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EFFECTIVE PILA-WILKIE BOUNDS FOR UNRESTRICTED
PFAFFIAN SURFACES

GARETH O. JONES AND MARGARET E. M. THOMAS

ABsTrRACT. We prove effective Pila-—Wilkie estimates for the number of ra-
tional points of bounded height lying on certain surfaces defined by Pfaffian
functions. The class of surfaces to which our result applies includes, for in-
stance, graphs of unrestricted Pfaffian functions defined on the plane.

1. INTRODUCTION

Suppose that X C R" is a set definable in an o-minimal expansion of the real
field. The Pila-Wilkie Theorem provides a subpolynomial bound on the
number of rational points of bounded height lying on the transcendental part of such
a set X. More precisely, let X8, its algebraic part, be the union of all connected,
infinite, semi-algebraic subsets of X, and let X1 its transcendental part, be the
complement of X?8 in X. Given a rational point § = (%, ceey Z—:) € Q", where
ged (aq,b;) =1 for each ¢ = 1,...,n, the height of 7 is H(7) = maxi<;<n{|as|, |bi|}-
The Pila—Wilkie Theorem states that, for any positive real number € and any 7" > 1,
there are at most ¢T'¢ rational points of height at most 7" lying on X% where c
is a positive real number depending on X and e.

In fact, Pila and Wilkie proved several stronger statements, including the pro-
vision of a constant ¢ which is uniform across the fibres of a definable family
Z C R™ x R™. Analogous bounds were moreover established by Pila in [Pil09]
for algebraic points of bounded height and degree, where the constant ¢ depends
on X, ¢ and a bound k on the degree of the algebraic points. Pila and Habegger
then extended the result further [HP16]. These results all share a common feature
with the earlier work of Pila [Pil04], [Pil05] on subanalytic surfaces, in that the proof
does not provide a method for computing the constant ¢ effectively in terms of ¢,
some definition of X and, if applicable, k. Indeed, at the level of generality of the
class of all sets X definable in an o-minimal expansion of the real field, it is not so
clear what it might mean for the constant to be effective.

Despite this, the question of the existence of an effective constant remains valid
in certain cases, and indeed it is an interesting question in view of the many appli-
cations of the Pila-Wilkie Theorem to diophantine geometry. One setting in which
there is certainly a reasonable measure of complexity is in a reduct of R,,, the
expansion of the real field by all restricted analytic functions, in which all functions
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added to the real field are assumed to satisfy some reasonable differential equations.
Binyamini [Bin| has recently shown a rather general result in this direction.

The main result of this paper goes beyond the setting of reducts of R,,. We give
an effective version of the Pila—Wilkie Theorem for surfaces, under the assumption
that the surface has a certain definition in terms of Pfaffian functions. An analytic
function f on an open subset of R™ is Pfaffian if it satisfies a triangular system
of polynomial differential equations. We give precise definitions of the setting in
which we work in the next section. For now, note that Pfaffian functions have a
natural measure of complexity given by the dimension of the open set, the number
of equations in the differential equation system and the degrees of the polynomials
involved. A precise statement of our main result (Corollary [65]) will be given and
proved in Section [6l For now, in the interests of simplicity and by way of example,
we state a theorem which is an immediate consequence of our main result.

Theorem 1.1. Suppose that f : R? — R is Pfaffian. Let ¢ > 0. There ewists a
positive constant ¢ depending only on the complexity of f and on €, and effectively
computable from them, with the following property. For oall T > 1, the transcen-
dental part of the graph of f contains at most cT rational points of height at most
T.

There are two improvements in the constant obtained here over that which the
Pila-Wilkie Theorem provides for such functions. Of course, one improvement is
that the constant here is effective. The other is that it is uniform across the class
of all Pfaffian functions of the same complexity. (We obtain a similar uniformity in
our main result.) In fact, a high level of uniformity is crucial for our proof in this
unrestricted setting. We straightforwardly obtain our main result (and, therefore,
Theorem [[I) from a result for surfaces defined by restricted Pfaffian functions
that is uniform in the restriction taken (Theorem [6.3); most of the work in this
paper goes into proving that result. This uniformity across complexity is new,
even for the original ineffective setting of the Pila—Wilkie Theorem. We contrast
this with the recent work of Binyamini [Bin| alluded to above, which provides
an effective constant for sets of all dimensions described by restricted Noetherian
functions. These are functions defined in the same way as Pfaffian functions but
without the triangularity assumption on the system of differential equations. Our
main result only applies to surfaces, but these need not be restricted. Thus there
is some overlap in the cases covered by our main result and by Binyamini’s result
specialised to surfaces, but neither setting contains the other. In the case that there
is overlap, the constant obtained in [Bin| also depends on input data other than
the complexity (as we define it here), such as the coefficients of the polynomials
appearing in the system of differential equations and the restriction of the function
taken. The effective uniformity that we obtain is a feature which could potentially
be exploited in applications, as we discuss below.

In light of recent work of Binyamini and Novikov [BN17] which establishes an
improvement to the Pila—Wilkie Theorem, in the form of a polylogarithmic bound,
for restricted complex functions with real and imaginary parts which are Pfaffian,
it is also worth noting that our main results here apply whenever the functions
involved are real Pfaffian, without further conditions being imposed.

As mentioned above, the Pila-Wilkie Theorem and its later variants have been
applied to a variety of questions in diophantine geometry. In particular, it features
as part of the Pila—Zannier method, based on their proof of the Manin—-Mumford
Conjecture [PZ08§]|, for addressing problems on unlikely intersections associated with
the names Manin, Mumford, André, Oort, Zilber, and Pink. For a sample of
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such applications, we refer the reader to [Zanl2|, [Scal2], [Pill4] and [JW15]. In
fact, we could hope for more than effectivity, as we mentioned above, and we now
discuss this further. The abelian logarithms used in the Pila—Zannier proof of the
Manin-Mumford Conjecture are known, by an observation of Macintyre [Mac0§],
to be Pfaffian when restricted to appropriate domains. In the elliptic case, this
has been developed by Schmidt and the first author [JSa] to obtain an explicit
definition of the Weierstrass gp-function associated to an elliptic curve, when the
function is restricted to a fundamental domain. With a uniform choice of this
domain, the complexity of the definition is independent of the elliptic curve. It
is plausible that this can be extended to the abelian case (perhaps with effective
rather than explicit estimates). Now, the polynomial Galois bounds involved in the
Pila—Zannier proof, when everything is defined over a number field, are conjectured
to depend only on the dimension of the abelian variety. If an effective form of
this could be proved then, combined with Corollary 6.5 and the expected uniform
definition, the Pila—Zannier strategy could lead to a Manin—Mumford result for
curves in abelian varieties with a bound that is effective and that is independent
of the abelian variety (when its dimension is fixed). A less dramatic (but also less
conjectural!) example of Corollary being applied is presently being worked out
by Schmidt and the first author [JSc], in the context of the relative Manin—Mumford
Conjecture in the case that the group involved is a family of extensions by G,,, of
a fixed elliptic curve E, with everything defined over the algebraic numbers (this
is the ‘semi-constant’ case of [BMPZ]; see also [BS] for a recent extension beyond
the Manin-Mumford setting). The final bound obtained is effective and does not
depend on the height of the coefficients of the polynomials defining the curve. The
counting result is both effective and uniform in the elliptic curve. This seems to
require the uniformity in domain that we establish here. For effective uniformity in
the context of additive extensions of a fixed elliptic curve, also via Pfaffian functions,
but without the need for Galois bounds or counting, see [JSh].

Most of the work in this paper is invested in proving a uniform result in the re-
stricted case (Theorem [6.3])) which we briefly mentioned above. Our proof broadly
follows the same outline as that of the proof of the Pila—Wilkie Theorem. In par-
ticular, we use a parameterization result, a covering of surfaces by finitely many
subsets described by functions with controlled derivatives. Here we cannot appeal
directly to the o-minimal version of the parameterization of Yomdin and Gromov
[Yom87bl [Yom87al [Gro87] that was proved by Pila and Wilkie. Indeed, this result
is one of the main sources of ineffectivity in the Pila—Wilkie Theorem, for it involves
the use of the compactness theorem (of first-order logic). Our main contribution is
an effective version of this parameterization result in the restricted case. To prove
this, we first prove a uniform parameterization result for families of curves in the
restricted case, where the base of the family is an interval in the real line. The
details of these results are rather technical, so we defer the statements to Sections [
and[Bl A complication in proving our parameterization results is that we work in a
wider setting than that of the graphs of (restricted) Pfaffian functions alone, due to
the inductive nature of the proofs and the fact that a key technique we use is an ef-
fective decomposition of zero sets, given by Lemma [3.3] which uses functions which
are not necessarily Pfaffian. Instead we consider classes of functions implicitly de-
fined by (restricted) Pfaffian functions, I P and I RP, which have important closure
properties. For instance, they are closed under differentiation, a property which
some other natural classes do not have. In addition, the class IRP has equations
that hold at the boundary, and this is a crucial feature for us in working with the
limits of functions (see, for example, Lemma [3.5]), which is critical at several stages
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of the proofs. In working with these functions we exploit an effective stratification
result of Gabrielov and Vorobjov [GV95] on several occasions.

This paper provides a self-contained presentation of an effective and uniform
form of the Pila-Wilkie Theorem for unrestricted surfaces in our setting. It is
expected that an extension of these methods would yield an analogous result in
higher dimensions; however, given the rather technical nature of the proofs, the
case of surfaces presents the most appropriate setting for outlining the key ideas
involved. Moreover, this case is already of interest in its own right, and is sufficient
for the application in the context of the relative Manin-Mumford Conjecture in
[JSc] that is outlined above.

We give precise definitions of all of the concepts introduced here in Sections
and @l In Section Bl we prove some auxiliary lemmas concerning the behaviour of
functions which are implicitly defined from restricted Pfaffian functions. Our proofs
of parameterization results in the restricted setting follow in Sections d and [H (an
effective uniform parameterization result for families of curves in Section ] and an
effective parameterization result for surfaces in Section Bl). Finally we state and
prove the diophantine results of this paper in Section

Acknowledgements. The authors are grateful to Harry Schmidt for an inspiring
conversation which provided a key insight in the unrestricted case.

2. PRELIMINARIES ON PFAFFIAN FUNCTIONS

We begin by making precise our terminology related to effectivity. When we
say that a quantity N is effective in certain parameters, we will mean that N is
effectively computable from those parameters, and say that N is bounded effectively
in certain parameters when there is a bound on N which is effectively computable
from those parameters.

We now make precise our definitions involving Pfaffian functions and recall var-
ious results about them which we will need in later proofs.

Definition 2.1. Let n, r, «, 8 be non-negative integers. A sequence fi,..., f :
U — R of analytic functions on an open set U C R” is said to be a Pfaffian chain
of order r and degree « if there are polynomials P; ; € R[X7,..., X,1;] of degree
at most a such that

df; = Z]Di,j(f,fl(i),...,fj(i))dﬂci, foralli=1,...,7and j=1,...,n.
i=1

Given such a chain, we say that a function f : U — R is Pfaffian of order r and de-
gree {«, B) with chain f1, ..., f,, if there is a polynomial P € R[X;, ..., X,,Y1,...,Y;]
of degree at most § such that f(z) = P(z, f1(Z),..., f+(T)).

Let B be a positive real number. We say that a Pfaffian function has complexity
at most B if n,r,a and § are all at most B.

The following theorem of Khovanskii is the foundation for the theory of Pfaffian
functions. It provides an effective bound on the number of connected components
of a Pfaffian variety [Kho80, [Kho91], when the domain of the function is sufficiently
simple.

Given functions gi,...,g; : R® — R, as is customary we write V(g1,...,9k) =
{z eR”": ¢1(Z) = -+ = gi(Z) = 0} (and for k = 0 this is R™). Throughout this
paper, a ‘box’ is always understood to be a product of bounded intervals.



EFFECTIVE PILA-WILKIE BOUNDS FOR UNRESTRICTED PFAFFIAN SURFACES 5

Theorem 2.2. Let n, k be non-negative integers, let B be a positive real number
and let W be an open box in R™. Suppose that g1,...,gx : W — R are Pfaffian
functions with a common chain and complexities bounded by B. There exists a
positive real number B’ which is bounded effectively in B such that the number of
connected components of the variety V (g1, ..,gx) is bounded by B’.

Our results concern functions implicitly defined from Pfaffian functions, in both
restricted and unrestricted settings. These two frameworks need to be defined
precisely. We begin with the unrestricted setting.

Definition 2.3 (IP). Let n, k be non-negative integers and let U C R™ be an
open set. Let B be a positive real number. We say that a function f : U — R is
in the class IP(B), and say that f is implicitly defined from Pfaffian functions of
complexity at most B, if there exist a positive integer m, a product of open intervals
V C R™™ an auxiliary map F = (f1,..., fm) : U — R™, and Pfaffian functions
Pls---sPm V. — R with a common chain and complexities bounded by B, such
that f; = f and the following hold:

(i) graph(F) is contained in V;
(i) pi(z,F(z)) =0,fori=1,...,m and all z € U;
(iii) det (M) (z, F(z)) #0, for all z € U.

a(zn+17“~7zn+7n)

We say that a map g : U — RF is in the class IP(B) if each of its coordinate
functions g;: U — Risin IP(B), for j =1,..., k. We say that a function f : U - R
is in the class I P, and say that it is implicitly defined from Pfaffian functions, if f
is in the class I P(B) for some positive real number B.

We need an analogue of this definition in which the Pfaffian functions involved are
restricted. For this we use the standard device of an algebraic analytic isomorphism
from R to (—1,1). We must first fix some notation. Let ¥: R — (—1,1) be the
analytic bijection given by ¥(x) = \/117 Note that ¢ is Pfaffian (on R) with chain

\/117 and complexity at most 3. Its inverse ¥~ ! = \/1f7 is also analytic
and Pfaffian (on (—1,1)) with chain z — \/1177 and also has complexity at most

T

3. For any non-negative integer n we also write ¥ : R — (—1,1)" for the map
(1, xn) = (F(x1),...,9(x,)), i.e. with the function ¥ applied coordinate-wise.

Definition 2.4 (IRP). Let n, k be non-negative integers and let U C R™ be an
open set. Let B be a positive real number. We say that a function f : U — R is
in the class TRP(B), and say that f is implicitly defined from restricted Pfaffian
functions of complexity at most B, if there exist a positive integer m, a product
of open intervals V' C R"™ an auxiliary map F = (f1,...,fm) : U — R™,
and Pfaffian functions py,...,pm : V — R with a common chain and complexities
bounded by B, such that f; = f and the following hold:

(i) the closure of ¥(graph(F)) is contained in V;

(ii) pi(¥(z, F(x))) =0, fori=1,...,mand all z € U,

2 O(p1,--sPm

(i) det (rotreste)—) (9(z, F(x)) £ 0, for all 2 € U.
We say that a map g : U — RF is in the class IRP(B) if each of its coordinate
functions g;: U — R is in IRP(B), for j = 1,...,k. We say that a function
f:U — R is in the class ITRP, and say that it is implicitly defined from restricted
Pfaffian functions, if f is in the class IRP(B) for some positive real number B.

Given a positive real number B and a function f lying in IP(B), respectively
IRP(B), clearly all of the coordinate functions of any auxiliary map F witnessing
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this membership must also themselves lie in IP(B), respectively IRP(B). We
simply require f; = f for convenience.

The class I RP has useful closure properties, as we show below. It is, for instance,
closed under differentiation. In addition, we have ‘equations at the boundary’,
another feature that will be exploited in our proofs. This combination of properties
does not seem to hold for some other, at first sight natural, classes.

Since ¥: R — (—1,1) is itself a Pfaffian function, and moreover is an analytic
isomorphism, it is easy to see that, for any positive real number B, the class IRP(B)
is contained in the class I P(B). The following lemma shows that functions in 7 P(B)
satisfying certain additional conditions also lie in TRP(B’), for a complexity B’
which is bounded effectively in B.

Lemma 2.5. Let n be a non-negative integer and let B be a positive real number.
Suppose that U C R™ is a bounded open set and that f: U — R is a function lying
in IP(B), witnessed by an auziliary map F: U — R™, for some positive integer
m, with V.C R"*™ the domain of the associated Pfaffian functions. Suppose that
the map F is bounded and that the closure of the graph of F is contained in V.
There exists a positive real number B’ bounded effectively in B such that f lies in
IRP(B’).

Proof. Let p1,...,pm: V — R be the Pfaffian functions (whose complexities are
at most B) witnessing that f lies in IP(B). The closure of the graph of F' is a
compact set and so there exists an open box W with graph(F) C W and W C
V. Set V' := 9(W); this is likewise an open box and it contains the closure of
J(graph(F)). For each i = 1,...,m, define the function ¢;: V' — R by setting
¢i(T1, . Tnam) = pi(07 (1), ..., 9 Y (Tnam)). These functions are all Pfaffian
on V', with a complexity B’ which is bounded effectively in B, and clearly we
have ¢;(9(x, F(z))) = pi(xz,F(z)) = 0, for all ¢ = 1,...,m. Further, a quick
calculation (using the fact that the derivative of 9~! doesn’t vanish) shows that
the non-singularity condition also holds. (I

We will also make use of the following corollary to this result, which tells us that
certain restrictions of functions lying in I P also lie in I RP, with a complexity that
is independent of the restriction taken.

Corollary 2.6. Let n be a non-negative integer, let U C R™ be an open set and let
B be a positive real number. Suppose that f: U — R is a function lying in IP(B).
There exists a positive real number B’, bounded effectively in B, such that, if W 1is
any bounded open set whose closure lies in U, then flw lies in IRP(B’).

Proof. Let m be a positive integer, V a product of open intervals, F: U — R an
auxiliary map and py,...,pm: V — R a collection of Pfaffian functions, whose
complexities are at most B, which all together witness that f lies in IP(B). Since
the map F' is continuous on U, it is continuous on the closure of W, and hence
bounded on W. We may now apply Lemma to obtain the result. ([

For the results in this paper we will frequently make use of the fact that certain
named functions lie in the class I RP, and that this class is closed in an effective way
under various common operations. It is straightforward to check this in the case
of composition, i.e. that, given a positive real number B and maps f,g € IRP(B)
such that the composition g o f is well defined, there exists a positive real number
B’ bounded effectively in B such that go f € IRP(B’).
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The class TRP is also closed in this way under taking multiplicative inverses,
by combining closure under composition together with the fact that the function
f:(0,00) = R given by f(x) =1 lies in the class IRP. To see this latter fact, let
f2: (0,00) — R be given by fo(z) = \/117 and let F' = (f, f2), and let py, pa: R? x
(=1,1) — R be the Pfaffian functions given by

pi(x1, 2, 23) = a7 + 97 (23)* — 1,
pa(z1, 32, 23) = 97 (23)% — 2.

Note that fo has image (0,1], so 9(f2(z)) is bounded away from +1 on R, and
hence the closure of ¥(graph(f)) is contained in R? x (—1,1). Clearly we have

pi(¥(x), 9(f(x)), ¥(f2(2))) = 0,
for i = 1,2, and from this we see that

8p1 —1 d 1

—(9(x), 0 0, =29 — .

SE(0(a), 9 (@), 9 a(2) = 207 a) 70 3)

This does not vanish at a point of the form 9(f2(z)), and so it is straightforward
to see that the necessary singularity condition is also satisfied.

In order to see that products and sums of functions lying in T RP also lie in IRP
with an effectively bounded complexity, it is enough, when combined with closure
under composition, to see that the functions x : R? — R, given by (21, x2) — 2122,
and +: R? — R, given by (21, x2) — @1 + x2, lie in IRP. This is witnessed by the
following. Let F\, F,: R? — R* be given by

P ) 1 1 1
r1,T2) = T1 -T2, ) ) )
) Vita2 J1+22 1+ (01 -22)?

1 1 1
F+(-T13-T2): r1 + x2, ) ) )
VItad 1423 1+ (21 +a2)?

and let q1,...,q4,71,...,74: R3 x (—=1,1)% — R be the Pfaffian functions given by

(21, .. 26) =r1(21, .. 26) = 22 +I9 H(ag)? — 1,
(1, .. x6) =1y, .. x6) = a5+ 9 (ws)? — 1,
a3 (w1, ., w6) = r3(T1,...,06) = x5+ H(w6)? — 1,
(e, .. ) = a0 ()0 H(as)9 " (26) — 2120 (26)?,

T4($1, c. ,.1‘6) = $3§_1($4)19_1($5)19_1($6) — ($119_1($5) + $219_1(.T4))19_1(.T6)2.

That the functions x and + lie in IRP is witnessed by Fy together with ¢1,...,q4,
and by F, together with r1 ..., 74, respectively. It is easy to see from this that
polynomials in the functions of IRP also lie in I RP with effectively bounded com-

3
plexities, and hence that ¢': R — R, ¢'(z) = (ﬁ) lies in TRP (since it

follows from the implicit definitions of (x1,z2) — 21 - 22 and (x1,x2) — 21 + =2
that = — \/ﬁ also lies in TRP with effectively bounded complexity). With the
information now at hand, it follows readily that the class IRP is closed under tak-
ing partial derivatives, with effectively bounded complexities, using the observation

that 1 is moreover nowhere zero.

We may further observe that the functions ¥: R — (—1,1) and 9= 1: (=1,1) > R
also lie in TRP with complexities at most 3. In each case, take m = 1 and V = R?.
Then the former is witnessed by the Pfaffian function p(x1,z9) = ¥(x1) — x2, the
latter by the Pfaffian function q(z1,z2) = 1 — 9(x2).
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Finally, if B is a positive real number and f: I — J is a bijection lying in
IRP(B), for I, J C R, such that f'(z) # 0, for all x € I, then it is straightforward
to check that the inverse f=1: J — I also lies in IRP(B).

A key result we shall need is an effective stratification theorem due to Gabrielov
and Vorobjov [GV95]. The sets involved are more general than varieties and there-
fore we need the following definitions.

Definition 2.7. An elementary semi-Pfaffian set X is a set of the form
{zeU:q1(z)=--=gx(T) =0,h1(T) >0,...,(Z) > 0}

where g1,...,9k,h1,...,h : U — R are Pfaffian functions with a common chain
defined on a product of open intervals U in R™. If these functions (which we shall
refer to as the functions defining X) have complexities at most B, and k and [ are
also at most B, then we say that the above set has complexity at most B.

An elementary stratum Y is an elementary semi-Pfaffian set such that, if Y
has codimension m, say, then there are, among the functions defining Y, some
hi, ..., s, vanishing identically along Y such that dhi A --- A dh,,, # 0 at each
point of Y.

Theorem 2.8 (|GV95]). Let n be a non-negative integer and let B be a positive real
number. Suppose that U C R"™ is a product of open intervals and that X C U is an
elementary semi-Pfaffian set of complexity at most B. There exists a positive real
number B', which is bounded effectively in B, with the following property. There
exists a partition (stratification) of X into at most B’ smooth (not necessarily
connected) elementary strata of complexity at most B, with all functions involved
in their definitions having the same chain as the functions defining X .

We will frequently use the following result.

Proposition 2.9. Let n be a non-negative integer, let U C R™ be a product of open
intervals and let B be a positive real number. Suppose that f : U — R is a function
lying in the class IP(B). There exists a positive real number B’ which is bounded
effectively in B such that the number of connected components of V(f) is bounded
by B’.

Proof. Apply Khovanskii’s Theorem to the system defining f, with an extra
equation setting the coordinate corresponding to f to 0. (I

If f is unary and implicitly defined from Pfaffian functions, then this result
applied to the derivative of f gives an effective form of monotonicity for f. More
formally, we have the following.

Proposition 2.10. Let a, b be real numbers such that a < b, let B be a positive
real number and suppose that [ : (a,b) = R is a bounded function lying in the class
IP(B). There exists a non-negative integer N, and real numbers ag, . ..,an41 with
a=ag<a <...<any <ant1 =0b, such that N is bounded effectively in B and
the function f is monotonic or constant on each interval (a;, a;+1), fort =0,...,N.

3. DECOMPOSITION LEMMAS

In this section we gather together a variety of results which will be useful in
the arguments in later sections. Our focus from now until the end of Section Bl is
on proving our effective parameterization result for surfaces implicitly defined from
restricted Pfaffian functions (Theorem [B.J)). Consequently, all the results in this
section will be stated in the restricted setting, for functions lying in the class IRP.
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We begin by formalising a notion of decomposition in terms of IRP functions
for sets in the plane.

Definition 3.1. Let (a,b) be an interval in R, with @ € {—cc} UR and b €
RU{+c0o}, let B be a positive real number and let X be a subset of R? of dimension
1. Suppose that the (possibly infinite) interval (a, b) is the projection of X onto the
first coordinate. We say that X has an ITRP(B) decomposition if there exist a non-
negative integer N and positive integers M7, ..., My which are all bounded by B,
as well as real numbers 71,...,ny witha =119 <m1 < ... <1y <Nn41:= 0, and
functions ¢; ; : (1;,7+1) — R lying in IRP(B), fori =0,...,Nand j =1,...,M;,
such that ¢;1 < -+ < ¢ nm,, for each i =0,..., N, and

N
X\ U ({mi} x R) = | Jeraph ().

2%

The following provides effective IRP decompositions for the projections to the
plane of bounded elementary strata of dimension 1.

Lemma 3.2. Let n > 2 be an integer and let B be a positive real number. Suppose
that V. C R™ is a product of open intervals and that X C V is a bounded elementary
stratum of dimension 1 and complexity at most B, whose closure is contained in
V. Let : R™ — R? be the projection map down to the first two coordinates. There
exists a positive real number B’ which is bounded effectively in B such that the set
7(X) has an IRP(B’) decomposition.

Proof. As X is semi-Pfaffian, the projection of X down to the first coordinate is
clearly a finite union of intervals and singleton sets, the number of which is bounded
effectively in B, thus it is evidently enough to prove the statement in the case that
this projection is a single interval. Since X is an elementary stratum of dimension
1, there exists a Pfaffian map P = (p1,...,pn-1) : V — R, whose component
functions have the same chain as X and complexities at most B, which vanish
along X, such that at each point of X we have

(3.2.1) dpi N+ Ndpp—1 # 0.

Let o(P)
Xo= {rexan (5222 ) =0}

By (3Z1)) and Theorem [Z2 the projection of Xy to the first coordinate is a finite
set of points, with cardinality bounded effectively in B. Let Z be this projection
taken together with the projection of the frontier of X. This is a finite set, still
with a bound on the cardinality that is effective in B. The components of

X\ (J{a} xR"!
ac”Z
are the graphs of maps of the form (¢, v9,...,%,_1): (n,v) — R*™! where, in
each case, the endpoints n and v lie in Z.

The desired decomposition maps are the first component functions v of each of
these maps. We just need to check that the functions v given in this way lie in
IRP(B’), for some positive real number B’ which is bounded effectively in B. So fix
amap (¥, %2,...,%n_1): (n,v) — R as above, for some real numbers n,v € Z.
We have

Pz, ¢(x),v2(x),...,¢p—1(x)) =0, for all z € (n,v);
det <%) (2,0(2), 2 (), ..., thn_1(z)) # 0, for all z € (n,v).
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The closure of the graph of (¢, 1q,...,1,_1) is contained in the closure of X (and
hence in V'), as this graph is itself contained in X. Since X is bounded, this graph
is bounded. Hence, by Lemma [2.5] there exists a positive real number B’, bounded
effectively in B, such that the function ¢ lies in ITRP(B’), as required. O

The first key result of this paper concerns the effective decomposition of zero
sets of certain implicitly defined functions. Here and also later we use the usual
notation for cells so, for example, if a, b € R U {xoo} are such that a < b, and
fyg9: (a,b) — R are continuous functions with f(z) < g(z) for all x € (a,b), then
we write

(f,9)(@py = {{&,9) [ 2 € (a,0) and f(z) <y < g(x)}.

Lemma 3.3. Let a, b € RU{£o00} be such that a < b, and let B be a positive real
number. Suppose that g, h : (a,b) — R are functions lying in IRP(B) with g < h,
and set C' to be the cell (g,h)(qp). Suppose further that f : C — R is a function
lying in IRP(B) that is not identically zero. There exists a positive real number B’
which is bounded effectively in B such that V(f) has an IRP(B’) decomposition.

Proof. Since f lies in IRP(B) there exist, by definition, a positive integer m, a
product of open intervals V in R**™ a Pfaffian map P = (p1,...,pm) : V — R,
whose component functions have complexities at most B, and an auxiliary map
F={f fa,..., fm): C — R such that:

(i) the closure of ¥(graph(F)) is contained in V;
(ii) P(I(x,F(zx))) =0, for all z € C;
(iii) det (L) Iz, F(x))) £ 0, for all z € C.

6(z37~~~1$n,+m,)

For simplicity we assume that a, b are both real numbers; if a is —oo (respectively
b is +00), use —1 in place of ¥(a) (respectively 1 in place of (b)) below. Let

)= foevim oo (522 o),

(:C3a <oy Tntm
and let X be the subset given by

X :={zeV*P)|zz=0}NnV",

where V' is an open box such that J(graph(F)) C V' and V/ C V. This X is
a bounded elementary semi-Pfaffian set whose closure is contained in V(P) N V7,
which is a subset of V. Apply Theorem to X, and let Y be a stratum of the
resulting decomposition that intersects ¥(graph(F')). Suppose that ¥ has dimension
2, and let W be any connected component of Y that intersects J(graph(F')). As Y
is a stratum, by the Implicit Function Theorem W is the graph of a two-variable
function. By analyticity, we may conclude that f is identically zero, which is a
contradiction. Thus 9(V(f)) C |U{#(Y) | Y is a stratum of X and dim (V') < 1},
where 7 : R2t™ — R? is the projection map down to the first two coordinates.
Note that the number of such strata is bounded effectively in B.

Applying Lemma [32] to each set 7(Y") in this union in turn, we obtain a positive
real number B” which is bounded effectively in B, and an I RP(B") decomposition
of each 7(Y"). This may then be refined to an TRP(B’") decomposition of ¢(V (f)),
for a positive real number B’ which is bounded effectively in B. Each component
of this decomposition is the graph of a map ¢ = {(¢1,...,¢11m) : (n,v) — RIF™,
with graph(¢) C ¥(graph(F')), where (7, ) is a subinterval of (¥(a), 9(b)).

Fix such a map ¢ and let ¥ : (97 1(n),971(v)) — R be defined by (z) =
971 (9(2))). If  lies in (97 1(n), 971 (v)), then I(z,v(z)) = (I(x), p1(¥(x))) €
7(X), and by our choice of ¢ we have f(z,¢(x)) = 0. But ¢; lies in IRP(B"),
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and ¥ and 9! lie in TRP(3), so there exists a positive real number B’ which is
bounded effectively in B such that ¢ lies in IRP(B’). Clearly taking all maps ¢ of
this form provides the required IRP(B’) decomposition of V(f). O

Remark 3.4. Tt is clear that a transposed version of Lemma B3] also holds, in the
following sense. Let a,b € R U {+oo}, let B be a positive real number, and let
g,h: (a,b) = R be functions lying in TRP(B) with g < h. Define C' to be the cell
(9, h)(a,p), With transpose C* := {(y, z) | (x,y) € C}, and suppose that f: C' = R
is a function lying in TRP(B). If there exist a*,b* € R U {f+oo} and functions
g*,h*: (a*,b*) = R lying in IRP(B) such that C* = (g*, h*)(4+ ) (in particular
this will be true if g is a constant function and h is either a constant function or is
monotonic decreasing), then we may apply Lemma to the function f*: C* — R
given by f*(z,y) = f(y, z), which clearly also lies in IRP(B). By transposing back
the resulting TRP decomposition, we again obtain a decomposition of V(f) given
by IRP functions, this time excluding perhaps finitely many horizontal lines and
given by the graphs of functions from y to x.

In practice, we shall use not only Lemma and the transposed version just
described, but also a transposed version for functions f: E >R lying in TRP(B)
which have domain E of the form ((a,b) x (a*,b*)) N C, where C is a cell of the
form (w, f)(a,p), for f: (a,b) — (a*,b*) a decreasing function in I/ RP(B) such that
lim,_,,- f(z) = w. Such a version can clearly be obtained by first decomposing
using effective monotonicity (Proposition 2I0) and then applying the transposed
version of Lemma outlined above.

Next, we will require a result that ensures that the limits of implicitly defined
functions are piecewise implicitly definable in an effective way.

Lemma 3.5. Let a, b be real numbers such that 0 < a < b < 1, and let B be
a positive real number. Suppose that g : (a,b) — (0,1) lies in the class IRP(B)
and set C = (0, 9)(a,p)- Suppose that f : C — (0,1) also lies in the class IRP(B).
Define a function ¢ : (a,b) — [0,1] by

p(z) = lim  f(z,y).
y—g(w)

There exist a positive real number B’ bounded effectively in B, a non-negative inte-
ger N bounded by B’, and real numbers ay,...,anx witha =:a9 < ...<any1:=Db
such that the restriction of ¢ to each interval (a;,a;+1) lies in IRP(B').

Proof. Since f lies in IRP(B), there exist a positive integer m, a product of open
intervals V in R?*™ a Pfaffian map P = (p1,...,pm) : V — R, whose component
functions have a common chain and complexities bounded by B, an auxiliary map
F={(f1,...,fm): C = Rsuch that f; = f and

(i) the closure of ¥(graph(F')) is contained in V;
(ii) P(¥(z,y, F(x,y))) =0, for all z € C;
(iii) det (B(IS%) (N, y, F(z,y))) #0, for all z € C.

»»»»» T24m)
For i =1,...,m, define 9, : (¥(a),¥(b)) = R by
Yi(x) = Y (fi @M 2),97H(y))) -

y—=9(g(9=1(2))
Note that these limits exist and so these functions are well defined. Put 7,/; =
(9ogo?™ L9y, ..., m): (¥(a),d(b)) — RF™. We first observe that

graph(¢) C J(graph(F)).
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It follows that the graph of ¢ lies in V, and moreover lies in V(P).

We consider the elementary semi-Pfaffian set

oP
*(P) := m P)|det| ——mm88 ye ey Totm .
V()= {onrin) € V) | det (G ) (o1 ai) £0)
Define Z := {z € (¥(a),d()) | (z,4(z)) ¢ V*(P)} and Z' := (¥(a),9(b))\ Z. A
priori, each of Z and Z’ could contain a subinterval with non-empty interior.

As Y(graph(F)) C V*(P), it follows that graph(t[z) lies in the frontier of V*(P)
taken in V' (i.e. lies in (V*(P)NV)\V*(P); see [Gah98] for this terminology). Since
V*(P) has dimension 2, its frontier in V" has dimension at most 1. By a theorem
of Gabrielov ([Gab98l Theorem 1.1]), it also an elementary semi-Pfaffian set, with
effectively bounded complexity. Apply Theorem to this set and then apply
Lemma [32] to each of the strata X of the resulting decomposition. The result is a
positive real number B’, which is bounded effectively in B, and a partition of Z into
at most B’ subintervals I such that, for each such I with non-empty interior, v
lies in IRP(B’). For each such subinterval I, define the function y: 9=1(I) — R
by

X(z) =071 (1 (9(x))),
for all z € ¥=1(I). Clearly, since ¥ and 9! lie in TRP(3), the function y lies in
IRP(B") for some B” bounded effectively in B. Now note that

) = 2 (f (ﬂ-lwun,ﬂ-l(m)))

-1 ( lim
y—=9(g(9=1(I(x))))~
= lim z, 071
i S (¥))
= lim _ f(z,y),
y—g(z)~
for all # € 9=!(I). Therefore x = ¢ly-1(y), and hence ¢[y-1(s) lies in TRP(B”).

We now consider the set Z’. Since the function g lies in ITRP(B), there exist
m’ > 1 and a product of open intervals V/ in R!*™' | Pfaffian functions g1, ..., ¢m :
V' — R, which have a common chain and complexities bounded by B, and an
auxiliary map G = (g1,...,gm) : (a,b) = R such that g; = g and

(i) the closure of ¥(graph(G)) is contained in V’;
(il) ¢;(9(x,G(x))) =0, fori=1,...,m' and for all = € (a,b);
(iii) det (‘5‘(6;2(1{%%) (¥(z,G(x))) # 0, for all z € (a,b).
We let W = (9(a), 3(b)) X wm/ (V') X 7 (V), where 7, and 7, denote projections
onto coordinates (X2, ..., T14m/) and (T14m/ 41, .-, T14m’'+m), respectively. Note
that W is a product of open intervals. For each i = 1,...,m’ + m we define the
function r; : W — R by

T’i(tvwla'"awmlazlv"'azm):qi(t;wla"'awm’>a
fori=1,...,m/, and
Tm’-l,-j(t,wl,.-.,wm/,Zl,.-.,Zm) :pj(tawlazla-"azm)a

forj=1,...,m. Foreachi =1,...,m'+m we define the function ¢; : 9= 1(Z’) - R
by

¢i(x) = gi(z),
fori=1,...,m and x € 9=1(Z’), and

Gmr+5(x) = 97 (45 (9(2)))
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for j =1,...,m and z € 9~1(Z’). By reasoning as above, we have that ¢,, 11 =
Plo-1(z1). Define @ := (¢1,..., ¢mrgm): 97H(Z') — R™+m_ Clearly the closure of
J(graph(®)) is contained in W, and r;(J(x), d(®(x))) =0, foralli =1,...,m' +m
and for all z € ¥~1(Z’). It only remains to check the non-singularity condition.
The Jacobian matrix has the form

dq1 oq1 . oq L.

6w1 6w2 me/ 0 0
Wt Qs O ...

6w1 6w2 me/ 0 0
Ip1 0 . 0 Op1 .. Om
Owy 0z Ozm
Opm Ce Opm . Opm
Owy 0 0 0z1 O0zZm

At a point (¥(z), }(®(x))) the upper left block has non-vanishing determinant, by
the non-singularity condition satisfied by g. The lower right block has non-vanishing

determinant, by our assumption that (z, ¢ (x)) € V*(P) for allx € Z’. So the whole
matrix is non-singular, as we needed. Hence ¢[y-1(z lies in IRP(B).

Combining these observations, it is straightforward to obtain the required pos-
itive real number B’, bounded effectively in B, and partition of (a,b) as in the
statement of the lemma. (I

Remark 3.6. Clearly Lemma also applies in certain other situations. We shall
apply it in the case that the domain is as above but the limit is taken as y tends to
0. We shall also apply it to certain limits in the following situation. The function
g is defined on a subset (a,b) of (0,1) and is decreasing, and the cell C is taken
to be (w, 9)(a,p), Where w = lim,_,;~ g(x). The limit functions that we consider in
this setting are functions of y, obtained by taking the limit of f(x,y) either as x
tends to a™ or as z tends to g~ 1(y)~

Finally, in this section, we will need a result which allows us to ‘detect maximums’
of implicitly defined functions.

Definition 3.7. Suppose that a, b, a/, b’ are real numbers such that 0 < a <
a <V <b<1,that g: (0,1) x (a,b) — R is a continuous function and that
f i (a,b') = R is any function. We say that a function v : (0, f) @ ) — (0,1)
detects mazimums of g if, for each (y,t) € (0, f)(av), the restriction of g(-,y) to
[t,1 — t] takes a maximum at ¥ (y, t).

Lemma 3.8. Let a, b be real numbers such that 0 < a < b < 1, let B be a
positive real number and suppose that g : (0,1) X (a,b) — R is a function lying
in the class IRP(B). There exist a positive real number B’ bounded effectively
in B, a non-negative integer N bounded by B’, real numbers ag,...,an+1 with
a=ag<a <...<any <any1 =b, and functions f; : (a;,a;41) — (0,1) lying in
the class IRP(B'), for i =0,..., N, such that, on each cell (0, fi)(a;a,.,) (with 0
here being the constant function taking that value), there is a function in the class
IRP(B’) which detects mazimums of g.

Proof. By a transposed version of Lemma B.3] (see Remark B.4]), there exists a
positive real number B, which is bounded effectively in B, such that there is a
transposed I RP(B;) decomposition of %, i.e. there exist a non-negative integer
N and positive integers My, ..., My which are all bounded by Bj, real numbers
ag,...,an+1 with a = a9 < a1 < ... < any < any41 = b, and functions ¢;; :



14 GARETH O. JONES AND MARGARET E. M. THOMAS

(ai,ait+1) — (0,1) lying in IRP(By), for i =0,...,N and j =1,..., M;, such that
¢i,1 <. < (bi’Mv and

( ) U x {a;}) = Jgraph’ (¢ ),
where graph'(¢;,;) = {(z,y) € (0,1) x (as, air1) | & = di;(y)}-

We now consider the strips (a;,a;4+1) x (0,1) in (y, ¢)-space and work on each
separately. So fix 7, and from now on write (a’,b') = (a;,a;11) and drop the index
i elsewhere to make the notation clearer (so M = M; for example). Let

M M
h(y,t) = H (9(¢5(v),y) — 9(t,y)) H (9(b; (), y) —g(1 —t,y))-
" ” M
_ IT (95w 0) — 9(5 @), )
g

There is a positive real number Bs bounded effectively in B such that the function
h lies in the class IRP(Bs) on the strip (a/,b) x (0,1). If its zero set has interior
then at least one factor is identically zero. Drop any such factors to obtain a new
h that is not identically zero and whose zero set has empty interior.

We now apply Lemma B3] to h, to obtain an effective ITRP decomposition of
V(h). This provides a positive real number B which is bounded effectively in
B, a non-negative integer L and positive integers Ky, ..., K all bounded by Bs,
real numbers ng,...,n+1 with @’ = no < m1 < ... < 9 < N1 = bV, and
functions fix : (i, m+1) — (0,1) lying in the class IRP(Bs), for I = 0,...,L and
k=1,...,K;, such that fi1 <...< fi k, and

h)\ U ({m} x = Jgraph(fix).
1k
The cells (0, fi,1) (s ,n,,) are those that we want. We now show that on each of
them there is a function implicitly defined from restricted Pfaffian functions which
detects maximums of g. We will show that on each of these cells at least one of the
following functions

o (y,t) — ¢;(y) for some j =1,...,M

o (y,ty >t

o (yty—>1—t
detects maximums of g. As these all lie in some class IRP(By), with By a positive
real number bounded effectively in B, this will be enough to finish the proof.

To see this, fix C' = (0, f1,1)(m,,n.,) and note that, at each point (yo,to) in C,
the restriction of gy, := g(-,y0) to [to,1 — to] takes a maximum at at least one of
the points ¢1(yo), .., dar(yo), to, 1 — to. So the sets

X; ={(y,t) € C| ¢;(y) is a point at which g, [, 14, takes a maximum}
Y1 = {(y,t) € C |t is a point at which g,[;,,1—¢, takes a maximum}

Yy = {(y,t) € C'| 1 —t is a point at which g,[;,1-4,) takes a maximum}
cover C. Suppose that two of these sets are non-empty. Then there are two of them
whose closures in C' have non-empty intersection. Suppose cl(X;,) Necl(X;,)NC is

non-empty, with (yo,%o) a point in the intersection. Then we have 9(0j, (yo) Yo) =
9(0,(Y0), yo). Since the f are a decomposition of the zero set of h, the function
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9(05,(v),y) — g(¢5,(y),y) must be one of the factors we omitted from h for being
identically zero. So X;, = Xj,. Similarly, if cI(X;) Ncl(Y;) N C is non-empty then
X; = Y.. So one of the sets above is C, and the corresponding function detects
maximums. [l

4. EFFECTIVE UNIFORM PARAMETERIZATION FOR CURVES

In this section we begin approaching our effective parameterization result for
surfaces implicitly defined from restricted Pfaffian functions, Theorem (.8 whose
proof will be concluded in the next section. The primary result of this section is
an effective uniform parameterization for certain families of one-variable functions.

We begin by stating the formal definitions of r-parameterization and its analogue
for functions, r-reparameterization. These definitions have their origins in work of
Yomdin [Yom87b|, [Yom87a], and Gromov [Gro87] and were given in this form by
Pila and Wilkie in proving their o-minimal Reparameterization Theorem [PWO06].

For m, | non-negative integers, a set X C R' and a map f = (f1,..., fm): X —
R™, we use ||f|| to denote sup,ex{|fi(@)],...,|fm(x)|} (where, by convention,

this supremum takes value zero if m is zero). Given moreover an [-tuple of natural
numbers a = (a1, ..., q;), we denote the derivative of f of order « (should it exist)

by
f(oz) _ < 8|0¢|fl a‘alfm >

Oyt -0zt Ot - O

Definition 4.1. Let r, m, [ be non-negative integers and let X C R™ be a set

of dimension . An r-parameterization of X is a finite collection of C" maps
b0, - -, (0,1)F = R™ such that

. M
(i) X = Uj:olm(¢j)5
(ii) H¢§a> ] <1, forall j=0,...,M and all & € N! with |a| < 7.
Definition 4.2. Let r, m, n, [ be non-negative integers and let f: X — R" be a

map whose domain X C R™ is a set of dimension [. An r-reparameterization of f
is an r-parameterization ¢y, . .., ¢ of X such that, in addition,

(ili) fo¢;is C" foreach j =0,...,M;
(iv) [|(fo¢;)@|] <1, forall j=0,...,M and all « € N' with |a| < r.

The proof given in the next section of Theorem 5.8 an effective parameterization
for surfaces implicitly defined from restricted Pfaffian functions, will follow the
approach of [PW06] that a reparameterization of a certain type of two-variable
map will be constructed from the reparameterizations of a suitable family of one-
variable maps. In order to do this, we need to be able to reparameterize such a
family in a uniform way, in the following sense. Fix non-negative integers r and n.
Consider a family of one-variable maps F := {F: (0,1) — (0,1)" | y € (0,1)} as
a two-variable map F: (0,1)? — (0,1)" given by F(-,y) = F,. We would have a
uniform way of r-reparameterizing the family F if there were a family of functions
S ={¢;: (0,1)> > (0,1) | j = 1,..., M} such that the set S, := {¢;(,y) | 7 =
0,...,M}, for each y € (0,1), were an r-reparameterization of the map F(-,y).

Given the construction that we will follow in the proof of Theorem (.8 we will
need to be able to apply such a uniformity result to two-variable maps F which
are implicitly defined from restricted Pfaffian functions, and which are, in addition,
defined on a wider class of cells within (0,1)? (described by functions which will
also themselves be implicitly defined from restricted Pfaffian functions). It will also
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be crucial to maintain control over the complexity of the family S, which will be
given in terms of that of F' and any functions involved in defining the domain of
F. This will, by necessity, in fact require a more precise statement concerning the
construction and uniformity of the maps in S than that suggested in the previous
paragraph, namely the following.

Proposition 4.3. Let n, r be non-negative integers, let a, b be real numbers such
that 0 < a < b < 1, let B be a positive real number and suppose that f: (a,b) —
(0,1) is a decreasing function lying in the class IRP(B). Set z = lim,_,,+ f(x)
and w = lim,_,,~ f(x), and let C be the cell (w, f)p) (with w here denoting the
constant function taking that value). Suppose that F': C — (0,1)™ is also a map
lying in the class IRP(B).

There exist a positive real number B’ which is bounded effectively in B, r and n,
non-negative integers N, My, ..., My all bounded by B’, real numbers &g, ..., En+1
with w =& <& <...<&y <&nvy1 =2, and a set 8" of functions

{¢i; : Ci = (0,1) |i=0,...,N,j=0,..., M},

where C; = (0,1) x (&;,&i+1), for each i =0,..., N, with 8" C IRP(B’) such that,
for eachi=0,...,N and each y € (&,&i+1), the functions

¢i,0('7y>a ey Qsi,M-;('a y)

form an r-reparameterization of F(-,y).

Proof. Our proof follows the scheme given in [Will5].

First suppose that r = 1. Write F' = (Fy,..., F,) and assume that the identity
function is amongst the F; (at the possible cost of increasing n by 1). For each k, [
with 1 < k <[ < n, define the function g5 ;: C — R by

st = (Grten) - (Grem)

Let g: C — R be the product of all those gi,; which are not identically zero (note
that this product can be implicitly defined by restricted Pfaffian functions with
complexity bounded effectively in B and n). By a transposed form of Lemma
(see Remark B.A4), there exists an effective transposed I RP decomposition of V (g),
i.e. there exist a positive real number B” bounded effectively in B and n, non-
negative integers L, K1, ..., K all bounded by B”, real numbers 7y, ...,nr+1 with
w=mny <m <...<nr <nr4+1 =z and functions a; ; : (s, Mi+1) — (a,b) lying in
the class IRP(B"), for i =0,...,Land j =1,...,K;, such that a < a;1 < ... <
aikx, <b, forallt=0,...,L, and

L

Vig\J (@) x{m}) = |J eraph’(a:;),

i=1 i=0,...,.L

where graph’(a; ;) = {(z,y) € (a,b) x (i, mi41) | = ai;(y)}.

We also set a;o(y) = a and a; k,+1(y) = f~*(y), for all i = 0,...,L and all
y € (i, Mi+1), the latter of which is well defined as f is decreasing and analytic,
hence strictly decreasing, and f~! is defined everywhere on (w, z) and lies in the
class IRP(B).

For any k,l with 1 < k <[ < n, the functions

OFy, OF
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have constant sign on each of the sets

Di j = {(z,y) € (a,0)x (i, nir1) | @ € (ai(y); aijr1(y))},
fori =0,...,L, 5 =0,...,K;. Therefore, for eachi =0,...,L, 7 =0,..., K,
there is a k; ; € {1,...,n} such that, for all (z,y) € D, ;,

OFy, . oF;
4.3.1 o > | —
foralll =1,...,n, and, in particular,
OF, .
4.3.2 — > 1.
(432) TR

This shows that, for a given i € {0, ..., L}, either, for all y € (n;,ni+1), the function
Fy, ;(-,y) is strictly increasing on (a;;(y), i j+1(y)), or, for all y € (1;,mi11), the
function Fy, (-, ) is strictly decreasing on (a;,;(y), a: j+1(y)).

Given i € {0,...,L}, first suppose that Fy, (-,y) is strictly increasing on
(@i,;(y), ai j+1(y)), for every y € (m,mi41). For each j = 0,..., K, define the
functions ¢; j,d; ;: (i, mi+1) — (0, 1) as follows.

If 0 < j < K, define

¢ij(y) = Fr.;(ai;(y),y),
so there is some positive real number B; ; bounded effectively in B and n such that
¢; ; restricted to (n;,n;41) lies in IRP(B; ;).

If 5 =0, define
cio(y) = lim Fy, ,(2,y).
r—at

By Lemma B3], we can then refine (7;,7;+1) into intervals on which the function
¢i,0 is implicitly defined from restricted Pfaffian functions; there exists a positive
real number B; o bounded effectively in B, such that the number of intervals in
the refinement is bounded by B; o and the restriction of ¢; o to each interval lies in
IRP(By).

I£ 0 < j < K, define
dij(y) = Fr, ; (i j+1(y),v),

so there is some positive real number B; ; bounded effectively in B and n such that
di j restricted to (1;,mi+1) lies in IRP(B; ;).
Finally, if j = K, define
dig,(y) = lim  Fy, o (2,y),
z=f~1(y)~ !

which is well defined as f is strictly decreasing. Using Lemma as before, we
may then refine (1;,7;+1) into intervals on which d; , is implicitly defined from
restricted Pfaffian functions; there exists a positive real number B; ;. bounded
effectively in B such that the number of intervals in the refinement is bounded by
B i, and the restriction of d; , to each interval lies in IRP(B] ).

If we instead suppose that i € {0,...,L} is such that Fy, (-,y) is strictly de-
creasing on (a; ;(y), ai ;+1(y)), for every y € (n;,7+1), then we simply swap the
definitions of ¢; ; and d; j, for each j =0, ..., K;.

For each i € {0,..., L}, the result of this process is a positive real number B;
bounded effectively in B and n, a non-negative integer N/ bounded by B;, and a se-
quence ofreals 7; = v;0 <11 < ... < Vi,N! < Vi NI41 = Tit1 such that, on each in-
terval (v;,,, vi,41), for ¢ = 0,..., N/, the functions ¢; 9, di.o, - - ., ¢i.k;, di K, lie in the
class IRP(B;). Moreover, foreachi =0,...,L,7=0,...,K; andy € (n;,mi+1), the
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interval (a; ;(y), a:,j4+1(y)) is mapped onto the interval (c; ;(y), di j(y)) by Fx, ; (-, y)-
(Note that d; j(y) = ¢ij+1(y), foralli =0,...,L, j =0,...,K; — 1. However, we
preserve this more general notation for clarity.)

Now let us temporarily fix ¢ € {0, ..., L} and assume that we are working with
y in a fixed subinterval (v;,,v;,1+1) C (7, mit1) as identified in the previous para-
graph. Until otherwise stated, we now drop the index i, to keep the indexing
manageable. Let us fix, for each j = 0,..., K, the notation Gy, , for Fy,(-,y),
where k; is identified in the manner above as the index in {1,...,n} such that, for
alll=1,...,n,
OFy.
8;’ (w,y)‘ > %(w,y)‘

on the set {(z,y) € (a,b) X (v,,v,41) | © € (a;(y),a;4+1(y))}. Define, for each
j=0,..., K, the function y, ; : (0,1) x (v,,v,41) — (0,1) by

poi(ry) = Gl (ei(y) = (d;(y) — cj(y))a).
There exists a positive real number B””” bounded effectively in B and n such that

these functions lie in the class IRP(B"").

Moreover, if we set the notation ¢, j , = p, (-, ), then, for each y € (v,,v,41),

e = d@iw)ainy) =0, K-1
I (ﬂh,wy) {(aK(y),f_l(y)) iijK.

We also have that, for all x € (0,1), y € (v,,v,41) and j =0,..., K,
Gy (g () = ¢(y) + (d; (y) — ¢ (y))z,

from which it follows that

! ()] = |8 — e

DI\ ) | q
G;cj ,y(d’b,j,y(x))

— )

using @32), and, for all I = 1,...,n,
(G 0 Yuan) @) = |Gy Wga(@)] - [, ()]
Gl W ()] 145 (0) = e(0)]
G, (@)

|d;(y) — ci(y)l (by @E3.1D)
1.

<
<

Thus (reintroducing the parameter i), for each y € (v,,v,4+1) C (7:,1i+1), for each
i=0,...,Land each ¢ = 0,..., N/, the set of functions {¢, 0.y, ..., %, Kk, y} (or, in
the previous notation, the set of functions {y, o(-,y), .-, t,k, (-, y¥)}) together with
the functions &; ;(-,y), where &; ;(z,y) := a;;(y), for each j =1,..., K, and each
z € (0,1), is a 1-reparameterization of F(-,y), in a uniform sense.

Clearly, if we take N := ZiL:O N/, M; :=2K; + 1 for eachi=1,...,N, and the
real numbers &o, ..., {n41 to be the list g0, ..., L n; +1, we now have the required
parameterization

Sy ={¢i;j:C;i = (0,1)]i=0,...,N,j=0,...,M;}
in the case that r = 1.

We now continue, and prove the statement in the case that » > 1. Still following
the approach of [Will5], we fix an index 7 € {0, ..., N}, and, using the terminology
from the previous paragraph, we define E; := ((a, b) X (&, &i+1))NC, although from
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now on we will again drop the index ¢ in order to make the presentation legible (we
have F = E;, or M = M;, for example). We then define

F: E — (0,1)M+D(+1)
by

F(‘T’y) = <¢O(‘T’y)a s 5¢M(xay)aFl(¢0(x’y))a R aFn((b]W(xay))a
ar(z,y), ..., am(z,y), Fi(a1(z,v)),. .., Folam(z,y))).

Consider those functions ﬁl(q), fori=1,...,2M+1)(n+1)and ¢ =0,...,7+1,
such that ﬁl(q) is not identically zero. There exists a positive real number B bounded
effectively in B, n and r such that the product of all these functions lies in I RP(B).
By first decomposing and then applying a transposed form of Lemma B.3] several
times (see Remark [34)), there exist a positive real number B; bounded effectively
in B, n and r, non-negative integers L’ and K{,..., K}, all bounded by Bi, real
numbers o, ..., Y41 With & =70 <71 < ... <~vrr < yr41 = &+1, and functions
bet : (Vs,Vsr1) — (a,b) for s =0,..., L' and t = 1,..., K’ lying in IRP(B;) such
that a < bs1 < ... <bs ks <D, forall s =0,...,L the functions a; [(,, -,,,) are
contained among the b, ;, and

L
Y\NU @b x{vh= U sraph’(bse),

where graph’(bs¢) = {(z,y) € (a,b) x (&,&11) | © = bs1(y)}, and Y is the union
of the sets V(E(q)), for those l =1,...,(2M +1)(n+1) and ¢ = 0,...,r + 1 for
which f‘l(q) is not identically zero.

We also set bso(y) = a and b, k7 41(y) = f1(y), for all s = 0,...,L" and all
Y € (Vs,Vs+1), the latter of which is well defined and lies in ITRP(B).

Then on each set {(z,y) € E | y € (Ys,7s+1);% € (bst(y), bs111(y))}, for each
s=0,...,L' and each t = 0,..., K/,
zeros or is identically zero.

Let us now define r5¢: (0,1) X (s, ¥s41) — (0,1),fors =0,..., L, t=0,..., K.,
by Kot (2, y) := bst(y)+ 5 (bst1,¢(y) —bs,t(y))2". There exists a positive real number

each coordinate function of F' either has no

B, bounded effectively in B, n and r such that these functions lie in the class
IRP(Bs3).

Then, if we set the notation xs.y = ks:(,y), we have
x€(0,1), y € (vs,7s+1) and ¢ =0,...,7.

Moreover, if we now set ély(:c) := Fy(z,y), for each I =1,...,(2M + 1)(n + 1)
and y € (s, 7s+1), We can see, by carefully following the argument given in [Will5]
making use of the Faa di Bruno formula (see, for example, [KP02]), that there exists
a positive real number B* bounded effectively in r such that

‘(ély °© Xs,tyy) v (z)

for all z € (0,1) and ¢ =0, ..., r (this uses that

xiqzy(z)’ < rl, for all

< B%,

k—1
~ 2k
G o xar| < ( ) ;
} by by (strl,t(y) - bs,t(y))zr
forall k =1,...,r; see [Will5], Lemma 5.8).
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Now, for each s =0,..., L', t =1,..., K., set (s+: (0,1) X (7s,¥s+1) — (0,1) to
be

Goal9) = bogsa(y) = 5 (Boas1(y) — boa())2”

Likewise there exists a positive real number B; bounded effectively in B, n and r

such that these functions lie in the class IRP(B3). We set the notation pg () :=
Cs.t(+,y) and then we similarly have both that ’pgqt)y(ac)‘ < rl, and that there exists
a positive real number B** bounded effectively in r such that

’(ély o Psyt,y) w (z)

forallz € (0,1), forallli=1,...,2M +1)(n+1) and ¢ =0,...,r.

Set B’ := max{B*, B**}. These calculations show that, for each s = 0,..., L/,
the following set S, is almost the set we require on (0,1) X (vs,7s+1), but for the
fact that we only know that the derivatives of the functions involved are bounded
by B’ in modulus, and not necessarily by 1.

Se = {keu|t=0,...,K}U{Cy|t=0,...,K.}U
{bse s {x,y) = bop(y) [t =1,... K} U

bs t(y> + bs t+1(y)
bl : :
[l ) o .

S B**,

[t=0,...,K.}.

To conclude, therefore, we follow an argument similar to that of [PW06], Corol-
lary 5.1, but we include the details here to demonstrate that our argument is effec-
tive.

Let D be the least integer greater than or equal to B’. Fix s € {0,...,L'}.

For each of the functions 7: (0,1) X (vs,vs+1) — (0,1) lying in S; and for each
k=0,...,D —1 define the function 7 : (0,1) X (vs,¥s+1) = (0,1) by 7%(z,y) :=
7 (Z5E,y). We then set 74, (2) := 7i(z,y), for each y € (ys,Ys41)- It follows that

~ B’ B
(Gryomhy) V(@) < 7o < =<1

@) =Di~D "
for all z € (0,1), and forall il =1,...,2M +1)(n+1),q=1,...,r, 7 € Ss and

k=0,...,D — 1. Note that, for the ¢ = 0 cases, we already have that F' and all
functions 7, are bounded in modulus by 1.

!

Now set 7x(x,y) := 7 (%,y), for each 7 € Ss and k = 1,..., D — 1. This gives
us that the following set

S, = {m|7€8,k=0,....,D—1}
U{# |7€Ss,k=1,...,D—1}

consists of functions o : (0,1) X (ys,Ys+1) — (0,1) such that the set {o(-,y) :
(0,1) = (0,1) | 0 € 8’} is an r-reparameterization of F'(-,y), for each y € (s, Ys+1)-

Note further that, for each s = 0,..., L/, each 7 € S, lies in the class IRP(By),
for some positive real number By which is effective in B, n and 7, and so there is
evidently a positive real number Bs, effective in B, n, r and B’, and hence in B,
n and r, such that, for all s = 0,...,L" and 7 € S;, the corresponding functions
7 and 7y lie in T RP(B5). Moreover, #S’ is bounded effectively in #S; and the
constant D, and hence in B, n and 7.

This completes the proof in the case r > 1, when one repeats this process for
every interval (&,&;41),7=0,...,N. First take, as the new list of &s, the ordered
list of all ~; ss produced, and then take the set of functions ¢; ; required to be the
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union of the sets S, given by the above method for each horizontal strip (a,b) x
(Vi,ss Vi,s+1) in turn. The method shows that there is a bound on the number of §;s
and on the number of functions needed which is effective in B, n and r. O

Remark 4.4. Tt is easy to see that, by slight modifications of the proof of Lemma [£.3]
we may obtain analogous results for f increasing or f constant on (a,b). We leave
the reader to formulate the appropriate statements. We may then straightforwardly
combine these cases to obtain analogous statements for f monotone or constant with
F rather defined on the cell C := (0, f)(4,5), where 0 is the constant function taking
that value. It is this formulation that we will apply in what follows. Also note
that, as a very special case of the version of Lemma [£3] for f constant, we can
reparameterize a single function in I RP defined on an interval in the same way.

5. EFFECTIVE PARAMETERIZATION FOR SURFACES

The goal of this section is to prove Theorem B8, an effective parameterization
theorem for surfaces implicitly defined from restricted Pfaffian functions. We follow
here the outline of the strategy of [PW06], with suitable modifications made to
allow us to avoid the use of ineffective tools such as the Compactness Theorem and
appeals to o-minimality. As in [PW06], we obtain parameterization of a surface via
reparameterization of a suitable two-variable function. This reparameterization is
itself obtained, as mentioned at the beginning of Section @] from a uniform family of
reparameterizations of the members of a family of one-variable functions. Roughly,
this reparameterization will handle the behaviour of the function’s derivatives in
the first variable; in order to handle the derivatives in the second variable, we need
to be able to reduce to the situation in which those derivatives are bounded. As
in [PWO06|, we consider truncations of a given function f (which necessarily will
have bounded derivatives), reparameterizing, letting the truncations converge to f,
and showing that the reparameterizations of the truncated functions converge to
something sufficiently close to a reparameterization of the original function f that
it will provide what we need.

We begin with some very useful notation followed by a helpful lemma.

Notation 5.1. Let n be a non-negative integer and let a, b be real numbers such
that 0 < a < b < 1. For maps f : (0,1) x (a,b) = R™ and ¢: (0,1) = Y, for
Y C (a,b), we define f,: (0,1) = R"™ by fs(z,y) = f(z, d(y)).

Lemma 5.2. Let r be a non-negative integer, let a, b be real numbers such that
0<a<b<1,andlet B be a positive real number. Let A be a subset of {{a1, as) €
N? | |a| <7} and let f:(0,1) x (a,b) — (0,1)" be a C" map. Suppose that there
exist a set 8" C IRP(B’) of at most B’ functions ¢: (0,1) — (a,b) and a finite set
X' C (a,b) of size at most B’ such that

(1) (a,0) \ X" = Uges Im(9);

(ii) ||\ D|| < B, for all ¢ € S’ and all ¢ =0,...,r;
(iii) ||(f)! ]| <1, for all $ € S’ and all « € A with g = 0;
(iv) ||(fs) @] < B, for all ¢ € S’ and all o € A with oz > 0.

There exist a positive real number B, which is bounded effectively in B’, a set
S C IRP(B), and a finite set X C (a,b), such that S is an r-parameterization of
(a,b) \ X, the cardinalities of both S and X are bounded by B, and, for all Y € S,
[|(£)@]] <1, for all a € A.
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Proof. Let X’ C (a,b) and S’ be as in the hypotheses of the lemma. The construc-
tion of S follows a similar argument to the final step in the proof of Lemma [£.3]
Let D be the least integer greater than or equal to B’. For each ¢ € &’ and each
k=0,...,D—1, define ¢: (0,1) = (0,1) by ¢, = ¢po \i, where A\;: (0,1) — (0,1)
is the linear function given by A (z) = 5.

Set S:={¢p| €S, k=0,...,D—1}, and X ::X’U{%,...,%}. Clearly
S is an r-parameterization of (a,b) \ X.

Fixk € {0,...,D—1}and a € A. If ay = 0, then we have (fy, )@ = (fs)(® and,
by assumption, H(frb)(a)H < 1, so we are done. If ag > 0, then, using (fy, )@ =

() (Fo)(
((f¢>),\k) = (65[,7@)”, we have that

| D=
< = <1

(o) ‘ < <
H(fd)k) — Daz — Daz — D

Finally note that, by effective choice of D in terms of B’, and by the construction
of the functions in S, there clearly exists a positive real number B, effective in B’,
such that S C TRP(B) and #S is bounded by B. O

We come now to the first result containing the key idea described in the in-
troduction to this section, namely the use of reparameterization to reduce from a
situation in which the derivatives of a two-variable function with respect to the first
variable are bounded to one in which derivatives with respect to both variables are
bounded. For the analogous result in the context of the Pila—Wilkie Theorem we
refer to [PW06, Lemma 4.3], but our proof of the following statement demonstrates
that effective bounds can be obtained and that we can remain within the setting of
functions implicitly defined from restricted Pfaffian functions.

Lemma 5.3. Let a, b be real numbers such that 0 < a < b <1, and let B be a
positive real number. Suppose that f : (0,1) x (a,b) — (0,1) is a function lying in
the class IRP(B). Suppose further that, for all (x,y) € (0,1) x (a,b), we have

of

— <1.

CIE
For each integer v > 2, there exist a positive real number B’ bounded effectively in
B and r, a finite set X C (a,b) and an (r — 1)-parameterization S of the cofinite
set (a,b) \ X such that S C IRP(B'), the cardinalities of S and of the finite set
X are at most B' and, for each ¢ € S, the function fs has both of its first-order
partial derivatives bounded by 1.

Proof. We begin by applying Lemma to the function g¢: (0,1) x (a,b) — R
defined by

9 2

(z,y) — (a—i(w, y)) -
This gives us the existence of a positive real number B; bounded effectively in B,
a non-negative integer L bounded by Bj, real numbers ay, ...,ar+1 with a = ag <
ap < ... < ap < ap41 = b, as well as functions f; : (a;,a141) — (0,1) lying in
the class I RP(B1) such that, on each cell Cj := (0, fi)(q,,a,,,) (With O the constant
function), there is a function s;: C; — (0,1) lying in the class TRP(B;) which
detects maximums of g. By Proposition 210 we may also assume that that each f;
is either strictly monotonic or constant (increasing B if necessary by an effective
amount).
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For each [ =0, ..., L, define the map h;: C; — (0,1)? by

hl(yat) = <Sl(yat)a f(sl(yat)’y»

Appealing to Remark 4] we may apply an improved version of Lemma [£3] to hy,
for each [ = 0,...,L in turn, to obtain a positive real number £, a positive real
number Bs bounded effectively in B and r, and, for each ! =0, ..., L, a non-negative
integer M; bounded by Bs and functions ¢y, ..., ¢, : (0,1) x (0,€) = (ar, a41)
lying in TRP(Bs) such that, for each positive real number ¢ < &, the functions
d10(t), ... 1 (-, t) form an r-reparameterization of

hi(8): {y € (ar, aia) | {y,t) € Ciy — (0,1)%

(Note that Lemmald3lalso provides us with parameterizations further up the t-axis,
but we do not need these.)

Fix I € {0,...,L}. Define, for each 7 = 0,..., M;, the pointwise limit func-
tion gy ;: (0,1) — [ar, ai41] given by p ;(y) = limy o+ ¢1;(y,t). By Lemma
3.5 there exist a positive integer Bz bounded effectively in B and r and, for
each j = 0,...,M;, a positive integer N;; bounded by B3 and real numbers
b1,j,05- -+ bug Ny 41 With 0= byjo < brji < ... < bjn; < bjn;41 = 1 such
that, on each interval (b; ;i,b:i+1), the restriction of yy ; lies in IRP(B3). By
subdividing further in an effective way, using Proposition .10, we may also assume
that the restriction of y; ; to each interval (b;;, bz j,i+1) is monotonic or constant.

Now, foreach! =0,...,L,j=0,...,M;and¢=0,...,N; ;, define ¢ ;;: (0,1) —
[ai, ai+1] to be the function ¢ ; ;(y) = i ((b1,5,i41—b1,5,:)y~+b1,5.:). Then each ¢ ;;
is monotonic or constant, and there exists a positive real number B, bounded effec-
tively in B and r such that each ¢ ; ; lies in IRP(B4). We set, foreach! =0,...,L,

S0 =1{jilj=0,...,M,i=0,...,Nyjand Jy € (0,1) ¥y ;i(y) ¢ {ar, ar41}}-

The union of these sets as [ varies will be almost the (r — 1)-reparameterization that
we require. Note that the functions in ;o are C"~! (indeed are they are analytic).
Moreover, by Corollary 3.7 of [Thol2] (see also Remark 4.1 of [PWO06]), they have
derivatives up to order r — 1 bounded by 1. In addition, there exists a finite set
X; C (ar, ai+1) such that the functions in S; o cover (a;, a;+1) \ X;. Therefore S;
is in fact an (r — 1)-parameterization of (a;,a;+1) \ X;. Moreover, the size of the
finite set X; is bounded effectively in M; and the NV ;, for j = 0,..., M, hence is
bounded effectively in B and r.

It only remains to consider the first-order partial derivatives of f,, for ¥ € Sy,
1 =0,...,L. By the lemma hypothesis, it is immediate that ‘%(z,y)‘ < 1, for
all {x,y) € (0,1)2. As for bounding %(m,y), note that, for each ¢ € &y, there
exists j € {0, ..., M;} and a linear function A: (0,1) — (0, 1) such that ) = ;oA
Consequently

0 Of,
ai;’(w,y)’ < ‘%(%y)

)

for such j € {0,...,M;} and for all (z,y) € (0,1)2. Therefore, we will consider
bounding 6];”;”' (z,y), for py; with 1 =0,...,L, j=0,...,M;, and (z,y) € (0,1)%

Fix (zo,%0) € (0,1)%, 1 € {0,...,L} and j € {0,...,M;}. Recall that, by
definition, w;(y) = lim, o+ é1,5(y,t). As r > 2, we also have that y; ;(y) =
lim,_, o+ %(y,t). Therefore, for sufficiently small ¢ € (0, &), both

0 0
a—i(:co,m,j(yo)) - a—i(:co,mj(yo,t)) <1,
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by continuity of g—fyc, and
1
< Tor,. .
|5 @ 5 0))|

Fix t € (0,¢) sufficiently small such that both of the previous two inequalities hold.
We then have that

a .
1.5 (yo) — %(?Joﬂf)‘

af, 0
‘ 6{;7] (z0,90)| = |11.5(%0) - a_£($07ﬂl,j(y0>>‘
091 j of
< ay] (yoﬁ‘ : ‘a_y(xmﬂl,j(yO))‘ +1
991, of 9¢1;
3.1 < 2 = ; : 1.
(531 < 288000 - [ G s 00 om, ) + | 52 o) +
Recall that the functions ¢y o(-,t),..., ¢z (-,t) form an r-reparameterization of

hi(-,t) = (si(-,t), f(si(-,t),-)). Therefore, we have that ¢ ;(yo,t) € C;, and fur-
thermore that

(5:32) }a%(sz(qﬁl,j(yat)af))(yo,t)‘ <1

and ‘a%(f(sm,j(y,t),t),¢z,j<y’t>>)(y‘””‘ ="

The second of these inequalities gives us that

\3@1(@,]@, 0,0)w0,8) - 2L (51615 (90, ), ), 61 (0, 1)+

dy Ox
091 ; of
: t) — i t),t i )| <1.
ay (y05 ) ay (Sl(¢l,](y05 )7 )a¢l,j(y07 )) >~
Combining this with (532]) and with the lemma hypothesis, we see that
091 ; of
‘ ay] (y07 t)‘ : ‘a_y(sl(¢l,] (yOa t)v t)a ¢l,j (y07 t)) S 2.
Now note that it follows from the definition of s; that
of of
ay(sl(ya )ay) = 8y($’y) )

for all z € [t,1—1], for all (y,t) € C;. Therefore, using the fact that ¢; ;(yo,t) € Ci,
it follows from (B3] that

fc,; 091 of 091
3 < 2L (yo, )| - [ (40, 1), 1), b5 (Yo, t L (yo, )| + 1
‘ y (z0,90)| < ay (Yo, 1) ay(sl(¢l,j(y07 )>t), é1,5(vo,1))| + oy (Yo, t)| +
<2+1+1
=4.
Since the bound on H% ‘ ’, and hence on Haaﬂ H, is therefore out by only a factor
Y Y

of a positive absolute constant from the bound of 1 that we require, we may obtain
the required reparameterization by applying Lemma[B.2lto S’ := UlL:o S0 together
with X' := UlL:o{al} U UzL:o X;. This gives us a finite set X C (a,b) containing X
and an (r — 1)-parameterization S of (a,b) \ X with the required properties. O
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From this we obtain the following corollary, the analogue of the previous result
for two-variable maps into (0,1)".

Corollary 5.4. Let n be a non-negative integer, let a, b be real numbers such that
0<a<b<1 andlet B be a positive real number. Suppose that f = (f1,..., fn):
(0,1) x (a,b) — (0,1)™ lies in the class IRP(B). Suppose further that, for all
(z,y) € (0,1) X (a,b), we have

of;
—_ZJ <1
50 (@Y<L
for all 5 = 1,...,n. For each integer r > 2, there exist a positive real number

B’ bounded effectively in B, r and n, a finite set X C (a,b) and an (r — 1)-
parameterization S of the cofinite set (a,b) \ X such that S C IRP(B'), the car-
dinalities of S and of the finite set X are bounded by B’ and, for each ¢ € S, the
map f, is C' and has both of its first-order partial derivatives bounded by 1.

Proof. The proof follows a suggestion to be found in [PW06], namely that the proof
of a result of this kind should follow a similar argument to that of [PW06], Lemma
3.5. However, we include the details as we require that certain derivatives are not
only bounded, but are bounded by 1, and to demonstrate that effective bounds can
be obtained.

We therefore proceed via induction on n, with Lemma as the base case. For
n>1,let f:(0,1) x (a,b) — (0,1)™ be as in the statement and define F': (0,1) x
(a,b) — (0,1)" " by F(z,y) = (fi(z,y),..., fn_1(z,y)). Applying the inductive
hypothesis to F' gives us a positive real number B} bounded effectively in B, n
and 7, a finite set Xp C (a,b) and an (r — 1)-parameterization Sg of (a,b) \ Xr
such that Sp C IRP(B}), we have #Sp, #Xr < B}, and, for each ¢ € Sp, the
function Fy is C! and has both of its first-order partial derivatives bounded by 1.

For each ¢ € Sp, likewise apply Lemma [5.3] to the function (f,)s to obtain a
positive real number By bounded effectively in B and r, a finite set Xy C (0,1)
and an (r — 1)-parameterization Sy of (0,1)\ X, such that S, C IRP(By), we have
#8y, #Xy < By and, for each each ¢ € Sy, the function (f,)goy is C' and has
both of its first-order partial derivatives bounded by 1.

Now consider the set S := {¢po1: (0,1) — (a,b) | ¢ € Sp and ¢ € S;}. Clearly
#§ is bounded effectively in terms of By and the B, for ¢ € Sp. Moreover, the
functions in this set are C"~! (indeed they are analytic). After a further round of
linear substitutions, we may further assume that they have derivatives up to order
r—1 which are bounded by 1. In addition, they are implicitly defined from restricted
Pfaffian functions with complexity of implicit definition bounded effectively in B
and in the corresponding B:zﬁ’ and they also cover a set of the form (a, b) \ X, where
X is a finite subset of (a,b) with #X < #Xp + Yges,#Xg, i.e. #X is bounded
effectively in By and in the By, for ¢ € Sp. Taking the largest of these bounds
gives us a positive real number B’ which bounds all three that is clearly bounded
effectively in B, r and n. Furthermore, it is easy to see that, for each ¢ o) € S
and i = 1,...,n, the function (f;)soy is in C' and, via the Chain Rule, has each of
its first-order partial derivatives bounded by 1, as required. (I

Now we come to our version of [PWO06], Lemma 4.4, which extends the idea of
Corollary .4 to higher order derivatives.

Lemma 5.5. Let n, r be non-negative integers, let a, b be real numbers such that
0<a<b<1 andlet B be a positive real number. Suppose that f: (0,1) X (a,b) —
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(0,1)™ lies in the class IRP(B). Suppose further that, for all {x,y) € (0,1) x (a,b),
9'f;
ox?

forallj=1,... ., nand alli=0,...,r.

(:C,y)‘ <1,

For each non-negative integer k, there exist a positive real number By bounded
effectively in B, r, k and n, a finite set Xj, C (a,b) and an r-parameterization Sy
of the cofinite set (a,b) \ Xi such that S, C IRP(By), the cardinalities of S, and
of the finite set X}, are bounded by By, and, for each ¢ € Sk, the map fy is C” and,
for each o = (a1, an) € N? with || <r and as < k, we have H(ﬂb)(a)H <1.

Proof. We prove this by induction on k. For k = 0 we can take X to be the empty
set and Sy to consist solely of the identity function on (0, 1).

Now we suppose that S; and X have been constructed. Let
A:={a={a,m) eN?| o] <7 —1,00 <k}

and set i = #A - #8;. Let F = (Fy,...,Fz) : (0,1)2 — R™" be a map whose
component functions form an enumeration of all component functions of the maps
(fd))(a) :(0,1)2 — R™, for ¢ € Sy, and o € A. Then the hypotheses of Corollary 5.4
hold for F', with r 4+ 1 in place of r. Applying this result, we obtain a positive real
number Bj_ ; which is bounded effectively in B, r, k and n, a finite set Y311 C (0,1)
and an r-parameterization S of (0,1) \ Yi41 such that S € IRP(B;,_,), we have
#Yit1, #S < By, and, for each ¢ € S and each i = 1,..., 7, the function (F;)y
is C! and has both first-order partial derivatives bounded by 1. That is, for each
¢ € S, each ¢ € § and each a € A we have

8 () ) (e, ) =2

Spi1 ={dov:(0,1) = (a,b) \ Xy | ¢ € S, v € S}.
Note that the functions in S; | ; are implicitly defined from restricted Pfaffian func-
tions with the complexities of their implicit definitions bounded effectively in B, r, k
and n, and moreover they are clearly C” (indeed they are analytic). Moreover, there

)(Q) } S B/, for
all g =0,...,r. There is also a finite set X; ;| C (a,b) such that the functions in
Sj.41 cover (a,b) \ X; . Furthermore, #X; | is bounded effectively in # X} and
#Yjy1, hence by B, 7, k and n. We will show that the set S;,, is almost the set
Sk+1 that we require.

Let a = {(a1,a2) € N2, with |a| < 7,a2 < k+ 1. Note that if ap = 0, then
(fcbow)(a) _ ((fqb)(a)) and so H(f¢°¢>(a)H < H(ﬂb)(a) ’ < 1, by the hypothesis of

P

the lemma.

(5.5.1) ‘

Let

is a positive real number B’ which is effective in r such that H(qb o)

Now suppose that as > 0. We claim that there is a positive integer B” de-
pending only on «, and effectively computable from «, such that if ¢ o) € &'

then H(quow)(a) < B” on (0,1)% Tn this case (fyop)” = 2 ((fmw)(m), where
B = {a1,az—1)isin A. A calculation (for example using the Faa di Bruno formula)
shows that, for (xg,yo) € (0,1)2, we have
©) }
{1/} (v) j<a21>

(Fpo)® () = P ({ (),

)
V<8l
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where P is a polynomial in the data shown, with P depending only on 3. Differ-
entiating both sides with respect to y we have
@ }
; {zb Wy, <a2>

(Foou) (z,9) = Q ({(% ((f¢)(7))¢ (:c,y)} 1<18]

for (z0,y0) € (0,1)%, with Q a polynomial depending only on «. Since ¢ € S,
the derivatives of ¢ shown are bounded by 1 in modulus. Moreover, by (.0.1) the

derivatives of f4 are also bounded by 1 in modulus. So H( f¢o¢)(a) H < B”, for some
B” depending only on @ and so only on «, as claimed.

Therefore, we may finish by applying Lemma[B.2to S}, together with X, to
obtain the required Byi1, Sp+1 and Xp41. O

With these lemmas in place, we come to our effective parameterization and
reparameterization results, the remaining statements and proofs in this section.
These are our analogues to the proofs given in Section 5 of [PWOG].

Our first result of this kind is for cells lying in (0,1)? defined by functions which
are implicitly defined by restricted Pfaffian functions.

Theorem 5.6. Let r be a non-negative integer, let a, b be real numbers such that
0<a<b<1 andlet B be a positive real number. Suppose that g, h: (a,b) — (0,1)
are functions lying in the class IRP(B) with g < h. There exist a positive real
number B', which is bounded effectively in B and r, and an r-parameterization S
of the cell (g,h)(a,p) such that S C IRP(B') and the cardinality of S is bounded by
B'.

Proof. The proof corresponds to part of the proof of (II); in [PWO0G], Section 5.
Applying the special case of Proposition 3] (mentioned in Remark [L4) to the
map (g, h): (a,b) — (0,1)2, we obtain a positive real number B” which is bounded
effectively in B and r, and an r-reparameterization S’ of (g, h) such that &' C
IRP(B") and #8’ < B". For each ¢ € &', define 154: (0,1)? — (0,1)? by

Yog(@,y) := (d(2), (1 —y)(g ° ) (z) +y(hod)(x)).
Then there clearly exists a positive real number B’, bounded effectively in B and
7, such that the set S := {tbog | ¢ € S’} is an r-parameterization of (g, h)(q,p), With
S CIRP(B') and #S < B’, as required. O

We now come to the proof of effective reparameterization for functions of two
variables which are implicitly defined from restricted Pfaffian functions.

Theorem 5.7. Let n, r be non-negative integers and let B be a positive real num-
ber. Suppose that F: (0,1)2 — (0,1)" lies in the class IRP(B). There exist a
positive real number B’, which is bounded effectively in B, r and n, and an r-
reparameterization S of F such that S C IRP(B’) and the cardinality of S is
bounded by B’.

Proof. Here the proof corresponds to that of the case (I)14+1 in [PW06], Section 5.
We begin by applying the constant function version of Proposition (see Remark
[£4) to the map F. This gives us a positive real number B] which is effective in
B, r and n, non-negative integers N, My, ..., My bounded by Bj, real numbers
€0, 5Eny1 With 0 = & < & < ... < &v < En4+1 = 1 and functions ¢; j: C; —
(0,1) lying in the class TRP(B]), where C; = (0,1) x (&,&i41) for ¢ = 0,..., N,
j = 0,...,M;, such that, for each i € {0,...,N} and every y € (&,&i+1), the
functions ¢; o(-,y), - -, ¢in; (-, y) form an r-reparameterization of F(-,y).
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Without loss of generality, let us fix ¢ € {0,...,N}. We will now drop the
index ¢ for clarity, and so we relabel the domain C; as C = (0,1) x (v, §); we
then have ¢o,...,¢n : C — (0,1) such that, for all y € (v,£), the functions
do(,y)y ..., dr (-, y) form an r-reparameterization of F(-,y). Define

*F:C — (0,1)2(0M+D)
<.T,y> = <¢0($ay)""7¢N1($ay)’F(¢0(‘T’y)ay)’"'7F(¢M($ay)’y)>'

Then there is a positive real number B such that *F lies in the class IRP(B)).
Moreover * F' satisfies the hypotheses of Lemmal[5.5l Therefore, applying this lemma
with k = r, we obtain a positive real number B,., a finite set X, C (v,{) and a set
of functions S, with the properties stated therein. Now consider the set of maps

St :={{(¢j)p,¥) | 7=0,...,M and ¢ € S, }.
This set covers all of C' apart from at most the union of finitely many lines (0, 1) x
{a}, for a € X,.

Now, for y € (0,1), define \,: (0,1) — (0,1)? to be A\,(z) = (z,y). The special
case of Proposition.3] (as mentioned in Remark[d.4)) will give a positive real number
B! bounded effectively in B and r, and, for each a € X,., an r-reparameterization
To of FoXg:(0,1) — (0,1) such that 7, C IRP(B}) and #7, < Bj, for each
a € X,. Setting

Sc i =8U{Ngo7:(0,1) = (0,1)*|a€ X, and 7 € T}

provides an r-reparameterization of the restricted map F'[¢ that satisfies the re-
quired conditions.

We therefore finish by again applying the special case of Proposition [4.3] this
time to obtain a positive real number B) bounded effectively in B and r, and
r-reparameterizations 7; of F' o A\¢,: (0,1) — (0,1), for each ¢ = 1,..., N, such
that 7; € IRP(B}) and #7; < Bj, for each ¢ = 1,...,N. Our desired r-

reparameterization is then

N N
S:=JSe.u{JT. O
1=0 1=1

Finally we come to the proof of our main effective parameterization result, an
effective parameterization theorem for surfaces implicitly defined from restricted
Pfaffian functions. This is a straightforward corollary of the previous theorem.

Theorem 5.8. Let n, r be non-negative integers, let a, b be real numbers such that
0<a<b<1 andlet B be a positive real number. Suppose that g,h: (a,b) —
(0,1) are functions lying in the class IRP(B) with g < h. Suppose further that
F:(g,h)(ap) — (0,1)" lies in the class IRP(B). There exists a positive real number
B’ bounded effectively in B, r and n, and an r-parameterization S of graph(F) such
that S C IRP(B’) and the cardinality of S is bounded by B’.

Proof. In this instance, the proof corresponds to that of case (II); in [PWO6],
Section 5. Set r > 1. Apply Theorem to (g,h)@,p) to obtain a positive
real number B; bounded effectively in B and r, and an r-parameterization S;
of (g,h) ) such that S; € IRP(B;) and #81 < B;. Now apply Theorem 5.7
to obtain a positive real number By bounded effectively in B, r and n, and, for
each ¢ € S;, an r-reparameterization T, of F o ¢: (0,1)*> — (0,1)", such that
Ty € IRP(B3) and #7, < Bs, for each ¢ € S;. Then we can define S to be
{{(po)(z,y), Fopoy)(z,y)) | ¥ € Ty, € S1}. Clearly there exists a positive
real number B’ with the required properties. O
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6. COUNTING RESULTS

In this section we put our parameterization results to work and prove our count-
ing results. These results make use of the following proposition from [PWO06]. As
there, an algebraic hypersurface of degree d is the zero set of a non-zero polynomial
of degree d, and, for a non-negative integer n, a positive real number 7' and a set
Y C R™, the set of rational points in Q™ lying on Y of height at most 7" is denoted
Y(Q,T).

Proposition 6.1 ([PW06], Proposition 6.1). Let k,n be non-negative integers with
k < n. For each positive integer d, there exists a non-negative integer r = r(k,n, d)
and positive constants e(k,n,d), C(k,n,d) with the following property. For any C"-
map ¢: (0,1)F — R™ with ’(b(a)(z)’ <1, for all z € (0,1)* and all a € N* with
la] < r, and for all T > 1, the set Im(¢)(Q,T) is contained in the union of at
most C(k:,n,d)TE(k’"’d) algebraic hypersurfaces of degree at most d. Furthermore,
e(k,n,d) -0 as d = 0.

Importantly for us, it is know that the r(k,n,d), e(k,n,d) and C(k,n,d) in this
statement can be effectively computed from k,n and d. This follows from the proof
of 6.1} see in particular [Pil04] 4.1, 4.2]. We will use this effectivity below.

In order to prove our main results in this section, we will use the following
proposition, a particular case of Proposition 5.3 from [JT12].

Proposition 6.2 (JJT12|, Proposition 5.3). Let B be a positive real number and
suppose that f: (0,1)2 — (0,1) is a function lying in the class IP(B). Let X be
the graph of f. There exist positive integers N = N(B), v = v(B) and ¢1, and a
polynomial QQ: R — R over R of degree N with coefficients depending only on B,
such that, for all T > 1 and for all positive integers d, if P: R3 — R is a polynomial
of degree d, then

#(XNV(P)"™™)(Q,T) < a1Q(d)(log T)".

In [JT12] we did not address effectivity for this statement but, upon inspecting
the proof of this result, it is possible to see that the constants N = N(B), v = v(B)
and c¢; may be found effectively, as well as an effective bound on the coefficients of
the polynomial Q.

We now present our first counting result, for those surfaces implicitly defined
from restricted Pfaffian functions whose base is an open cell lying inside the box

(0,1)2.

Theorem 6.3. Let a, b be real numbers such that 0 < a < b <1 and let B and
€ be positive real numbers. Suppose that g, h: (a,b) — (0,1) are functions lying in
the class IRP(B) with g < h. Suppose further that F': (g,h)a) — R lies in the
class IRP(B). There exists a positive real number ¢, bounded effectively in B and
€, such that, for oll T > 1,

#graph(F)"™"(Q, T) < cT*.
Proof. We start by applying Proposition with £k = 2, n = 3 and d an integer

large enough that €(2,3,d) < €/2 (so d is effective in €). Let r = r(2,3,d) and
C =C(2,3,d). As remarked above, r and C are therefore both effective in e.

Define the function G: (g, h) (a5 — R by

G(z,y) = F(z,y)(F(z,y)* — 1).
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Since F lies in IRP(B), there exists a positive real number B; which is bounded
effectively in B such that G lies in TRP(B;). By repeated application of Lemma[3.3]
(see Remark[34]), we see that there is a positive real number By, bounded effectively
in B, such that V(G) can be decomposed into at most Bz graphs of functions lying
in TRP(Bs), points and vertical lines. These give us a cell decomposition C of
(9, 1) (a,p) such that F restricted to each of the open cells in C takes values in exactly
one of (—oo0,—1),(—1,0),(0,1),(1,00), and a positive real number Bs effective in
B such that the cardinality of C is bounded by Bs.

For each open cell € in C, compose F |[¢ with whichever of the four inversion
maps = — +x! is appropriate to obtain a function Fe: € = (0,1) such that, for
each T > 1, #graph(Fg)"5(Q, T) = #graph(F|¢)"™(Q, T). Such an open cell
¢ is of the form (g,h) @b b b
functions §, h: (@,b) — (0,1) in IRP(B,), and there exists a positive real number
B, which is bounded effectively in B such that Fg lies in IRP(By). Therefore, we

may apply Theorem to Fg¢ to obtain a positive real number Bs, effective in B

and r, and hence in B and ¢, and an r-parameterization S of graph(ﬁg) lying in
IRP(B5) with cardinality bounded by Bs.

) for real numbers @, b such that ¢ < a < b < b and

Let T > 1. By Proposition (.11 graph(ﬁ@(@, T) is contained in the union of at
most Bs - C - T¢/? algebraic surfaces of degree at most d, for each open cell ¢ in C.

Fix such a surface, V(P), say. We now apply Proposition to obtain effective
constants N = N(B), v = v(B) and ¢;, and a polynomial @: R — R over R of
degree N with coefficients bounded effectively in B, such that

#(graph(Fe) NV (P)™™(Q,T) < ¢1Q(d)(log T)",

for each open cell € in C. Since Q(d) is a polynomial in d with coefficients which
are bounded effectively in B, Q(d) is in fact just a constant effective in B and in e.

Now take T} such that (log 7)Y < T/2 for all T > Ty, which we can do effectively
in terms of v and €, and hence in terms of B and e. Hence, for T > T, we have
that, for each open cell € in C,

#(graph(Fe) NV (P))*™(Q, T) < T2,
where ¢y is effective in terms of B and €. Therefore
#graph(F)"™™(Q,T) < B3 - Bs - C - ¢y - T,

for T > Ty. Finally, increasing the constant at the front to compensate for T,
which we can do effectively, we see that a bound of the required form holds for all
T2>1. O

We now use this result to obtain a counting statement in the unrestricted setting.
Given a function lying in IP, we note that it is possible to shrink its domain in
such a way that the restricted function obtained lies in I RP, the restricted domain
approximates the original domain to an arbitrary extent, and the complexities of
the functions involved in defining these two domains are the same. Applying Theo-
rem to the restricted function obtained in this way, we get a bound on rational
points for its graph that does not depend on the particular domain chosen. Since all
rational points of a given height that lie on the graph of the unrestricted function
also lie on the graph of such a restricted function, we may choose a suitable restric-
tion of this kind and hence obtain a bound on rational points in the unrestricted
setting.
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Theorem 6.4. Let a, b be real numbers such that 0 < a < b < 1 and let B and
e be positive real numbers. Suppose that g is either a function g : (a,b) — (0,1)
lying in IP(B), or is the constant function 0 defined on (a,b), and suppose that h
is either a function h : (a,b) — (0,1) lying in IP(B), or is the constant function 1
defined on (a,b). Suppose moreover that g < h, and that F': (g,h) ) — R lies in
IP(B). There exists a positive real number ¢, bounded effectively in B and ¢, such
that, for all T > 1,
#graph(F)""(Q,T) < cT*.

Proof. Fix T > 1 and € > 0. Since there are only finitely many rational points
of height at most 7" inside (g,h)(,,5), we may find a positive real number ¢ small
enough that a +d < b — 4, such that g+ < h — ¢ holds on (a + 0,b — §) and such
that all rational points of height at most T inside (g, h)(a,p) in fact lie inside the
cell Cs = (g4 0,h — 6)(a45,5—5)- We then have

#eraph(F[c,)""(Q, T) = #graph(F)™***(Q, T).
The function F|¢;, is in IRP(B) by Corollary 2.6l So we can apply Theorem [6.3

The constant ¢ this provides is independent of §, and so independent of T', and this
proves the theorem. (I

Finally, applying the usual inversion process in combination with effective mono-
tonicity (Proposition 2I0) we obtain the most general form of our result.

Corollary 6.5. Let (a,b) be an interval in R, with a € {—oco}UR and b € RU{+o0},
and let B and € be positive real numbers. Suppose that g is either a function
g : (a,b) = R lying in IP(B), or is the constant function —oo defined on (a,b),
and suppose that h is either a function h : (a,b) — R lying in IP(B), or is the
constant function +oo defined on (a,b). Suppose moreover that g < h, and that
F :(g,h)(ap) — R lies in IP(B). There exists a positive real number c, bounded
effectively in B and €, such that, for all T > 1,

#graph(F)"*"(Q,T) < cT.
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