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Abstract

The orbifold construction A 7→ AG for a finite group G is fundamental in rational
conformal field theory. The construction of Rep(AG) from Rep(A) on the categorical
level, often called gauging, is also prominent in the study of topological phases of
matter. Given a non-degenerate braided fusion category C with a G-action, the key
step in this construction is to find a braided G-crossed extension compatible with the
action. The extension theory of Etingof-Nikshych-Ostrik gives two obstructions for
this problem, o3 ∈ H3(G) and o4 ∈ H4(G) for certain coefficients, the latter depending
on a categorical lifting of the action and is notoriously difficult to compute. We show
that in the case where G ≤ Sn acts by permutations on C�n, both of these obstructions
vanish. This verifies a conjecture of Müger, and constitutes a nontrivial test of the
conjecture that all modular tensor categories come from vertex operator algebras or
conformal nets.

1 Introduction.

Modular tensor categories play an important role in low dimensional physics, both in 2-
dimensional conformal field theories and topological phases of matter. In conformal field
theory, modular tensor categories arise as local representations of fields of observables. An
important construction in this context is the orbifold construction, which takes the fixed-
point fields of observables by a global action of a finite group. In the completely-rational
conformal net axiomatization, Müger has shown that the resulting modular tensor category
can be constructed from the original by a categorical procedure known as gauging [21].
Gauging of modular categories also appears in the context of topological phases of matter,
describing the process of promoting a group of global symmetries to local symmetries [5].

In the setting of abstract modular tensor categories, gauging is a multi-step process [9].
The starting point is an action of G on C compatible with the braiding, i.e. a homomorphism
ρ : G→ EqBr(C), where EqBr(C) is the group of equivalence classes of braided autoequiva-
lences of C. To gauge C by G, we first need to find a compatible braided G-crossed extension
of C. We then equivariantize by the associated action of G, which produces a new modular
tensor category called a gauging of C by G. Gaugings may not exist at all, and if they do
they are usually not unique.

The problem is that associated to the initial homomorphism ρ : G → EqBr(C) are two
cohomological obstructions to finding a compatible braided G-crossed extension [16]. First
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one asks if ρ can be lifted to a categorical action ρ : G → EqBr(C) (we define G,EqBr(C)
etc in Section 2 below). There is an obstruction to obtaining a lifting, given by a cohomology
class o3(ρ) ∈ H3(G, Inv(C)), where Inv(C) is the group of invertible objects in C, also known
as the simple currents of C. If o3(ρ) vanishes, the liftings form a torsor over H2(G, Inv(C)).
Once we have a categorical action ρ : G→ EqBr(C) ∼= Pic(C), in order to obtain a braided
G-crossed extension, we now need to lift this to a tri-functor G→ Pic(C) [16], Theorem 7.12.
The obstruction for this lifting is a cohomology class o4(ρ) ∈ H4(G,C×). If this vanishes,
the liftings form a torsor over H3(G,C×). Thus starting with ρ, there are two obstructions
to the existence of a desired braided G-crossed extension of C, o3(ρ) and o4(ρ), where the
latter depends on a choice of lifting of ρ.

This obstruction theory has direct relevance to any (chiral) rational conformal field the-
ory A, which we can axiomatize either as a strongly-rational vertex operator algebra or a
completely-rational conformal net of von Neumann algebras. The following statements are
theorems for conformal nets, though many are still only conjectures for vertex operator al-
gebras. The category of representations Rep(A) is a modular tensor category. Suppose a
finite group G acts faithfully on A. Then G acts as automorphisms on Rep(A) which respect
the braiding. The orbifold AG (the subtheory of A consisting of G-fixed-points) will also be
rational, so Rep(AG) will also be a modular tensor category. This category contains RepG
as a fusion subcategory — this fact goes back to Doplicher-Haag-Roberts, but also follows
because extending AG by the objects in that subcategory recovers A. The G-twisted (solo-
tonic) representations of A form the braided G-crossed category Rep(AG)×(RepG), called
the de-equivariantization of Rep(AG) [21]. The equivariantization (Rep(AG)×(RepG))G re-
covers Rep(AG). In particular, the obstruction o3(ρ) must vanish, and for some resulting
choice of ρ so must the obstruction o4(ρ). This means that if we can find some G-action
ρ on a modular tensor category C, for which either the obstruction o3(ρ) or all o4(ρ) fail
to vanish, then no completely-rational conformal net can have a G-action which acts like ρ
(respectively ρ) on its representations.

An obvious class of orbifolds are the permutation orbifolds. Start with a rational confor-
mal field theory A, say a conformal net. Write C = Rep(A). Then any subgroup G ≤ Sn
acts by global automorphisms on the tensor power theory A⊗n; the subtheory (A⊗n)G is
called the permutation orbifold. Then ρn acts on the objects and morphisms of the Deligne
product C�n in the obvious way by permuting factors, as given explicitly in Section 4. As
shown in Proposition 4.1 below, this always lifts to the standard permutation categorical
action ρ

n
of G by permutation functors, which is a strict action whose tensorators are all

identities. Hence the obstruction o3(ρn) must vanish. Even in this simple setting, however,
the obstruction o4(ρn) is difficult to compute explicitly. If o4 did not vanish for the stan-
dard permutation categorical action ρn, then there could be no conformal net A realizing C.
But it has been conjectured that any modular tensor category is Rep(A) for some rational
conformal field theory A. For this reason, Müger conjectured that o4(ρn) always vanishes
(Conjecture 5.5, Appendix 5, [23]). This same reason makes the question of whether all
o4(ρn) vanish, both natural and compelling. The main result of our paper answers Müger’s
conjecture affirmatively.

Theorem 1.1. Let G ≤ Sn be a finite group and C a non-degenerate braided fusion category.
Let ρ

n
: G → EqBr(C�n) ∼= Pic(C�n) be the standard permutation categorical action. Then
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o4(ρ) vanishes.

Note that we are able to work in the a priori greater generality of non-degenerate braided
fusion categories, since our arguments don’t require modular data. In Question 4.4 we ask
whether o4 vanishes for the 2-cocycle twistings of ρ

n
. We wish to point out two immediate

corollaries of our main result. By [16], Theorem 7.12, we obtain the following statement
which explicitly addresses Müger’s conjecture.

Corollary 1.2. Let C be a non-degenerate braided fusion category and G ≤ Sn. Then there
exist braided G-crossed fusion categories whose trivially-graded component is C�n, and whose
categorical action restricted to the trivial component is the standard permutation braided
categorical action of G on C�n. The equivalence classes (up to braided equivalence) of such
extensions form a torsor over H3(G,C×).

We point out Müger actually conjectures that there is a distinguished such category.
Although we have a distinguished categorical action ρ

n
: G → EqBr(C�n) ∼= Pic(C�n),

our result does not pick out a distinguished extension, and indeed we have several: the
equivalence classes form a torsor as stated in the corollary, with no special class distinguished.
Müger’s Conjecture 6.3 discusses the permutation orbifolds of conformal field theory, but even
in this context there is not a distinguished category: e.g. in the special case where Rep(A) =
VecC and 3 divides the order of G, exactly 3 different categories can arise (the resulting
category depends on the central charge modulo 24 — this has been observed by Marcel
Bischoff, as well as Example 2.1.1 in [19] and Theorem 2 in [17]. Thus the “distinguished”
part of Müger’s conjecture fails, though for conformal field theories the resulting categories
certainly are severely limited.

Given a finite G-set, [6] construct a weak G-equivariant fusion category. It is tempting
to guess that this matches a braided G-crossed extension of Corollary 1.2 but we cannot say
for sure: it is only weakly rigid, and not necessarily rigid, because it is constructed using
modular functors, though it does give a fusion category in the S2 case.

Bantay’s Orbifold Covariance Principle [4] is the requirement that all properties of a
rational conformal field theory have to be compatible with the fact that permutation orbifolds
of a rational theory is rational. For example, you get fairly easily from this the congruence
property of the SL2(Z) representation (modular data) of these theories. Modulo one subtlety,
Corollary 1.2 requires that a modular tensor category must be compatible with the fact
that its gaugings by permutation actions, which all must exist, are themselves all healthy
modular tensor categories. This should have plenty of consequences, including a faster proof
of the congruence property. The subtlety though is that [16] ignores spherical structures
for extensions, and in this setting one expects the theory to be slightly different, though we
expect the obstructions for permutation functors to be the same in any case.

If C is a braided fusion category with Müger center Z2(C), a minimal non-degenerate
extension is a non-degenerate braided fusion category D containing C as a full fusion sub-
category such that FPdim(D) = FPdim(C)FPdim(Z2(C)). These do not always exist (for
example, see Proposition 4.11 of [18]). However, the existence of such an extension for a cat-
egory with Z2(C) ∼= RepG for some finite group G is closely tied with the vanishing of the o4
obstruction associated with the canonical categorical action of G on the de-equivariantization
of C. From the arguments of Appendix 5, Theorem 5.4 of [23], or more directly from Theorem
4.8 (i) of [18], we have the following immediate corollary of Theorem 1.1.
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Corollary 1.3. Let C be a non-degenerate braided fusion category, G ≤ Sn, and (C�n)G the
equivariantization of C�n by the associated categorical permutation action. Then there exists
a minimal non-degenerate extension of (C�n)G.

We hope these results clear the path to understanding the categories resulting from
permutation gauging. Recent progress has been made in the case of S2, [13]. The results
there show that basic descriptions in the general case promises to be very complicated,
or at best, difficult to prove using known techniques. On the other hand, a great deal is
known about permutation orbifolds of conformal field theories [7], [3], [20], [17]. We believe
that comparing permutation orbifolds in conformal field theory and permutation gauging
of modular categories could provide new clues for answering the important question: does
every modular category arise from conformal field theory?

The outline of the paper is as follows. In Section 2, we review some basics of braided G-
crossed extension theory, and discuss the behavior of the o4 obstruction under tensor product
splitting. In Section 3 we discuss some lemmas regarding the cohomological restriction maps
for subgroups of symmetric groups. In Section 4, we define the standard permutation cate-
gorical actions, and investigate possible twistings. Finally, we apply the group cohomology
lemmas to prove Theorem 1.1. We include an appendix with GAP computations.

Acknowledgements. The authors would like to thank Michael Müger, Andrew Schopieray
and Zhenghan Wang for helpful comments. This research was conducted while the first au-
thor was visiting the Australian National University. The first author was supported by an
NSERC Discovery grant. The second author was supported by Discovery Projects Subfac-
tors and symmetries DP140100732 and Low dimensional categories DP160103479 from the
Australian Research Council.

2 Braided G-crossed extension theory.

Let C be a braided fusion category over C. For definitions and basic properties of braided
fusion categories, see the textbook [15]. In this section we will recall the basics of braided
G-crossed extension theory. The original theory can be found in [16], while an explanation
of general extension theory following the same approach can be found in [12]. An overview
of the theory with a specific emphasis on gauging can be found in [9].

Given a C-module category M, we can equip it with the structure of a C-bimodule
category using the braiding (following the conventions in [10], Section 2.8). We say thatM
is invertible if it is invertible as a C-bimodule category. We define the tri-category Pic(C) as
follows:

• There is a single 0 morphism

• 1-morphisms are invertible C-module categories, and 1-composition is given by relative
tensor product (as bimodules).

• 2-morphisms are module equivalences, with 1-composition given by balanced tensor
product of functors, and 2-composition by ordinary composition of functors

• 3-morphisms are module-functor natural isomorphisms, with the obvious compositions.
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This tri-category is also a categorical 2-group, since there is only one 0-morphism and all
morphisms are invertible. We can truncate once to form the monoidal category (bicategory
with one object) Pic(C), where the 2-morphisms are equivalence classes of module equiva-
lences. Truncating again, we obtain the group Pic(C). The reason we are interested in this
tri-category is that it controls braided G-crossed extensions of C.

Recall a braided G-crossed extension of a braided fusion category C is a G-graded fusion
category D :=

⊕
g∈G Cg with Ce = C, equipped with a categorical action of G on D, and

isomorphisms cX,Y : X ⊗ Y → g(Y ) ⊗ X for any Y ∈ D and X ∈ Cg called the G-crossed
braiding subject to a family of compatibilities and coherences, see Definition 4.41 [11]. The
G-crossed braiding must restrict to the original braiding on Ce = C. The coherences ensure
that the categorical action restricts to a braided categorical action on C.

When C is modular (or more generally, non-degenerate braided), then equivariantizing
a braided G-crossed extension by the G-action produces a new modular (non-degenerate
braided) fusion category. The process of starting with C equipped with a G-action, finding a
braided G-crossed extension whose G-action restricts on the trivial component to the one we
started with, and then equivariantizing is called gauging [9]. While we are ultimately inter-
ested in the non-degenerate fusion category produced by gauging, we have to first construct
and classify the braided G-crossed extensions.

To do so, let G be the tri-category with one object, whose 1-morphisms are given by group
elements, and all higher morphisms are identities. The 1-truncation (which is a monoidal
category) is denoted G. The punchline of [16], Theorem 7.12 is that braided G-crossed
extensions of C are classified by tri-functors G → Pic(C). Thus to understand gauging, we
must first understand some higher categorical algebra.

But we are left with the daunting question: how does one build a tri-functor G→ Pic(C)?
One could try starting with the much less scary notion of a monoidal functor G → Pic(C).
This turns out to be a good idea, since the monoidal category Pic(C) is actually well-studied
in a different guise. Let EqBr(C) denote the monoidal category whose objects are braided
monoidal autoequivalences of C and whose morphisms are monoidal isomorphisms. There is
a canonical monoidal functor F : Pic(C)→ EqBr(C), described as follows.

For a module category M, we have two tensor functors α± : C → EndC(M), called
α-inductions. In both cases, the underlying endofunctor of M associated to α±(X) is just
the ordinary left module action by X. However to define an EndC(M) structure on this
endofunctor, we use the braiding and its reverse, respectively. IfM happens to be invertible
as a module, then both α± are braided equivalences, so there exists ΘM ∈ EqBr(C) such
that

α+ = α− ◦ΘM.

By [16], Theorem 5.4, the assignment M→ ΘM naturally extends to a monoidal functor

F : Pic(C)→ EqBr(C). (1)

A major result that is particularly important for gauging is that F is an equivalence if
C is non-degenerate, and thus there is an inverse F−1. Although the inverse is explicit, a
serious difficulty is that it is tricky to explicitly work out the tensorator of F−1 in enough
detail to be useful. For details on all of the above, see [16], Section 5.4.
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In any case, when C is non-degenerate, we see that we have a bijection between equivalence
classes of monoidal functors G → Pic(C) and monoidal functors G → EqBr(C), simply by
composing with the monoidal equivalence F . The latter sort of monoidal functor has a
designated name.

Definition 2.1. Let G be a finite group and C a braided fusion category. A braided cate-
gorical action of G on C is a monoidal functor ρ : G→ EqBr(C).

Braided categorical actions appear naturally in many contexts, and there are many in-
teresting and well-understood examples (see Section 4 for the examples that are the purpose
of this paper). We often abbreviate “braided categorical action” to “categorical” action,
and whether or not it is braided should be clear from context. We now know how to take
a braided categorical action of G on C and produce a monoidal functor G → Pic(C). But
where do we get braided categorical actions?

In general, the idea is to start simply with a homomorphism ρ : G→ EqBr(C). Then we
work backwards, trying to lift ρ to a monoidal functor ρ : G→ EqBr(C) ∼= Pic(C). We then
try to lift this to a tri-functor ρ : G → Pic, which is what we need for a braided G-crossed

extension. However, at each stage of categorification, there is a cohomological obstruction
to obtaining a lift. If this obstruction vanishes, we can categorify the morphism, and the
different possibilities of liftings will be a torsor over a certain cohomology group (different
at each stage). We explain this process starting from the bottom.

2.1 First extensions.

Let us begin with a homomorphism ρ : G→ EqBr(C) ∼= Pic(C). The goal is to extend this to
a monoidal functor ρ : G → Pic(C) ∼= EqBr(C), where here we identify Pic(C) ∼= EqBr(C)
via F (see (1)).

The first step is to choose a representative invertible module Cg for each g ∈ G, such that
[Cg] = ρ(g) ∈ Pic(C). Then we need (equivalence classes of) module functors

Mg,h : Cg �C Ch → Cgh,

which give the tensorator for the monoidal functor. But for this to be monoidal, we need
these to satisfy the relation

Mgh,k ◦ (Mg,h �C Idk) ∼= Mg,hk ◦ (Idg �C Mh,k) , (2)

h ∈ G, where this isomorphism must be as module functors. Note that the C-module
endofunctors of an invertible module category are given by multiplication by an invertible
object in C, hence for any choice of Mg,h : Cg �C Ch → Cgh, we define

T (C,M)g,h,k := Mgh,k ◦ (Mg,h �C Idk) ◦ (Mg,hk ◦ (Idg �C Mh,k))
−1 ∈ Inv(C)

These assemble into a 3-cocycle T (C,M) ∈ Z3(G, Inv(C)), where Inv(C) is a G-module
via ρ. We let o3(ρ) ∈ H3(G, Inv(C)) be the cohomology class of T (C,M) in H3(G, Inv(C)).
While T (C,M) may depend on the choices Mg,h the corresponding class o3(ρ) only depends
on the homomorphism ρ. The results of [16] say that T (C,M) ∼= Idghk if and only if o3
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is trivial. Thus we can lift ρ to a monoidal functor (or equivalently, a categorical action)
ρ : G → Pic(C) ∼= EqBr(C) if and only if o3(ρ) vanishes. If o3(ρ) does indeed vanish, then
the set of equivalence classes of liftings ρ′ : G → Pic(C) ∼= EqBr(C) which truncate to the
given homomorphism ρ form a torsor over the group H2(G, Inv(C)).

Now, if we have taken the obstruction theory path and demonstrated the existence of
a lifting by showing o3(ρ) is trivial, we know the liftings form a torsor over H2(G, Inv(C)),
but we have no specified base point so we don’t know how to explicitly identify the liftings
with H2-cohomology classes. This is necessary for computing the next obstruction. There
is a way to remedy this situation and avoid explicitly computing the obstruction at the
same time. The point is that if we directly construct a monoidal functor (equivalently, a
categorical action) ρ : G → EqBr(C) which truncates to ρ, then we have found a specific
lifting. By the above discussion, this automatically implies the obstruction o3(ρ) vanishes,
and simultaneously gives us a basepoint for our torsor. Indeed, constructing a categorical
action is literally constructing a witness to the vanishing of o3(ρ). This is the route we take
for permutation actions in Section 4.

2.2 Second extensions.

Now suppose we are given a monoidal functor ρ : G → Pic(C) ∼= EqBr(C). Then we have
invertible C-module categories Cg and C-module functors Mf,g satisfying (2). However, to
extend this to a tri-functor, we need to pick explicit C-module isomorphisms

Ag,h,k : Mgh,k ◦ (Mg,h �C Idk)→Mg,hk ◦ (Idg �C Mh,k)

These A are meant to give us associators for the corresponding G-extension, hence must
satisfy the pentagon equation (see [14]). Inverting one side of the pentagon equation, we
obtain a module functor automorphism of the module functor

Mfgh,k ◦ (Mfg,h �C Idk) ◦ (Mf,g �C Idh �C Idk),

defined by

v(C,M,A)f,g,h,k = (Mf,g �C Idh �C Idk)A
−1
fg,h,k ◦ (Idf �C Idg �C Mh,k)A

−1
f,g,hk

◦Mf,ghk(idf �C Ag,h,k) ◦Af,gh,k(Idf �CMg,h�C Idk) ◦Mfgh,k(Af,g,h�C idk)
(3)

But every module automorphism of a module equivalence is a scalar times the identity,
which is easily seen to satisfy the cocycle condition, and thus we may view

v(C,M,A) ∈ Z4(G,C×)

We then define o4 to be the image of v(C,M,A) in H4(G,C×). It turns out (unsurprisingly)
that the isomorphisms Af,g,h can be rescaled to satisfy the pentagon equations (and thus
give us a genuine monoidal category) if and only if the class o4 ∈ H4(G,C×) is trivial.
Furthermore, this cohomology class does not depend on the choice of Af,g,h, and thus is
canonically associated to a monoidal functor G→ Pic(C). See [16], Section 8.6 for details.
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In summary, to gauge by a braided categorical action ρ : G → EqBr(C) ∼= Pic(C), we
must first extend ρ to a tri-functor, in order to obtain a braided G-crossed extension of C.
This amounts to checking that an obstruction o4(ρ) ∈ H4(G,C×) vanishes. We emphasize
here that o4 in general is quite difficult to compute.

We now point out some basic properties of the o4 obstruction that will be fundamental in
our arguments. Suppose we have ρ : G → EqBr(C) ∼= Pic(C) for a non-degenerate braided
fusion category C. If H ≤ G then we can restrict ρ to obtain a categorical action of H. Let

ResGH : H4(·,C×) denote the restriction map on cohomology. It follows immediately from
the definitions that

o4(ρ|H) = ResGHo4(ρ). (4)

Now, suppose D is another non-degenerate braided fusion category, and we have π : H →
EqBr(D) ∼= Pic(D). We can define the obvious product action ρ×π : G×H → EqBr(C�D)
by

(ρ× π)(g × h)(X � Y ) := ρ(g)(X) � π(h)(Y )

with tensorator natural isomorphisms

µρ×πg1×h1,g2×h2 := µρg1×g2 � µπh1×h2

The defining properties of a braided categorical action are easy to verify. We have the
following lemma.

Lemma 2.2. If both o4(ρ) and o4(π) vanish, then o4(ρ× π) vanishes.

Proof. By [16] Theorem 7.12, the o4 obstruction associated to a categorical action vanishes
if and only if there exists a braided G-crossed extension whose categorical action on the
trivially graded component is the one we started with. If C ⊆ E is a braided G-crossed
extension corresponding to ρ and D ⊆ F is a braided H-crossed extension corresponding to
π, then E�F has a canonical structure of a braided G×H-crossed extension of C�D which
restricts to the product action ρ× π on the trivially graded component.

Let 1D : 1 → EqBr(D) be the trivial categorical action. We have the following easy
lemma.

Lemma 2.3. o4(ρ× 1D) vanishes if and only if o4(ρ) vanishes

Proof. One direction follows from Lemma 2.2. For the other, suppose o4(ρ × 1D) vanishes.
Then there exists a braided G-crossed fusion category E with (E)e = C�D, whose categorical
action on the trivial component is ρ × 1D. But then the equivariantization EG is non-

degenerate and contains D as a full subcategory, so EG = D′ � D. But CG ⊆ D′, and thus
de-equivariantizing we see that E ∼= F �D, where F is a braided G-crossed extension on C
which restricts to ρ on C, hence o4(ρ) vanishes.
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We remark that a much stronger statement generalizing both the above lemmas is true,
namely o4(ρ × πD) vanishes if and only if both o4(ρ) and o4(πD) vanish. However, our
later arguments only require the above statements, and we prefer to give these since their
arguments are elementary, only using the existence of braided G-crossed extensions rather
than detailed knowledge of extension theory itself.

3 Group cohomology lemmas.

In this section, we discuss some lemmas relating to the group cohomology of the symmetric
groups. First we will discuss some relevant facts concerning cohomology groups with trivial
action on the coefficient modules.

Consider the short exact sequence of abelian groups

0→ Z
j
↪→ C e2πiz−→ C× → 0.

where C is the additive group of complex numbers, j : Z ↪→ C is the usual inclusion. This
induces a long exact sequence in cohomology

· · · → Hk(G,Z)
j→ Hk(G,C)

e2πiz−→ Hk(G,C×)
δ→ Hk+1(G,Z)→ · · · (5)

Since C is a Q-vector space, Hn(G,C) = 0, and for every n, the long exact sequence gives us

0 → Hn(G,C×)
δ→ Hn+1(G,Z) → 0, and thus the connecting map δ furnishes a canonical

isomorphism. Furthermore, naturality of the long exact sequence shows that the following
diagrams commute for all n and all subgroups H ≤ G:

Hn(G,C×) Hn+1(G,Z)

Hn(H,C×) Hn+1(H,Z)

δ

ResGH ResGH

δ

This allows us to consider questions concerning H4(G,C×) and restrictions to subgroups
by asking the same question for H5(G,Z) and restriction, which are easily computable in
computer algebra programs such as GAP.

Recall the following deep result concerning the cohomology theory of symmetric groups,
which is referred to as Nakaoka Stability.

Theorem 3.1. [22, Corollary 6.7]. For any abelian group M , the restriction map

ResSnS2k
: Hk(Sn,M)→ Hk(S2k,M)

is an isomorphism for all n ≥ 2k.

Specializing to k = 4, we we immediately obtain the following.

Corollary 3.2. The restriction map ResSnS8
: H4(Sn,C×) → H4(S8,C×) is an isomorphism

for all n ≥ 8
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We find that H4(Sn,C×) equals 0, 0, Z2, Z2, Z2×Z2, Z2×Z2, and Z2×Z2×Z2 respectively,
for n = 2, 3, 4, 5, 6, 7, and n ≥ 8 respectively.

Below are two lemmas which are central to our arguments in the next section. We will
give two proofs for each. The first proof requires little additional knowledge about group
cohomology, but relies on computations performed in the computer algebra program GAP,
code for which is contained in the Appendix. In Subsection 3.1, we give alternate proofs
of these lemmas which do not require a computer. These arguments use facts about the
cohomology ring of the symmetric groups with coefficients in F2 and the Steenrod square
map.

Lemma 3.3. Consider the subgroup 〈(12), (34)〉 ∼= S2 × S2 ⊆ S4. Then the restriction map
ResS4

S2×S2
: H4(S4,C×)→ H4(S2 × S2,C×) is injective.

Proof 1. The GAP code appearing in the Appendix 5 shows that the image of the restriction
map in is Z2, and since H4(S4,C×) ∼= Z2, it must be injective.

Lemma 3.4. Consider the subgroup of S8 preserving {1, 2, 3, 4}, which is isomorphic to
S4 × S4. Then the restriction map ResS8

S4×S4
: H4(S8,C×)→ H4(S4 × S4,C×) is injective.

Proof 1. Since H4(S8,C×) ∼= Z2×Z2×Z2 is 2-torsion, for any subgroup G ≤ S8 with [S8 : G]
odd, we have ResS8

G : H4(S8,C×)→ H4(G,C×) is injective (this follows for example from [8],
Proposition 9.5, (ii)). LetG = 〈(12), (34), (13)(24), (56), (78), (57)(68), (15)(26)(37)(48), (35)(46)〉.
This contains the Sylow 2-subgroup (generated by the first 7 elements in the list) so its index
is odd, hence the restriction map is injective on H4(·,C×).

Now, define the group H = 〈(12), (34), (13)(24), (56), (78), (57)(68)〉 ≤ S4 × S4, which
is isomorphic to (S2 o S2) × (S2 o S2). Computations in GAP (see Appendix 5) show that
H4(G,C×) ∼= H5(G,Z) ∼= Z9

2, and Image(ResGH(H4(G,C×))) ∼= Z9
2. Thus ResGH is an iso-

morphism on H4( · ,C×). Therefore ResS8
H = ResGH ◦ Res

S8
G is injective. But ResS8

H =
ResS4×S4

H ◦ResS8
S4×S4

being injective on H4( · ,C×) implies ResS8
S4×S4

is injective on H4( · ,C×),
as desired.

3.1 A computer-free approach.

The goal of this section is to provide proofs of Lemmas 3.3 and 3.4 that do not require
computer computations. Similar arguments with more details included are given in Section
4.8 of [17]. Let F2 denote the field with two elements. The cohomology groups Hk(Sn,F2)
are much better studied than those of Hk(Sn,C×), due the additional structure of a graded
ring using the cup product.

The short exact sequence

0→ Z ×2→ Z π→ F2 → 0

gives us the long exact sequence in cohomology:

· · · → Hk(G,Z)
×2→ Hk(G,Z)

π→ Hk(G,F2)
β→ Hk+1(G,Z)→ · · · (6)
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where π is reduction modulo 2. Equation (6) says that the order 2 classes in Hk+1(G,Z) can
be identified with the image of β.

We will need to know the connecting homomorphisms β more explicitly. This can be

done through the 0 → Z2 → Z4
×2→ Z2 → 0 sequence. The corresponding connecting

homomorphism Hk(G,F2) → Hk+1(G,F2) is also called the Steenrod square Sq1. It is a
derivation, i.e. Sq1(xy) = Sq1(x)y + xSq1(y) (where the product is the cup product), and
Sq1(a) = a2 when a has degree 1. Sq1 is known explicitly in many concrete examples. What
matters for us is that Sq1 = π ◦ β.

We learned earlier that H5(Sn,Z) ∼= H4(Sn,C×) has exponent 2 for all n, so the map

H5(Sn,Z)
×2→ H5(Sn,Z) is the 0 map. Equation (6) then says that π : H5(Sn,Z) →

H5(Sn,F2) is injective and β : H4(Sn,F2) → H5(Sn,Z) is surjective. Thus the image
Sq1(H4(Sn,F2)) = π ◦ β can be lifted to an isomorphism

π : H5(Sn,Z)
∼→ Sq1(H4(Sn,F2)) (7)

Lemmas 3.3 and 3.4 can be proved by hand using facts about Hk(Sn,F2) contained in
[2], especially Chapter VI, together with supplementary information on Hk(S8,F2) in [1].

Proof 2 of Lemma 3.3. The cohomology ring H∗(S4,F2) is F2[σ1, σ2, c3]/(σ1c3), where the
subscript as always indicates degree. Hence H4(S4,F2) ∼= Z3

2 is spanned by σ4
1, σ

2
1σ2, σ

2
2 .

The action of the Steenrod square Sq1 on the generators is given in Chapter VI of [2]: it
sends σ1 to σ2

1, σ2 to σ1σ2 + c3, and c3 to 0. Hence we can identify (through the injection π
as in Equation (7)) the nontrivial class in H5(S4,Z) with Sq1(σ2

1σ2) = σ3
1σ2. Restrictions to

H∗(S2 × S2,F2) of the generators are also given there: the image is the polynomial algebra
F2[σ

′
1, σ

′
2] ⊂ H∗(S2 × S2,F2), and σ1 7→ σ′1, σ2 7→ σ′2, c3 7→ 0. Hence σ3

1σ2 restricts to σ′ 31 σ
′
2.

By naturality of the long exact sequence as before, π intertwines ResS4
S2×S2

for H5(S4,F2)
and H5(S4,Z), and we are done.

The proof of the second lemma is similar so we will only sketch it.

Proof 2 of Lemma 3.4. The commutative ring H∗(S8,F2) is F2[σ1, σ2, σ3, c3, σ4, x5, d6, d7]/R
where R consists of relations in degree 6 and higher, so H4(S8,F2) ∼= Z6

2. Equation (7)
identifies H5(S8,Z) with the F2-span of σ3

1σ2 +σ2
1σ3, σ

2
1c3, x5 +σ1σ4. Restriction to S4×S4 is

given in [1] (see the proof of Theorem 3.2), and we find that the restriction is 3-dimensional.
Intertwining π with restrictions as in the last proof gives us the desired result.

4 Permutation actions.

Let C be a non-degenerate braided fusion category, n ≥ 1, and Sn the permutation group
on n elements. Let G ≤ Sn be any subgroup. We have a group homomorphism ρn : G →
EqBr(C�n) obtained simply by permuting the factors. As discussed at the end of Section 2.1,
one way to show o3(ρn) vanishes and construct a specific lifting ρ

n
: G→ Pic(C) ∼= EqBr(C)

at the same time is to explicitly construct a braided categorical action of G ≤ Sn on C�n.
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We proceed to define
ρ
n

: G→ Pic(C) ∼= EqBr(C)

Let ρn(g) be the endofunctor of C�n that acts on objects via

ρn(g)(X1 � · · ·�Xn) = Xg−1(1) � · · ·�Xg−1(n)

and similarly on simple tensor morphisms

ρn(g)(f1 � · · ·� fn) = fg−1(1) � · · ·� fg−1(n).

Let X = X1 � · · · �Xn and Y = Y1 � · · · � Yn be objects in C�n. We define the monoidal
functor structure maps ψgX,Y : ρn(g)(X)⊗ ρn(g)(Y )→ ρn(g)(X ⊗ Y ) by

ψgX,Y := idX1⊗Y1 � · · ·� idXn⊗Yn .

Here we identify

ρn(g)(X)⊗ ρn(g)(Y ) = (Xg−1(1) ⊗ Yg−1(1)) � · · ·� (Xg−1(n) ⊗ Yg−1(n))

with

ρn(g)(X ⊗ Y ) = (Xg−1(1) ⊗ Yg−1(1)) � · · ·� (Xg−1(n) ⊗ Yg−1(n)).

It is clear from the construction that each ρn(g) is a braided autoequivalence of C�n. Fur-
thermore, we see that

ρn(g) ◦ ρn(h)(X) = Xh−1g−1(1) � · · ·�Xh−1g−1(n) = ρn(gh)(X)

Since our action is strict, we can define the tensorators

µg,h ∈ Nat(ρn(g) ◦ ρn(h), ρn(gh)) = Nat(ρn(gh), ρn(gh))

µg,h := idρn(gh)

The strictness properties of our action make it easy to verify that this data assembles
into a (strict) monoidal functor ρ

n
: G→ EqBr(C�n) ∼= Pic(C�n) which we call the standard

permutation categorical action associated to the group G ≤ Sn. We summarize the above
discussion in the following proposition.

Proposition 4.1. Let G ≤ Sn, and ρn : G → EqBr(C�n) be the canonical permutation
homomorphism. Then the obstruction o3(ρn) ∈ H3(G, Inv(C)) vanishes. Furthermore, there
is a canonical lift ρ

n
: G→ EqBr(C�n) ∼= Pic(C�n) which we call the standard permutation

categorical action, constructed above.

Note that we use ρ
n

: Sn → EqBr(C�n) ∼= Pic(C�n) to simultaneously refer to the

monoidal functor whose images are in EqBr(C�n) with Pic(C�n), where we use the canonical
monoidal equivalence F from (1) identifying these two.
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Before we prove Theorem 1.1, we wish to discuss other categorical actions associated
to permuatation actions. As described in Section 2.1, given a categorical action ρ : G →
EqBr(C) ∼= Pic(C), all other categorical actions which truncate to the same homomorphism
of groups ρ : G → EqBr(C) ∼= Pic(C) can be obtained by twisting the original ρ by a 2-
cocycle ω ∈ Z2(G, Inv(C)). Here the action of G on Inv(C) is induced by the homomorphism
ρ. Equivalence classes of such twists only depend on the cohomology class in H2(G, Inv(C)).

In particular, for G ≤ Sn and ρ
n

: G → EqBr(C�n), there are other possible “non-

standard” permutation categorical actions, parametrized by the group H2(G, Inv(C�n)). We
call these twisted permutation categorical actions. We would like to determine necessary and
sufficient conditions for there to be no twistings, at least when G = Sn. We know from [13]
that there is a unique permutation categorical action of S2 on C � C for any non-degenerate
C. We have the following proposition, which gives us a condition in general.

Proposition 4.2. H2(S3, Inv(C�3)) ∼= Inv(C)/2 Inv(C) and for all n ≥ 4, H2(Sn, Inv(C�n)) ∼=
(Inv(C)/2 Inv(C))× Inv(C)2, where Inv(C)2 denotes the elements of order 2.

Proof. Consider the Sn−1 module M := Inv(C), where Sn−1 acts trivially. Then clearly
CoindSnSn−1

(M) ∼= Inv(C)n with the ordinary permutation action. Thus by Shapiro’s lemma,

H2(Sn−1,M) ∼= H2(Sn, Inv(C)n) = H2(Sn, Inv(C�n)), and thus we’ve reduced the problem
to computing the second cohomology of H2(Sn−1,M) with trivial action on the coefficient
group M . By the dual universal coefficient theorem, we have a short exact sequence

0→ Ext1(H1(Sn−1,Z),M)→ H2(Sn−1,M)→ Hom(H2(Sn−1,Z),M)→ 0

which splits (non-naturally). Here the homology groups with coefficients in the integers have
trivial action. But the first homology groups for Sn are isomorphic to Z2 for all n ≥ 2, while
H2(S2,Z) and H2(S3,Z) are trivial and H2(Sn,Z) ∼= Z2 for all n ≥ 4.

First we consider the case n = 3. We see that Ext1(H1(S2,Z),M) ∼= H2(S2,M) ∼=
H2(S3, Inv(C�n)). But H1(S2,Z) ∼= Z2, and Ext1(Z2,M) ∼= M/2M .

Now suppose n ≥ 4. Then H1(Sn,Z) ∼= H2(Sn,Z) ∼= Z2. The first non-zero term in the
short exact sequence gives Inv(C)/2 Inv(C), while the second gives Inv(C)2.

Corollary 4.3. For n ≥ 3, the standard permutation categorical action ρ : Sn → Pic(C�n)
is the unique permutation categorical action if and only if |Inv(C)| is odd.

Proof. If |Inv(C)| is even, then multiplication by 2 has a kernel, and thus 2 Inv(C) is a proper
subgroup, hence Inv(C)/2 Inv(C) 6= 0. Conversely, if |Inv(C)| is odd, then no element has even
order so Inv(C)2 = 0. But then multiplication by 2 is a bijection so Inv(C)/2 Inv(C) = 0.

We would also very much like to know for which twistings the o4 obstruction vanishes.

Question 4.4. Let G ≤ Sn, C be non-degenerate braided, and ρ
n

: G → EqBr(C�n) be the

standard permutation categorical action. For ω ∈ H2(G, Inv(C)), let ω . ρ denote the corre-
sponding twisted permutation categorical action. What are necessary and sufficient conditions
on G, ω and C so that o4(ω . ρ) vanishes?

13



There is a concrete formula for the o4 obstruction of the twisted permutation actions in
terms of ρ and ω ∈ H2(G, Inv(C)) given in Proposition 9 of [9] that will likely be of use in
answering this question.

We now turn to a proof of Theorem 1.1.

Proof of Theorem 1.1. Let C be a non-degenerate braided fusion category. Let ρ
n

: Sn →
EqBr(C�n) ∼= Pic(C�n) be the standard permutation categorical action. We claim it suffices
to show o4(ρn) vanishes for all n ≥ 8. Indeed any Sn can be embedded in Sm for some
m ≥ 8, simply by considering its action on the set {1, 2, . . . , n} ⊆ {1, . . . ,m} and we can
view the restriction of ρ

m
to Sn as the product action of ρ

n
×1C�(m−n) . Hence by Lemma 2.3,

if o4(ρm) vanishes for all m ≥ 8, then it vanishes for all n. However, Lemma 2.3 shows o4(ρ8)

vanishes if and only if ResSmS8
o4(ρm) = o4(ρ8× 1C�(m−8)) does. However, by Nakaoka Stability

(Corollary 3.2), the restriction map ResSmS8
: H4(Sm,C×) → H4(S8,C×) is an isomorphism

for all m ≥ 8, proving the claim.
Now we consider S4. By Lemma 2.2, since the standard permutation categorical action

of S2×S2 ≤ S4 is a product action ρ
2
×ρ

2
and both these component actions have vanishing

obstructions (since H4(Z2,C×) is trivial), we have from Equation (4) and Lemma 2.2 that
ResS4

S×S2
o4(ρ4) = o4(ρ2 × ρ2) vanishes. By Lemma 3.3, ResS4

S2×S2
is injective on H4(·,C×),

and thus o4(ρ4) also vanishes. Applying a similar argument, we see that ResS8
S4×S4

o4(ρ8) =

o4(ρ4×ρ4) vanishes. By Lemma 3.4, ResS8
S4×S4

is injective on H4(·,C×). Thus o4(ρ8) vanishes,
concluding the argument.

5 Appendix: GAP computations.

These GAP computations require the package HAP. The following command computes the
restriction map associated to the inclusion H = Z2 × Z2 ⊆ S4 = G.

G:=Group((1,2),(2,3),(3,4));
H:=Group((1,2),(3,4));
f:=GroupHomomorphismByImages(H,G,[(1,2),(3,4)],[(1,2),(3,4)]);
R:=ResolutionFiniteGroup(H,6);
S:=ResolutionFiniteGroup(G,6);
Amap:=EquivariantChainMap(R,S,f);
Hf:=Cohomology(HomToIntegers(Amap),5);

Print(GroupCohomology(G,5));
Print(AbelianInvariants(Image(Hf)));

The last two lines compute H4(S4,C×) ∼= H5(G,Z) = Z2, and show that the image of
the restriction map to H4(Z2 × Z2,C×) ∼= H5(H,Z) is Z2, and in particular is injective.
The following commands compute the restriction maps associated to the inclusion L ∼=
(Z2 o Z2)× (Z2 o Z2) ⊆ 〈Z2 o Z2 o Z2, (35)(46)〉 = K.

K:=Group((1,2),(3,4),(5,6), (7,8), (1,3)(2,4), (5,7)(6,8), (1,5)(2,6)(3,7)(4,8), (3,5)(4,6));
L:=Group((1,2),(3,4), (5,6), (7,8), (1,3)(2,4), (5,7)(6,8));
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g:=GroupHomomorphismByImages(L,K,[(1,2),(3,4), (5,6), (7,8), (1,3)(2,4), (5,7)(6,8)];
[(1,2),(3,4), (5,6), (7,8), (1,3)(2,4), (5,7)(6,8)]);
T:=ResolutionFiniteGroup(L,6);
U:=ResolutionFiniteGroup(K,6);
Gmap:=EquivariantChainMap(T,U,g);
Hg:=Cohomology(HomToIntegers(Gmap),5);

Print(GroupCohomology(K,5));
Print(AbelianInvariants(Image(Hg)));

The last two lines compute H4(〈Z2 o Z2 o Z2, (35)(46)〉,C×) ∼= H5(K,Z) = (Z2)
×9, and show

that the image of the restriction map to H4((Z2 o Z2)× (Z2 o Z2),C×) ∼= H5(L,Z) is (Z2)
×9,

and in particular the restriction map is injective on H4.
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