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Abstract

Non Uniform Rational B-spline (NURBS) patches are a standard way to describe
complex geometries in Computer Aided Design tools, and have gained a lot
of popularity in recent years also for the approximation of partial differential
equations, via the Isogeometric Analysis (IGA) paradigm. However, spectral
accuracy in IGA is limited to relatively small NURBS patch degrees (roughly
p ≤ 8), since local condition numbers grow very rapidly for higher degrees.
On the other hand, traditional Spectral Element Methods (SEM) guarantee
spectral accuracy but often require complex and expensive meshing techniques,
like transfinite mapping, that result anyway in inexact geometries. In this
work we propose a hybrid NURBS-SEM approximation method that achieves
spectral accuracy and maintains exact geometry representation by combining
the advantages of IGA and SEM.

As a prototypical problem on non trivial geometries, we consider the Laplace–
Beltrami and Allen–Cahn equations on a surface. On these problems, we present
a comparison of several instances of NURBS-SEM with the standard Galerkin
and Collocation Isogeometric Analysis (IGA).

Keywords: NURBS, SEM, IGA, Laplace Beltrami, Allen Cahn, High Order
Methods

1. Introduction

Isogeometric analysis (IGA) is a numerical approximation paradigm for
Partial Differential Equations (PDE) based on the exploitation of the same Non
Uniform Rational B-spline (NURBS) basis functions used in Computer Aided
Design (CAD) tools, and it has become a standard practice since its introduction
in [26, 15].
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It can be argued that the main merit of IGA is the removal of the mesh
generation process required by other standard approximation methods (FEM,
FVM, . . . ) and the resulting tight interaction between CAD and analysis tools.
Such a tight connection is particularly significant when the problem is formulated
directly on lower dimensional manifolds embedded in the physical space, i.e.,
on surfaces in three dimensional space or curves in two or three-dimensional
spaces, since in this case the Boundary Representation (BREP) standard which
is common to all major CAD tools can be used as is, without the need to
create volumetric NURBS representations. This is the case for plates and shell
structures [29, 30], Reissner–Mindlin shells [9, 22, 21, 43], boundary integral
formulations [25, 24], or when the physical problem of interest is naturally defined
on manifolds [5, 6, 18] embedded in a Euclidean space.

Standard Finite Element approximation of such PDEs typically resort to an
approximation of the geometry by means of piecewise polynomial patches. This
results in an approximation of the curvature of surfaces that may significantly
affect the approximation quality. On the other hand, most of the geometries
of practical interest can be represented exactly by B-splines or NURBS [36],
making IGA an ideal candidate for these types of problems.

NURBS-based Isogeometric analysis is a higher-order approach that allows an
alternative refinement strategy with respect to the standard h- and p-refinements
used in finite element analysis: the so called k-refinement [26], where the regular-
ity of the basis functions is raised at each refinement stage. This is of particular
importance for eigenvalue problems, where IGA provides good approximations
of a much larger part of the spectrum than standard FEA, as shown by [16]
in a structural analysis context. The accuracy and usability of k-refinement,
however, is limited by cross-patch regularity. For multiple-patch geometries, the
global condition number of the system matrices presents the same behaviour
under p- and k-refinement. The analysis of these methods [8, 7] proves that
spectral accuracy can be achieved, but the error constants depend exponentially
on the degree of the NURBS basis functions. In practical applications this
obstructs IGA from reaching spectral accuracy, which proves to be very efficient
for relatively low degrees, and deteriorates when the basis functions’ degree
exceeds 8 or 9.

In this paper we present an alternative approximation strategy inspired by
the Spectral Element Method (SEM), that aims at combining the advantages of
IGA and SEM, similarly to what is done in [41] between FEM and NURBS. This
approach is particularly efficient for those cases where it is important to treat the
geometry exactly, but it would be desirable to achieve spectral accuracy on the
solution of the PDE. This is possible by breaking the iso-parametric paradigm
of standard SEM and IGA, and constructing the push-forward of SEM basis
functions through the NURBS description of the geometry.

This article is organized as follows. In Section 2, we briefly introduce the
problem of solving an elliptic, second order PDE on a surface, and the Galerkin
and Collocation strategies are introduced. In Section 3, we give a detailed
description of the Spectral Element schemes introduced in this work, as well
as a unified description encompassing some known methods such as IGA. The
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algebraic details leading to an efficient implementation of the Spectral Element
Methods are also introduced in Section 3, followed by a discussion on the
implementation of essential and mixed boundary conditions. In Section 4, we
assess the performance of several hybrid NURBS-SEM instances by making a
comparison with standard Galerkin and collocation Isogeometric Analysis for
the approximate solution of the Laplace–Beltrami and Allen–Cahn equations on
a surface, and discuss the results. The Conclusions in Section 5 close the paper.

2. Laplace–Beltrami and related Equations

The Laplace–Beltrami operator can be thought of as an extension of the
Laplace operator from a domain in Rn to a manifold. We briefly outline its
derivation on a general Riemannian Manifold, together with its weak formulation.
The subject is classical, and we refer for instance to [33, 31] for an introduction to
Riemannian Geometry, and to [32], [37] for a detailed treatment on the properties
of the Laplace–Beltrami operator (notably, its spectral properties).

Consider a bounded, orientable surface Ω embedded in R3. Any regular
surface can be described as a Riemannian Manifold, with metric tensor g. We
assume that for each point p ∈ Ω , there exists a local coordinate description of Ω
that consists of a pair (U,x−1), where U is a neighbourhood of p homeomorphic
to an open set of R2

+ (namely, the upper half plane) and x : R2 → U is
a differentiable homeomorphism. Since we are mainly concerned with CAD
applications, we consider the special case where x is a tensor product of NURBS
functions, that will be described in detail in Section 3.1.

In this representation, the local coordinates are typically given as maps
from the reference domain Ω̂ , that we take as the unit square, to the Euclidean
space R3, i.e., s = s1e1 + s2e2 ∈ Ω̂ , and the surface is described through the
coordinates of its points x(s) = xi(s)ei ⊂ R3 as s varies in Ω̂ .

A basis for the tangent space at a point is given by the partial derivatives of
x with respect to the reference coordinates:

gα(s) :=
∂xi

∂sα
(s)ei, (1)

where the summation with respect to i is implied. Here and in the following, we
adopt Einstein’s summation convention on repeated indices. The metric tensor
has the following local representation:

gαβ := gα · gβ = x,α · x,β , (2)

while the components of the inverse metric tensor gαβ are obtained by inversion
of the 2 × 2 matrix gαβ . We adopt the Einstein summation convention, with

greek indices to indicate coordinates in Ω̂ ⊂ R2, and latin indices for coordinates
in R3.

Any Riemannian Manifold is naturally endowed with a Levi–Civita connection
∇, that introduces a precise definition for the covariant derivatives of scalar
functions or vector fields on a manifold. The surface gradient of a scalar function

3



f at a point on Ω is given by a differential form, whose representation in the
local coordinate system is:

∇f = ∇µfgµ := ∂µfg
µ =

∂f

∂sµ
gµ, (3)

where {gν = gνµgµ} is the dual basis to {gµ}, i.e., gµ · gν = δµν with δ, the
Kronecker delta, equal to one if ν = µ, and zero otherwise. A representation of
∇f in the tangent space TΩ is the vector field obtained by raising indices:

∇f = ∇µfgµ = gµν
∂f

∂sν
gµ. (4)

For a vector field u ∈ TΩ , the covariant derivative is defined as:

∇u := ∇(uαgα) =

(
∂uα

∂sβ
+ Γαβγu

γ

)
gα ⊗ gβ , (5)

where Γµαβ are the Christoffel symbols of the second kind, that can be expressed
in terms of partial derivatives of the metric tensor, as follows. First, the Christoffel
symbols of the first kind are defined:

Γλµν =
1

2
(∂νgλµ + ∂µgλν − ∂λgµν) , (6)

then, the first index is raised:

Γλµν = gλ%Γ%µν . (7)

With these notions, it is possible to introduce the Laplace–Beltrami operator
acting on a scalar function as:

∆B : = ∇α∇α = gαβ∇β∇α = gαβ∇β(∂α)

= gαβ
[
∂2αβ + Γµαβ∂µ

]
,

(8)

The derivatives of a function u(x) defined on the surface can be obtained
explicitly by the chain rule:

∂αu(x(s)) =
∂u

∂xi

∣∣∣
x(s)

∂xi

∂sα

∣∣∣
s
. (9)

From this point on, with some abuse of notation we will identify the surface Ω
with its parametrization x(s).

2.1. Laplace–Beltrami Equation

Let us now define the Laplace–Beltrami equation on a surface with boundary
Ω . Let C1(Ω) be the set of differentiable functions on Ω with values in R,
and C2(Ω) the set of functions on Ω with continuous second derivative, then
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the Laplace–Beltrami problem is: given a function f ∈ C0(Ω), find a function
u ∈ C2(Ω) such that: 

−∆B u = f in Ω

u = hD on ∂DΩ

∂nu = hN on ∂NΩ ,

(10)

where ∂DΩ and ∂NΩ form a partition of the boundary ∂Ω of Ω , and hD :
∂DΩ → R and hN : ∂NΩ → R are respectively the given Dirichlet and Neumann
boundary data. For surfaces without boundary, the treatment is conceptually
similar, except that boundary conditions cannot be imposed, and instead the
average of u, or its value at a point must be specified.

In the following, we refer mainly to the variational form of Equation (10).

Let f ∈ H−1(Ω), hD ∈ H
1
2 (∂DΩ) and hN ∈ H−

1
2 (∂NΩ) be given. We seek for

a solution u ∈ H1
D(Ω) such that:

(∇v,∇u) = 〈〈v, hN 〉〉+ 〈v, f〉 ∀v ∈ H1
0 (Ω), (11)

where the round brackets denote the L2(Ω) inner product, the brackets 〈〈·, ·〉〉
are used to express the duality pairing between the Sobolev spaces H−

1
2 (∂NΩ)

and H
1
2 (∂NΩ), while the brackets 〈·, ·〉 are used for the duality pairing between

the Sobolev spaces H−1(Ω), and H1
D(Ω) where

H1
D := {v ∈ H1(Ω) : γDu = hD}, (12)

for a suitable trace operator γD : H1
D(Ω)→ H

1
2 (∂DΩ).

Approximation methods for the variational problem (11) based on the Petrov–
Galerkin projection stem from the introduction of two finite dimensional spaces
V n,Wn. An approximation un ∈ V n is defined as the solution to:

(∇v,∇un) = 〈〈v, hN 〉〉+ 〈v, f〉 ∀v ∈Wn. (13)

Let {φj}nj=1 and {ψi}ni=1 be two sets of basis functions respectively for V n and

Wn. Then, the approximate solution can be expressed as un(x) =
∑n
j=1 u

n
j φj(x),

and replacing this expansion in Equation (13) and choosing as test functions
v = ψi from a set of basis functions for Wn, Equation (13) is equivalent to the
following linear system:

n∑
j=1

unj (∇ψi,∇φj) = 〈〈ψi, hN 〉〉+ 〈ψi, f〉 ∀ψi, i = 1, . . . , n. (14)

Petrov–Galerkin schemes allow as well to construct approximations for non-
linear Laplace–Beltrami analogues. We discuss the nonlinear case by making
the example of the Allen–Cahn equation:

−∆B u− u+ u3 = f (15)

with the same boundary conditions discussed after Equation (10). Before ap-
plying the Petrov–Galerkin projection, it is convenient to set up an iterative
solution scheme. Here, we consider the following fixed-point iteration:

5



1. an initial guess u0 ∈ V n is found by solving the linear part of the equation:

−∆B u0 − u0 = f ; (16)

2. at the n-th iteration, a new approximation un+1 ∈ V n is obtained by
solving the linear equation:

−∆B un+1 − un+1 + u2nun+1 = f, (17)

whose weak form is: find un+1 ∈ V n s.t.:

(∇v,∇un+1)− (v, un+1) + (v, u2nun+1) = 〈〈v, hN 〉〉+ 〈v, f〉 ∀v ∈Wn.
(18)

3. to judge on the quality of the current approximation un+1, it is convenient
to consider the increment:

dn = ‖un+1 − un‖; (19)

the iterative scheme is halted whenever dn is sufficiently small, e.g. by
requiring that its order of magnitude be comparable with the machine
epsilon, the smallest number representable in floating point arithmetic.

2.2. Algebraic problem

The following variational forms are naturally associated with the Laplace–
Beltrami problems described in Section 2.1:

A(v, u) = (∇v,∇u), F(v) = 〈〈v, hN 〉〉+〈v, f〉 , N (v, w, u) = (v, w2u)−(v, u).
(20)

The Laplace–Beltrami Equation (13) can be written in terms of these differential
forms as:

A(v, u) = F(v) ∀ v ∈Wn, (21)

and the n-th iteration of the fixed-point scheme for the Allen–Cahn problem as:

A(v, un+1) +N (v, un, un+1) = F(v) ∀ v ∈Wn. (22)

Evaluating the differential forms defined in Equation (20) on the basis sets
{φj}, {ψi} yields the matrices:

Kij = A(ψi, φj) (23)

for Laplace–Beltrami, and

Kij = A(ψi, φj) +N (ψi, un, φj) (24)

for a step of the Allen–Cahn fixed-point iteration. Note that in this latter case
the matrix K is not symmetric. Associated with F , the following column vector
arises:

fi = F(ψi), (25)
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and it is also useful to introduce the column vector u, whose components are
the solutions’ expansion coefficients: uj = unj . As a result, the Petrov–Galerkin
approximation of Equations (13) and (17) is the solution of the following linear
algebra problem:

Ku = f . (26)

An important class of Petrov–Galerkin discretizations is obtained from Equa-
tion (21) with the choice of test functions v = ψi = δ(xi), Dirac deltas centered
at n points {xi}ni=1 ⊂ Ω , where the space V n is at least twice differentiable.

In this case, the weak form expressed in equation (11) contains the surface
gradient of Dirac deltas, which can only be interpreted in the usual weak sense,
by integrating back by parts, and evaluating the result (corresponding to the
original strong form of the problem) at the point xi.

The resulting projection method is called a Collocation Method, that strongly
enforces the original differential equation at the collocation points {xi}ni=1. The
linear systems arising from Collocation Methods have the same form of the linear
system of Equation (26), but with the following stiffness matrices:

Kij = −∆B φj(xi), Kij = −∆B φj(xi)− φj(xi) + u2n(xi)φj(xi), (27)

respectively for the linear and nonlinear case. In both cases the right hand side
is just the evaluation of the forcing term at the collocation points:

fi = f(xi). (28)

If the trial and test space coincide, V n = Wn, the resulting projection is called
a Galerkin projection. When necessary, we will use the subscript c to indicate
collocation matrices and the subscript g to indicate Galerkin matrices.

3. Spectral Methods

In this section, we introduce several instances of the Spectral Element Method,
whose common feature is that of describing the computational domain exactly,
through the surface NURBS representation coming e.g. from a Computer-Aided-
Design (CAD) software. Two members of the family considered in the following
coincide with the standard Isogeometric Analysis method and with an instance
of the Isogeometric Collocation method. However, we regard that considering
them as members of a large family of Spectral Element Methods is profitable in
terms of thought and presentation economy.

3.1. Surface representation

The most popular surface representation in the CAD community is that of
Non-Rational Uniform B-splines (NURBS). Referring to [36] for an introduc-
tion and thorough treatment on this subject, we briefly recall some important
definitions. Here we focus only on tensor-product NURBS surfaces, wich are a
subclass of the much more general family of NURBS parametrizations. Subdivi-
sion surfaces [14] or Powell–Sabin B-splines [35, 42] are two possibile strategies
when non-tensor product surfaces are required.

7



A NURBS description of a tensor-product bi-variate surface consists of two
nondecreasing knot vectors, Θi = {k1 = 0, k2, . . . , kni+pi , kni+pi+1 = 1}, two
positive weight vectors W i = {w1, . . . , wni} for i = 1, 2, and a set of n = n1n2
points {P i,j}n1,n2

i,j=1 ⊂ R3, with ni ≥ pi + 1. Here it is assumed that the knot

vectors Θi are open knot vectors, meaning that the first and last knots are
repeated pi + 1 times:

k1 = k2 = · · · = kpi+1 = 0 and kni+1 = kni+2 = · · · = kni+pi+1 = 1.

The first step in the NURBS parametrization consists in defining the nd
B-splines of degree p with respect to the knot vector Θd, {B(i,p)}nd

i=1. The
B-splines of degree zero are defined by:

B(i,0)(s) =

{
1 if ki ≤ s < ki+1

0 otherwise
(29)

and then the B-splines of degree p are constructed by recursion using a convex
combination of the B-splines of the previous degree, as described by the Cox–de
Boor formula:

B(i,p)(s) :=
s− ki

ki+p − ki
B(i,p−1)(s) +

ki+p+1 − s
ki+p+1 − ki+1

B(i+1,p−1)(s). (30)

The one-dimensional NURBS basis functions are defined by:

N (i,p)(s) =
wiB(i,p)(s)∑nd

j=1 w
jB(j,p)(s)

, (31)

with p = p1, p2 depending on d = 1, 2. The same procedure is repeated for the
construction of n2 splines and NURBS basis functions of degree p2 in the other
direction.

Finally, the surface is parametrized by weighting the grid points’ coordinates
with a tensor product of NURBS functions:

x(s) :=

n1∑
i=1

n2∑
j=1

P i,jN (i,p1)(s1)N (j,p2)(s2). (32)

3.2. Approximation spaces

For practical application of the Petrov–Galerkin projection, it is necessary to
explicitly construct a basis set for both the approximation spaces V n and Wn.
Here we consider only functions on the surface that are tensor product of 1D
functions φ̂i(s) defined on the interval [0, 1], composed with the inverse surface
parametrization x−1.

Consequently, the basis functions have the following shape:

φi(x(s)) := φ̂i1(s1)φ̂i2(s2) s ∈ Ω̂ , (33)
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where i = (i1, i2) is an element of the index set:

I := {j = (j1, j2), 1 ≤ j1 ≤ n1, 1 ≤ j2 ≤ n2}. (34)

In this work, we consider basis functions on the reference interval [0, 1], that
originate different flavours of Petrov–Galerkin methods. The common features
of the methods presented here are the following:

• in all cases, the map x between the reference element and the surface
consists of a tensor product of NURBS functions;

• the basis functions are suitable in the sense of [23] for a high-order method,
meaning that the interpolation error for a smooth function converges to
zero at an exponential rate as the degree of the basis functions is increased.

Two interesting choices for φ̂i are B-spline and NURBS functions as defined in
Equations (30) and (31) respectively. Other two possibilities consist in Lagrange
interpolants at Gauss–Lobatto points. Here we consider Gauss–Lobatto–Legendre
(GLL) points, which are the n − 2 zeros of the derivative of the Legendre
Polynomial of degree n− 1, plus the interval endpoints:

sGLL
j =


j-th zero of P ′n−1(s) for j = 1, . . . , n− 2

0 for j = n− 1

1 for j = n

. (35)

and Gauss–Lobatto–Chebyshev (GLC) points:

sGLC
j = cos

(
π +

j − 1

n− 1
π

)
for j = 1, . . . , n. (36)

Then, the Lagrange interpolants are defined as:

Lj(s) =

n∏
i=1
i 6=j

s− sGLL
i

sGLL
j − sGLL

i

for j = 1, . . . , n, (37)

for the Lagrange case, and

Tj(s) =

n∏
i=1
i 6=j

s− sGLC
i

sGLC
j − sGLC

i

for j = 1, . . . , n, (38)

for the Chebyshev case. In the following, we denote with Lnj the j-th Lagrange
interpolant on n GLL points, and with Tnj the j-th Lagrange interpolant on n
GLC points.

By taking different combinations of basis functions for the trial V n and test
Wn spaces, we generate the family of methods listed in Table 1. The names of
the different methods are chosen to be self-explanatory and compatible with the
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Method name Acronym V n Wn

B-spline Galerkin SG B(i,p) B(j,p)

B-spline Collocation SC B(i,p) δ(x(sGreville
j ))

Isogeometric Galerkin IG N i N j

Isogeometric Collocation IC N i δ(x(sGreville
j ))

Chebyshev Collocation CC Tni δ(x(sGLC
j ))

Chebyshev Galerkin CG Tni Tnj
Legendre Galerkin LG Lni Lnj

Table 1: Catalogue of the 7 candidates for high-order methods considered in this work.

literature. For the cases where the trial and test space coincide, the method is
classified as a Galerkin method, and any time the test space is formally spanned
by Dirac deltas, the method is classified as a Collocation method.

Below we briefly describe each numerical method that will be considered in
the following. Our description is by no means exhaustive, and for a treatment
of the first four methods of Table 1 we refer to [15], [39] and [2]. However,
we let the reader beware that none of these references is concerned with the
application of Isogeometric Methods in the context of high-order refinement. For
a treatment of high-order methods similar, but not equivalent, to the last three
rows of Table 1, we refer to [23], [12], [13].

B-spline Galerkin Method (SG), where the B-spline basis functions defined
in (30) are used as basis both for the trial and test spaces.

B-spline Collocation Method (SC). In this case, the B-spline basis functions
of equation (30) are used as basis for the trial space, and Dirac deltas centered
on the Greville abscissae of the B-spline functions are used as basis for the test
space.

Isogeometric Galerkin Method (IG). In this method, the NURBS basis func-
tions defined in (31) are used as basis both for the trial and test spaces. A
more consistent name for this method would be NURBS Galerkin Method, since
however it has been named Isogeometric Analysis by its ideators in [26], we stick
to this by now standard naming.

Isogeometric Collocation Method (IC). In this case, the NURBS basis func-
tions (31) are used for constructing the trial space, and Dirac deltas centered on
the Greville abscissae of the NURBS basis functions are used as basis for the
test space.

Chebyshev Collocation Method (CC). For this method, the reference basis func-
tions for the trial space are Lagrange interpolants on Gauss–Lobatto–Chebyshev
nodes, and the test functions are Dirac deltas centered in the same Gauss–
Lobatto–Chebyshev nodes. The basis functions are constrained to be continuous
together with their normal derivative across elements, as done in Chebyshev
multipatch methods, see [13, p. 339] for details.

Chebyshev Spectral Element Method (CG). In this method, the basis functions
for both trial and test spaces are Lagrange interpolants on Gauss–Lobatto–
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Chebyshev nodes. The Galerkin method in this case is based on the weak
form (11), with inner products weighted by the function

w(x) =
1√

1− x2
. (39)

As in the previous case, inter-element continuity of the basis functions and their
normal derivative is explicitly enforced. One important characteristic of this and
the following methods is that the quadrature formulas used for the evaluation
of the integrals are based on the same nodes used to define the basis functions.
This results in a “variational crime” due to under-integration, but also in a
diagonal mass matrix, and allows for efficient integral evaluation. In some books,
the methods with integration by quadratures are called “SEM with numerical
integration”, or “SEM-NI”.

Legendre Spectral Element Method (LG). In this method, the basis functions
for both trial and test spaces are Lagrange interpolants on Gauss–Lobatto–
Legendre nodes. The basis functions are only continuous across contiguous
elements.

To provide some intuition over the different basis functions involved, we draw
in Figure 1 the one-dimensional basis functions of degree 7 on the reference
interval [0, 1] for the cases with 2 elements. The B-spline functions are visually
similar to the NURBS in many contexts. In Figure 1 the two elements are the
intervals [0, 0.5] and [0.5, 1], and in Figure 1 (b) the C1 inter-element continuity
of the NURBS functions is evident.

3.3. Discrete formulation

Although the matrices that appear in the linear Equation (26) could in
principle be computed naively as by their definition in Equations (23) and (24),
this often is not the most efficient way, especially for high-order methods. In
this section we give some details on how the discrete formulations of Section 3.2
could be set up and solved in a reasonably efficient manner.

Significant efficiency savings can be achieved by exploiting the tensor product
form of the surface parametrization (Equation (32)) and of the basis function
definition (Equation (33)). These tensor product structures allow in turn to
express the discrete operators in tensor-product form, that as we shall see
drastically reduces the memory and the number of operations required to compute
a matrix-vector product. This fact holds true both for methods based on the
B-spline familty and for methods based on Lagrange interpolants. For a detailed
reference on the efficient implementation of tensor-product high-order methods,
we refer to [20].

The first step in the discretization of the variational form (13) is the evaluation
of the inner products (∇u,∇v) on all the basis functions. This operation can be

performed by pulling back the integrals to the reference domain Ω̂ := [0, 1]2, as
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Figure 1: Basis functions of degree 7 on the reference interval for the case of two equal elements
for C0 NURBS (a), C1 NURBS (b), Chebyshev Spectral Element (c), Legendre Spectral
Element (d) methods.

follows:∫
Ω

∇φi(x) · ∇φj(x) dx =

3∑
k=1

∫
Ω

∂φi(x)

∂xk
∂φj(x)

∂xk
dx

=

3∑
k=1

2∑
α,β=1

∫
Ω̂

∂φ̂i(x(s))

∂xk
∂xk

∂sα

∂φ̂j(x(s))

∂xk
∂xk

∂sβ
J(s) ds =: Kij ,

(40)
where J =

√
|det gαβ |, and the the hat is used to denote quantities defined on

the reference domain. The Neumann boundary terms are also evaluated on the
boundary of the reference domain, ∂Ω̂N :∫

∂ΩN

φi(x)∇φj(x) · ν dx =

∫
∂ΩN

φi(x)

3∑
k=1

∂φj(x)

∂xk
νk dx

=

∫
∂Ω̂N

φ̂i(s)hN (s)J(s) ds,

(41)

where ν̂ = (ν̂1, ν̂2) is the outer normal to the reference domain Ω̂ , and ν̂ is given
in components by:

νk = ν̂α
∂xk

∂sα
. (42)
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The integrals on the right hand side of Equations (40) and (41) are then

evaluated by quadratures. To this end, let {(ξk, ωk)}Q1

k=1 be the quadrature

point-quadrature weight couples for the first coordinate, and {(ηl, %l)}Q2

l=1 the
quadrature points and weights for the second coordinate. Here Q1 and Q2 denote
the number of quadrature points chosen for the two directions. It is convenient
to introduce the auxiliary matrices:

(Gαβg )kl = gαβ(ξk, ηl)J(ξk, ηl)ωk%l (43)

and
(M)ki = φ̂i(ξk) (D1)ki = φ̂′i(ξk). (44)

The right hand side of equation (40) can be approximated by:

Kg =

(
M ⊗D1

D1 ⊗M

)T [
G11
g G12

g

G21
g G22

g

](
M ⊗D1

D1 ⊗M

)
(45)

which is a sequence of matrix-matrix products written in block tensor form.
The special block-tensor product structure of the expression (45) allows for a
reduction of the computational cost with respect to a general basis lacking the
tensor product structure. Indeed, suppose that in both directions there are
N basis functions, and that the same Q-point quadrature rules are applied.
Then, the number of operations required for the evaluation of the integral (40)
decreases from O(Q2N2) to O(Q2 + 2QN).

The Neumann boundary term in Equation (41) is computed similarly, and it
represents a known term in the resulting algebraic system.

The action of the Laplace–Beltrami operator in the collocative case is even
simpler, since it is sufficient to evaluate the derivatives of the basis functions
and of the metric tensor on the collocation points, and then assemble point by
point the coordinate expression of Equation (8). More precisely, let us introduce
the collocation matrix for the second order derivatives of the basis functions:

(D2)ki = φ̂′′i (ξk), (46)

we define the matrices Gαβc for the collocation case as:

(Gαβc )kl = gαβ(ξk, ηl), (47)

and we introduce the pointwise evaluation of the Christoffel symbols:

(Cµαβ )kl = gαβ(ξk, ηl)Γ
µ
αβ(ξk, ηl). (48)

The resulting discretization of the Laplace–Beltrami operator is:

Kc =

[
G11
c G12

c

G21
c G22

c

] [
M ⊗D2 D1 ⊗D1

D1 ⊗D1 D2 ⊗M

]
+

[
C1

11 C2
11

C1
21 C2

21

](
M ⊗D1

D1 ⊗M

)
+[

C1
12 C2

12

C1
22 C2

22

](
M ⊗D1

D1 ⊗M

)
. (49)
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We remark that in Equation (49), the collocation matrices Gαβc , defined according
to Equation (47), are different from the Galerkin matrices Gαβg , defined according
to Equation (43),

For the Chebyshev-SEM method, the stiffness matrix is computed exactly as
in Equation (49), replacing Gαβc with Gαβg and replacing Cµαβ with:

(Sµαβ )kl = gαβ(ξk, ηl)Γ
µ
αβ(ξk, ηl)J(ξk, ηl)ωk%l. (50)

For both Galerkin and Collocation methods based on Chebyshev points,
Neumann boundary conditions can be imposed by collocation. This can be
achieved by replacing the rows related to the collocation points lying on ∂ΩN

with: ∑
l

φi(ξN , ηl)∇φ̂j(ξN , ηl) · ν̂(ξN , ηl), (51)

where to simplify the presentation we made the hypothesis that the Neumann
boundary is located at the points with s1 = ξN for all s2, and the corresponding
rows on the right hand side should be replaced by the known value hN (ξN , ηl).

For B-spline and Isogeometric methods, the imposition of Neumann boundary
conditions by collocation is still an active research area. Since there are no
simple, established solution to this problem, we do not discuss it here, and refer
instead to [4, 34].

Computing the system’s matrix in the Allen–Cahn case requires one more
step, namely the efficient evaluation of the integral coming from the fixed point
linearization∫

Ω

φi(x)u2n(x)φj(x) dx =

∫
Ω̂

φ̂i(s)u
2
n(x(s))φ̂j(s)J(s) ds. (52)

This additional term is discretized as:

(ψi(i,j), u
2
nφj(k,l)) = (Mri ⊗Msj)Nrs(Mrk ⊗Msl), (53)

where the index sets i(i, j) and j(k, l) are introduced to pass from the two-
dimensional matrix notation on the left hand side to the multi-dimensional
indexing of the right hand side. On the right hand side the summation with
respect to r and s is implied. The nonlinearity N can either be evaluated at the
quadrature points as:

Nrs = (φk(ξr, ηs)un,k)2J(ξr, ηs)ωr%s (54)

in the case of Galerkin methods, or at the collocation points as:

Nrs = (φk(ξr, ηs)un,k)2, (55)

for collocation methods. In Equations (54) and (55), the symbol φkun,k is a
shortcut for the sum:

n1∑
i=1

n2∑
j=1

φiφjun,ij . (56)
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Note that in Equation (56), the index n refers to the n-th fixed point iteration,
while i and j sum over all the basis functions.

In the case of Galerkin methods, aliasing errors, if present, may be reduced
by evaluating N via higher-order quadrature rules. Aliasing, however, has not
been an issue in the present work, since the resolution was sufficient to represent
the nonlinearity with a good precision. For details on how aliasing may affect a
computation not sufficiently resolved, see [10].

In the case of multi-element or multi-patch discretizations, the steps outlined
above are repeated elementwise, and summed in the global stiffness matrix with
the appropriate numbering of the degrees of freedom, as in standard Finite
Element codes.

3.4. Essential boundary conditions

After treating natural boundary conditions in Section 3.3, we now discuss
essential, or Dirichlet, boundary conditions. For the methods based on Lagrange
interpolants, the essential boundary conditions are imposed by row elimination.
The rows related to the boundary degrees of freedom are replaced by the
corresponding rows of the identity matrix:

Kij = δij ∀ i such that xi ∈ ∂DΩ, (57)

and at the right hand side, the Dirichlet datum is imposed at the corresponding
degree of freedom:

fi = hD(xi) ∀ i such that xi ∈ ∂DΩ. (58)

For the methods based on B-spline or NURBS basis functions, such a direct
approach is not feasible since the basis is not interpolatory. We resort to a
least-squares enforcement of essential boundary conditions. The least-squares
problem requires a set of points on the boundary {xi}qi=1 and an index-set i
where the indices of the basis functions different from zero at the boundary are
stored. The basis functions indexed by i are evaluated at the boundary points,
forming the matrix V ∈ Rq×nb :

Vij = φi(j)(xi) for j = 1, . . . , nb, i = 1, . . . , q (59)

where nb is the cardinality of i. The least-squares problem is well-posed if
and only if q ≥ nb. Similarly, we introduce the array q ∈ Rq, containing the
evaluation of the Dirichlet datum on the interpolation points:

qj = hD(xj) for j = 1, . . . , q, (60)

and the boundary restriction matrix Q ∈ Rnb×n. We also introduce the following
spaces:

V n◦ = {v ∈ V n : γ∂Ωv = 0}, (61)

V n∂ = V n \ V n◦ = span{φi(j)}nb
j=1, (62)
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and we denote by y◦ any vector of Rn containing the expansion coefficients in
{φj} of any function with vanishing trace on the Dirichlet part of the boundary:

(y◦)i(j) = 0 for j = 1, . . . , nb, (63)

and with y∂ we denote any vector of Rn containing the expansion coefficients
of any function whose trace is not identically zero on ∂DΩ , and whose interior
coefficients vanish:

(y∂)j = 0 for j /∈ {i(k)}nb

k=1. (64)

Notice that functions in V n∂ are in general not vanishing in the interior of
the domain pointwise. They decay as we approach the interior of the domain in
a mesh dependent way, following the decay of the B-spline basis functions whose
value on the boundary is non-zero.

The restriction operator is then defined as:{
Qy◦ = 0

QQTy∂ = y∂
(65)

We remark that QT : Rnb → Rn takes a vector of boundary “values” and extends
it to zero on the interior, and QTQ ∈ Rn×n returns the boundary lifting of a
vector.

The least squares imposition of Dirichlet boundary conditions is achieved
through the augmented linear system:[

K QTVTV
VTVQ 0

](
u
λ

)
=

(
f

VTq

)
, (66)

where λ ∈ Rnb is a vector of auxiliary Lagrange multipliers. A side-effect of
this augmentation is the growth of the matrix condition number, but in our
numerical experiments this is contained to a factor of ' 100. The number of
unknowns usually does not increase by more than ' 20%, but this depends on
the boundary to surface ratio of the domain. Alternatively, one could impose
the boundary conditions by Nitsche method, as done, for example, in [38].

3.5. Cost estimates

The different choices of test and trial functions have an impact also on the
computational cost of each method. For high order methods, it is convenient to
avoid assemblying the full system matrix, and to compute only its action on a
vector. This can be achieved by a sequence of matrix-matrix products involving
local element matrices. Calling Q and n the number of quadrature points and
the number of basis functions in each direction for each element, we have the
following cost entries [20]:

• 28Q2n4 for the matrix-matrix multiplications of Equation (45), for the
case of B-spline and NURBS Galerkin Methods;
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Table 2: Leading-order cost for an elementwise matrix-matrix multiplication, for the 7 numerical
methods of Section 3.2.

SG SC IG IC CC CG LG
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Figure 2: Operation count for an elementwise matrix-matrix multiplication, for the 7 numerical
methods of Section 3.2. Note that some of the methods share the same color, since the
operation count is the same and the relative curves overlap. More precisely, the SG and IG
are both shown in blue, SC and IC are both in yellow, CG and LG are both red.

• 20Q2n4 for the matrix-matrix multiplications of Equation (45), for the
Legendre and Chebyshev Galerkin Methods;

• 28n4 for the matrix-matrix multiplications of Equation (49), for the B-
spline and NURBS Collocation Methods;

• 16n4 for the matrix-matrix multiplications of Equation (49), for the Cheby-
shev Collocation Method.

In most practical codes, the matrix-matrix multiplications are the subroutines
absorbing most of the computational resources and time. For this reason, we
proceed discussing the computational complexity of this performance-critical
phase.

Following the common practice, in the quadrature rules we take Q = n for
the Legendre and Chebyshev methods, and Q = 2n − 1 for the B-spline and
NURBS methods.

As a result, for a fixed polynomial order p, we have a leading-order operation
count for the matrix-matrix multiplication that differs quite significantly for
the different numerical methods, that we summarize in Table 2. The same
information is visualized in Figure 2.
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Figure 3: Evolution of a knot vector under k-refinement. Each dot represents a knot, with
the convention that a vertical array of m dots stands for a knot of multiplicity m. The initial
knot vector (left) is given. The knot vector in the middle is obtained after k-refinement of the
initial knot vector. The knot vector on the right is obtained after two levels of k-refinement.

While this choice guarantees exact polynomial integration, there is a vast
literature dedicated to better choices of quadrature formulas for Isogeometric
methods that shows how the computational cost argument could be less stringent
than the one depicted here (see for example [27, 3, 40]). We point out that the
coefficients in Table 2 could be smaller for the B-spline and Isogeometric methods,
see in particular the new memory-efficient assembly strategies introduced in [11].

4. Numerical results

In this section we compare the numerical methods presented in Section 3
for the Laplace–Beltrami and Allen–Cahn equations on moderately complex
surfaces. The numerical experiments are designed to assess the behaviour of the
different methods with respect to order elevation. Due to the high flexibility
in the definition of B-spline and NURBS basis functions, there are many ways
to construct and refine such basis. Two common ways to increase the order of
B-spline and NURBS functions are p and k-refinement (see e.g. [15], [26], [8]).
While for p-refinement there is a definition the literature agrees on, namely the
increase by one of all the knots’ multiplicity, a single step of k-refinement may
consist of a p-refinement followed by some (somewhat arbitrary) knot insertions,
at locations that do not coincide with existing knots. The definition of a single
k-refinement step adopted here consists in increasing by one the multiplicity of
both the internal and the end knots, followed by the insertion of one internal knot
per knot interval, with multiplicity equal to one. Subsequent k-refinements do
not start from previous stages, but from the knot vector of the original geometry,
i.e., the internally inserted knots are removed before elevating the degree of the
B-splines.

In particular, given an initial knot vector defining the geometry, in this work
we construct the new knot vector obtained after m steps of k-refinements by
taking the same knot vector, with the multiplicities of every knot increased m
times, union with a vector of m new knots of multiplicity one for each knot
interval, located in new points equally spaced between each couple of subsequent
knots in the original vector. An example that shows our convention is available
in Figure 3.

We remark that k-refinement can be interpreted as a composition of a p-
refinement obtained by augmenting the geometry knots’ multiplicity, and a series
of knot insertions, obtained by inserting new inner knots with multiplicity one.
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Both p and k-refinement are a form of degree elevation, with the important
difference that during p-refinement the basis functions keep their original global
continuity, while after m steps of k-refinement, new internal knots are inserted
in the knot vector, generating basis functions at the inserted knots that have
the maximum available continuity. For example, if initially the basis functions
have order q and are globally Cs, after m steps of p-refinement the new basis
functions will have order q + m, and maintain the global regularity Cs. The
same initial basis functions, after m steps of k-refinement will have order q +m,
global regularity Cs, and local regularity Cq+m−1 on the newly inserted knots.

An alternative approach to the k-refinement strategy described above, consists
in removing internal knots while increasing the degree of the B-splines. This
strategy, also referred to as k-coarsening, implies an increase in the global
regularity of the B-spline basis functions, at the price of generating non-nested
spaces. This approach has the advantage that the number of degrees of freedom
does not grow too fast with the polynomial degree, and may also lead to better
conditioned matrices than those obtained by keeping fixed the global continuity
of the basis functions. A major disadvantage of this approach is related to the
fact that the geometry cannot be preserved through k-coarsening, making it only
useful for trivial geometries, and requiring an additional geometry reconstruction
step, which may not be well posed, or may give unsatisfactory results. In
this work we only show the k-refinement strategy illustrated above, which is
guaranteed to preserve the exact geometry.

In all cases the linear systems are assembled with the numpy [44] and
igakit [17] libraries.

4.1. Description of the test cases

A comprehensive test requires that the following possibilities are fully consid-
ered:

• flat surfaces (domains) and curved surfaces;

• collocation and Galerkin;

• mixed boundary conditions;

• p-refinement and k-refinement (when applicable);

• linear and nonlinear problems.

In addition, it is sensible to check that for B-spline and NURBS collocation
methods, the convergence rate does not depend drastically on the choice of
collocation points.

The test cases we set up consist in a homogeneous Laplace–Beltrami problem
on two geometries of increasing complexity, including a comparison between
different collocation strategies, the analysis of a mixed Neumann–Dirichlet
boundary condition problem, and a nonlinear test case solving the Allen–Cahn
equation.
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R1

R2

Figure 4: Surface geometry for the test case n.1.

In addition to standard p-refinement strategies, we also make a comparison
between hybrid NURBS-SEM methods and a variant of the isogeometric k-
refinement strategy. For consistency, in this case the comparison is not performed
on the basis of the polynomial degree, but on the total number of degrees of
freedom, since the k-refinement strategy that we employ introduces a higher
number of degrees of freedom for a fixed polynomial order than standard p-
refinement in SEM.

The first surface we consider consists of a domain of R2, lying on a plane
oblique to the three coordinate axis of R3. Since the surface is flat, any harmonic
function in the plane of the surface will also solve the Laplace–Beltrami equation.
We consider a transcendental harmonic function as a reference solution, whose
expression is reported in Table 3. The restriction of this function to the surface
boundary provides the required Dirichlet data.

The flat geometry that we consider is a quarter of annulus, shown in Figure 4,
obtained by considering the region between two concentric circles with inner
radius R1 = 0.5 and outer radius R2 = 1, and two orthogonal diameters.

The annular surface is represented by a mesh of 2 × 2 elements, as shown
in Figure 5 (a). The collocation points for the Chebyshev (GLC nodes) and
Isogeometric (Greville nodes) methods of degree 7 are shown in Figures 5 (b)
and (c) respectively.

The curved geometry considered for this test is shown in Figure 6, and is
obtained by revolving a C-shaped profile around a quarter of a circle of diameter
equal to 5 times the sectional heigth. Since this surface has nonzero curvature, an
harmonic function in Rn will not in general be a solution of the Laplace–Beltrami
equation. Consequently, in this case the numerical results are compared against
a manufactured solution, as reported in Table 3. For this geometry we construct
a mesh with 3 elements in the direction of revolution, and in 5 elements in the
radial direction. In Figure 6 we show the collocation points for a Chebyshev
collocation method (a) and for a B-spline or NURBS collocation method (b),
both of degree 7.
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(a) (b)

(c)

Figure 5: Discretization of the quarter of annulus in four elements (a); Gauss–Lobatto–
Chebyshev collocation points (b); Greville collocation points (c).

(a) (b)

Figure 6: Discretization in 3 × 5 elements of the C-shaped surface for the second test case:
Gauss–Lobatto–Chebyshev collocation points (a); Greville collocation points (b).
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Table 3: Summary of the numerical experiments performed in this work to compare the
high-order methods of Section 3.

n description geometry solution u(x)

1 p-ref flat Annulus − 1
2π log |x− (1, 1, 0)|

2 collocation iga Annulus − 1
2π log |x− (1, 1, 0)|

3 p-ref mixed bc Annulus − 1
2π log |x− (1, 1, 0)|

4 p-ref curved C-surface cos(x2) cos(x3)
5 k-ref flat Annulus − 1

2π log |x− (1, 1, 0)|
6 k-ref nonlinear Annulus x21 − x32

The full set of numerical experiments carried out in the following sections is
summarized in Table 3.

4.2. p-refinement, flat geometry

The results for the case with annular geometry and a transcendental harmonic
solution are shown in Figure 7. Figure 7 (a) shows that for a polynomial degree
between 2 and 9 all the methods considered here achieve the expected exponential
convergence. For polynomial degrees up to 11, the B-spline and NURBS method
except for the IGA-Collocation method fail at keeping the exponential trend,
and for even higher polynomial degrees, only the Spectral Element methods
show a satisfactory behaviour, reaching spectral accuracy.

The observed behaviour can be explained by looking at the matrix condition
number as a function of the polynomial degree p, shown in Figure 7 (b). From
this picture, it is clear that B-spline and NURBS matrices are too ill conditioned
for high orders. Conversely, the condition number of the Chebyshev and Legendre
matrices increases only algebraically, with the expected asymptotic order O(p4).

4.3. Dependence on the choice of collocation points

The problem set up with annular geometry and transcendental solution is at
the basis of two further tests regarding respectively the choice of collocation points
in Isogeometric analysis and the use of mixed Neumann–Dirichlet boundary
conditions.

To this end, we repeat the test described above for the Isogeometric collocation
method with three different sets of collocation points, namely:

Greville points Greville points are defined as the points in the unit interval
where each basis function achieves its local maximum.

Demko points also called Demko abscissae, were introduced in [19] and applied
in [2] to Isogeometric Collocation. These are the points at which Chebyshev
splines (i.e. splines which oscillate between −1 and 1) achieve a maximum
or a minimum. By definition, the maxima and minima of Chebyshev
splines are exactly 1 and −1 respectively.
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Figure 7: Comparison of the numerical methods for the annular geometry and the transcendental
solution u(x) = log |x− (1, 1, 0)|. Error in the H1 norm (left) and matrix condition number
(right) as function of the polynomial degree.

Optimized points In this case, a minimizer package from the library scipy [28]
is used to find the collocation points that minimize the H1 norm of the
error for each degree p of the basis functions. This set of points clearly is
out of reach if the solution is not known in advance, or if a sharp error
estimator is not available. However, it is instructive to compute anyways
this set of points as a lower bound for the comparison with Greville and
Demko points.

Only for this test, due to the very high computational cost of the optimization
subroutine, we subdivide the geometry in a single large element instead of four
smaller elements. The results of this comparison, shown in Figure 8, show that
on average Demko points may lead to slightly smaller errors than Greville points,
but the convergence rate and the maximum attainable accuracy seem not to
be much influenced by the choice of collocation points. However, it is worth
mentioning that many other choices of collocation points are available in the
literature (see, for example, [1]), and that the list we provide here is by no means
complete.

4.4. Problems with mixed boundary conditions

To check the treatment of Neumann boundary conditions, we replace the
Dirichlet boundary condition in the curved edge of radius R2 = 1 with Neumann
boundary conditions.

The results of this last test case, shown in Figure 9, confirm the good
behaviour of Spectral Element methods with respect to degree elevation. The
imposition of natural boundary conditions in Galerkin methods appears to be
better conditioned than in collocation methods.
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Figure 8: Comparison of the three Isogeometric collocation methods based on three sets of
collocation points. Error in the H1 norm (left) and matrix condition number (right) as function
of the polynomial degree.
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Figure 9: Comparison of the numerical methods for the annular geometry with transcendental
solution and Neumann boundary conditions. Error in the H1 norm (left) and matrix condition
number (right) as function of the polynomial degree.
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Figure 10: Comparison of the numerical methods for the C-shaped surface and the transcen-
dental solution u(x) = cos(x2) cos(x3). Error in the H1 norm (left) and matrix condition
number (right) as function of the polynomial degree.

4.5. p-refinement, curved geometry

The results using the manufactured solution given in Table 3 are shown in
Figure 10, where we plot on the left the H1 error and on the right the matrix
condition number as a function of the polynomial degree. We report in Figure 11
a plot of the solution (a) together with a map of the pointwise error (b) for the
Legendre case of order 15. As for the previous experiments, we see that B-spline
and NURBS methods fail to achieve spectral accuracy, while performing very
well at relatively low polynomial degrees.

4.6. k-refinement, flat geometry

In view of the results shown in Sections 4.2 and 4.5, it may be tempting to
conclude that IGA underperforms in terms of p-refinement if compared with a
hybrid NURBS-mapped Spectral Element Method. However, any comparison of
numerical methods focusing on the behaviour with respect to degree elevation of
the underlying basis functions would not be complete if k-refinement were not
considered. An important feature of our k-refinement strategy is that it allows
the addition of internal knots while increasing the polynomial degree. This
cannot be achieved by simple p-refinement, and may give an edge to k-refinement
over p-refinement in terms of accuracy, thanks to these additional degrees of
freedom.

The goal of the present section is therefore to compare the performance of
increasing the order of the method by performing m steps of k-refinement in
B-spline and NURBS methods with m standard steps of p-refinement in Spectral
Element Methods.
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(a) (b)

Figure 11: Plot of the solution u(x) = cos(x2) cos(x3) (a) and of the pointwise error for the
LG method with polynomial degree equal to 15 (b).

The tests are performed on the quarter of annulus geometry, with initial knot
vectors given by:

Θ1 = {0, 0, 0, 0.5, 0.5, 1, 1, 1} Θ2 = {0, 0, 0, 1, 1, 1}. (67)

As for the previous cases, we consider a transcendental solution reported in Ta-
ble 3. At step m, we generate the new knot vectors by increasing the multiplicity
of each of the above knots by m, elevating the degree of the polynomial base by
m, and inserting 2m knots in Θ1, of which m equally spaced between (0, 0.5), m
equally spaced between (0.5, 1), and finally m new knots in Θ2, equally spaced
between (0, 1).

In all the test cases, Isogeometric methods with k-refinement are remarkably
efficient for polynomial degrees up to 10, where on average these deliver a solution
two orders of magnitude more accurate than their SEM counterparts with the
same polynomial degree. This is to be expected, since the k-refinement procedure
generates a set of basis functions which is 2m2 bigger than the corresponding
p-refinement SEM basis functions, and makes the comparison between the two
methods unfair if done in terms of the polynomial degree alone.

A more fair comparison is obtained when the error and the condition number
are plotted in terms of the number of basis functions, as in Figure 12. In this
case, the accuracy per degree of freedom is substantially the same, up to order 10.
As the polynomial degree is increased, the condition number of the Isogeometric
matrices becomes so high (as shown in Figure 14 (a)) that no meaningful solution
is delivered already at p = 12. Conversely, SEM achieved spectral accuracy in
all test cases.

Arguably, one could consider a comparison between hp-refinement on the
spectral methods and k-refinement on the isogeometric methods. It is in principle
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Figure 12: Comparison of the k-refinement methods for the annular geometry and the tran-
scendental solution u(x) = log |x− (1, 1, 0)|. Error in the H1 norm as function of the number
of degrees of freedom (left) and matrix condition number as function of the polynomial degree
(right).

possible to add m internal knots before performing m degree elevation, and to
compare this strategy to our k-refinement strategy (perform m degree elevation
and then add m internal nots).

In this case, the number of degrees of freedom in the hp-refinement would
grow much more quickly than our k-refinement strategy, and a comparison on
the basis of the number of degrees of freedom would lead to a large imbalance of
the polynomial degrees for the same number of degrees of freedom, making this
comparison less significant.

4.7. k-refinement, nonlinear problem

The nonlinear test consists in solving the Allen–Cahn equation on the surface
shaped as a quarter of annulus, with a forcing term f chosen so that the exact
solution is u(x) = x21− x32. The tolerance for the fixed point methods, computed
as defined in Equation (19), is set to 10−15. The results of this test are shown
in Figure 13, where p-refinement for the SEMs is compared with k-refinement
for B-spline and Isogeometric methods. The results confirm what seen in the
previous paragraphs: even in nonlinear problems, IGA is extremely efficient
for polynomial degrees up to 6 or 8, but fails to achieve spectral accuracy in
the context of strong p or k-refinement. SEMs, although not competitive with
IGA for lower degree polynomials, become the only viable option for polynomial
degrees higher than 10.

For reference, we report the condition number of all matrices, both in the
linear and in the nonlinear case, as a function of the polynomial degree and
as a function of the number of degrees of freedom in Figure 14. While this
comparison is not entirely fair (since the size of the IGA matrices is larger than

27



10-12

10-10

10-8

10-6

10-4

10-2

1

 2  4  6  8  10  12  14  16  18  20

H
1
 e

rr
o
r

p

SG
IG

CC
CG
LG

(a)

1e-12

1e-10

1e-08

1e-06

0.0001

0.01

1

250 500 750 1000 1250 1500

H
1
 e

rr
o
r

degrees of freedom

SG
IG

CC
CG
LG

(b)

Figure 13: Error after termination of the fixed-point scheme for the Allen–Cahn equation,
measured in the H1 norm, as a function of the polynomial degree p (left) and of the estimated
operation count vs number of degrees of freedom (right). The figures refer to the annular
geometry with forcing term chosen so that the exact solution is u(x) = x2

1 − x3
2.

their spectral counterpart), it is still significant to show the very large rate of
growth of the condition number for IGA methods with the polynomial degree.

5. Conclusions

We presented some high-order numerical methods based on NURBS mappings,
and applied them to the Laplace–Beltrami equation on some moderately complex
surface geometries.

Founding a numerical method on NURBS maps allows to exactly represent
the domain geometry and avoids the meshing construction process, a complex
and time-consuming step usually done through isoparametric or transfinite maps
in hp-Finite Element or Spectral Element Methods.

All the numerical methods considered achieve very fast convergence for
polynomial degrees between 3 and 8, but only the methods based on Lagrange
interpolants at Gauss–Lobatto points reach consistently spectral precision.

The numerical evidence produced in this article raises some limitations
to Isogeometric methods in the context of strong p-refinement. In particular,
Isogeometric methods perform very well up to a polynomial degree between 8
and 10, then the stiffness matrix becomes too ill-conditioned and starts affecting
accuracy. One notable exception is the Isogeometric Collocation method with
globally C1 basis functions. This method has reached almost spectral accuracy
in all of our numerical tests, at a computational cost comparable with that of
the best performer.

Chebyshev multipatch collocation methods composed with NURBS maps
seem to be a very good option to achieve high-order and high-precision approxi-
mations, avoiding at the same time the need for complex meshing subroutines, at
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Figure 14: Matrix condition numbers for the k-refinement test on the annular surface. On the
left, the results refer to the Laplace–Beltrami equation, while on the right figure the results
refer to the fixed-point iteration for the Allen–Cahn equation. In the top row, the condition
number is plot as a function of the polynomial degree p, while in the bottom row the condition
number is shown as a function of the number of degrees of freedom.
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least on two-dimensional problems. The extension to three-dimensional domains
would require addressing the many inter-element patching conditions, that would
add complexity to the implementation of this method. An important limitation
of Chebyshev and Legendre methods is found in singular meshes. If a side of a
quad collapses to a point, the Chebyshev and Legendre methods break due to
the loss of degrees of freedom, and to the consequent singularity of the system’s
matrix. In such a case, B-spline and NURBS methods are more robust and can
still provide a solution.

A limitation of Chebyshev methods is that integration by parts can not be
carried out due to the presence of a weighted inner product. This can be an
issue when higher order differential operators are considered.
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