
ar
X

iv
:1

80
4.

08
26

5v
2 

 [
cs

.I
T

] 
 1

4 
A

ug
 2

02
0

1

Deterministic and Randomized Diffusion based

Iterative Generalized Hard Thresholding (DiFIGHT)

for Distributed Sparse Signal Recovery

Samrat Mukhopadhyay1, Student Member, IEEE, and Mrityunjoy Chakraborty2, Senior Member, IEEE

Abstract—In this paper we propose a distributed iterated
hard thresholding algorithm termed DiFIGHT over a network
that is built on the diffusion mechanism and also propose a
modification of the proposed algorithm, termed MoDiFIGHT,
that has low complexity in terms of communication in the
network. We additionally propose four different strategies termed
RP, RNP, RGPr , and RGNPr that are used to randomly select
a subset of nodes that are subsequently activated to take part
in the distributed algorithm, so as to reduce the mean number
of communications during the run of the distributed algorithm.
We present theoretical estimates of the long run communication
per unit time for these different strategies, when used by the two
proposed algorithms. Also, we present analysis of the two pro-
posed algorithms and provide provable bounds on their recovery
performance with or without using the random node selection
strategies. Finally we use numerical studies to show that both
when the random strategies are used as well as when they are not
used, the proposed algorithms display performances far superior
to distributed IHT algorithm using consensus mechanism .

Index Terms—Distributed estimation, Diffusion network, Iter-
ative Hard Thresholding (IHT).

I. INTRODUCTION

In the distributed setting there is a network of nodes,

where each node v ∈ {1, 2, · · · , L}, individually solves the

following problem:

min
z∈RN

fi(z)s.t. ‖z‖0 ≤ K.

Here the functions fv, v = 1, 2, · · · , L are cost functions

which are generally chosen to satisfy some kind of restricted

convexity assumptions, i.e they are generally designed so that

their curvatures have some specific properties. For example, in

the distributed compressed sensing setting, a node v measures

a K-sparse vector x ∈ R
n, and stores the m dimensional

(m < n) measurement as yv = Φvx + ev, where ev is

measurement noise. A suitable cost function in this case is

fv(z) = ‖yv −Φvz‖22, and to impose conditions on its

curvature, the matrix Φv is assumed to satisfy some kind of

restricted isometry property [1]. However, in the collaborative,

or distributed setting, the nodes do not work alone and sparse

recovery algorithms working at neighboring nodes exchange

information among themselves during the run of the algorithm.

This information exchange through collaboration helps the

true estimate to emerge, often in a faster or in other more

advantageous ways compared to non-cooperative setting.
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There are many practical problems which naturally fits in

this distributed setting, such as the problem of distributed

classification in machine learning [2], or data fitting in statis-

tics [3] where nodes may contain confidential data (medical

records, transaction records etc.) and thus cannot transfer

data to a centralized processor. In this scenario, thus it is

assumed that their is no fusion center available, and all

the operations have to be performed locally.The literature

on distributed recovery is relatively recent [4]–[6]. These

first contributions propose natural ways to distribute known

centralized methods, and obtain interesting results in terms

of convergence and estimation performance. However they

do not consider the problem of the insufficient computation

and memory resources. Distributed basis pursuit algorithms

for sparse approximations when the measurement matrices are

not globally known have been studied in [4], [6]. In these

algorithms, sensors collaborate to estimate the original vector,

and, at each iteration, they update this estimate based on

communication with their neighbors in the network. Most of

these algorithms fall into the following families of algorithms:

distributed subgradient methods (DSM) [7], [8], distributed

alternating direction method of multipliers (ADMM) [9], and

distributed iterative soft thresholding algorithm (DISTA) [10]–

[12]. All of these algorithms, in one form or other use the

consensus optimization paradigm, where the nodes in a neigh-

borhood cooperatively minimize a global cost function while

minimizing their individual local cost function. However, in

the literature of adaptive networks, there is a different family

of algorithms, called diffusion, which are studied extensively

by Sayed et. al [13]–[18], and is shown to exhibit superior

performances compared to consensus strategies [13], and also

to outperform all noncooperative strategies. These strategies

can be traced back to the generalized distributed communica-

tion and processing based model for distributed computation,

proposed by Tsitsiklis [19]. It is only recently that distributed

sparse recovery algorithms have been designed to incorporate

diffusion as the underlying mechanism. Patterson et al [8]

have designed the distributed hard thresholding (DIHT) and

the consensus based distributed hard thresholding (CB-DIHT)

algorithms where one parent node forms a spanning tree and

over several time steps collects estimates of the gradients of

the functions from all the nodes in the network. This strategy

is a reminiscent of the diffusion mechanism. More recently,

another distributed hard thresholding algorithm DiHaT is

proposed and analyzed by Chouvardas et al [20]. Also Zaki et

al [21] have proposed and analyzed a greedy distributed algo-
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rithm called the network gradient pursuit (NGP), and Zaki et

al [22] have analyzed the distributed hard thresholding pursuit

(DHTP) algorithm, originally proposed by Chouvardas [20].

All of these algorithms have diffusion as the underlying

mechanism.

On a different front, recently Ravazzi et al [23] have

proposed distributed algorithms with low communication over-

head where only a few nodes are activated at each time step.

However, the algorithms are modified from consensus IHT

algorithm. It is the goal of this paper to propose and analyze

a distributed IHT algorithm that minimizes general convex

functions by using diffusion as its underlying mechanism and

to modify it to generate algorithms where only a few nodes

are selected per time step, resulting in reduced communication

complexity. Specifically:

• We propose and describe a distributed IHT algorithm

termed DiFIGHT that uses diffusion mechanism to min-

imize general convex functions available to individual

nodes.

• We also propose and describe a simple low complexity

modification of the DiFIGHT algorithm, termed MoDi-

FIGHT that, unlike diffusion, exchanges only estimates

and thus uses less communication bandwidth.

• We propose four strategies that are used to randomly

select and activate only a subset of nodes at each time

step, thus reducing communication overhead, and also

give theoretical estimates on the long run communication

overhead per unit time required by the two different

algorithms when these strategies are used.

• We analyze the algorithms with and without using the

random node selection strategies and provide provable

performance bounds.

• We numerically evaluate the performances of these differ-

ent algorithms with and without random node selection

strategies and establish the superiority of diffusion mech-

anism over its consensus counterparts.

II. NOTATION

The following notations have been used throughout the

paper :‘t’ in superscript indicates transposition of matrices /

vectors.H denotes the set of all the indices {1, 2, · · · , n}.

For any S ⊆ H, xS denotes the vector x restricted to S, i.e.,

xS consists of those entries of x that have indices belonging

to S. 1 denotes a L × 1 vector of 1’s. The operator HK(·)
returns the K-best approximation of a vector, i.e., for any

vector x ∈ R
n, HK(x) = argminz∈Rn:‖z‖0≤K

‖z − x‖2.

We denote by ∇Sf , the restricted vector (∇f)S , for any

S ⊆ H. Also, we denote by ∇Kf , the vector ∇f restricted

to the subset corresponding to its K magnitude-wise largest

coordinates. The symmetric difference ∆, between two sets

A,B, is defined as A∆B := (A \B) ∪ (B \B).

III. DIFFUSION BASED HARD THRESHOLDING

A. Deterministic strategies

The DiFfusion based Iterative Generalized Hard Threshold-

ing (DiFIGHT) and its low complexity modification, the Mod-

ified DiFfusion based Iterative Generalized Hard Thresholding

TABLE I: ALGORITHM: DiFIGHT and MoDiFIGHT

Input: Number of nodes L, the combining matrix A such that At
1 = 1,

sparsity level K; Initial estimates x0
i , 1 ≤ i ≤ L; step sizes µi >

0, i = 1, 2, · · · , L; maximum number of iterations kit;

While (k < kit)

For i = 1 to L
ψk+1

i = xk
i − µi∇fi(xk

i )

ψ̂
k+1
i =

{

ψk+1
i , DiFIGHT

HK

(

ψk+1
i

)

, MoDiFIGHT

End For

For i = 1 to L
xk+1
i = HK

(

∑L
j=1 ajiψ̂

k+1
j

)

End For
k = k + 1

End While

(MoDiFIGHT) algorithm are described in Table I. There are

L nodes in the network. The combining matrix A ∈ R
L×L

specifies the connectivity between the different nodes in the

network. The (i, j)th entry ofA, denoted by aij ∈ [0, 1], is the

weight of the edge between nodes i, j. The graph V formed

by the nodes and the matrix A is assumed to be undirected.

Furthermore, the matrix A is assumed to be left stochastic,

i.e., At
1 = 1. For any node v in the graph represented by the

combination matrix A, the neighborhood of v is denoted by

Nv, defined as Nv = {u ∈ V : avu > 0}. The elements of Nv

are called the neighbors of v. We assume that for each node

v, avv > 0, so that each node is a neighbor of itself. Each

node i has the function fi(·) available with it.

B. Randomized strategies

We also propose IHT based diffusion algorithms where

all the nodes need not participate in the diffusion process

at each time step. This absence of participation results into

significant reduction in the amount of communication between

the neighbors of the network, that would otherwise be required

while exchanging values of estimates and gradient vectors.

Inspired by Ravazzi et al [11], we propose the following four

different strategies for selecting the participating nodes:

1) Random Persistence (RP): In this strategy, at a time

step k, only one node is selected at random according to

a probability distribution {p1 · · · , pL} over the nodes in

the network. The probability distribution satisfies pv > 0
for each node v in the network, and

∑
v∈V pv = 1,

implying that each node has a positive probability of

getting selected at a time step. Thus the selected group

is G = {v}.

2) Random Neighborhood Persistence (RNP): As in the

RP strategy, in this strategy too, at a time step k,

a node v is selected with probability pv, where the

probability distribution satisfies the same conditions as

in the RP strategy. However, unlike the RP strategy,

the neighborhood Nv of the selected node v is also

selected for participation in the diffusion process. Thus

the selected group is G = {v} ∪ Nv .
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3) Random Group Persistence of order r (RGPr): In

this strategy a group G of r nodes is selected according

to a probability distribution {pG} over all possible
(
L
r

)

groups of nodes size r. Here the probability distribution

is chosen such that pG > 0 for all such groups, and∑
G∈Gr

pG = 1, where Gr is the collection of all subsets

of {1, 2, · · · , L} of size r. Here the selected group of

nodes is G.
4) Random Group Neighborhood Persistence of order r

(RGNPr): In this strategy, a group of nodes G̃ is chosen

with probability pG̃ and G̃ as well the union of their

neighborhoods is selected. The probability distribution

pG̃ is assumed to satisfy the same conditions as in the

RGPr strategy. The selected group is G = G̃∪u∈G̃ Nu.

Once a group is selected, the diffusion process is applied to all

the nodes in the group. The resulting algorithms are described

in Table II.

TABLE II: ALGORITHM: Randomized DiFIGHT and MoDi-

FIGHT

Input: Number of nodes L, the combining matrix A such that
At

1 = 1, sparsity level K; Initial estimates x0
i , 1 ≤ i ≤

L; step sizes µi > 0, i = 1, 2, · · · , L; maximum number
of iterations kit;

While (k < kit)

For v = 1 : L
if v ∈ G or Nv ∩G 6= ∅

ψk+1
v = xk

v − µv∇fv(xk
v)

ψ̂
k+1
v =

{

ψk+1
v , DiFIGHT

HK

(

ψk+1
v

)

, MoDiFIGHT

end if

End For
For v ∈ G

xk+1
v = HK

(

∑

u∈Nv
auvψ̂

k+1
u

)

End For

xk+1
u = xk

u ∀u /∈ G
k = k + 1

End While

C. Discussion on communication complexities

We present a comparative discussion on the mean number

of communication required by the nodes for the different

algorithms. Note that the communication complexity depends

on both the diffusion mechanism as well as the strategy

of selection of group of participating nodes. Since the total

communication complexity of the network is just the sum

of the complexities of individual nodes, we focus on finding

out the communication complexity for some fixed node v.

We consider the time average of the number of messages

transmitted and sent by the node, which are denotes by

T (v) = limt→∞

∑
t
k=1 Tk(v)

t and Rv = limt→∞

∑
t
k=1 Rk(v)

t
respectively, where Tk(v), Rk(v) are the number of messages

transmitted and received respectively, by the node v at time

step k. Note that, in all the four strategies adopted, for each

node v, {Tk(v)}k≥0 ({Rk(v)}k≥0) is an independent and

identically distributed (i.i.d.) sequence of bounded random

variables, which ensures, by the strong law of large numbers

(SLLN), that the limits T (v) and R(v) exist for all nodes v.

To carry out the analysis, we denote by dv the degree of the

node v, which is the number of neighbors of node v, excluding

itself.

Before proceeding to find expressions for T (v), R(v) for

the different algorithms, we point out that the communication

complexities of DiFIGHT and MoDiFIGHT are intrinsically

distinct because of the fact that for an update to occur, in

DiFIGHT, each transmitting node transmits n values, whereas,

in MoDiFIGHT each transmitting node has to perform 2K
transmissions, K for the support indices and K for the values

corresponding to those indices. Therefore, if K << n/2,

the number of communications in MoDiFIGHT can be much

smaller than that of DiFIGHT.

We first analyze the communication complexities of the

deterministic diffusion algorithms. In this case, all the nodes

of the network are chosen at every time step, so that Tk(v) =
T (v), Rk(v) = R(v), ∀k ≥ 0. Clearly, in DiFIGHT T (v) =
R(v) = ndv, while in MoDiFIGHT, T (v) = R(v) = 2Kdv.

We now carry out the analysis of T (v), R(v) and therefore

for Tk(v), Rk(v) for the randomized algorithms at a time

step k. To do that, we denote C = n, 2K for deterministic

DiFIGHT and MoDiFIGT, respectively.

First let us consider the calculation of Rk(v). Observe that

Rk(v) = CdvIk(v), where Ik(v) is an indicator random

variable taking value 1 if v ∈ Gk where Gk is the group

of nodes selected at time k by the randomized algorithm (in

which case v is referred to as a participating node at time

k) and is 0 otherwise. Clearly, for a fixed v, the sequence

{Ik(v)}k≥0 is a sequence of i.i.d. random variables. Therefore,

by SLLN,

R(v)

Cdv
= lim

t→∞

∑t−1
k=0 Ik(v)

t
= E [I0(v)] = πv a.s., (1)

where πv is the probability that the node v is participating (at

any time k ≥ 0) and is called the participation probability.

To calculate Tk(v), observe that Tk(v) is equal to C times

the number of nodes in the neighborhood of v (distinct from

v) participating at time k. Therefore,

Tk(v) = C
∑

u∈Nv\{v}

Ik(u)

=⇒ T (v)

C
= lim

t→∞

∑t−1
k=0 Tk(v)

t
=

∑

u∈Nv\{v}

πu a.s. (2)

We now evaluate πv for the different randomized strategies

proposed. We assume in the following that the probability of

selection of a node v is pv and the probability of selection

of a group of nodes G is pG. Clearly, for uniformly random

selections pv = 1/L, pG = 1/
(
L
|G|

)
.

1) For the RP strategy, only one node can be selected

at a time. Therefore, πv = pv. For uniformly random

selection, πv = 1/L.

2) For the RNP strategy the node v participates if either it is

selected (w.p. pv) or one of its neighbor is selected (w.p.∑
u∈Nn\v pu). Hence πv =

∑
u∈Nv

pu. For uniformly

random selection πv = dv+1
L .
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TABLE III: Communication complexities for uniform distribution

Strategy πv
T (v)
C

R(v)
C

RP
1

L

dv

L

dv

L

RNP
1 + dv

L

dv

L
+

∑

u∈Nv

du

L

dv(1 + dv)

L

RGPr

r

L

dvr

L

dvr

L

RGNPr
1−

r−1
∏

k=0

(

1−
dv + 1

L− k

)

if

L− (dv + 1) ≥ r, else, 1

∑

u∈Nv

πu dvπv

3) For the RGPr strategy, the node v participates if it

belongs to a group of r nodes G which contains

v. Since only one such group is selected, we have

πv =
∑

G:|G|=r, v∈G pG. For uniformly random selec-

tion πv =
(L−1
r−1)
(Lr)

= r
L .

4) For the RGNPr strategy, the node v participates if a

group of G of size r is selected such that v belongs

to the neighborhood of the nodes in G. Therefore, v
participates if

v ∈ ∪u∈GNu ⇔ G ∩ Nv 6= ∅
=⇒ πv = 1−

∑

G:|G|=r,
G∩Nv=∅

pG (3)

For uniformly random selection, we have πv = 1 −
(L−(dv+1)

r )
(Lr)

. Note that calculation of this probability

assumes that L − (dv + 1) ≥ r. Otherwise, the node

v is present in every neighborhood and thus always

participates, i.e. πv = 1, which is an example of a highly

connected node.

We enlist the values of πv, R(v)/C, T (v)/C for the different

randomized strategies for uniform distribution in Table III.

IV. THEORETICAL RESULT

Let x⋆ be a K-sparse vector. In this section, we analyze

how the distance of the iterates produced by the diffusion

algorithms from the vector x⋆ changes with each iteration.

For the purpose of our analysis a few assumptions are needed

to be imposed on the functions fi, 1 ≤ i ≤ L.

A. Preliminaries and assumptions

Definition 4.1 (Restricted Positive Definite Hessian). Suppose

that f is a twice continuously differentiable function with

Hessian ∇2f(·). Then f is said to have a Restricted Pos-

itive Definite Hessian (RPDH) with constants (αs, βs), or

(αs, βs)-RPDH if the following holds:

αs ‖x‖22 ≤ xt∇2f(u)x ≤ βs ‖x‖22 (4)

for all vectors x, u ∈ R
n such that ‖u‖0 ≤ s, ‖x‖0 ≤ s.

This property is just a variant of the Stable Restricted

Hessian (SRH) property defined in [24], which bounds the

curvature of f , when restricted to the union of all subspaces

of sparse vectors of a given sparsity. To see the implication

of the RPDH property, observe that the Hessian ∇2f(u)

is a positive semidefinite matrix ∀u, so that it admits the

unique eigen-decomposition Q(u)tD(u)Q(u), where Q(u)
is an orthogonal matrix and D(u) is a diagonal matrix.

Writing Φ(u) = D1/2(u)Q(u), we then see that ∇2f(u) =
Φ(u)tΦ(u). Then observe that the (αs, βs)−RPDH property

just implies that ∀x, u ∈ R
n such that ‖x‖0 ≤ s, ‖u‖0 ≤ s,

the matrix Φ(u) satisfies:

αs ‖x‖22 ≤ ‖Φ(u)x‖22 ≤ βs ‖x‖22 .
Thus RPDH is just a generalization of the well known Re-

stricted Isometry Property (RIP) [25] to nonlinear operators.

This RIP implication of the RPDH property is useful in

proving the following lemma:

Lemma 4.1. Let x, y, z are vectors in R
n with supports

T1, T2, T3 respectively, and let T = T1 ∪ T2 ∪ T3. Let ρ be

an arbitrary positive number. Also, let g(y, z) := y − z −
ρ(∇f(y)−∇f(z)). Then,

1)

〈x, g(y, z)〉 ≤ ρ′|T | ‖x‖2 ‖y − z‖2 , (5)

and,

2) ∥∥(g(y, z))T1

∥∥
2
≤ ρ′|T | ‖y − z‖2 , (6)

where ρ′|T | =
(∣∣∣1− ρδ

(1)
|T |

∣∣∣+ ρδ
(2)
|T |

)
, f satisfies the RPDH-

(α|T |, β|T |) property, and δ
(1)
|T | =

β|T |+α|T |

2 , δ
(2)
|T | =

β|T |−α|T |

2 .

Proof. The key observation for the proof is the following:

∇f(y)−∇f(z) =
∫ 1

0

∇2f(u)(z − y)dτ

=

∫ 1

0

Φ(u)tΦ(u)(z − y)dτ,
where, u = y + τ(z − y) and Φ(u) arises from

the eigen-decomposition of ∇2f(u) as discussed

before. To prove 1) using the eigendecomposition

of ∇2f(u), we write the inner product in

question as
∫ 1

0
〈x, (I − ρΦ(u)tΦ(u))(y − z)〉 dτ =∫ 1

0 〈xT , (IT − ρΦT (u)
t
ΦT (u))(yT − zT )〉 dτ . Then using

the RPDH-(α|T |, β|T |) property of f , or equivalently, the

RIP like property for Φ(u) of order |T |, one finds, using

Cauchy-Scwartz inequality,〈
xT , (IT − ρΦT (u)

t
ΦT (u))(yT − zT )

〉

≤ ‖xT ‖2
∥∥IT − ρΦT (u)

t
ΦT (u)

∥∥
2→2

‖yT − zT ‖2
ψ

≤
(∣∣∣1− ρδ

(1)
|T |

∣∣∣+ ρδ
(2)
|T |

)
‖x‖2 ‖y − z‖2 . (7)



5

Here step ψ follows from the following observation:

λmax

(
IT −ΦT (u)

t
ΦT (u)

)

≤ max{
∣∣1− ρα|T |

∣∣ ,
∣∣1− ρβ|T |

∣∣}

=

{
1− ρα|T | if 0 < ρ ≤ 2

α|T |+β|T |

ρβ|T | − 1 if ρ > 2
α|T |+β|T |

Since the RHS of the inequality (7) is independent of τ , the

final inequality (5) follows immediately.

For the proof of inequality (6), first construct the vector

u ∈ R
n such that uT1 = g(y, z)T1 , and uTC

1
= 0TC

1
. Then,

using the inequality (5), one obtains

〈u, g(y, z)〉 ≤ ρ′|T | ‖u‖2 ‖y − z‖2
=⇒ ‖uT1‖22 ≤ ρ′|T | ‖uT1‖2 ‖y − z‖2 ,

which, after cancellation of ‖uT1‖2 from both sides of the

above inequality results in the inequality (6). �

Before proceeding to analyze the error sequence∥∥xk+1 − x⋆
∥∥
2
, we recall a few definitions from the

theory of non-negative matrices [26].

Definition 4.2 (Non-negative matrix). A square matrix X

is said to be non-negative if for every pair of indices i, j,
(X)ij ≥ 0.

Definition 4.3 (Irreducible matrix). A square non-negative

matrix X is said to be irreducible, if for any pair of indices

i, j, ∃ a positive integer tij such that (Xtij )ij > 0.

We also recall the following classical result from Perron-

Frobenius theory [26], which is going to be useful in our

analysis.

Theorem 4.1 (Perron-Frobenius [26] ). Let X ∈ R
L×L be

a non-negative irreducible matrix. Then, the following results

hold:

1) ∃r > 0, such that r is an eigenvalue of X , and |λ| ≤ r,
for any other eigenvalue λ of X .

2) r ∈ [mini
∑

j(X)ij , maxi
∑

j(X)ij ].
3) r has algebraic multiplicity 1, and has strictly positive

right and left eigenvectors u,wt respectively.

4) If r, λ2, λ3, · · · , λs are the distinct eigenvalues of X

with multiplicities 1, m2, · · · , ms, with r > |λ2| >
· · · > |λs|, then,

• If λ2 6= 0, as k → ∞, Xk = rkuwt +
o(km2−1 |λ2|k).

• If λ2 = 0, ∀k ≥ L− 1, Xk = rkuwt.

We will also use the following simple but useful lemma:

Lemma 4.2. Let G be an undirected connected graph, with

an associated non-negative weight matrix X . Then,

1) Xt is irreducible.

2) D1XD2 is irreducible for any two diagonal matrices

D1, D2 which have strictly positive diagonal entries.

3) X +M is irreducible for any non-negative matrix M .

Proof. A short proof is delivered in Appendix A. �

We will further use the following lemma that will be useful

to find upper bounds on the norm of the error between the

iterates produced by an algorithm, and the target vector.

Lemma 4.3. Let B ∈ R
L×L, b ∈ R

L be a non-negative

matrix and a non-negative vector, respectively. Let {uk}k≥0

be a sequence of non-negative vectors in R
L such that

uk+1 4 Buk + b, k ≥ 0.
Then, if the matrix B is stable, and if u be any limit point of

the sequence {uk}n≥0, then,

u 4 (I −B)−1b.

Proof. The proof is supplied in Appendix B. �

Finally, we will use the following classical result in conver-

gence of random sequences to show almost sure convergence

of the randomized algorithms under certain conditions:

Lemma 4.4 (Almost sure convergence [27] ). If Pn(ǫ) =
P(|Xn −X | > ǫ) satisfies

∑∞
n=1 Pn(ǫ) < ∞ for all ǫ > 0,

then Xn
a.s.→ X .

B. Notation used in the main results

We now proceed to analyze the evolution of the distance

between x⋆ and the iterates produced by DiFIGHT. Before

presenting the main results, we list the notation used hereafter

in the paper:

• hk =
[∥∥xk1 − x⋆

∥∥
2
, · · · ,

∥∥xkL − x⋆
∥∥
2

]t
, ∀k ≥ 0.

• At any step k ≥ 0, 1 ≤ i ≤ L, Λki is the support set of

xki .

• ωi =
∣∣∣1− µi

βi,3K+αi,3K

2

∣∣∣+ µi
βi,3K−αi,3K

2 , 1 ≤ i ≤ L.

• Ω = diag (ω1, · · · , ωL) , M = diag (µ1, · · · , µL) .
• b = [‖∇2Kf1(x

⋆)‖2 , · · · , ‖∇2KfL(x
⋆)‖2]t.

• For any two vectors a, b ∈ R
n, the inequality a 4 b

implies that ai ≤ bi, ∀i = 1, 2, · · · , n.

C. Main results

1) Deterministic algorithms: The main results for the de-

terministic DiFIGHT algorithm are stated in theorem 4.2:

Theorem 4.2. Under the RPDH assumption, at any iteration

k, the iterate produced by DiFIGHT as well as MoDIFIGHT

satisfies the following inequlaity:

hk+1
4 αAt

Ωhk + αAtMb, (8)

where α =
√
3 for DiFIGHT, and α = 3 for MoDiFIGHT.

Furthermore, if maxi
∑L

j=1 ωjaji < 1/α, or, maxj ωj <

1/α, then the matrix αAt
Ω is stable1 and consequently, there

is at least one limit point of the sequence {hk}k≥0 and for

any such limit point h, the following holds:

h 4 α
(
I − αAt

Ω
)−1

AtMb. (9)

Proof. The proof is presented in Appendix C. �

2) Randomized algorithms: We now present the main re-

sults regarding the convergence of the randomized DiFIGHT

and DIFHTP algorithms for different random selection strate-

gies. For this purpose, we introduce the diagonal matrix

P = diag (π1, · · · , πL) with diagonal entries πi, 1 ≤ i ≤ L
which were defined in Section III-C and were evaluated

explicitly in Table III for uniform distribution for selection

of group of nodes.

1A matrix is said to be stable if it has spectral radius less than unity.
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Theorem 4.3. Under the RPDH condition and the randomly

persistent network assumption, the iterates of the randomized

DiFIGHT as well as randomized MoDiFIGHT satisfy the

following inequalities at time step n:

E

[
hk+1

]
4 (I − P + αPAt

Ω)E
[
hk

]
+ αPAtMb, (10)

where α =
√
3 for DiFIGHT, and α = 3 for MoDiFIGHT.

Consequently, under the condition, maxi
∑L

j=1 ajiωj < 1/α
or, maxi ωi < 1/α, there is at least one limit point of the

sequence {E
[
hk

]
}k≥0, and for any such limit point h, the

following bound is satisfied:

h 4 α
(
I − αAt

Ω
)−1

AtMb. (11)

Furthermore, if x⋆ is a stationary point of all the functions

fi, i = 1, · · · , L, under the above specified condition, we

have, for i = 1, · · · , L, xki → x⋆ a.s.

Proof. The proof is supplied in Appendix D. �

V. SIMULATION RESULTS

A. Simulation setup

In this section we perform numerical study of the DiFIGHT

and MoDiFIGHT algorithms along with the Consensus IHT

algorithm, which is similar to DiFIGHT, only with the ex-

ception that the nodes first exchange the estimates and then

use their individual gradient vector for the hard thresholding

update. We also plot the performance of the non-cooperative

IHT, where all nodes simply run their own algorithm and do

not communicate with each other, as well as the performance

of the centralized IHT algorithm which is executed using the

measurements available throughout all the nodes in the net-

work. In all the experiments, the unknown vector x has a fixed

dimension n = 200, and sparsity K = 10. The indices for

support of x is sampled uniformly from 1, 2, · · · , n, and then

the values at those indices are generated according to N (0, 1)
distribution. We consider networks with L = 10, 15 nodes

for our experiments. For each L, the network is generated

using Erdős-Reyni model where there is a link between two

nodes is with probability p, and not generated with probability

1 − p. p = lnL
L is selected to get a connected graph with

high probability [28]. The generated graph is checked for

full connectivity using depth-first search algorithm, and the

process is continued until a connected graph is obtained. The

adjacency matrix of the graph thus obtained, is normalized

to make it left stochastic, and is used as the combination

matrix A. For each node, the measurement model is taken

to be the noiseless linear measurement model, where the node

v has a measurement yv available with it which is obtained

from an unknown signal x⋆ via the linear transformation

yv = Φvx
⋆, where the Φv is a m × n measurement matrix

that is generated with entries sampled from i.i.d. N (0, 1/m)
distribution. All the algorithms are run for 100 instances and

for each instance independent copies of the target vector

x⋆, and the measurement matrix Φv are generated. However,

for a particular L, the underlying network is kept the same

throughout all these instances.
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(a) L = 10
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1

(b) L = 15

Fig. 1: Probability of recovery vs number of measurements

using all nodes in the network

B. Probability of recovery performance

In this experiment we plot the probability with which the

different algorithms recover the unknown signal x⋆. Note that

in the horizontal axis we have the total number of measure-

ments available throughout the network. The performance of

the centralized IHT is evaluated taking all these measurements.

On the other hand, for the distributed algorithm, each node has

access to considerably smaller number of measurements, for

example, if the total number of measurements is 150 and the

network size is L = 10, then each node of the network has

access to only 15 measurements. To calculate the probability

of recovery, we calculate the number of instances (out of

the 100 instances) in which an algorithm has a “successful”

recovery, where a successful recovery is quantified as follows:

1) for the centralized algorithm, we call an instance or run

of an algorithm successful if the estimate x̂ produced by the

algorithm satisfies
‖x̂−x

⋆‖2
2

‖x⋆‖2
2

< 10−4. 2) For the distributed

case, an instance or a run of an algorithm is called successful

if the algorithm produces estimates {x̂i}1≤i≤L in all the nodes

of the network, such that

∑L
j=1‖x̂j−x

⋆‖2
2

L‖x⋆‖2
2

< 10−4.
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Fig. 2: Probability of recovery vs number of measurements

for randomized node selection strategies

Performance of the deterministic algorithms: The fig-

ure 1 compares the probability of recoveries of the different

algorithms considered in this paper. From this figure, one can

appreciate the substantial amount performance gain offered

by the DiFIGHT and MoDiFIGHT algorithms over the con-

sensus IHT algorithm and even over that of the centralized

algorithm. This gain can be explained using the fact that

these diffusion algorithm leverage the diversity offered by the

different gradient vectors gathered from the neighborhood of

a node. We also see that the distributed algorithms require

very small number of measurements for successful recovery

compared to the standalone algorithms, as is exemplified by

the abysmal performance of the non-cooperative IHT algo-

rithm. For example, from the Figure 1b, we see that all

the distributed algorithms have recovery probability 1 after

m crosses 20, whereas the recovery probability of the non-

cooperative algorithm is almost 0 even when m is close to

30. We also observe that the performance of the DiFIGHT

and MoDiFIGHT algorithms are very close, with the latter

exhibiting slightly poorer performance than the former only

0 100 200 300 400 500 600 700 800 900 1000
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100

(a) M = 30, L = 10

0 50 100 150 200 250
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10-6

10-4

10-2

100

(b) M = 30, L = 15

Fig. 3: MSD vs iteration number when all nodes are used,

M = 30

for small m ( 10− 12 ).

Performance under the randomized strategies: The fig-

ure 2 demonstrates the relative performances of the DiFIGHT,

MoDiFIGHT and consensus IHT algorithms for the different

randomized node selection strategies which were discussed in

Section III-B. We have used group size 2 for the experiment.

From the plots we observe that the RP strategy performs the

worst among all the four strategies, which is expected as only

one node at a time is selected in this strategy. The RGPr
strategy is slightly better than the RP strategy as a few nodes

are selected. But the best strategies are seen to be the RNP and

RGPr strategies as in both these strategies many neighboring

nodes are selected at a time, which elevates the eprformance

of the distributed algorithms, especially in dense networks.

C. Mean square deviation performance

Deterministic algorithms: We see that for m = 30, L =
10, although the consensus IHT converges too early to result

in high mean square deviation (MSD), the DiFIGHT and

MoDiFIGHT algorithms continue to have decreasing MSD and
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Fig. 4: MSD vs iteration number for randomized strategies,

M = 30

the rate of the algorithms match with that of the centralized

IHT. For m = 30, L = 15, all the algorithms show good MSD

performance with the DiFIGHT and MoDiFIGHT showing

superior convergence rate.

Randomized strategies: For both m = 30, L = 10
and m = 30, L = 15, we again see that for all the

randomized strategies the consensus IHT has poorer MSD

performance compared to the DiFIGHT and MoDiFIGHT

algorithms. However, we observe that the convergence rate

of each algorithm depends on the randomized strategy used,

specifically according to decreasing convergence rate the

strategies are seen to be ranked as: RGNPr > RNP > RGPr
> RP. This corroborates the intuition that cooperation in the

network increases convergence speed.

APPENDIX A

PROOF OF LEMMA 4.2

The key observation is that as the graph G is connected, the

associated weight matrix X is irreducible. We now prove the

three claims as below:

1) Since X is irreducible, this is trivially true since for

any two indices i, j, ∃ a positive integer tji, such that

((Xt)tji)ij = ((X)tji)ji > 0.

2) Since each element of D1,D2 is strictly positive, ∃α >
0 such that d1i, d2i ≥ α, ∀i = 1, · · · , L. Therefore,

the (i, j)th element of D1XD2 is d1,i(X)ijd2,j ≥
α2(X)ij . Since X is irreducible, for any 1 ≤ i, j ≤ L,

there exists a positive integer tij such that (Xtij )ij > 0.

Therefore, ((D1XD2)
tij )ij ≥ α2(Xtij )ij > 0, which

establishes the claim.

3) Observe that for any 1 ≤ i, j ≤ L, (X + M)ij ≥
(X)ij and that X is irreducible. Therefore, X +M is

irreducible.

APPENDIX B

PROOF OF LEMMA 4.3

First note that since the sequence {uk}k≥0, as well as the

matrixB and vector b are non-negative, one finds that for each

k ≥ 0, uk+1 4 Bk+1u0 +
∑k

j=0B
jb 4 (I −B)−1(u0 + b),

where we have used the fact that the Neumann series
∑∞
j=0B

j

converges to (I −B)−1 as the matrix B is stable. Thus the

sequence {uk}k≥0is non-negative as well as upper bounded,

which ensures, by the Bolzano-Weierstrass theorem that there

is at least one limit point of the sequence {uk}k≥0. Then,

if v is a limit point of {uk}k≥0, by definition, there ex-

ists a strictly increasing sequence of non-negative integers

kj ≥ 0, j = 1, 2, · · · , such that limj→∞ u
kj = v (see [29,

Chapter 3]). Consequently, we obtain, v = limj→∞ u
kj 4

limj→∞B
kju0+

∑∞
i=0B

ib = (I−B)−1b, which concludes

the proof.

APPENDIX C

PROOF OF THEOREM 4.2

To perform the analysis for both DiFIGHT and MoDi-

FIGHT we employ the technique of analysis of Theorem 3.5

of [30] and extend it to the distributed case.

We fix any i = 1, · · · , L. From the description of the

DiFIGHT algorithm in Table I, using the expression for ψk+1
j

and writing ekj = xkj −x⋆−µj∇fj(xKj )−∇fj(x⋆), one can

derive using triangle inequality that,∥∥∥(xk+1
i − x⋆)Λk+1

i

∥∥∥
2

≤
L∑

j=1

aji

∥∥∥
(
ek+1
j

)
Λk+1

i

∥∥∥
2
+

L∑

j=1

ajiµj

∥∥∥(∇fj(x⋆))Λk+1
i

∥∥∥
2

≤
L∑

j=1

aji

(
ωj

∥∥xkj − x⋆
∥∥
2
+ µj ‖∇Kfj(x

⋆)‖2
)

≤
L∑

j=1

aji

(
ωj

∥∥xkj − x⋆
∥∥
2
+ µjbj

)
(12)

where the last step used the fact that ‖∇Kfj(x
⋆)‖2 ≤

‖∇2Kfj(x
⋆)‖2 = bj and inequality (6) of Lemma 4.1 which

used the fact that
∣∣Λki ∪ Λ ∪ Λk+1

i

∣∣ ≤ 3K . On the other hand,

since the support of xk+1
i is Λk+1

i , one obtains,∥∥∥∥∥∥∥




L∑

j=1

ajiψ
k+1
j




Λk+1
i

∥∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥




L∑

j=1

ajiψ
k+1
j




Λ

∥∥∥∥∥∥
2
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⇔

∥∥∥∥∥∥∥




L∑

j=1

ajiψ
k+1
j




Λk+1
i

\Λ

∥∥∥∥∥∥∥
2

≥

∥∥∥∥∥∥∥




L∑

j=1

ajiψ
k+1
j




Λ\Λ1k+1
i

∥∥∥∥∥∥∥
2

.

(13)

Again, using the expression of ψk+1
j , it is easy to observe that∥∥∥∥∥∥∥




L∑

j=1

ajiψ
k+1
j





Λk+1
i

\Λ

∥∥∥∥∥∥∥
2

≤
L∑

j=1

aji

∥∥∥
(
ekj

)
Λk+1

i
\Λ

∥∥∥
2
+

L∑

j=1

ajiµj

∥∥∥(∇fj(x⋆))Λk+1
i

\Λ

∥∥∥ ,

(14)
where the last step used triangle inequality and the fact that

(x⋆)Λk+1
i

\Λ = 0. Similarly, one can find,∥∥∥∥∥∥∥




L∑

j=1

ajiψ
k+1
j





Λ\Λk+1
i

∥∥∥∥∥∥∥
2

≥
∥∥∥(xk+1

i − x⋆)Λ\Λk+1
i

∥∥∥
2
−

L∑

j=1

aji

∥∥∥(ekj )Λ\Λk+1
i

∥∥∥
2

−
L∑

j=1

ajiµj

∥∥∥(∇fj(x⋆))Λ\Λk+1
i

∥∥∥
2
. (15)

Therefore, from inequality (13) it follows that∥∥∥(xk+1
i − x⋆)Λ\Λk+1

i

∥∥∥
2

≤
L∑

j=1

aji

(∥∥∥(ekj )Λ\Λk+1
i

∥∥∥
2
+
∥∥∥(ekj )Λk+1

i
\Λ

∥∥∥
2

)

+

L∑

j=1

ajiµj

(∥∥∥(∇fj(x⋆))Λ\Λk+1
i

∥∥∥
2
+
∥∥∥(∇fj(x⋆))Λk+1

i
\Λ

∥∥∥
2

)

≤
√
2

L∑

j=1

aji

(∥∥∥(ekj )Λk+1
i

∆Λ

∥∥∥
2
+ µj

∥∥∥(∇fj(x⋆))Λk+1
i

∆Λ

∥∥∥
2

)

≤
√
2

L∑

j=1

aji

(
ωj

∥∥xkj − x⋆
∥∥
2
+ µj ‖∇2Kfj(x

⋆)‖2
)

=
√
2

L∑

j=1

aji

(
ωj

∥∥xkj − x⋆
∥∥
2
+ µjbj

)
(16)

where the last step used inequality (6) of Lemma 4.1. There-

fore, it follows that for all i = 1, · · · , L
∥∥xk+1

i − x⋆
∥∥
2
≤

√
3

L∑

j=1

aji

(
ωj

∥∥xkj − x⋆
∥∥
2
+ µjbj

)
.

(17)

Using the definition, hk =[∥∥xk1 − x⋆
∥∥
2

∥∥xk2 − x⋆
∥∥
2

· · ·
∥∥xkL − x⋆

∥∥
2

]t
. Then,

it is easy to observe that the preceding set of inequalities can

be collected together into the following vector inequality:

h
k+1

4Hh
k + d, (18)

where H =
√
3At

Ω, and d =
√
3AtMb, where M, b are

defined in Theorem 4.2. Now, using lemma 4.2, we find that

H is an irreducible matrix. Then according to the Perron-

Frobenius theorem 4.1, the maximum eigenvalue (according

to absolute value) of H satisfies r ≤
√
3maxi

∑L
j=1 ωjaji.

By imposing the restriction maxi
∑L
j=1 ωjaji < 1/

√
3, we

see from (4) of Theorem 4.1 that the matrix H is sta-

ble, and consequently, applying Lemma 4.3, one finds that

h ≤ (I − H)−1d, where h is any limit point of the

sequence {hk}k≥0. Furthermore, maxj ωj < 1/
√
3 ensures

that maxi
∑L
j=1 ωjaji < 1/

√
3, which is a weaker sufficient

condition for the stability of matrix H , that does not require

the explicit knowledge of the combination matrix A.

In order to derive an evolution inequality for the

MoDiFIGHT algorithm, we first note that since ψkj =
HK

(
xkj − µj∇fj(xkj )

)
, j = 1, 2, · · · , L, one can readily

use the analysis of Theorem 3.5 of [30], as above, restricted

to a single node to derive the following inequality for all nodes

j = 1, · · · , L:∥∥∥ψkj − x⋆
∥∥∥
2
≤

√
3ωj

∥∥xkj − x⋆
∥∥
2
+
√
3bj . (19)

On the other hand, since xk+1
i = HK

(∑L
j=1 ajiψ

k
j

)
,

using the analysis similar to the one for DiFIGHT for one

node, we can find that
∥∥∥
(
xk+1
i − x⋆

)
Λk+1

i

∥∥∥
2
≤

L∑

j=1

aji

∥∥∥∥
(
ψkj − x⋆

)

Λk+1
i

∥∥∥∥
2

,

∥∥∥
(
xk+1
i − x⋆

)
Λ\Λk+1

i

∥∥∥
2
≤

√
2

L∑

j=1

aji

∥∥∥∥
(
ψkj − x⋆

)

Λk+1
i

∆Λ

∥∥∥∥

=⇒
∥∥xk+1

i − x⋆
∥∥
2
≤

√
3

L∑

j=1

aji

∥∥∥ψkj − x⋆
∥∥∥ . (20)

Therefore the inequalities (19) and (20) together yield

the following main inequality governing the evolution of∥∥xk+1
i − x⋆

∥∥
2

for node i for MoDiFIGHT:∥∥xk+1
i − x⋆

∥∥
2

≤ 3

L∑

j=1

ajiωj
∥∥xkj − x⋆

∥∥
2
+ 3

L∑

j=1

ajiµj ‖∇2Kfj(x
⋆)‖2

(21)
We note that the inequality (21) is essentially the same as the

inequality (17) only with a factor of 3 instead of
√
3 at the

front. Thus, using similar analysis as present in the part of the

analysis of DiFIGHT after inequality (17), we arrive at the

following vector inequality:

hk+1
4

√
3Hhk + 2d, (22)

where H, d are defined as in the analysis of the Di-

FIGHT algorithm. Also, we find that a sufficient condition

for the right hand side of the above inequality to converge is

maxi
∑L
j=1 ajiωj < 1/3, or a weaker condition maxj ωj <

1/3.

APPENDIX D

PROOF OF THEOREM 4.3

To carry out the proof, let us first consider a node v ∈ Gk,

where Gk is the group of nodes chosen at time k. For both the

randomized DiFIGHT and MoDiFIGHT algorithms, derivation

of the evolution of the norm of the error
∥∥xk+1

v − x⋆
∥∥
2

in terms of
∥∥xkv − x⋆

∥∥
2

will be identical to that of their

deterministic counterparts, that is either the inequality (17)
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or (21). Therefore, for any v ∈ Gk, one obtains,

hk+1
v ≤ α

L∑

j=1

ajv
(
ωjh

k
j + µjbj

)
, (23)

where α =
√
3 or α = 3, depending on whether DiFIGHT

or MoDiFIGHT is used. However, the nodes not in G do not

update their estimate, so that for v /∈ Gk, one has

hk+1
v = hkv . (24)

Taking the inequalities (23) and (24) together, the following

evolution inequality is obtained for the vector hk:

hk+1
4 Bkh

k + ck, (25)

where the vector ck and the matrix Ak, where Bk = αAt
kΩ

with Ak = [ak,1 · · ·ak,L], are determined as below:

ck,v =
{
αatvMb, v ∈ G
0, v /∈ G

(26)

ak,v =

{
av, v ∈ G
ev

αωv
, v /∈ G (27)

where ev is the the column vector with all entries set to 0
except for the vth entry which is set to 1. We will now use

the compact inequality (25) to derive condition for stability of

the mean of the sequence {hk}.

Taking expectation of both sides of the inequality (25) we

find

E

[
h
k+1

]
4 BE

[
h
k
]
+ c (28)

=⇒ E

[
hk+1

]
4 Bk+1

E
[
h0

]
+

k∑

j=0

Bjc (29)

where B = E [Bk] and c = E [ck] , k ≥ 0. It follows that the

right hand side of the inequality (29) converges if the matrix

B is stable. The matrix B and vector c have different forms

for different strategies and for the different algorithms. We

find them as below:

Let us first find E [bk,v], where bk,v is the vth column of the

matrix Bk. Since E [Bk] = αE
[
At
k

]
Ω, we only require to

find the expected value of ak,v . Note that the column ak,v can

take only two vector values, av and ev/(αωv), depending on

whether the node v participates or not in the diffusion process

at the kth time step. Therefore,

E [ak,v] = πvav + (1− πv)
ev

αωv
, v = 1, · · · , L

=⇒ E [Ak] = AP +
(I − P )Ω−1

α
=⇒ B = I − P + αPAt

Ω (30)

where P = diag (π1, · · · πL). Note that the diagonal matrix

P varies with different strategy and have diagonal entries πv
that can be found from Table III.

In a similar manner one can find:

E [ck,v] = αatvMbπv =⇒ E [c] = αPAtMb. (31)

Now, observe that as the network is connected, the matrix

A is irreducible. Also, P and Ω, are non-negative diagonal

matrices. Thus, using Lemma 4.2, and using the Perron-

Frobenius theory, we can conclude that the matrix B can

be ensured to be Schur stable if the functions {fi}1≤i≤L are

chosen such that

max
i


1− πi + απi

L∑

j=1

ajiωj


 < 1 ⇔ max

i

L∑

j=1

ajiωj <
1

α
.

(32)

Note that, a weaker requirement is to choose the func-

tions {fi}L1=1 such that (maxi ωi) < 1/α, as that implies∑L
j=1 ajiωj ≤ (maxj ωj)

∑L
j=1 aji < 1/α. Then, using

Lemma 4.3, from Equation (29), we have

h 4 (I −B)−1c, (33)

where h is any limit point of the sequence {E
[
hk

]
}k≥0.

Now, using the expression of B, c from Eqs. (30) and (31),

respectively, one obtains, for any limit point h of the sequence

{hk}k≥0,

h 4 α(I − αAt
Ω)−1AtMb. (34)

Now, when x⋆ is a stationary point of the functions

fi, i = 1, · · · , L, we have ∇fi(x⋆) = 0, ∀i = 1, · · · , L.

Then, as per the definition of b at the beginning of IV-B,

b = 0, and thus c = 0. Then, the evolution inequality (29)

reduces to E

[
h
k
]
4 Bk

E
[
h
0
]
, k ≥ 0. Now, let us choose

any coordinate i, i = 1 · · · , L. To prove the almost sure

convergence of {hki }k≥0, we use the Lemma 4.4. Choose any

ǫ > 0. Then we need to show that
∑

k≥0 P(h
k
i > ǫ) < ∞

for any ǫ > 0. Now, for any i = 1, · · · , L, hki =
〈
ei,h

k
〉

,

where ei = [0 0 · · · 1 · · · 0 0]t, with the 1 at the ith coordinate.

Consequently,

E
[
hki

]
≤

〈
ei,B

k
E
[
h0

]〉
. (35)

Then, using Markov’s inequality, followed by (35), we

obtain
∑
k≥0 P(h

k
i > ǫ) ≤ ∑

k≥0

E[hk
i ]
ǫ ≤

∑
k≥0〈ei,B

k
E[h0]〉

ǫ .

Now, as B is stable, the Neumann series
∑

k≥0B
k

converges to (I − B)−1, which allows, by

Fubini’s theorem to write
∑

k≥0

〈
ei,B

k
E
[
h0

]〉
=〈

ei,
∑∞

k=0B
kh0

〉
=

〈
ei, (I −B)−1h0

〉
. Hence,

∑
k≥0 P(h

k
i > ǫ) ≤ 〈ei,(I−B)−1

h
0〉

ǫ ≤ ‖(I−B)−1
h

0‖
ǫ < ∞,

for any ǫ > 0. Thus, by Lemma 4.4, hki → 0 (a.s.) =⇒∥∥xki − x⋆
∥∥
2
→ 0 (a.s.) =⇒ xki → x⋆ a.s.

REFERENCES

[1] S. Foucart and H. Rauhut, A mathematical introduction to compressive

sensing. Springer, 2013.

[2] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” J. Mach. Learn. Res., vol. 11, no.
May, pp. 1663–1707, 2010.

[3] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regres-
sion,” in Adv. Neural Inf. Process Syst., 2009, pp. 289–296.

[4] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Trans. Signal Process., vol. 58, no. 10, pp.
5262–5276, 2010.

[5] D. Sundman, S. Chatterjee, and M. Skoglund, “A greedy pursuit al-
gorithm for distributed compressed sensing,” in Acoustics, Speech and

Signal Processing (ICASSP), 2012 IEEE International Conference on.
IEEE, 2012, pp. 2729–2732.

[6] J. F. Mota, J. M. Xavier, P. M. Aguiar, and M. Puschel, “Distributed
basis pursuit,” IEEE Trans. Signal Process., vol. 60, no. 4, pp. 1942–
1956, 2012.

[7] A. Nedic, A. Ozdaglar, and P. A. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Trans. Autom. Control,
vol. 55, no. 4, pp. 922–938, 2010.

[8] S. Patterson, Y. C. Eldar, and I. Keidar, “Distributed compressed sensing
for static and time-varying networks,” IEEE Trans. Signal Process.,
vol. 62, no. 19, pp. 4931–4946, 2014.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.



11

[10] C. Ravazzi, S. Fosson, and E. Magli, “Energy-saving gossip algorithm
for compressed sensing in multi-agent systems,” in Acoustics, Speech
and Signal Processing (ICASSP), 2014 IEEE International Conference

on. IEEE, 2014, pp. 5060–5064.
[11] C. Ravazzi, S. M. Fosson, and E. Magli, “Distributed iterative thresh-

olding for l0l1-regularized linear inverse problems,” IEEE Trans. Inf.
Theory, vol. 61, no. 4, pp. 2081–2100, 2015.

[12] P. Di Lorenzo and G. Scutari, “Next: In-network nonconvex optimiza-
tion,” IEEE Trans. Signal Inf. Process. Networks, vol. 2, no. 2, pp. 120–
136, 2016.

[13] S.-Y. Tu and A. H. Sayed, “Diffusion strategies outperform consensus
strategies for distributed estimation over adaptive networks,” IEEE

Trans. Signal Process., vol. 60, no. 12, pp. 6217–6234, 2012.
[14] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed

optimization and learning over networks,” IEEE Trans. Signal Process.,
vol. 60, no. 8, pp. 4289–4305, 2012.

[15] P. Di Lorenzo and A. H. Sayed, “Sparse distributed learning based on
diffusion adaptation,” IEEE Trans. Signal Process., vol. 61, no. 6, pp.
1419–1433, 2013.

[16] A. H. Sayed, Diffusion adaptation over networks. Academic Press
Library in Signal Processing, 2013, vol. 3.

[17] J. Chen and A. H. Sayed, “On the learning behavior of adaptive
networks—part i: Transient analysis,” IEEE Trans. Inf. Theory, vol. 61,
no. 6, pp. 3487–3517, 2015.

[18] ——, “On the learning behavior of adaptive networks—part ii: Perfor-
mance analysis,” IEEE Trans. Inf. Theory, vol. 61, no. 6, pp. 3518–3548,
2015.

[19] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous
deterministic and stochastic gradient optimization algorithms,” IEEE

Trans. Autom. Control, vol. 31, no. 9, pp. 803–812, 1986.
[20] S. Chouvardas, G. Mileounis, N. Kalouptsidis, and S. Theodoridis,

“Greedy sparsity-promoting algorithms for distributed learning,” IEEE

Trans. Signal Process., vol. 63, no. 6, pp. 1419–1432, 2015.
[21] A. Zaki, A. Venkitaraman, S. Chatterjee, and L. K. Rasmussen, “Greedy

sparse learning over network,” IEEE Trans Signal Inf. Process. Net-

works, 2017.
[22] A. Zaki, P. P. Mitra, L. K. Rasmussen, and S. Chatterjee, “Estimate

exchange over network is good for distributed hard thresholding pursuit,”
arXiv preprint arXiv:1709.07731, 2017.

[23] C. Ravazzi, S. M. Fosson, and E. Magli, “Randomized algorithms
for distributed nonlinear optimization under sparsity constraints,” IEEE
Trans. Signal Process., vol. 64, no. 6, pp. 1420–1434, 2016.

[24] S. Bahmani, B. Raj, and P. T. Boufounos, “Greedy sparsity-constrained
optimization,” J. Mach. Learn. Res., vol. 14, no. Mar, pp. 807–841, 2013.

[25] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[26] E. Seneta, Non-negative matrices and Markov chains. Springer Science
& Business Media, 2006.

[27] G. Grimmett and D. Stirzaker, Probability and random processes.
Oxford university press, 2001.

[28] P. ERDdS and A. R&WI, “On random graphs i,” Publ. Math. Debrecen,
vol. 6, pp. 290–297, 1959.

[29] W. Rudin et al., Principles of mathematical analysis. McGraw-hill
New York, 1964, vol. 3.

[30] S. Foucart, “Hard thresholding pursuit: an algorithm for compressive
sensing,” SIAM J. Numer. Anal., vol. 49, no. 6, pp. 2543–2563, 2011.


	I Introduction
	II Notation
	III Diffusion based Hard Thresholding
	III-A Deterministic strategies
	III-B Randomized strategies
	III-C Discussion on communication complexities

	IV Theoretical result
	IV-A Preliminaries and assumptions
	IV-B Notation used in the main results
	IV-C Main results
	IV-C1 Deterministic algorithms
	IV-C2 Randomized algorithms


	V Simulation results
	V-A Simulation setup
	V-B Probability of recovery performance
	V-C Mean square deviation performance

	Appendix A: Proof of Lemma 4.2 
	Appendix B: Proof of Lemma 4.3 
	Appendix C: Proof of Theorem 4.2 
	Appendix D: Proof of Theorem 4.3 
	References

