds−B1

3

∫ ∞

t

eβ̃
(1)
3 (t−s)O(eℓs)z̃1j (s)ds

+B1
2

∫ t

T

eβ̃
(1)
2 (t−s)O(eℓs)z̃1j (s)ds+B4

∫ t

T

O(eℓs)z̃1j (s)ds

(4.47)

for N = 4 and p > 7; N = 4 and p = 7 with (1.8);

z̃1j (t) = C1
j + A1

j,2e
β̃
(1)
2 t

−B1
1

∫ ∞

t

eβ̃
(1)
1 (t−s)o(e−β̂s)z̃1j (s)ds−B1

3

∫ ∞

t

eβ̃
(1)
3 (t−s)o(e−β̂s)z̃1j (s)ds

+B1
2

∫ t

T

eβ̃
(1)
2 (t−s)o(e−β̂s)z̃1j (s)ds+B1

4

∫ t

T

o(e−β̂s)z̃1j (s)ds

(4.48)
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for N = 3, 4, 5 and p ∈ (N+2
6−N

, p∗) with (1.9). These imply w̃1
j (s) → Cj (a con-

stant, maybe 0) as s → 0. Recalling that Q1
1(θ), . . . , Q

1
m1

(θ) are the eigenfunctions

corresponding to λ1 = N − 1, we have that

(4.49) w̃(s, θ) → V (θ) as s→ 0,

for N and p satisfy (1.5); N = 4 and p = 7 with (1.8); N = 3, 4, 5 and p ∈ (N+2
6−N

, p∗)

with (1.9). Here V (θ) is 0 or one of the first eigenfunctions of −∆ on SN−1, i.e.

∆θV + (N − 1)V = 0, V = 0.

Moreover, it is known from Lemma 8.1 of [25] that

(4.50) V (θ) = θ · x0
for some x0 ∈ R

N fixed and θ = x
|x|

∈ SN−1.

Combining what have been discussed above with Lemma 4.1 and Proposition 4.2,

we have established the following asymptotic expansions near y = 0 for solutions of

(2.8).

Theorem 4.3. Let v be a solution of (2.8) and w̃ be given by (4.35). Suppose that N
and p satisfy (1.5); N = 4 and p = 7 with (1.8); N = 3, 4, 5 and p ∈ (N+2

6−N
, p∗) with

(1.9). Then v(y) = v(s) + sw̃(s, θ) where v(s), w̃(s, θ) have the following properties
and

(i) v satisfies

|v(s)| = O(s), |v′(s)| = O(1), |v′′(s)| = O(s−1)

for N = 3, 4, 5 and p ∈ (1, N+2
6−N

]; N ≥ 6 and p ∈ (1,∞);

|v(s)| = O(s−ℓ), |v′(s)| = O(s−(ℓ+1)), |v′′(s)| = O(s−(ℓ+2))

for N = 4 and p ∈ (7,∞); N = 4 and p = 7 with (1.8);

|v(s)| = o(sβ̂), |v′(s)| = o(sβ̂−1), |v′′(s)| = o(sβ̂−2)

for N = 3, 4, 5 and p ∈ (N+2
6−N

, p∗) with (1.9).

(ii) For any nonnegative integers κ and κ1, there exists a positive constant M =
M(v, κ, κ1) such that

|sκDκ1

θ D
κ
s w̃(s, θ)| ≤ M, y ∈ Bs0 := {y : |y| < s0}, y 6= 0.

Moreover, w̃ satisfies

(4.51) lim
s→0

w̃(s, θ) = V (θ) uniformly in Cκ(SN−1),

where V (θ) is 0 or one of the first eigenfunctions of −∆θ on SN−1.

Using transformation (2.7) and arguments similar to those in the proof of Theorem

5.1 of [11], we obtain immediately from Theorem 4.3 that the asymptotic expansions

for positive entire solutions of (1.1) at ∞.
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Theorem 4.4. Let N and p satisfy (1.5); N = 4 and p = 7 with (1.8); N = 3, 4, 5
and p ∈ (N+2

6−N
, p∗) with (1.9). Assume that u is a positive entire solution of (1.1)

with (1.6). Then (u,−∆u) admits the expansion:

(4.52)











u(x) = rα
[

L+ ϕ(r) +
ψ(r, θ)

r

]

,

w(x) := −∆u(x) = −rα−2
[

Lα(N + α− 2) + ϕ1(r) +
ψ1(r, θ)

r

]

,

where

(4.53)

{

ϕ1(r) = r2ϕ′′ + (N + 2α− 1)rϕ′ + α(N + α− 2)ϕ,

ψ1(r, θ) = r2ψrr + (N + 2α− 3)rψr + (α− 1)(N + α− 3)ψ + r−α∆θψ.

Furthermore, the following properties for ϕ, ψ, ϕ1, ψ1 are satisfied:
(i) ϕ(r) = r−αu(r)−L, and there exist R0 (:= s−1

0 ) and a constantM =M(u) > 0
such that, for N = 3, 4, 5 and p ∈ (1, N+2

6−N
]; N ≥ 6 and p ∈ (1,∞),

(4.54) |ϕ(r)| ≤Mr−1, |ϕ′(r)| ≤Mr−2, |ϕ′′(r)| ≤Mr−3 for r > R0,

(4.55) |ϕ′
1(r)| ≤Mr−1 for r > R0.

For N = 4 and p ∈ (7,∞); N = 4 and p = 7 with (1.8),

(4.56) |ϕ(r)| ≤Mrℓ, |ϕ′(r)| ≤Mrℓ−1, |ϕ′′(r)| ≤Mrℓ−2 for r > R0,

(4.57) |ϕ′
1(r)| ≤Mrℓ for r > R0.

For N = 3, 4, 5 and p ∈ (N+2
6−N

, p∗) with (1.9),

(4.58) |ϕ(r)| = o(r−β̂), |ϕ′(r)| = o(r−β̂−1), |ϕ′′(r)| = o(r−β̂−2) for r > R0,

(4.59) |ϕ′
1(r)| = o(r−β̂) for r > R0.

(ii) Let κ and κ1 be two non-negative integers. Then there exists a positive con-
stant M =M(u, κ, κ1) such that

(4.60) |rκDκ1
θ D

κ
rψ(r, θ)| ≤ M, |ψ1(r, θ)| ≤M for r > R0.

(iii) Let κ be a non-negative integer. Then ψ(r, θ) tends to V (θ) uniformly in
Cκ(SN−1) as r → ∞, where V (θ) is given by (4.50).

5. Proofs of Theorems 1.1-1.3

In this section, we present the proofs of Theorems 1.1-1.3 by using the well known

moving plane method.

For γ ∈ R, define the hyperplane:

Υγ = {x = (x1, x2, . . . , xN ) ∈ R
N | x1 = γ}.
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For any x ∈ R
N , denote the reflection point of x about Υγ by xγ, i.e.

xγ = (2γ − x1, x2, · · · , xN ).

We have the following lemma by using Theorem 4.4.

Lemma 5.1. Assume that N and p satisfy (1.5); N = 4 and p = 7 with (1.8);
N = 3, 4, 5 and p ∈ (N+2

6−N
, p∗) with (1.9). Let u be a positive entire solution of (1.1)

satisfying (1.6), (1.8) and (1.9) respectively. Then,
(i) if γj ∈ R → γ and {xj} → ∞ with xj1 < γj, then

(5.1) lim
j→∞

|xj|2−α

γj − xj1

[

u(xj)− u((xj)γ)
]

= −2αLγ − 2(x0)1,

where (x0)1 is the first component of x0 given in (4.50).

(ii) Denote γ0 = − (x0)1
αL

. Then there exists a constant M =M(u) > 0 such that

(5.2)
∂u

∂x1
(x) ≥ 0,

if x1 ≥ γ0 + 1 and |x| ≥M .

Proof. For N = 3, 4, 5 and p ∈ (1, N+2
6−N

]; N ≥ 6 and p > 1, the proof of this lemma

is similar to that of Lemma 6.2 of [15]. For N = 4 and p > 7; N = 4 and p = 7 with
(1.8); N = 3, 4, 5 and p ∈ (N+2

6−N
, p∗) with (1.9), we can obtain the conclusions from

the decay rates of ϕ(r), ϕ1(r), ψ(r, θ) and ψ1(r, θ) in Theorem 4.4. In fact, we only
need to replace the estimate:

1

|xj |α−2(γ − xj1)

[

ξ(|xj|)|xj|α − ξ(|(xjγ |)|xjγ |α
]

= O(|xj|−1) → 0 as j → ∞

in the proof of Lemma 6.2 in [15], by

1

|xj|α−2(γ − xj1)

[

ϕ(|xj |)|xj|α − ϕ(|(xj)γ |)|(xj)γ|α
]

=

{

O(|xj|ℓ) → 0 as j → ∞ for N = 4, p > 7; N = 4, p = 7 with (1.8);

O(|xj|−β̂) → 0 as j → ∞ for N = 3, 4, 5, p ∈ (N+2
6−N

, p∗) with (1.9),

here we have used (4.56) and (4.58). This completes the proof of this lemma. �

Assume w(x) = −∆u(x) and rewrite (1.1) in the following form:

(5.3)

{

−∆u = w in R
N ,

−∆w = −u−p in R
N .

Let us recall Lemma 4.2 in [23] due to Troy. We obtain readily that

Lemma 5.2. Let γ ∈ R and u be a positive entire solution of (1.1). Suppose that

u(x) ≤ u(xγ), u(x) 6≡ u(xγ), w(x) ≤ w(xγ) if x1 < γ.

Then

(5.4) u(x) < u(xγ), w(x) < w(xγ) if x1 < γ
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and

(5.5)
∂u

∂x1
(x) > 0,

∂w

∂x1
(x) > 0, on Υγ,

where xγ is the reflection point of x with respect to Υγ.

As a consequence of Lemma 5.2, we have the following result.

Lemma 5.3. Let γ ∈ R, N and p satisfy (1.5); N = 4 and p = 7 with (1.8);
N = 3, 4, 5 and p ∈ (N+2

6−N
, p∗) with (1.9). Let u be a positive entire solution of (1.1)

satisfying (1.6), (1.8) and (1.9) respectively. If

u(x) ≤ u(xγ), u(x) 6≡ u(xγ) for x1 < γ,

then

(5.6) u(x) < u(xγ), w(x) < w(xγ) for x1 < γ.

Proof. Since u(x) ≤ u(xγ), u(x) 6≡ u(xγ) for x1 < γ, we deduce that

∆[w(x)− w(xγ)] = u−p(x)− u−p(xγ) ≥ 0 if x1 < γ.

It follows from (4.52)-(4.60) that

w(x)− w(xγ) → 0 as |x| → ∞.

Moreover, w(x) = w(xγ) on Υγ. The maximum principle yields

w(x)− w(xγ) ≤ 0 if x1 < γ.

It follows from Lemma 5.2 that our conclusions in (5.6) hold. �

Proofs of Theorems 1.1, 1.2 and 1.3

We first show the sufficiency of these theorems. The main idea of the proof is

similar to those in [11, 25]. We claim that there exists γ′ > 0 such that

(5.7) u(x) < u(xγ), w(x) < w(xγ) for γ ≥ γ′ and x1 < γ.

Suppose for contradiction that (5.7) does not hold. Then by Lemma 5.3, there exist

two sequences {γj} → ∞ and {xj} with xj < γj such that

(5.8) u(xj) ≥ u(yj), yj = (xj)γ
j

, j = 1, 2, . . . .

Thanks to yj tends to ∞, we see that u(yj) tends to infinity. In turn |xj | → ∞. By

Lemma 5.1, we must have

xj1 ≤ γ0 + 1 = −(x0)1
αL

+ 1 for j large enough.

Thus, it follows that, for any γ1 > γ0 + 1,

u(xj) ≥ u(yj) ≥ u((xj)γ1) for j large,
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since (xj)γ
j

1 ≫ (xj)γ11 for j large and u(x) → ∞ as |x| → ∞. On the other hand,

using Lemma 5.1 again, we conclude that

0 ≤ |xj|2+α

γ1 − xj1

[

u(xj)− u((xj)γ1)
]

→ −2αLγ1 − 2(x0)1 < 0,

since xj1 < γ1. This is a contradiction and (5.7) follows.

The rest of the proof is same as that of Theorem 1.1 in [11] and [25] for the

sufficiency of Theorems 1.1, 1.2 and 1.3. We omit them here.

We now show the necessity of Theorems 1.1, 1.2 and 1.3. Without loss of general-

ity, we assume x∗ = 0. Then, the necessity of Theorem 1.1 follows from Proposition

8 of [5]. To show the necessity of Theorems 1.2 and 1.3, we first show a lemma,

which describes the behavior of the unique minimal positive radial entire solution

of (1.1) at ∞.

Lemma 5.4. Assume N = 3 and p ∈ (1, 3); N ≥ 4 and p ∈ (1,∞). Let u ∈ C4(RN)
be the minimal positive radial entire solution of (1.1). Then as r = |x| → ∞, there
holds:

u(r) = Lrα+







O(r2−
N
2 ) for N = 3 and p ∈ (p13, p

2
3); N ∈ [4, 12] and p ∈ (pc,∞);

O(r−1+α) for N ∈ [5, 12] and p ∈ (1, pc); N ≥ 13 and p ∈ (1,∞);
O(rβ3+α) for N = 3 and p ∈ [p23, 3),

where β3 =
1
2

(

1− 2α+
√

5− 4
√

1 + pα(2− α)(α2 − 1)
)

given by (4.3).

Proof. In radial coordinate r = |x|, (1.1) can be written to: for r ∈ (0,∞),

u(4) +
2(N − 1)

r
u′′′ +

(N − 1)(N − 3)

r2
u′′ − (N − 1)(N − 3)

r3
u′ = −u−p.

For the minimal positive radial entire solution u(r) of (1.1), we know from [5] that
it satisfies (1.4).

Inspired by [6, 7, 8, 12, 16, 24], we introduce the Emden-Fowler transformation

r = et, m(t) = e−αtu(et)− L, t ∈ R.

Under this transformation, (1.1) becomes to

m(4) + 2(N + 2α− 4)m′′′ + (N2 + 6Nα + 6α2 − 10N − 24α+ 20)m′′

+2(N + 2α− 4)(Nα + α2 −N − 4α+ 2)m′ − (p+ 1)L−(p+1)m+ g(m) = 0,(5.9)

where g(m) = (m+ L)−p − L−p + pL−(p+1)m. Note that (1.4) indicates

lim
t→∞

m(t) = 0,

so for |t| large enough, g(m) = O(m2). Comparing (4.1) with (5.9), we find that they
have the same characteristic polynomial (4.2) and the eigenvalues βj (j = 1, 2, 3, 4)
given in Section 4. Taking account of the properties of βj given in (4.4) and Claim
5, we obtain the presentations of m(t), which are similar to (4.14) and (4.15) in
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Section 4 except that h(s, z̄(s)) is replaced by g(w). The same arguments imply
that
(5.10)

|m(t)| =















O(eℓt) for p ∈ (p13, p
2
3) and N = 3; p ∈ (1,∞) and N = 4;

p ∈ (pc,∞) and N ∈ [5, 12];
O(eβ3t) for p ∈ (1, p13] ∪ [p23, 3) and N = 3; p ∈ (1, pc] and N ∈ [5, 12];

p ∈ (1,∞) and N ∈ [13,∞).

Note that ℓ = 2 − α − N
2
and β3 = 1

2

(

1− 2α +
√

5− 4
√

1 + pα(2− α)(α2 − 1)

)

when N = 3. We obtain our desired results by using (4.4) and Claim 5 again. �

We continue to show the necessity of Theorems 1.2 and 1.3. It follows from

Lemma 5.4 that if u is the minimal positive radial entire solution of (1.1), then, for

r sufficiently large, there holds

(5.11)

r−αu(r)− L =







O(rℓ), for p ∈ (5
3
, p23) and N = 3; p ∈ (3, 7] and N = 4;

p ∈ (7,∞) and N = 5;
O(rβ3), for p ∈ [p23, 3) and N = 3.

On the other hand, we can easily check that, for p ∈ [p23, 3) and N = 3,

β3 < −β̂ = 5− 3− 2α < 0.

For (5
3
, p23) and N = 3; p ∈ (3, 7) and N = 4; p ∈ (7,∞) and N = 5,

ℓ = 2− N

2
− α < 5−N − 2α = −β̂ < 0

and for p = 7 and N = 4,

ℓ = 2− N

2
− α = −1

2
< −ǫ0,

where ǫ0 is given in Theorem 1.2. It follows from (5.11) that for r sufficiently large,

r−αu(r)− L =







o(r5−N−2α), for p ∈ (5
3
, 3) and N = 3; p ∈ (3, 7) and N = 4;

p ∈ (7,∞) and N = 5;
o(r−ǫ0), for p = 7 and N = 4.

This completes the proof of the necessity of Theorems 1.2 and 1.3 and then completes

the proof of Theorems 1.1, 1.2 and 1.3. �

6. Proof of Theorem 1.4

In this section, we present the proof of Theorem 1.4. To do this, we first obtain

the asymptotic behavior of a non-minimal positive radial entire solution of (1.1).

We know from [5] that when N = 3 and 1 < p < 3; N ≥ 4 and p > 1, for any
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fixed a > 0 and ∞ > b > b̃, (1.3) admits a unique non-minimal positive radial entire

solution ua,b(r) such that

r−2ua,b(r) ∈ (A1, A2) for r sufficiently large,

where 0 < A1 < A2 <∞.

The following proposition presents the asymptotic behavior of ua,b(r) at r = ∞.

Proposition 6.1. There exists d > 0 (d depends on a and b) such that, for r near
+∞,

(6.1) ∆ua,b(r) =

{

d+O(r−min{N−2,2(p−1)}), if p 6= N
2
,

d+O(r−(N−2) ln r), if p = N
2
,

(6.2)

r−2ua,b(r) =



























d
2N

+O(r−κ), if p 6= N
2
and min{N − 2, 2(p− 1)} 6= 2;

d
2N

+O (r−κ ln r) , if p 6= N
2
and min{N − 2, 2(p− 1)} = 2;

d
2N

+O (r−2) , if p = N
2
and N ≥ 5;

d
2N

+O (r−1 ln r) , if p = 3
2
and N = 3;

d
2N

+O (r−2(ln r)2) , if p = 2 and N = 4,

where κ = min{2, N − 2, 2(p− 1)}.
Proof. We first show

(6.3) ∆ua,b(r) → d, r−2ua,b(r) →
d

2N
as r → ∞.

It is easily seen from the equation in (1.3) that ∆ua,b(r) is decreasing in (0,∞).
Therefore, there are three cases for ∆ua,b(r):

(i) ∆ua,b(r) → −e < 0 (e may be +∞) as r → ∞,
(ii) ∆ua,b(r) → 0 as r → ∞,
(iii) ∆ua,b(r) → d > 0 as r → ∞.
We show that the cases (i) and (ii) do not happen. Since

r−2ua,b(r) ∈ (A1, A2) for r sufficiently large,

we have that

(6.4) limr→∞r
−2ua,b(r) ≥ A1 > 0.

If (i) occurs, we see that for any small ǫ > 0, there is an R = R(ǫ) > 1 such that

(6.5) ∆ua,b(r) < −e + ǫ for r > R.

(We may assume 0 < e < ∞. If e = ∞, we can choose any 0 < e1 < ∞ such that
(6.5) holds.) This implies

rN−1u′a,b(r)− RN−1u′a,b(R) ≤
(−e + ǫ)

N
(rN −RN ),

and

u′a,b(r) ≤
RN−1

rN−1
u′a,b(R) +

(−e + ǫ)

N
(r − RNr1−N).
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Therefore,

ua,b(r) ≤ ua,b(R) +
RN−1u′a,b(R)

2−N
(r2−N −R2−N )

+
(−e + ǫ)

2N
(r2 − R2) +

(−e + ǫ)RN

N(N − 2)
(r2−N −R2−N ).

This implies

limr→∞r
−2ua,b(r) ≤ − e

2N
< 0

by sending ǫ to 0. This contradicts to (6.4).
If (ii) occurs, arguments similar to those in the proof of case (i) imply that

limr→∞r
−2ua,b(r) ≤ 0.

This also contradicts to (6.4).
Therefore, case (iii) occurs. Clearly using the arguments similar to those in the

proof of case (i), we can prove that

lim
r→∞

r−2ua,b(r) =
d

2N
,

and then the limits in (6.3) hold.
To prove the identities in (6.1), we define v(r) = ∆u(r) − d. We omit a, b from

ua,b in the following. Then v(r) → 0 as r → ∞ and v(r) satisfies the equation
∆v(r) = ∆2u(r) = −u−p. It follows from (6.3) that, for r near +∞,

∆v(r) = O(r−2p).

This implies that

r2v′′(r) + (N − 1)rv′(r) = O(r2(1−p)).

Making the transformations:

w(t) = v(r), t = ln r,

we have that, for t near ∞, w(t) satisfies the equation:

w′′(t) + (N − 2)w′(t) = O(e2(1−p)t).

The ODE theory implies that for T ≫ 1 sufficiently large and t > T ,

w(t) = M1 + A2e
(2−N)t − B1

∫ ∞

t

O(e2(1−p)t)ds

+B2

∫ t

T

e(2−N)(t−s)O(e2(1−p)s)ds.

Note that B1 and B2 are independent of T . Since w(t) → 0 as t→ ∞, we have that
M1 = 0 and we easily see that

w(t) =

{

O(e−min{N−2, 2(p−1)}t), if p 6= N
2
,

O(te−(N−2)t), if p = N
2
.

36



This implies that the identities in (6.1) hold. To see the identities in (6.2), we define
̺(r) = r−2u(r)− d

2N
. Then ̺(r) → 0 as r → ∞ and ̺(r) satisfies the equation

r2̺′′ + (N + 3)r̺′ + 2N̺ = ∆u(r)− d =

{

O
(

r−min{N−2, 2(p−1)}
)

, if p 6= N
2
,

O
(

r−(N−2) ln r
)

, if p = N
2
.

Making the transformations:

z(t) = ̺(r), t = ln r,

we have that, for t near ∞, z(t) satisfies the equation

z′′(t) + (N + 2)z′(t) + 2Nz(t) =

{

O
(

e−min{N−2, 2(p−1)}t
)

, if p 6= N
2
,

O
(

te−(N−2)t
)

, if p = N
2
.

Arguments similar to those in the proof of (6.1) imply that for t near +∞,

z(t) =



























O(e−κt), if p 6= N
2
and min{N − 2, 2(p− 1)} 6= 2,

O (te−κt) , if p 6= N
2
and min{N − 2, 2(p− 1)} = 2,

O (e−2t) , if p = N
2
and N ≥ 5,

O (te−t) , if p = 3
2
and N = 3,

O (t2e−2t) , if p = 4
2
and N = 4,

where κ = min{2, N − 2, 2(p − 1)}. This implies that the identities in (6.2) hold.
Since u(r) = r2̺(r) + d

2N
r2, we have that

∆(r2̺(r)) = ∆u(r)− d > 0 for r ∈ (0,∞).

If we define ω(r) := r2̺(r), we see that ω′(0) = 0 and hence

ω′(r) > 0 for r ∈ (0,∞).

The proof of this proposition is completed. �

Remark 6.2. We can easily see that for any fixed a > 0, d := d(a, b) > 0 for

b ∈ (b̃,∞) is an increasing function of b with

lim
b→b̃+

d(a, b) = 0.

We also know that
lim
b→∞

d(a, b) = ∞.

Proof of Theorem 1.4.

Without loss of generality, we assume x∗ = 0 in Theorem 1.4. The necessity
follows from Proposition 6.1.

To prove the sufficiency of Theorem 1.4, we need to know more information on
the asymptotic behavior of an entire solution u ∈ C4(RN) of (1.1) satisfying (1.10).
The main idea is similar to that of the proof of the sufficiency of Theorem 1.1.

Let u ∈ C4(RN) be an entire solution of (1.1). We introduce the Kelvin-type
transformation:

(6.6) v(y) = |x|−2u(x)−D, y =
x

r2
, r = |x| > 0, D > 0.
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Then v(y) = v(s, θ) with s = |y| = r−1 satisfies v(s, θ) → 0 as s → 0 and the
equation:

∂4sv − 2(N − 3)s−1∂3sv + (N − 1)(N − 3)s−2∂2sv − (N − 1)(N − 3)s−3∂sv

+2Ns−4∆θv − 2(N − 1)s−3∆θ(∂sv) + 2s−2∆θ(∂
2
sv) + s−4∆2

θv

+s−6+2p(v +D)−p = 0.(6.7)

Define
w(s, θ) = v(s, θ)− v(s),

where

v(s) =
1

|SN−1|

∫

SN−1

v(s, θ)dθ.

Then v and w respectively satisfy

v(4)s − 2(N − 3)s−1vsss + (N − 1)(N − 3)s−2vss − (N − 1)(N − 3)s−3vs

+s−6+2p(v +D)−p = 0(6.8)

and

∂4sw − 2(N − 3)s−1∂3sw + (N − 1)(N − 3)s−2∂2sw − (N − 1)(N − 3)s−3∂sw

+2Ns−4∆θw − 2(N − 1)s−3∆θ(∂sw) + 2s−2∆θ(∂
2
sw) + s−4∆2

θw

−s−4g(w) = 0,(6.9)

where

g(w) = s2p−2(v +D)−p − s2p−2(v +D)−p

= s2(p−1)
[(

(v +D)−p − (v +D)−p
)

+
(

(v +D)−p − (v +D)−p
)]

= −ps2(p−1)
[

(ξ(s, θ) +D)−(p+1)w(s, θ)− (ξ(s, θ) +D)−(p+1)w(s, θ)
]

and ξ(s, θ) is between v(s, θ) and v(s). If we define

ζ(s) = max
θ∈SN−1

| − ps2(p−1)(ξ(s, θ) +D)−(p+1)| = ps2(p−1) max
θ∈SN−1

|(ξ(s, θ) +D)−(p+1)|,

we see that

ζ(s) = O(s2(p−1)) for s near 0.(6.10)

Note that ξ(s, θ) → 0 as s→ 0.
Since w(s) = 0, we have the expansion:

w(s, θ) =
∞
∑

i=1

mi
∑

j=1

wi
j(s)Q

i
j(θ),

where {Q1
1(θ), Q

1
2(θ), . . . , Q

1
m1

(θ), Q2
1(θ), . . . , Q

2
m2

(θ), Q3
1(θ), . . .} is given in Section

2. We also see that wi
j(s) with 1 ≤ j ≤ mi satisfies the equation

(wi
j)

(4) − 2(N − 3)s−1(wi
j)sss + [(N − 1)(N − 3)− 2λi]s

−2(wi
j)ss

−(N − 1)[N − 3− 2λk]s
−3(wi

j)s − (2Nλi − λ2i )s
−4wi

j

= s−4g̃ij(s),(6.11)
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where λi = i(N+i−2), i = 0, 1, 2, . . . are the eigenvalues of the equation−∆SN−1Q =
λQ given by (2.3) and

g̃ij(s) =

∫

SN−1

g(w)Qi
j(θ)dθ = −p

∫

SN−1

s2(p−1)(ξ(s, θ) +D)−(p+1)w(s, θ)Qi
j(θ)dθ.

We see that

|g̃ij(s)| ≤ Cζ(s)W (s) = O(s2(p−1))W (s) for s near 0,

where W (s) =
(

∫

SN−1 w
2(s, θ)dθ

)
1
2
.

Similar to Proposition 3.1, we have the following result.

Proposition 6.3. For N = 3 and 1 < p < 3; N ≥ 4 and p > 1, there exist a
sufficiently small 0 < s0 <

1
10

and C > 0 independent of s such that for s ∈ (0, s0),

(6.12) W (s) ≤ Cs.

Proof. Let t = − ln s, zij(t) = wi
j(s). Then z

i
j(t) satisfies the equation

(zij)
(4) + 2N(zij)ttt + (N2 + 2N − 4− 2λi)(z

i
j)tt + 2N(N − 2− λi)(z

i
j)t

−λi(2N − λi)z
i
j = f i

j(t),(6.13)

where f i
j(t) = g̃ij(e

−t). The corresponding polynomial of (6.13) is

(6.14) ν4 + 2Nν3 + (N2 + 2N − 4− 2λi)ν
2 + 2N(N − 2− λi)ν − λi(2N − λi) = 0.

Using the Matlab, we obtain four roots of (6.14):
(6.15)

ν
(i)
1 = 1

2

(

2−N +
√

(N − 2)2 + 4λi

)

, ν
(i)
2 = 1

2

(

2−N −
√

(N − 2)2 + 4λi

)

,

ν
(i)
3 = 1

2

(

−2−N +
√

(N − 2)2 + 4λi

)

, ν
(i)
4 = 1

2

(

−2−N −
√

(N − 2)2 + 4λi

)

.

Therefore, we have

(6.16) ν
(i)
1 = i, ν

(i)
2 = 2−N − i, ν

(i)
3 = i− 2, ν

(i)
4 = −N − i.

We easily see that

ν
(i)
4 < ν

(i)
2 < ν

(i)
3 < ν

(i)
1 .

For i = 1,

ν
(1)
1 = 1, ν

(1)
2 = 1−N, ν

(1)
3 = −1, ν

(1)
4 = −N − 1

and
ν
(1)
4 < ν

(1)
2 < ν

(1)
3 = −1 < 0 < ν

(1)
1 .

For i = 2,

ν
(2)
1 = 2, ν

(2)
2 = −N, ν

(2)
3 = 0, ν

(2)
4 = −N − 2

and
ν
(2)
4 < ν

(2)
2 < −1 < ν

(2)
3 = 0 < ν

(2)
1 .

For i ≥ 3, we see that

ν
(i)
4 < ν

(i)
2 < −1 < 0 < ν

(i)
3 < ν

(i)
1 .

39



For i ≥ 3, we see from (6.13) and ODE theory that for any T ≫ 1, there are
constants Ai

j,k, B
i
j,k (k = 1, 2, 3, 4) such that, for t > T ,

zij(t) =

4
∑

k=1

[

Ai
j,ke

ν
(i)
k

t +Bi
k

∫ t

T

eν
(i)
k

(t−τ)f i
j(τ)dτ

]

,

where each Ai
j,k depends on T and ν

(i)
k , but each Bi

k depends only on ν
(i)
k . Therefore,

zij(t) = M i
j,1e

ν
(i)
1 t +M i

j,3e
ν
(i)
3 t + Ai

j,2e
ν
(i)
2 t + Ai

j,4e
ν
(i)
4 t

−Bi
1

∫ ∞

t

eν
(i)
1 (t−τ)f i

j(τ)dτ −Bi
3

∫ ∞

t

eν
(i)
3 (t−τ)f i

j(τ)dτ

+Bi
2

∫ t

T

eν
(i)
2 (t−τ)f i

j(τ)dτ +Bi
4

∫ t

T

eν
(i)
4 (t−τ)f i

j(τ)dτ(6.17)

by using that
∫ t

T
=

∫∞

T
−
∫∞

t
. Note that

(6.18)

∫ ∞

t

eν
(i)
1 (t−τ)f i

j(τ)dτ → 0,

∫ ∞

t

eν
(i)
3 (t−τ)f i

j(τ)dτ → 0 as t→ ∞.

Moreover, the facts that ν
(i)
4 < ν

(i)
2 < 0 and t− τ > 0 for τ ∈ (T, t) imply that

∫ t

T

eν
(i)
4 (t−τ)|f(τ)|dτ ≤

∫ t

T

eν
(i)
2 (t−τ)|f(τ)|dτ.

The facts that 0 < ν
(i)
3 < ν

(i)
1 and t− τ < 0 for τ ∈ (t,∞) imply that

∫ ∞

t

eν
(i)
1 (t−τ)|f i

j(τ)|dτ ≤
∫ ∞

t

eν
(i)
3 (t−τ)|f i

j(τ)|dτ.

Therefore, since zij(t) → 0 as t → ∞, we see that M i
j,1 = M i

j,3 = 0 and there is

C > 0 depending only on Bi
k (k = 1, 2, 3, 4) but independent of T such that

|zij(t)| ≤ O(eν
(i)
2 t) + C

∫ t

T

eν
(i)
2 (t−τ)|f i

j(τ)|dτ + C

∫ ∞

t

eν
(i)
3 (t−τ)|f i

j(τ)|dτ.

Arguments similar to those in the proof of (3.20) imply that

(6.19) |zij(t)| = O(ieν
(i)
2 (t−T ))

for t > T and i ≥ 3, 1 ≤ j ≤ mi.
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For i = 1, it is known that ν
(1)
4 < ν

(1)
2 < ν

(1)
3 = −1 < 0 < ν

(1)
1 = 1. The fact that

z1j (t) → 0 as t→ ∞ implies that z1j (t) can be written in the form

z1j (t) =A
1
j,2e

ν
(1)
2 t + A1

j,3e
ν
(1)
3 t + A1

j,4e
ν
(1)
4 t

−B1
1

∞
∫

t

eν
(1)
1 (t−τ)f 1

j (τ)dτ +B1
3

t
∫

T

eν
(1)
3 (t−τ)f 1

j (τ)dτ

+B1
2

t
∫

T

eν
(1)
2 (t−τ)f 1

j (τ)dτ +B1
4

t
∫

T

eν
(1)
4 (t−τ)f 1

j (τ)dτ.

Arguments similar to those in the proof of (6.19) imply that

(6.20) |z1j (t)| = O(e−(t−T ))

for t > T and 1 ≤ j ≤ m1.

For i = 2, it is known that ν
(2)
4 < ν

(2)
2 < −1 < ν

(2)
3 = 0 < ν

(2)
1 . The fact that

z2j (t) → 0 as t→ ∞ implies that z2j (t) can be written in the form

z2j (t) = A2
j,2e

ν
(2)
2 t + A2

j,4e
ν
(2)
4 t

−B2
1

∫ ∞

t

eν
(2)
1 (t−τ)f 2

j (τ)dτ − B2
3

∞
∫

t

f 2
j (τ)dτ

+B2
2

∫ t

T

eν
(2)
2 (t−τ)f 2

j (τ)dτ +B2
4

∫ t

T

eν
(2)
4 (t−τ)f 2

j (τ)dτ.

Similarly, noting (6.10) we have

(6.21) |z2j (t)| = O(eν
(2)
2 (t−T )) (= O(e−N(t−T )))

for t > T and 1 ≤ j ≤ m2. Therefore, if we set Z(t) = W (s) with t = − ln s,
arguments similar to those in the proof of (3.31) imply that

(6.22) Z(t) = O(e−t)

for t > T∗ and T ∗ = 10T .
Let s0 = e−T∗ . We see from (6.22) that there exists C > 0 such that for 0 < s < s0,

(6.23) W (s) ≤ Cs.

This completes the proof of this proposition. �

Lemma 6.4. Let v be a solution of (6.7). Then there exist constant 0 < s0 <
1
10

and M = M(v) > 0 such that for N = 3 and 1 < p < 3; N ≥ 4 and p > 1;
s ∈ (0, s0),
(6.24)










|v(s)| ≤Ms, |v′(s)| ≤M, |v′′(s)| ≤Ms−1 for p > 3
2
,

|v(s)| ≤Ms1−ǫ, |v′(s)| ≤Ms−ǫ, |v′′(s)| ≤Ms−1−ǫ for p = 3
2
,

|v(s)| ≤Ms2(p−1), |v′(s)| ≤Ms2(p−1)−1, |v′′(s)| ≤Ms2(p−1)−2 for 1 < p < 3
2
,
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where 0 < ǫ < 1
100

is sufficiently small, and

(6.25)

∫

SN−1

v2(s, θ)dθ ≤











Ms2 for p > 3
2
,

Ms2(1−ǫ) for p = 3
2
,

Ms4(p−1) for 1 < p < 3
2
.

Proof. We recall that v(s) satisfies the equation

v(4)s − 2(N − 3)s−1vsss + (N − 1)(N − 3)s−2vss − (N − 1)(N − 3)s−3vs

−s−4h(v) = s−4[h(v)− h(v)],

where h(v) = s2(p−1)(v +D)−p and

|h(v)− h(v̄)| ≤ 1

ωN−1

∫

SN−1

|h(v)− h(v̄)|dθ ≤ o(W (s)) = o(s).

Let z(t) = v(s), t = − ln s. Then z(t) satisfies the equation

(6.26) z(4) + 2N(z)ttt + (N2 + 2N − 4)(z)tt + 2N(N − 2)(z)t = h(z̄) + o(e−t),

Note that h(z̄) = s2(p−1)(z̄+D)−p = O(e−(2(p−1))t) for t near ∞. The corresponding
polynomial of (6.26) is

(6.27) ν4 + 2Nν3 + (N2 + 2N − 4)ν2 + 2N(N − 2)ν = 0.

The four roots of (6.27) are:

(6.28) ν
(0)
1 = 0, ν

(0)
2 = 2−N, ν

(0)
3 = −2, ν

(0)
4 = −N.

The ODE theory implies

z(t) = M1 + A2e
−2t + A3e

−(N−2)t + A4e
−Nt

−B1

∫ ∞

t

f(τ)dτ +B2

∫ t

T

e−2(t−τ)f(τ)dτ

+B3

∫ t

T

e−(N−2)(t−τ)f(τ)dτ +B4

∫ t

T

e−N(t−τ)f(τ)dτ,(6.29)

where f(t) = h(z(t))+o(e−t). The fact that z(t) → 0 as t→ ∞ implies thatM1 = 0.
Notice that f(t) = O(e−min{2(p−1),1}t), we see from (6.29) that there exists T ≫ 1
such that for t > T ,

(6.30) |z(t)| =







O(e−t), for p > 3
2
,

O(e−(1−ǫ)t), for p = 3
2
and sufficiently small 0 < ǫ < 1

100
,

O(e−2(p−1)t), for 1 < p < 3
2
.

(Note that when N = 3 and p = 3
2
, the term |

∫ t

T
e−(N−2)(t−τ)O(e−2(p−1)τ )dτ | ≤

O(e−t ln t).) This implies that (6.24)1 holds. Differentiating (6.29) with respect to
t once and twice respectively and noticing v′(s) = −z′(t)et and v′′(s) = [z′′(t) +
z′(t)]e2t, we easily see that (6.24)2 and (6.24)3 hold. Note that v(s, θ) = w(s, θ) +
v(s), we obtain (6.25). This completes the proof of this lemma. �
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Lemma 6.5. Let τ ≥ 0 be an integer and let v be a solution of (6.7). Then there
exist 0 < s0 <

1
10

and M =M(v, τ, s0) > 0 such that for s ∈ (0, s0),

(6.31) max
|y|=s

|Dτv(y)| ≤











Ms1−τ for p > 3
2
,

Ms1−ǫ−τ for p = 3
2
,

Ms2(p−1)−τ for 1 < p < 3
2
.

Proof. Similar to the proof of Proposition 4.2. �

Let

w̃(s, θ) =
w(s, θ)

s
.

Then w̃(s, θ) satisfies the equation

∂4s w̃ − 2(N − 5)s−1∂3s w̃ + (N − 3)(N − 7)s−2∂2s w̃ + (N − 1)(N − 3)s−3∂sw̃

−(N − 1)(N − 3)s−4w̃ + 2s−4∆θw̃ − 2(N − 3)s−3∆θ(∂sw̃)

+2s−2∆θ(∂
2
s w̃) + s−4∆2

θw̃ − s−4g(w̃) = 0,(6.32)

where
g(w̃) = −ps2(p−1)[(ξ(s, θ) +D)−(p+1)w̃ − (ξ(s, θ) +D)−(p+1)w̃],

where ξ(s, θ) is between v(s, θ) and v̄(s, θ). We also have

w̃(s, θ) =

∞
∑

i=1

mi
∑

j=1

w̃i
j(s)Q

i
j(θ), w̃i

j(s) =
wi

j(s)

s
.

Then, w̃i
j(s) satisfies the equation:

(w̃i
j)

(4) − 2(N − 5)s−1(w̃i
j)sss + [(N − 3)(N − 7)− 2λi]s

−2(w̃i
j)ss

+[(N − 1)(N − 3) + (2N − 6)λi]s
−3(w̃i

j)s

+[−(N − 1)(N − 3)− 2λi + λ2i ]s
−4w̃i

j = s−4ĝij(s),(6.33)

where ĝij(s) =
∫

SN−1 g(w̃)Q
i
j(θ)dθ. We also know that

|ĝij(s)| ≤ O(s2(p−1))W̃ (s),

where W̃ (s) = (
∫

SN−1 |w̃(s, θ)|2dθ)1/2.
Let z̃ij(t) = w̃i

j(s), t = − ln s, Z̃(t) = W̃ (s). We see that z̃ij(t) satisfies the equation
(for t near ∞):

(z̃ij)
(4) + 2(N − 2)(z̃ij)ttt + (N2 − 4N + 2− 2λi)(z̃

i
j)tt

−2[N − 2 + (N − 2)λi](z̃
i
j)t + [−(N − 1)(N − 3)− 2λi + λ2i ]z̃

i
j

= g̃ij(t),(6.34)

where g̃ij(t) = ĝij(s) and |g̃ij(t)| ≤ O(e−2(p−1)t)Z̃(t). Since Z̃(t) = etZ(t) = O(1) (see

Proposition 6.3), we see that |g̃ij(t)| = O(e−2(p−1)t). The corresponding polynomial
of (6.34) is

ν4 + 2(N − 2)ν3 + (N2 − 4N + 2− 2λi)ν
2 − 2[N − 2 + (N − 2)λi]ν

+[−(N − 1)(N − 3)− 2λi + λ2i ] = 0,(6.35)
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which has four roots:

ν̃
(i)
k = ν

(i)
k + 1, k = 1, 2, 3, 4,

i.e.,

(6.36) ν̃
(i)
1 = i+ 1, ν̃

(i)
2 = 3−N − i, ν̃

(i)
3 = i− 1, ν̃

(i)
4 = 1−N − i.

Since for each (i, j), |z̃ij(t)| is bounded, arguments similar to those in the proof of

Proposition 6.3 imply that Σ∞
i=2Σ

mi

j=1|z̃ij(t)| → 0 as t → ∞. We see that, for i = 1,
the four roots are given by

ν̃
(1)
1 = 2, ν̃

(1)
2 = 2−N, ν̃

(1)
3 = 0, ν̃

(1)
4 = −N.

Thus

ν̃
(1)
4 < ν̃

(1)
2 < −1 < 0 = ν̃

(1)
3 < ν̃

(1)
1

and

z̃1j (t) = C + A1
j,2e

ν̃
(1)
2 t + A1

j,4e
ν̃
(1)
4 t

−B1
1

∫ ∞

t

eν̃
(1)
1 (t−τ)O(e−2(p−1)t)dτ − B1

3

∫ ∞

t

O(e−2(p−1)t)dτ

+B1
2

∫ t

T

eν̃
(1)
2 (t−τ)O(e−2(p−1)t)dτ +B1

4

∫ t

T

eν̃
(1)
4 (t−τ)O(e−2(p−1)t)dτ.

This implies that z̃1j (t) → Aj (Aj is a constant, maybe 0) as t → ∞. Since

Q1
1(θ), . . . , Q

1
m1

(θ) are the eigenfunctions corresponding to the eigenvalue λ1 = N−1,
and thus we see that

(6.37) lim
s→0

w̃(s, θ) = V (θ).

In conclusion, we have the following theorem.

Theorem 6.6. Let v be a solution of (6.7) and w̃ be given in (6.32). Then we have
(i) v(y) = v(s) + sw̃(s, θ) satisfies







|v(s)| ≤Ms, |v′(s)| ≤M, |v′′(s)| ≤Ms−1 for p > 3
2
,

|v(s)| ≤Ms1−ǫ, |v′(s)| ≤Ms−ǫ, |v′′(s)| ≤Ms−1−ǫ for p = 3
2
,

|v(s)| ≤Ms2(p−1), |v′(s)| ≤Ms2(p−1)−1, |v′′(s)| ≤Ms2(p−1)−2 for 1 < p < 3
2
.

(ii) For any non-negative integers τ and τ1, there exists M =M(v, τ, τ1) > 0 such
that

(6.38) |sτDτ1
θ D

τ
s w̃(y)| ≤ M, y ∈ Bs0, y 6= 0,

where Bs0 = {y ∈ R
N : |y| < s0}. Moreover, w̃ satisfies

(6.39) lim
s→0

w̃(s, θ) = V (θ),

uniformly in Cτ (SN−1), where V (θ) is given by (4.50).

We obtain from Theorem 6.6 the asymptotic expansion of u(x) near |x| = ∞.
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Theorem 6.7. Let N = 3 and 1 < p < 3; N ≥ 4 and p > 1; u be a solution of
(1.1) satisfying (1.10). Then u admits the expansion:

(6.40) u(x) = r2
[

D + ξ(r) +
η(r, θ)

r

]

,

(6.41) w(x) := −∆u(x) = −2ND + ξ1(r) +
η1(r, θ)

r

where
ξ1(r) = −[r2ξ′′ + (N + 3)rξ′ + 2Nξ],

η1(r, θ) = −[r2ηrr + (N + 1)rηr + (N − 1)η +∆θη].

Moreover, the following properties are satisfied:
(i) ξ(r) = r−2u(r) − D and there exist R0 (:= s−1

0 ) > 0 and a constant M =
M(u) > 0 such that, for r > R0,
(6.42)






|ξ(r)| ≤Mr−1, |ξ′(r)| ≤Mr−2, |ξ′′(r)| ≤ Mr−3 for p > 3
2
,

|ξ(r)| ≤Mr−(1−ǫ), |ξ′(r)| ≤Mr−(2−ǫ), |ξ′′(r)| ≤ Mr−(3−ǫ) for p = 3
2
,

|ξ(r)| ≤Mr−2(p−1), |ξ′(r)| ≤Mr−2p+1, |ξ′′(r)| ≤ Mr−2p for 1 < p < 3
2
,

(6.43) |ξ1(r)| ≤







Mr−1 for p > 3
2
,

Mr−(1−ǫ) for p = 3
2
,

Mr−2(p−1) for 1 < p < 3
2
.

(ii) Let τ and τ1 be two non-negative integers. Then there exists a positive constant
M :=M(u, τ, τ1) such that, for r > R0,

(6.44) |rτDτ1
θ D

τ
rη(r, θ)| ≤M,

(6.45) |η1(r, θ)| ≤M.

(iii) Let τ be a non-negative integer. Then η(r, θ) tends to V (θ) uniformly in
Cτ (SN−1) as r → ∞, where V (θ) is given by (4.50).

Completion of the proof of Theorem 1.4

We first write (1.1) to a system of equations:

(6.46)

{

−∆u = v, in R
N ,

−∆v = −u−p, in R
N .

We now start the procedure of moving-plane. As a consequence of the expansions
of u(x) in Theorem 6.7, we have the following lemma.

Lemma 6.8. Let N = 3 and 1 < p < 3; N ≥ 4 and p > 1; u be a solution of (1.1)
satisfying (1.10). Then,

(i) If γj ∈ R → γ and {xj} → ∞ with xj1 < γj, then

(6.47) lim
j→∞

1

γj − xj1

[

u(xj)− u((xj)γ)
]

= −4Dγ − 2(x0)1,

where (x0)1 is the first component of x0 given in (4.50).
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(ii) Define

(6.48) γ0 = −(x0)1
2D

.

Then there exists a constant M =M(u) > 0 such that

(6.49)
∂u

∂x1
≥ 0 if x1 ≥ γ0 + 1 and |x| ≥M.

Proof. To prove (6.47), without loss of generality, we assume that

lim
j→∞

xj
|xj|

= θ ∈ SN−1.

For simplicity, we also assume that γj = γ, j = 1, 2, . . . since the following arguments
work equally well for the sequence {γj}. Using the the expansion of u in (6.40), we
have

1

γ − xj1

[

u(xj)− u((xj)γ)
]

=
1

γ − xj1

[

D
(

|xj |2 − |(xj)γ |2
)]

+
1

γ − xj1

[

|xj |2ξ(|xj|)− |(xj)γ|2ξ(|(xj)γ|)
]

+
1

γ − xj1

[

|xj |η(|xj|, θj)− |(xj)γ|η(|(xj)γ |, (θj)γ)
]

= I + II + III.

We have

D(|xj|2 − |(xj)γ |2) = −4Dγ(γ − xj1)

and hence

I = −4Dγ.

We also have that there is βj between |xj | and |(xj)γ | such that

|xj |2ξ(|xj|)− |(xj)γ|2ξ(|(xj)γ|) =
[

2βjξ(βj) + β2
j ξ

′(βj)
]−4γ(γ − xj1)

|xj |+ |(xj)γ| ,

and in turn

II =
1

γ − xj1

[

2βjξ(βj) + β2
j ξ

′(βj)
]−4γ(γ − xj1)

|xj |+ |(xj)γ |

=







O(|xj|−1) → 0, for p > 3
2
,

O(|xj|−(1−ǫ)) → 0, for p = 3
2
,

O(|xj|−2(p−1)) → 0, for 1 < p < 3
2
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as j → ∞, since |(xj)γ |
|xj |

→ 1 as j → ∞. Here we have used the estimates of ξ(r) and

ξ′(r) in (6.42). We now write

III =
η(|(xj)γ|, (θj)γ)

γ − xj1

[

|xj| − |(xj)γ |
]

+
|xj |
γ − xj1

[

η(|xj |, (θj)γ)− η(|(xj)γ|, (θj)γ)
]

+
|xj |
γ − xj1

[

η(|xj |, θj)− η(|xj |, (θj)γ)
]

= III1 + III2 + III3.

As before, by (6.44) and arguments similar to those in the proof of (8.11) in Lemma
5.2 of [25], we obtain that III1 = O(|xj|−1) → 0 as j → ∞, III2 = O(|xj|−1) → 0
as j → ∞ and III3 → −2(x0)1 as j → ∞. These imply that (6.47) holds.

To prove (6.49), we use (6.47). Suppose that (6.49) is false. Then there exists a
sequence {xj} → ∞ such that

∂u

∂x1
(xj) < 0, xj1 ≥ γ0 + 1, ∀j ∈ N.

It follows that there exists a sequence of bounded positive numbers {dj} such that

u(xj) > u(xdj ), xdj = xj + (2dj, 0, . . . , 0), ∀j ∈ N.

Let

γj = xj1 + dj > xj1.

We have

(6.50)
1

γj − xj1

[

u(xj)− u((xj)γ)
]

> 0, ∀j ∈ N.

There are two possibilities:

lim
j→∞

inf γj <∞, lim
j→∞

γj = ∞.

If the first case occurs, we choose a convergent subsequence of {γj} (still denoted
by {γj}) with the limit γ ≥ γ0 + 1 and apply (6.47) and (6.48) to obtain

lim
j→∞

1

γj − xj1

[

u(xj)− u((xj)γ)
]

= −4Dγ − 2(x0)1 ≤ −4D < 0.

This contradicts (6.50). We can derive a contradiction for the second case similarly.
The proof is a little variant of the proof of Lemma 8.2 of [25]. Thus, neither the
first nor the second case can occur and (6.49) holds. This completes the proof of
this lemma. �

To complete the proof of the sufficiency, we use moving-plane arguments of the
system of equations (6.46). The proof is exactly the same as the proof of Theorem
1.1. We omit the details here. �
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Remark 6.9. We conjecture that the following conclusion holds: If u ∈ C4(RN) is
an entire solution of (1.1) with N = 3 and 1 < p < 3 or N ≥ 4 and p > 1, then u
is the minimal radial entire solution of (1.1) about some x∗ ∈ R

N , if and only if

(6.51) |x|−2u(x) → 0 as |x| → ∞.

This conjecture implies that if u is an entire solution of (1.1) and (6.51) holds for
u, then u must have the exact asymptotic behavior at ∞:

|x|−αu(x) → L as |x| → ∞,

where α and L are given in (1.2).
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