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ON p-PARTS OF BRAUER CHARACTER DEGREES AND p-REGULAR

CONJUGACY CLASS SIZES OF FINITE GROUPS

CHRISTINE BESSENRODT AND YONG YANG

Abstract. Let G be a finite group, p a prime, and IBrp(G) the set of irreducible p-Brauer characters

of G. Let ēp(G) be the largest integer such that pēp(G) divides χ(1) for some χ ∈ IBrp(G). We show

that |G : Op(G)|p ≤ pkēp(G) for an explicitly given constant k. We also study the analogous problem
for the p-parts of the conjugacy class sizes of p-regular elements of finite groups.

1. Introduction

It is a classic theme to study how arithmetic conditions on characters of a finite
group affect the structure of the group. Some of the most important problems in the
representation theory of finite groups deal with character degrees and prime numbers.
Let G be a finite group and P be a Sylow p-subgroup of G; it is reasonable to expect

that the p-parts of the degrees of irreducible characters of G somehow restrict the
structure of P . The Ito-Michler theorem says that each irreducible ordinary character
degree is coprime to p if and only if G has a normal abelian Sylow p-subgroup, which
of course implies that |G : Op(G)|p = 1.
We write ep(G) to denote the exponent of the largest p-part of the degrees of the

irreducible complex characters of G. Moretó [23, Conjecture 4] conjectured that the
largest character degree of P is bounded by some function of ep(G). For the case of
solvable groups, the conjecture was proved by Moretó and Wolf [24], and the bounds
have been improved by the second author in [32] and [33]. Recently, Lewis, Navarro and
Wolf [19] studied the special case when ep(G) = 1, and showed that |G : Op(G)|p ≤ p2

when G is solvable. For p > 2, Lewis, Navarro, Tiep and Tong-Viet [20] also studied
the case when ep(G) = 1 for arbitrary finite groups. The conjecture of Moretó was
recently settled by Qian and the second author in [34].
It is natural to study the Brauer character degree analogue of the Ito-Michler theorem.

This has been investigated by Michler [22] and Manz [21]. They showed that each
irreducible Brauer character degree is coprime to p if and only if G has a normal Sylow
p-subgroup, i.e., that |G : Op(G)|p = 1. Thus we would like to ask the following
question:
Let IBrp(G) be the set of irreducible p-Brauer characters of G, and ēp(G) be the

largest integer such that pēp(G) divides χ(1) for some χ ∈ IBrp(G), then how does
ēp(G) affect the structure of the Sylow p-subgroup of G? We show the following results
as an effort to study this question. This could be viewed as a generalization of the
Brauer character degree analogue of the Ito-Michler theorem. We remark that the case
ēp(G) = 1 has been studied in [20].
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Theorem A. Let G be a finite group and ēp(G) be the largest integer such that pēp(G)

divides χ(1) for some χ ∈ IBrp(G).

(1) If p ≥ 5, then logp |G : Op(G)|p ≤ 6.5 ēp(G).
(2) If p = 3, then logp |G : Op(G)|p ≤ 20 ēp(G).
(3) If p = 2, then logp |G : Op(G)|p ≤ 24 ēp(G).

As conjugacy classes are closely related to the irreducible characters, we could study
related questions on conjugacy class sizes. The conjugacy class size analogues of p-
Brauer character degrees are obviously the class sizes of the p-regular elements. Simi-
larly to the situation for p-Brauer character degrees, it is also reasonable to expect that
the p-parts of the conjugacy class sizes of the p-regular elements somehow restrict the
structure of P .
Let eclp(G) be the largest integer such that peclp(G) divides some |C| ∈ clsizep′(G);

we will show that |G : Op(G)|p is also bounded by a function of eclp(G).

Theorem B. Let G be a finite group and let p be a prime; let P ∈ Sylp(G). Let eclp(G)

be the largest integer such that peclp(G) divides some |C| ∈ clsizep′(G).

(1) If p ≥ 5, then logp |G : Op(G)|p ≤ 6.5 eclp(G).

(2) If p = 3, then logp |G : Op(G)|p ≤ 19 eclp(G).

(3) If p = 2, then logp |G : Op(G)|p ≤ 17 eclp(G).

We notice that recently Tong-Viet has done some related work in finding various
conditions on Brauer character degrees for a finite group to have a normal Sylow p-
subgroup (see [31]).

2. Notation and preliminary results

We first fix some notation:

(1) We use F(G) to denote the Fitting subgroup ofG. Let Fi(G) be the ith ascending
Fitting subgroup of G, i.e., F0(G) = 1, F1(G) = F(G) and Fi+1(G)/Fi(G) =
F(G/Fi(G)).

(2) We use F∗(G) to denote the generalized Fitting subgroup of G.
(3) Let p be a prime number, we say that an element x ∈ G is p-regular if the order

of x is not a multiple of p.
(4) We use clsizep′(G) to denote the set of conjugacy class sizes of p-regular elements

of G.
(5) We use cl(G) to denote the set of all the conjugacy classes of G, and we use

clp′(G) to denote the set of all the conjugacy classes of p-regular elements of G.
(6) We denote cd(G) = {χ(1) | χ ∈ Irr(G)}.
(7) We use IBrp(G) to denote the set of all the irreducible p-Brauer characters of G.
(8) Let ēp(G) be the largest integer such that pēp(G) divides χ(1) for some χ ∈

IBrp(G).

(9) Let eclp(G) be the largest integer such that peclp(G) divides some |C| ∈ clsizep′(G).
(10) We use the notation dl(G) for the derived length of a solvable group G.
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(11) If a group G acts on a set Ω and ω is an element in Ω, we will use the notation
CG(ω) to denote the stabilizer of the element ω under the action of G. In
particular, if λ is an irreducible character of a normal subgroup N of G, then
CG(λ) denotes the inertia group of λ in G. Let Ω1 be a subset of Ω, we use
StabGΩ1 to denote the stabilizer of Ω1 under the action of G as a set (consider
the induced action of G on P(Ω), the power set of Ω).

We need the following results about simple groups.

Lemma 2.1. Let A act faithfully and coprimely on a non-abelian simple group S. Then
A has at least 2 regular orbits on Irr(S).

Proof. This is [26, Proposition 2.6]. �

Lemma 2.2. If G is a non-abelian finite simple group, then |cd(G)| ≥ 4.

Proof. This follows from [13, Theorem 12.15]. �

Lemma 2.3. If G is a non-abelian finite simple group, then |cs(G)| ≥ 4.

Proof. This follows from [15]. �

The main results are proved using an orbit theorem for p-solvable groups. This
method provides a unified approach to the Brauer character degree and the p-regular
class size version of the problem.
We now state the orbit theorem for p-solvable groups. This result has been proved

in [34] but the proof there has some glitch; we take the opportunity to provide a
corrected proof here.

Theorem 2.4. Let V E G, where G/V is p-solvable for an odd prime p, and V is

a direct product of isomorphic non-abelian simple groups S1, . . . , Sn. Suppose that G
acts transitively on the groups S1, . . . , Sn, and write O =

⋂

k NG(Sk). Then there exist

nonprincipal v1, v2 and v3 ∈ Irr(V ) of different degrees such that all Sylow p-subgroups
of CG(vj) are contained in O for all j = 1, 2, 3.

Proof. Clearly O is normal in G and G is a transitive permutation group on the set
{S1, . . . , Sn} with kernel O. If n = 1, then the required result follows by Lemma 2.2.
Thus we may assume that n > 1. Let (∆1, . . . ,∆m) be a system of imprimitivity of G
with maximal block-size b. Then (∆1, . . . ,∆m) is a partition of {S1, . . . , Sn} and each
block ∆i has size b. Thus

1 ≤ b < n; bm = n,m ≥ 2.

Let Ω = {∆1, . . . ,∆m}. Then G is a primitive permutation group of degree m on the
set Ω. Set

Ji = StabG(∆i), K =
⋂

1≤i≤m

Ji, Vi =
∏

St∈∆i

St, i = 1, . . . , m.

Observe that

Ji = NG(Vi),
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the groups Ji are permutationally equivalent transitive groups of degree b, and that K
is a normal subgroup of G and stabilizes each of the blocks ∆i. In particular, G/K is
a primitive group of degree m acting upon the set Ω.
Let us consider σ ∈ Irr(Vi). We may view σ as a character of V . Note that if

σ is nonprincipal, then CG(σ) ≤ Ji because G acts transitively on Ω, and therefore
CG(σ) = CJi(σ).
Let us consider Ji and the action of Ji on Irr(Vi) =

∏

St∈∆i
Irr(St). Since G acts

transitively on {S1, . . . , Sn} and acts transitively on Ω, we see that Ji acts transitively
on ∆i. Write

Oi =
⋂

t∈∆i

NJi(St), i = 1, . . . , m.

Clearly O =
⋂m

i=1Oi. Note that if St ∈ ∆i, then NG(St) ≤ Ji because G acts transitively
on Ω. Therefore NG(St) = NJi(St), and this implies that

Oi =
⋂

St∈∆i

NG(St).

Since Ji < G, by induction there exist nonprincipal θi, λi, and χi ∈ Irr(Vi) of different
degrees such that all Sylow p-subgroups of CJi(θi),CJi(λi) and CJi(χi) are contained
in Oi, that is, all Sylow p-subgroups of CG(θi),CG(λi), CG(χi) are contained in Oi.
Clearly we may choose θi, 1 ≤ i ≤ m, to be G-conjugate, and we can do the same for
λi and χi. We may assume that θi(1) > λi(1) > χi(1).

We claim that there exist proper subsets Ω1 and Ω2 of Ω such that Ω = Ω1 ∪ Ω2,
Ω1 ∩Ω2 = ∅, and StabG/K(Ω1)∩ StabG/K(Ω2) is a p′-group except for a few cases listed
below.
(1) |Ω| = 8, G/K ∼= AΓL(1, 8).
(2) |Ω| = 9, G/K ∼= AGL(2, 3) or G/K ∼= ASL(2, 3).
To see the claim, we need to investigate the action ofG/K on the power set P(Ω) of Ω.

Clearly we may assume that p divides |G/K|. Note that if m ≥ 5, then Alt(m) 6≤ G/K
because G/K is p-solvable. Note that if G/K has a regular orbit on P(Ω), then there
exists a (clearly proper) subset Ω1 of Ω such that StabG/K(Ω1) = 1, thus Ω1 and
Ω2 = Ω − Ω1 meet our requirement. Hence we may assume G has no regular orbit on
P(Ω).
Suppose that G/K is solvable. By Gluck’s result about solvable primitive permuta-

tions groups [8], we see that there exists a partition Ω1,Ω2 of Ω such that StabG/K(Ω1)∩
StabG/K(Ω2) is a 2-group, except for the following cases:
(1) n = 8, G/K ∼= AΓL(1, 8).
(2) n = 9, G/K ∼= AGL(2, 3) or G/K ∼= ASL(2, 3).
Suppose that G/K is nonsolvable. By [30, Theorem 2], G/K is not r-solvable for

any prime divisor r of |G/K|, we get a contradiction.
We first assume that there exist proper subsets Ω1 and Ω2 of Ω such that Ω = Ω1∪Ω2,

Ω1 ∩ Ω2 = ∅, and StabG/K(Ω1) ∩ StabG/K(Ω2) is a p′-group.
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Assume that Ω1 = {∆1, . . . ,∆s}, Ω2 = {∆s+1, . . . ,∆m}. Set

v1 =

s
∏

i=1

θi ·
m
∏

i=s+1

λi, v2 =

s
∏

i=1

θi ·
m
∏

i=s+1

χi, v3 =

s
∏

i=1

λi ·
m
∏

i=s+1

χi.

Clearly, v1, v2 and v3 have different degrees. Let us investigate CG(v1) and its Sylow
p-subgroup P . Since G acts transitively on Ω and thus on {V1, . . . , Vm}, we see that
CG(v1) ≤ StabG(Ω1)∩ StabG(Ω2). As (StabG(Ω1)∩ StabG(Ω2))/K is a p′-group by the
claim, it forces that

P ≤ K ∩CG(v1) ∩ P = CK(v1) ∩ P.

Observing that all groups Vi are normal in K, we have

CK(v1) = (
s
⋂

i=1

CK(θi)) ∩ (
m
⋂

i=s+1

CK(λi)).

We get the required result that

P ≤ (

s
⋂

i=1

(CK(θi) ∩ P )) ∩ (

m
⋂

i=s+1

(CK(λi) ∩ P )) ≤
m
⋂

i=1

Oi = O.

Similarly all Sylow p-subgroups of CG(v2) and CG(v3) are contained in O.
We next assume that n = 8, and G/K ∼= AΓL(1, 8). We set Ω1 = {1, 2, 3}, Ω2 =

{4, 5, 6}, and Ω3 = {7, 8}. We see that StabG/K(Ω1)∩ StabG/K(Ω2)∩ StabG/K(Ω3) = 1.
Set

v1 =
∏

i∈Ω1

θi ·
∏

i∈Ω2

λi ·
∏

i∈Ω3

χi, v2 =
∏

i∈Ω1

θi ·
∏

i∈Ω2

χi ·
∏

i∈Ω3

λi, v3 =
∏

i∈Ω1

λi ·
∏

i∈Ω2

χi ·
∏

i∈Ω3

θi.

Clearly, v1, v2 and v3 have different degrees. Let us investigate CG(v1) and its Sy-
low p-subgroup P . Since G acts transitively on Ω and thus on {V1, . . . , Vm}, we see
that CG(v1) ≤ StabG(Ω1) ∩ StabG(Ω2) ∩ StabG(Ω3). As (StabG(Ω1) ∩ StabG(Ω2) ∩
StabG(Ω3))/K is a trivial group, it forces that

P ≤ K ∩CG(v1) ∩ P = CK(v1) ∩ P.

Observing that all groups Vi are normal in K, we have

CK(v1) = (
⋂

i∈Ω1

CK(θi)) ∩ (
⋂

i∈Ω2

CK(λi)) ∩ (
⋂

i∈Ω3

CK(χi)).

We get the required result that

P ≤ (
⋂

i∈Ω1

(CK(θi) ∩ P )) ∩ (
⋂

i∈Ω2

(CK(λi) ∩ P ) ∩ (
⋂

i∈Ω3

(CK(χi) ∩ P )) ≤
m
⋂

i=1

Oi = O.

Similarly all Sylow p-subgroups of CG(v2) and CG(v3) are contained in O.
We finally assume that n = 9, and G/K ∼= AGL(2, 3) or G/K ∼= ASL(2, 3). We

set Ω1 = {1, 2, 3, 4}, Ω2 = {5, 6, 7}, and Ω3 = {8, 9}. We see that StabG/K(Ω1) ∩
StabG/K(Ω2) ∩ StabG/K(Ω3) is a 2-group.
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Set

v1 =
∏

i∈Ω1

θi ·
∏

i∈Ω2

λi ·
∏

i∈Ω3

χi, v2 =
∏

i∈Ω1

λi ·
∏

i∈Ω2

θi ·
∏

i∈Ω3

χi, v3 =
∏

i∈Ω1

λi ·
∏

i∈Ω2

χi ·
∏

i∈Ω3

θi.

Clearly, v1, v2 and v3 have different degrees. Let us investigate CG(v1) and its Sy-
low p-subgroup P . Since G acts transitively on Ω and thus on {V1, . . . , Vm}, we see
that CG(v1) ≤ StabG(Ω1) ∩ StabG(Ω2) ∩ StabG(Ω3). As (StabG(Ω1) ∩ StabG(Ω2) ∩
StabG(Ω3))/K is a 2-group, it forces that

P ≤ K ∩CG(v1) ∩ P = CK(v1) ∩ P.

Observe that all Vis are normal in K, we have

CK(v1) = (
⋂

i∈Ω1

CK(θi)) ∩ (
⋂

i∈Ω2

CK(λi)) ∩ (
⋂

i∈Ω3

CK(χi)).

We get the required result that

P ≤ (
⋂

i∈Ω1

(CK(θi) ∩ P )) ∩ (
⋂

i∈Ω2

(CK(λi) ∩ P ) ∩ (
⋂

i∈Ω3

(CK(χi) ∩ P )) ≤
m
⋂

i=1

Oi = O.

Similarly all Sylow p-subgroups of CG(v2) and CG(v3) are contained in O. �

3. On p-parts of p-Brauer character degrees

It is a fundamental fact in block theory that if an ordinary irreducible character
χ is such that χ(1)p = |G|p, for a prime p, then its reduction modulo p gives an
irreducible Brauer character of the same degree. Hence then ep(G) ≤ ēp(G), and the
bounds obtained with respect to ordinary characters still hold in the case of p-Brauer
characters.
For the solvable case, the problems in this paper have been studied in [25] and certain

bounds were obtained; more explicitly, it was shown that for a finite solvable group G
with Op(G) = 1, logp |G|p ≤ 96ēp(G) and logp |G|p) ≤ 683eclp(G). We greatly improve
those bounds, and we will obtain corresponding results for arbitrary finite groups.
We first note that ifN is a normal subgroup ofG, then it is easy to see that ēp(G/N) ≤

ēp(G) and ēp(N) ≤ ēp(G). We shall use this fact freely in the following arguments.

The following lemma is due to Martin Isaacs [14].

Lemma 3.1. Let P be a nontrivial p-group that acts faithfully on a group H, where |H|
is not divisible by p. Then there exists an element x ∈ H such that |CP (x)| ≤ |P |1/2.

3.1. The solvable case.

Theorem 3.2. Let G be a finite solvable group with Op(G) = 1, where p ≥ 5; set

n = ēp(G). Then |G|p ≤ p2.5n.

Proof. Let |G|p = pa. By [33], the group G has a p-block of defect d ≤ 3
5
a. Since

a− d ≤ n (see [13, Section 15]), we obtain a ≤ 5
2
n. Hence the claim holds. �
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Remark 3.3. For G a group of odd order with Op(G) = 1, Espuelas and Navarro have
shown in [5] that there is in fact a p-block of defect d ≤ ⌊a/2⌋ (and this bound is best
possible). Using the same argument (and notation) as above, we then obtain the better
bound |G|p ≤ p2n in Theorem 3.2. Already in [5] the question is posed whether for
finite groups with Op(G) = 1 and p ≥ 5, such p-blocks of small defect always exist;
clearly, this would then also give a better bound in Theorem A, for p ≥ 5. It was
already noticed in [5] that for p = 2 for example the group G = A7 has no 2-block of
the desired small defect 1; note that we still have |G|2 ≤ 22n in this case. However, the
example G = M22 (discussed later) shows that for p = 2 the bound |G|2 ≤ 22n does not
hold in general; there may still be room to improve the bounds given in Theorem A,
though.

Theorem 3.4. Let G be a finite solvable group with Op(G) = 1 and set n = ēp(G).
Then |G|p ≤ p15n if p = 2 or p = 3.

Proof. By Gaschütz’s theorem, G/F(G) acts faithfully and completely reducibly on
Irr(F(G)/Φ(G)). Since p ∤ |F(G)/Φ(G)|, Irr(F(G)/Φ(G)) = IBr(F(G)/Φ(G)). It fol-
lows from [32, Theorem 3.3] that there exists λ ∈ IBr(F(G)/Φ(G)) such that T =
CG(λ) ≤ F8(G).
Let Ki+1 = Fi+1(G)/Fi(G) and let Ki+1,p be the Sylow p-subgroup of Ki+1 for all i ≥

1. We know that Ki+1,p acts faithfully and completely reducibly on Ki/Φ(G/Fi−1(G)).
It is clear that we may write Ki/Φ(G/Fi−1(G)) = Vi1 + Vi2 where Vi1 is the p-part of
Ki/Φ(G/Fi−1(G)) and Vi2 is the p′-part of Ki/Φ(G/Fi−1(G)) for all i ≥ 1.
We observe that Ki+1,p acts faithfully and completely reducibly on Irr(Vi2) for all

i ≥ 1. Since IBr(Vi2) = Irr(Vi2), we have |Ki+1,p| ≤ p2n by Lemma 3.1.
Next, we show that |G : T |p ≤ pn.
Take χ ∈ IBr(G) lying over λ. Then |G : T |p divides χ(1), which is at most pn.
We know from before that |Ki,p| ≤ p2n for 2 ≤ i ≤ 8. This implies that |G|p ≤

(p2n)7 · pn = p15n. �

3.2. The p-solvable case.

We now obtain bounds for p-solvable groups and then extend those to arbitrary
groups.

Theorem 3.5. Let G be a p-solvable group for an odd prime p. Assume that G has no

nontrivial solvable normal subgroup. Then there exists χ ∈ IBrp(G) such that χ(1)p ≥
√

|G|p.

Proof. Since G has no nontrivial solvable normal subgroup, the socle L of G can been
written as L = L1 × · · · × Ln, where Li = Si1 × · · · × Siti is minimal normal in G, and
Si1, . . . , Siti are isomorphic to a nonabelian simple group Si.
We observe that since G is p-solvable, p ∤ |L|. Thus IBrp(Li) = Irr(Li) and IBrp(L) =

Irr(L).
Write Oi =

⋂ti
j=1NG(Sij) and O =

⋂n
i=1Oi. Clearly O and all Oi are normal in G,

all Sij are normal in Oi and O. Repeatedly using Dedekind’s Modular Law, we have
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that

L =

n
⋂

i=1

ti
⋂

j=1

SijCG(Sij).

This implies that

O/L = O/

n
⋂

i=1

ti
⋂

j=1

SijCG(Sij) .
∏

i,j

NG(Sij)/(SijCG(Sij)) .
∏

i,j

Out(Sij).

Since all Sij are p-solvable, Out(Sij) has a normal cyclic Sylow p-subgroup (for exam-
ple, [20, Lemma 2.3(ii)]). Thus O/L has a normal and abelian Sylow p-subgroup.
By Lemma 2.1, it is easy to find an irreducible character µ of L such that CO(µ) is

a p′-group. Hence there exists an irreducible constituent χ1 of µG such that

χ1(1)p ≥ |O|p.

Also, by Theorem 2.4, we may find λi ∈ IBrp(Li) such that CG(λi) ≤ Oi for each i. Set
λ =

∏

i λi and let χ2 be an irreducible constituent of λG. Since all Li are normal in G,
we have

CG(λ) =
⋂

i

CG(λi) ≤
⋂

i

Oi = O.

This implies that
χ2(1)p ≥ |G/O|p.

Thus there exists χ ∈ {χ1, χ2} such that χ(1)p ≥
√

|G|p. �

3.3. The general case.

For a group G, let b(G) denote the largest degree of an irreducible character of G.

Lemma 3.6. Let G be a finite group, P ∈ Sylp(G) and P̄ = P/Op(G); set n = ēp(G).

Assume that |G : Op(G)|p ≤ pkn. Then b(P̄ ) ≤ pkn/2 and dl(P̄ ) ≤ 4 + log2 n + log2 k.

Proof. Clearly, b(P̄ ) ≤ |P̄ |1/2 ≤ pkn/2.
By [13, Theorem 12.26] and the nilpotency of P̄ , we have that P̄ has an abelian

subgroup B of index at most b(P̄ )4. By [28, Theorem 5.1], we deduce that P̄ has a
normal abelian subgroup A of index at most |P̄ : B|2. Thus, |P̄ : A| ≤ |P̄ : B|2 ≤
b(P̄ )8s, where b(P̄ ) = ps. By [11, Satz III.2.12], dl(P̄ /A) ≤ 1+ log2(8s) and so dl(P̄ ) ≤
2+log2(8s) = 5+log2(s). Since s is at most kn/2, we have dl(P̄ ) ≤ 4+log2 n+log2 k. �

Theorem 3.7. Let G be a finite p-solvable group for an odd prime p, P ∈ Sylp(G) and

P̄ = P/Op(G); set n = ēp(G). We set k = 4.5 if p ≥ 5, and k = 17 if p = 3. Then

|G : Op(G)|p ≤ pkn, b(P̄ ) ≤ pkn/2, and dl(P̄ ) ≤ 4 + log2 n + log2 k.

Proof. We first prove the assertion in the case when p ≥ 5. In view of Lemma 3.6, we
only need to show that |G : Op(G)|p ≤ p4.5n.
Let T be the maximal normal solvable subgroup of G. Since Op(G) ≤ T , Op(T ) =

Op(G). Since T ⊳G, pn+1 does not divide λ(1) for all λ ∈ IBrp(T ). Thus by Theorem 3.2,
|T : Op(G)|p ≤ p2.5n.

Let G̃ = G/T and Ḡ = G̃/F∗(G̃). It is clear that F∗(G̃) is a direct product of finite
non-abelian simple groups. Since G̃ is p-solvable, p ∤ |F∗(G̃)|.
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By Theorem 3.5, |Ḡ|p ≤ p2n, and we are done in this case.
We now consider the case when p = 3 and we only need to show that |G : Op(G)|p ≤

p17n in view of Lemma 3.6. The proof is similar to the previous case when p ≥ 5 but
using Theorem 3.4 instead of Theorem 3.2. �

By the work of [6], and stated explicitly in [20, Lemma 3.1], we have the following
result that is used in both the character context as well as the context of conjugacy
classes:

Lemma 3.8. Let S be a finite non-abelian simple group and let p be a prime dividing

|S|. Then |S|p > |Out(S)|p.

In dealing with the simple groups, we need the following result which completes [31,
Theorem 2.5] in that the remaining cases of alternating groups (An for n ∈ {22, 24, 26})
are treated, and it is a slight correction as the exception in the case of A7 at p = 2 was
overlooked.

Theorem 3.9. Let S be a finite non-abelian simple group, and let p be a prime divisor

of |S|. Then there exists φ ∈ IBrp(S) such that

|Aut(S)|p < φ(1)2p

except in the following cases:

- p = 2, S = M22, then |Aut(S)|2 = 28, and ē2(S) = 1;
- p = 2, S = A7, then |Aut(S)|2 = 24, and ē2(S) = 2;
- p = 3, S = A7, then |Aut(S)|3 = 32 and ē3(S) = 1.

Proof. The precise statements in the listed exceptional cases are checked using the
information on Brauer characters provided in tables coming from GAP [7]. If we are
not in one of these cases, [31, Theorem 2.5] (in the corrected version, including the
exception for A7 at p = 2) tells us that there are possibly only the cases of S = An with
n ∈ {22, 24, 26} at p = 2 where the desired inequality might not hold.
For n = 22, 24 and 26, we have |Aut(S)|2 = 219, 222 and 223, respectively; in these

cases, the 2-Brauer character tables are not available, and using a similar argument
as in [31] for finding a suitable Brauer character in a 2-block of smallest defect is not
strong enough. So we have to use other methods to find φ ∈ IBr2(S) such that φ(1)2 is
large.
We consider the Specht modules Sλ of Sn labelled by the partitions (10, 7, 4, 1) of 22,

(14, 7, 2, 1) of 24, and (14, 7, 4, 1) of 26; the 2-powers in the degrees are 213, 212 and 214,
respectively, by the hook formula. By the Carter criterion [16, 24.9], in all three cases
the 2-modular reduction is the corresponding irreducible module Dλ. Restricting these
modules to An gives irreducible modules for An by Benson’s criterion [2]. Hence the
2-powers in the degrees of the corresponding 2-Brauer characters are sufficiently large,
as required. �

Corollary 3.10. Let S be a finite non-abelian simple group, and let p be a prime

divisor of |S|. Then there exists φ ∈ IBrp(S) such that |Aut(S)|p < φ(1)2p if p ≥ 5,

|Aut(S)|p < φ(1)3p if p = 3, and |Aut(S)|p < φ(1)9p if p = 2.

Proof. This is a direct corollary of Theorem 3.9. �
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Hypothesis 3.11. Let p be a prime and let N = W1× · · ·×Ws be a normal subgroup
of a finite group G with the following assumptions: CG(N) = 1; every Wi, 1 ≤ i ≤ s,
is a non-abelian simple group of order divisible by p.

Lemma 3.12. Let G, N , p be as in Hypothesis 3.11. If there exists φi ∈ IBrp(Wi) such
that |Aut(Wi)|p < φi(1)

k
p for every i = 1, . . . , s, then there exists φ ∈ IBrp(N) such that

|G|p < φ(1)kp.

Proof. The proof is the same as [29, Lemma 2.6]. �

Theorem 3.13. Let G be a finite group, p be a prime, P ∈ Sylp(G) and P̄ = P/Op(G);
set n = ēp(G). We set k = 6.5 if p ≥ 5, k = 20 if p = 3, and k = 24 if p = 2. Then

|G : Op(G)|p ≤ pkn, b(P̄ ) ≤ pkn/2, and dl(P̄ ) ≤ 4 + log2 n + log2 k.

Proof. Let T be the maximal normal p-solvable subgroup of G. Since Op(G) ≤ T ,
Op(T ) = Op(G). Since T ⊳ G, pn+1 does not divide λ(1), for all λ ∈ IBrp(T ).
If p ≥ 5, then |T : Op(G)|p ≤ p4.5n by Theorem 3.7. If p = 3, then |T : Op(G)|p ≤ p17n

by Theorem 3.7. If p = 2, then |T : Op(G)|p ≤ p15n by Theorem 3.4.
We now consider Ḡ = G/T , we know that F∗(Ḡ) is a direct product of non-abelian

simple groups, where p divides the order of each of them.
Since Ḡ and F∗(Ḡ) satisfy Hypothesis 3.11, by Lemma 3.12 and Corollary 3.10, we

have that |Ḡ|p ≤ p2n if p ≥ 5, |Ḡ|p ≤ p3n if p = 3, and |Ḡ|p ≤ p9n if p = 2.
Thus, we have,

(1) |G : Op(G)|p ≤ |G : T |p|T : Op(G)|p ≤ p6.5n if p ≥ 5.
(2) |G : Op(G)|p ≤ |G : T |p|T : Op(G)|p ≤ p20n if p = 3.
(3) |G : Op(G)|p ≤ |G : T |p|T : Op(G)|p ≤ p24n if p = 2.

The bounds for b(P̄ ) and dl(P̄ ) follow from Lemma 3.6. �

4. On p-parts of p-regular conjugacy class sizes

We now start to prove results related to the p-parts of p-regular conjugacy class sizes.
With respect to the p-regular class size version of the problem, we make the following

observations. We will use the following results very often in the proofs so we state them
here.

Lemma 4.1. Let N be a normal subgroup of G. Then

(1) If x ∈ N , |xN | divides |xG|.
(2) If x ∈ G, |(xN)G/N | divides |xG|.

Remark 4.2. We first observe that the condition pk does not divide |xG| for every p-
regular element x ∈ G is inherited by all the normal subgroups of G and all the quotient
groups of G. Since the normal subgroups case easily follows from Lemma 4.1(1), we
will just explain for the quotient groups. Let N ⊳G, and T be a p-regular class of G/N
then we have a p-regular element xN ∈ G/N such that T = (xN)G/N . We may write
x = yz, where y is a p′-element, z is a p-element and yz = zy. Let H = 〈x〉N , we know
that |H/N | is a p′ number, and thus z ∈ N . We have xN = yN , and T = (yN)G/N .
We have that |T | | |yG| and the result follows.
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Theorem 4.3. Let G be a solvable group with Op(G) = 1, and let P ∈ Sylp(G). Set

n = eclp(G). Then |G|p ≤ p15n if p = 2 or p = 3. In particular, ep(G) ≤ 15n,
b(P ) ≤ p7.5n, and dl(P ) is bounded by a logarithmic function of n.

Proof. By Gaschütz’s theorem, G/F(G) acts faithfully and completely reducibly on
F(G)/Φ(G). Since p ∤ |F(G)/Φ(G)|, every element in F(G)/Φ(G) is a p′-element. It
follows from [32, Theorem 3.3] that there exists x ∈ F(G)/Φ(G) such that T = CG(x) ≤
F8(G).
Let Ki+1 = Fi+1(G)/Fi(G) and let Ki+1,p be the Sylow p-subgroup of Ki+1 for all i ≥

1. We know that Ki+1,p acts faithfully and completely reducibly on Ki/Φ(G/Fi−1(G)).
It is clear that we may write Ki/Φ(G/Fi−1(G)) = Vi1 + Vi2 where Vi1 is the p-part of
Ki/Φ(G/Fi−1(G)) and Vi2 is the p′-part of Ki/Φ(G/Fi−1(G)) for all i ≥ 1.
We observe that Ki+1,p acts faithfully and completely reducibly on Vi2 for all i ≥

1. Since p ∤ |Vi2|, every element in Vi2 is a p′-element. We have |Ki+1,p| ≤ p2n by
Lemma 3.1.
Next, we show that |G : T |p ≤ pn.
We now consider |xG|; clearly |G : T |p divides |xG|, hence is at most pn.
We know from before that |Ki,p| ≤ p2n for 2 ≤ i ≤ 8. This implies that |G|p ≤

(p2n)7 · pn = p15n. �

Theorem 4.4. Let G be a solvable group with Op(G) = 1 where p ≥ 5 is a prime, and

let P ∈ Sylp(G); set n = eclp(G). Then |G|p ≤ p2.5n. In particular, ep(G) ≤ 2.5n,
b(P ) ≤ p1.25n, and dl(P ) is bounded by a logarithmic function of n.

Proof. Let |G|p = pa. By [33], the group G has a p-block of defect d ≤ 3
5
a. Now G

has a p-regular element x ∈ G such that |CG(x)|p = pd (see [13, Section 15]). Hence
|xG|p = pa−d, which implies that a− d ≤ n, and thus a ≤ 5

2
n. �

We now state the class size version of Theorem 2.4.

Theorem 4.5. Let V E G, where G/V is p-solvable for an odd prime p, and V is

a direct product of isomorphic non-abelian simple groups S1, . . . , Sn. Suppose that G
acts transitively on the groups S1, . . . , Sn, and write O =

⋂

k NG(Sk). Then there exist

nonidentity v1, v2 and v3 ∈ cl(V ) of different sizes such that all Sylow p-subgroups of

CG(vj) are contained in O for all j = 1, 2, 3.

Proof. The proof is similar to the proof of Theorem 2.4 but using Lemma 2.3 instead
of Lemma 2.2. �

We now prove the conjugacy class analogues of Theorem 3.5 and Theorem 3.7.

Theorem 4.6. Let G be a p-solvable group for an odd prime p. Assume that G has

no nontrivial solvable normal subgroup. Then there exists C ∈ clp′(G) such that |C|p ≥
√

|G|p.

Proof. The proof is similar to the proof of Theorem 3.5 but using Theorem 4.5 instead
of Theorem 2.4. �

Lemma 4.7. Let S be a finite non-abelian simple group and p ≥ 3 be a prime divisor

of |S|, then there exists C ∈ clp′(S) such that |Aut(S)|p < |C|2p.
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Proof. For the simple groups of Lie type and any prime p, or the alternating groups
and p ≥ 5, there is always a p-block of defect 0. Hence there is a p-regular element
x ∈ G such that |CG(x)|p = 1, and thus |xG|p = |G|p. Then the result follows from
Lemma 3.8.
Thus one only needs to consider the alternating groups and p = 3.
First assume that n is odd. If α is an n-cycle, then α ∈ An and |clAn

(α)| = 1
2
(n−1)!.

If β is an (n− 2)-cycle, then β ∈ An and |clAn
(β)| = n!/((n − 2)2). Now if 3 ∤ n, then

the class of α satisfies the condition. If 3 | n, then 3 ∤ n− 2 and the class of β satisfies
the condition.
Now let n be even. If α is an (n− 1)-cycle, then α ∈ An and |clAn

(α)| = 1
2
· n!
n−1

. If

β is an (n − 3)-cycle, then β ∈ An and |clAn
(β)| = n!

(n−3)·6
. Now if 3 ∤ n − 1, then the

class of α satisfy the condition. If 3 | n − 1, then 3 ∤ n− 3 and the class of β satisfies
the condition.
For sporadic groups, the result can be checked by using [4]. �

Given a group G, we write b∗(G) to denote the largest size of the conjugacy classes
of G.

Lemma 4.8. Let G be a finite group, P ∈ Sylp(G) and P̄ = P/Op(G); set n = eclp(G).

Assume that |G : Op(G)|p ≤ pkn. Then b∗(P̄ ) ≤ pkn, and |P̄ ′| ≤ pkn(kn+1)/2.

Proof. It is clear that for x ∈ P̄ , we have |xP̄ | = |P̄ : CP̄ (x)| ≤ pkn.
To obtain the bounds for the order of P̄ ′ it suffices to apply a theorem of Vaughan-Lee

[12, Theorem VIII.9.12]. �

Theorem 4.9. Let G be a finite p-solvable group for an odd prime p, P ∈ Sylp(G), P̄ =

P/Op(G); set n = eclp(G). Then there exists a constant k such that |G : Op(G)|p ≤ pkn,
b∗(P̄ ) ≤ pkn, and |P̄ ′| ≤ pkn(kn+1)/2 where k = 4.5 if p ≥ 5, and k = 17 if p = 3.

Proof. This is the class size version of Theorem 3.7, and the proof is similar. We first
obtain the bound for |G : Op(G)|p, and then apply Lemma 4.8 to obtain the other
parts. �

Lemma 4.10. Let G, N , p be as in Hypothesis 3.11. If there exists Ci ∈ clp′(Wi) such
that |Aut(Wi)|p < |Ci|

k
p for every i = 1, . . . , s, then there exists C ∈ clp′(N) such that

|G|p < |C|kp.

Proof. The proof is the same as that of [29, Lemma 2.6]. �

Theorem 4.11. Let G be a finite group, p a prime, P ∈ Sylp(G) and P̄ = P/Op(G);

set n = eclp(G). We set k = 6.5 if p ≥ 5, k = 19 if p = 3, and k = 17 if p = 2. Then

|G : Op(G)|p ≤ pkn, b∗(P̄ ) ≤ pkn, and |P̄ ′| ≤ pkn(kn+1)/2.

Proof. Let T be the maximal normal p-solvable subgroup of G. Since Op(G) ≤ T ,
Op(T ) = Op(G). Since T ⊳ G, pn+1 does not divide |C| for all C ∈ clp′(T ).
If p ≥ 5, then |T : Op(G)|p ≤ p4.5n by Theorem 4.9. If p = 3, then |T : Op(G)|p ≤ p17n

by Theorem 4.9. If p = 2, then |T : Op(G)|p ≤ p15n by Theorem 4.3.
We now consider Ḡ = G/T , we know that F∗(Ḡ) is a direct product of non-abelian

simple groups, where p divides the order of each of them.
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Since Ḡ and F∗(Ḡ) satisfy Hypothesis 3.11, by Lemma 4.10 and Lemma 4.7, we have
that |Ḡ|p ≤ p2n.
Thus, we have,

(1) |G : Op(G)|p ≤ |G : T |p|T : Op(G)|p ≤ p6.5n if p ≥ 5.
(2) |G : Op(G)|p ≤ |G : T |p|T : Op(G)|p ≤ p19n if p = 3.
(3) |G : Op(G)|p ≤ |G : T |p|T : Op(G)|p ≤ p17n if p = 2.

The bounds for b∗(P̄ ) and |P̄ ′| follow from Lemma 4.8. �
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