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ON FEEBLY COMPACT SEMITOPOLOGICAL SEMILATTICE expn λ

OLEG GUTIK AND OLEKSANDRA SOBOL

Abstract. We study feebly compact shift-continous topologies on the semilattice (exp
n
λ,∩). It is

proved that such T1-topology is sequentially pracompact if and only if it is D(ω)-compact.

We shall follow the terminology of [4, 9, 10, 23]. If X is a topological space and A ⊆ X , then by
clX(A) and intX(A) we denote the closure and the interior of A in X , respectively. By ω we denote
the first infinite cardinal and by N the set of positive integers. By D(ω) and R we denote an infinite
countable discrete space and the real numbers with the usual topology, respectively.

A subset A of a topological space X is called regular open if intX(clX(A)) = A.

We recall that a topological space X is said to be

• semiregular if X has a base consisting of regular open subsets;
• compact if each open cover of X has a finite subcover;
• sequentially compact if each sequence {xn}n∈N of X has a convergent subsequence in X ;
• countably compact if each open countable cover of X has a finite subcover;
• H-closed if X is a closed subspace of every Hausdorff topological space in which it contained;
• infra H-closed provided that any continuous image of X into any first countable Hausdorff
space is closed (see [18]);

• totally countably pracompact if there exists a dense subset D of the space X such that each
sequence of points of the set D has a subsequence with the compact closure in X ;

• sequentially pracompact if there exists a dense subset D of the space X such that each sequence
of points of the set D has a convergent subsequence [15];

• countably compact at a subset A ⊆ X if every infinite subset B ⊆ A has an accumulation point
x in X ;

• countably pracompact if there exists a dense subset A in X such that X is countably compact
at A;

• selectively sequentially feebly compact if for every family {Un : n ∈ N} of non-empty open
subsets of X , one can choose a point xn ∈ Un for every n ∈ N in such a way that the sequence
{xn : n ∈ N} has a convergent subsequence ([7]);

• sequentially feebly compact if for every family {Un : n ∈ N} of non-empty open subsets of X ,
there exists an infinite set J ⊆ N and a point x ∈ X such that the set {n ∈ J : W ∩ Un = ∅}
is finite for every open neighborhood W of x (see [8]);

• selectively feebly compact for each sequence {Un : n ∈ N} of non-empty open subsets of X , one
can choose a point x ∈ X and a point xn ∈ Un for each n ∈ N such that the set {n ∈ N : xn ∈ W}
is infinite for every open neighborhood W of x ([7]);

• feebly compact (or lightly compact) if each locally finite open cover of X is finite [3];
• d-feebly compact (or DFCC ) if every discrete family of open subsets in X is finite (see [21]);
• pseudocompact if X is Tychonoff and each continuous real-valued function on X is bounded;
• Y -compact for some topological space Y , if f(X) is compact for any continuous map f : X → Y .

The following diagram describes relations between the above defined classes of topological spaces.
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A semilattice is a commutative semigroup of idempotents. On a semilattice S there exists a natural
partial order: e 6 f if and only if ef = fe = e. For any element e of a semilattice S we put

↑e = {f ∈ S : e 6 f} .

A topological (semitopological) semilattice is a topological space together with a continuous (sepa-
rately continuous) semilattice operation. If S is a semilattice and τ is a topology on S such that (S, τ)
is a topological semilattice, then we shall call τ a semilattice topology on S, and if τ is a topology on S

such that (S, τ) is a semitopological semilattice, then we shall call τ a shift-continuous topology on S.
For an arbitrary positive integer n and an arbitrary non-zero cardinal λ we put

expn λ = {A ⊆ λ : |A| 6 n} .

It is obvious that for any positive integer n and any non-zero cardinal λ the set expn λ with the
binary operation ∩ is a semilattice. Later in this paper by expn λ we shall denote the semilattice
(expn λ,∩).

This paper is a continuation of [16] and [17]. In [16] we studied feebly compact semitopological
semilattices expn λ. Therein, all compact semilattice T1-topologies on expn λ were described. In [16]
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it was proved that for an arbitrary positive integer n and an arbitrary infinite cardinal λ every T1-
semitopological countably compact semilattice expn λ is a compact topological semilattice. Also, there
we constructed a countably pracompact H-closed quasiregular non-semiregular topology τ 2

fc
such that

(exp2 λ, τ
2
fc
) is a semitopological semilattice with the discontinuous semilattice operation and show that

for an arbitrary positive integer n and an arbitrary infinite cardinal λ a semiregular feebly compact
semitopological semilattice expn λ is a compact topological semilattice. In [17] we proved that for any
shift-continuous T1-topology τ on expn λ the following conditions are equivalent: (i) τ is countably
pracompact; (ii) τ is feebly compact; (iii) τ is d-feebly compact; (iv) (expn λ, τ) is an H-closed space.

In [2] was proved that every pseudocompact topological group is sequentially feebly compact. Also,
by Corollary 4.6 of [7], the Cantor cube Dc is selectively sequentially feebly compact. By [9, Theorem
3.10.33],Dc is not sequentially compact. Therefore, the compact topological groupG = Dc is selectively
sequentially feebly compact but not sequentially feebly compact. Also, there exists a dense subgroup
of Zc

2, where Z
c
2 is the c-power of the cyclic two-elements group, which is selectively pseudocompact but

not selectively sequentially pseudocompact [24]. This and our above results of [16] and [17] motivates
us to investigate selective (sequential) feeble compactness of the semilattice expn λ as a semitopological
semigroup.

Namely, we show that a shift-continuous T1-semitopological semilattice expn λ is sequentially count-
ably pracompact if and only if it is D(ω)-compact.

Lemma 1. Let n be any positive integer and λ be any infinite cardinal. Then the set of isolated points

of a T1-semitopological semilattice expn λ is dense in it.

Proof. Fix an arbitrary non-empty open subset U of expn λ. There exists y ∈ expn λ such that
↑y ∩ U = {y}. By Proposition 1(iii) from [16], ↑y is an open-and-closed subset of expn λ and hence y

is an isolated point in expn λ. �

A family of non-empty sets {Ai : i ∈ I } is called a ∆-system (a sunflower or a ∆-family) if the
pairwise intersections of the members are the same, i.e., Ai ∩ Aj = S for some set S (for i 6= j in I )
[20]. The following statement is well known as the Sunflower Lemma or the Lemma about a ∆-system

(see [20, p. 107]).

Lemma 2. Every infinite family of n-element sets (n < ω) contains an infinite ∆-subfamily.

Proposition 1. Let n be any positive integer and λ be any infinite cardinal. Then every feebly compact

T1-semitopological semilattice expn λ is sequentially pracompact.

Proof. Suppose to the contrary that there exists a feebly compact T1-semitopological semilattice expn λ

which is not sequentially pracompact. Then every dense subset D of expn λ contains a sequence of
points from D which has no a convergent subsequence.

By Proposition 1 of [17] the subset expn λ \ expn−1 λ is dense in expn λ and by Proposition 1(ii) of
[16] every point of the set expn λ\expn−1 λ is isolated in expn λ. Then the set expn λ\expn−1 λ contains
an infinite sequence of points {xp : p ∈ N} which has not a convergent subsequence. By Lemma 2 the
sequence {xp : p ∈ N} contains an infinite ∆-subfamily, that is an infinite subsequence {xpi : i ∈ N}
such that there exists x ∈ expn λ such that xpi ∩ xpj = x for any distinct i, j ∈ N.

Suppose that x = 0 is the zero of the semilattice expn λ. Since the sequence {xpi : i ∈ N} is an
infinite ∆-subfamily, the intersection {xpi : i ∈ N} ∩ ↑y contains at most one set for every non-zero
element y ∈ expn λ. Thus expn λ contains an infinite locally finite family of open non-empty subsets
which contradicts the feeble compactness of expn λ.

If x is a non-zero element of the semilattice expn λ then by Proposition 1(ii) of [16], ↑x is an open-
and-closed subspace of expn λ, and hence by Theorem 14 from [3] the space ↑x is feebly compact. We
observe that x is zero of the semilattice ↑x, which contradicts so similarly the previous part of the
proof. We obtain a contradiction. �

Proposition 2. Let n be an arbitrary positive integer and λ be an arbitrary infinite cardinal. Then

every feebly compact T1-semitopological semilattice expn λ is totally countably pracompact.
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Proof. We put D = expn λ \ expn−1 λ. By Proposition 1 of [17] the subset D is dense in expn λ and
by Proposition 1(ii) of [16] every point of the set D is isolated in expn λ. Fix an arbitrary sequence
{xp : p ∈ N} of points of D. By Lemma 2 the sequence {xp : p ∈ N} contains an infinite ∆-subfamily.

Suppose that x = 0 is the zero of the semilattice expn λ. Since the sequence {xpi : i ∈ N} is an
infinite ∆-subfamily, the intersection {xpi : i ∈ N} ∩ ↑y contains at most one point of the sequence for
every non-zero element y ∈ expn λ. By Proposition 1(ii) of [16] for every point a ∈ expn λ \ {0} there
exists an open neighbourhood U(a) of a in expn λ such that U(a) ⊆ ↑a and hence our assumption
implies that zero 0 is a unique accumulation point of the sequence {xpi : i ∈ N}. Since by Lemma 1
from [16] for an arbitrary open neighbourhood W (0) of zero 0 in expn λ there exist finitely many
non-zero elements y1, . . . , yk ∈ expn λ such that

(

expn λ \ expn−1 λ
)

⊆ W (0) ∪ ↑y1 ∪ · · · ∪ ↑yk,

we get that clexpn λ({xpi : i ∈ N}) = {0} ∪ {xpi : i ∈ N} is a compact subset of expn λ.
If x is a non-zero element of the semilattice expn λ then by Proposition 1(ii) of [16], ↑x is an open-

and-closed subspace of expn λ, and hence by Theorem 14 of [3] the space ↑x is feebly compact. Then
x is zero of the semilattice ↑x and by the previous part of the proof we have that clexpn λ({xpi : i ∈
N}) = {x} ∪ {xpi : i ∈ N} is a compact subset of expn λ. �

Proposition 3. Let n be any positive integer and λ be any infinite cardinal. Then every D(ω)-compact

T1-semitopological semilattice expn λ is feebly compact.

Proof. Suppose to the contrary that there exists a D(ω)-compact T1-semitopological semilattice expn λ

which is not feebly compact. Then there exists an infinite locally finite family U = {Ui} of open non-
empty subsets of expn λ. Without loss of generality we may assume that the family U = {Ui} is
countable, i.e., U = {Ui : i ∈ N}. Lemma 1 implies that for every Ui ∈ U there exists ai ∈ Ui such
that U ∗ = {{ai} : i ∈ N} is a family of isolated points of expn λ. Since the family U is locally finite,
without loss of generality we may assume that ai 6= aj for distinct i, j ∈ N. The family U ∗ is locally
finite as a refinement of a locally finite family U . Since expn λ, τ is a T1-space,

⋃

U ∗ is a closed subset
in expn λ and hence the map f : expn λ → Nd, where Nd is the set of positive integers with the discrete
topology, defined by the formula

f(b) =

{

1, if b ∈ expn λ \
⋃

U ∗;
i+ 1, if b = ai for some i ∈ N,

is continuous. This contradicts D(ω)-compactness of the space expn λ, because every two infinite
countable discrete spaces are homeomorphic. �

We summarise our results in the following theorem.

Theorem 1. Let n be any positive integer and λ be any infinite cardinal. Then for any T1-semitopological

semilattice expn λ the following conditions are equivalent:

(i) expn λ is sequentially pracompact;

(ii) expn λ is totally countably pracompact;

(iii) expn λ is feebly compact;

(iv) expn λ is D(ω)-compact.

Proof. Implications (i) ⇒ (iii), (ii) ⇒ (iii) and (iii) ⇒ (iv) are trivial. The corresponding their
converse implications (iii) ⇒ (i), (iii) ⇒ (ii) and (iv) ⇒ (iii) follow from Propositions 1, 2 and 3,
respectively. �

It is well known that the (Tychonoff) product of pseudocompact spaces is not necessarily pseudo-
compact (see [9, Section 3.10]). On the other hand Comfort and Ross in [6] proved that a Tychonoff
product of an arbitrary family of pseudocompact topological groups is a pseudocompact topological
group. Ravsky in [22] generalized the Comfort–Ross Theorem and proved that a Tychonoff prod-
uct of an arbitrary non-empty family of feebly compact paratopological groups is feebly compact.
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Also, a counterpart of the Comfort–Ross Theorem for pseudocompact primitive topological inverse
semigroups and primitive inverse semiregular feebly compact semitopological semigroups with closed
maximal subgroups were proved in [11] and [14], respectively.

Since a Tychonoff product of H-closed spaces is H-closed (see [5, Theorem 3] or [9, 3.12.5 (d)])
Theorem 1 implies a counterpart of the Comfort–Ross Theorem for feebly compact semitopological
semilattices expn λ:

Corollary 1. Let
{

expni
λi : i ∈ I

}

be a family of non-empty feebly compact T1-semitopological semi-

lattices and ni ∈ N for all i ∈ I . Then the Tychonoff product
∏

{

expni
λi : i ∈ I

}

is feebly compact.

Definition 1. If {Xi : i ∈ I } is a family of sets, X =
∏

{Xi : i ∈ I } is their Cartesian product and
p is a point in X , then the subset

Σ(p,X) = {x ∈ X : |{i ∈ I : x(i) 6= p(i)}| 6 ω}

of X is called the Σ-product of {Xi : i ∈ I } with the basis point p ∈ X . In the case when {Xi : i ∈ I }
is a family of topological spaces we assume that Σ(p,X) is a subspace of the Tychonoff product
X =

∏

{Xi : i ∈ I }.

It is obvious that if {Xi : i ∈ I } is a family of semilattices then X =
∏

{Xi : i ∈ I } is a semilattice
as well. Moreover Σ(p,X) is a subsemilattice of X for arbitrary p ∈ X . Then Theorem 1 and
Proposition 2.2 of [15] imply the following corollary.

Corollary 2. Let
{

expni
λi : i ∈ I

}

be a family of non-empty feebly compact T1-semitopological semi-

lattices and ni ∈ N for all i ∈ I . Then for every point p of the product X =
∏

{

expni
λi : i ∈ I

}

the

Σ-product Σ(p,X) is feebly compact.
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