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ON THE EXISTENCE OF A GLOBAL DIFFEOMORPHISM BETWEEN

FRÉCHET SPACES

KAVEH EFTEKHARINASAB

Abstract. We provide sufficient conditions for the existence of a global diffeomorphism

between tame Fréchet spaces. We prove a version of Mountain Pass theorem which plays a

key ingredient in the proof of the main theorem.

1. Introduction

In this paper we consider the problem of finding sufficient conditions under which a tame

map between tame Fréchet spaces becomes a global diffeomorphism. Tame maps are im-

portant because they appear not only as differential equations but also as their solutions

(see [4] for examples). Although, the theory of differential equations in Fréchet spaces has

a significant relation with problems in both linear and nonlinear functional analysis but not

many methods for solving different type of differential equations are known. Our result

would provide an approach to solve an initial value nonlinear integro-differential equation

x1ptq `

ż t

0

φpt, s, xpsqqds “ yptq, t P r0, 1s.

We follow the ideas in [5] and [6] where the analogue problem for Banach and Hilbert

spaces was studied. There are two approaches to calculus on Fréchet spaces. The Gâteaux-

approach (see [7]) and the so called convenient analysis (see [9]). We will apply the first one

because to define the Palais-Smale condition, which plays a significant role in the calculus of

variation, we need an appropriate topology on dual spaces that compatible with our notion

of differentiability; only in the first approach there exists such a topology.

In [3], the author defined the Palais-Smale condition for Ck-maps between Fréchet spaces

and obtained some existence results for locating critical points. In this paper by means of

this condition we generalize the mountain pass theorem of Ambrosetti and Rabinowitz to

Fréchet spaces. Our proof of the mountain pass theorem relies on the Ekeland’s variational

principle. Since, in general, we can not acquire deformation results for Fréchet spaces because

of the lack of a general solvability theory for differential equations. It is worth mentioning
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that for every Fréchet space the projective limit techniques gives a way to solve a wide class

of differential equations (see [1]). This technique would be a way of obtaining many results

(such as deformation lemmas) for Fréchet spaces.

Roughly speaking, the main theorem states that if ϕ is a smooth tame map that satisfies

the assumptions of the Nash-Moser inverse function theorem and if for an appropriate aux-

iliary functional ι, a functional e ÞÑ ιpϕpeq ´ fq satisfies the Palais-Smale condition then ϕ

is a global diffeomorphism.

2. Mountain Pass Theorem

We denote by F a Fréchet space whose topology is defined by a sequence p‖ ¨ ‖nF qnPN of

seminorms, which we can always assume to be increasing (by considering maxkőn ‖ ¨ ‖kF , if

necessary). Moreover, the complete translation-invariant metric

dF px, yq –

ÿ

iPN

‖ x ´ y ‖nF
1` ‖ x ´ y ‖nF

(2.1)

induces the same topology on F .

We recall that a family B of subsets of F that covers F is called a bornology on F if

‚ @A,B P B there exists C P B such that A Y B Ă C,

‚ @B P B and @r P R there is a C P B such that r ¨ B Ă C.

We use the Keller’s definition of Ck
c -maps which is equivalent to the notion of Ck-maps in

the sense of Michal and Bastiani.

Let E, F be Fréchet spaces, U an open subset of E, and ϕ : U Ñ F a continuous map. If

the directional (Gâteaux) derivatives

dϕpxqh “ lim
tÑ0

φpx ` thq ´ φpxq

t

exist for all x P U and all h P E, and the induced map dϕ : U ˆ E Ñ F, pu, hq ÞÑ dϕpuqh is

continuous in the product topology, then we say that ϕ is a C1-map in the sense of Michal

and Bastiani. Higher directional derivatives and Ck-maps, k ŕ 2, are defined in the obvious

inductive fashion.

Let E be a Fréchet space, B a bornology on E and LBpE, F q the space of all linear

continuous maps from E to F . The B-topology on LBpE, F q is a Hausdorff locally convex

topology defined by all seminorms obtained as follows:

‖ L ‖nB– supt‖ Lpeq ‖nF : e P Bu, (2.2)

where B P B. One similarly may define the space Lk
B

pE, F q of k-linear jointly continuous

maps from Ek to F . If B is generated by all compact sets, in the sense that every B P B

is contained in some compact set, then the B-topology on the space LBpE,Rq “ E 1
B
of all
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continuous linear functional on E, the dual of E, is the topology of compact convergence. If B

contains all compact sets of E, then Lk
B

pE,Ll
B

pE, F qq is canonically isomorphic to Ll`k
B

pE, F q

as a topological vector space, see [7, Theorem 0.1.3]. In particular, L2

B
pE,Rq “ L2

B
pEq –

LBpE,E 1
B

q. Under the above condition on B, we define the differentiability of class Ck
c : Let

U Ă E be open, a map ϕ : U Ñ F is called C1

c if its directional derivatives exist and the

induced map dϕ : U Ñ LBpE, F q is continuous. Similarly we can define maps of class Ck
c ,

k P N Y t8u, see [7, Definition 2.5.0]. A map ϕ : U Ñ F is Ck
c , k ŕ 1, if and only if ϕ is

Ck in the sense of Michal and Bastiani, see [7, Theorem 2.7.0 and Corollary 1.0.4 (2)]. In

particular, ϕ is C8
c if and only in ϕ is C8.

If φ : E Ñ R at x is C1 and hence C1

c , the derivative of φ at x, φ1pxq, is an element of E 1
B
,

and the directional derivative of φ at x toward h P E is given by

dϕpxqh “ xφ1pxq, hy,

where x¨, ¨y is duality pairing.

Because of the equivalency of the notions of differentiability we shall omit the index c in

denoting differentiable maps of order k. We always assume that a bornology B on a Fréchet

space contains all its compact sets.

Definition 2.1. Let F be a Fréchet space, B a bornology on F and F 1
B
the dual of F equipped

with the B-topology. Let φ : F Ñ R be a C1-functional.

(i) We say that φ satisfies the Palais-Smale condition, PS-condition in short, if each

sequence pxiq Ă F such that φpxiq is bounded and

φ1pxiq Ñ 0 in F 1
B
,

has a convergent subsequence.

(ii) We say that φ satisfies the Palais-Smale condition at level c P R, pPSqc-condition in

short, if each sequence pxiq Ă F such that

φpxiq Ñ c and φ1pxiq Ñ 0 in F 1
B
,

has a convergent subsequence.

Let φ be a Ck-functional pk ŕ 1q on a Fréchet space F . As usual, a point p in the domain

of φ is said to be a critical point of if φ1ppq “ 0, the corresponding value c “ φppq will be

called a critical value.

The next result is essential when we want to prove the existence of a critical point.
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Theorem 2.1. [7, Corrolly 4.9] Let F be a Fréchet space and let φ : F Ñ R be C1-functional

bounded from below. If pPSqc-condition holds with c “ infF φ, then there is x P F such that

φpxq “ c and φ1pxq “ 0.

Consider the following weak form of the Ekeland’s variational principle (cf. [2]).

Theorem 2.2. Let pX, σq be a complete metric space. Let a functional Ψ : X Ñ p´8,8s

be semi-continuous, bounded from below and not identical to `8. Then, for any ǫ ą 0 there

exists x P X such that

(1) Ψpxq ő infX Ψ ` ǫ,

(2) Ψpxq ő Ψpyq ` ǫσpx, yq, @y ‰ x P X.

Let pF, ‖ ¨ ‖nF q be a Fréchet space and let φ P C1pF,Rq be a functional. Let

Γf –

!
γ P Cpr0, 1s;F q : γp0q “ 0, γp1q “ f P F

)

be the set of continuous paths joining 0 and f . Consider the Fréchet space Cpr0, 1s;F q with

the family of seminorms

‖ γ ‖nC“ sup
tPr0,1s

‖ γptq ‖nF . (2.3)

The metric

dCpγ, ηq –

ÿ

iPN

‖ γ ´ η ‖nC
1` ‖ γ ´ η ‖nC

(2.4)

is complete translation-invariant and induces the same topology on Cpr0, 1s;F q. We can

easily show that Γf is closed in Cpr0, 1s;F q and so it is a complete metric space with the

metric, dΓf
, which is the restriction of dC to Γf .

The proof of the following mountain pass theorem is the refinement of the proof for the

Banach spaces case (see [10, Theorem 4.10]). The idea of the proof is straightforward:

for a given φ P C1pF,Rq that satisfies the PS-condition and a point f P F if a particular

condition hold (the condition (2.5)), we define a functional Ψ on Γf so that it satisfies the

assumptions of the Ekeland’s variational principle (Theorem 2.2). Then this theorem yields

that Ψ has almost minimizers points satisfying some certain conditions. We use a sequence

of these points on Γf and associate this sequence of almost minimizers with a sequence on F ,

which satisfies the requirement of the PS-condition for φ. The limit of a subsequence of this

sequence on F is a critical point of φ. The difficult step is to find a connection between the

sequence of almost minimizers of Ψ and a sequence on F , which satisfies the requirements

of the PS-condition.
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Theorem 2.3 (The Mountain Pass Theorem). Let F be a Fréchet space and φ : F Ñ R

a C1- functional satisfying the Palais-Smale condition. Assume f P F and φ satisfies the

condition

inf
pPBU

φppq ą maxtφp0q, φpfqu “ a, (2.5)

where BU is the boundary of an open neighborhood U of 0 such that f does not belong to the

closure U , f R U . Then φ has a critical value c ą a which can be characterized as

c – inf
γPΓf

max
tPr0,1s

φpγptqq.

Proof. Let

Γf –

!
γ P Cpr0, 1s;F q : γp0q “ 0, γp1q “ f P F

)
.

Suppose the metric dΓf
which is the restriction of the metric dC (2.4) to Γf , defines the

topology of Γf . With this metric Γf is a complete metric space.

Define the functional Ψ : Γf Ñ R by

Ψpγq “ max
tPr0,1s

φpγptqq.

Since Ψ is the least upper bound of a family of lower semi-continuous functions it follows

that it is lower semi-continuous too. Since U separates 0 and f for all γ P Γf , we have

γpr0, 1sq
č

BU ‰ H. (2.6)

Therefore, by (2.6)

c ŕ inf
BU

φ “ c1, (2.7)

and then it follows from (2.5) that

c ŕ c1 ą a.

Thus, Ψ is bounded from below.

Let pγ P Γf , we show that Ψ is continuous at pγ. Given ε ą 0, choose ̺ ą 0 (here we use

the continuity of φ) such that @y P pγpr0, 1sq and @x P F such that dF px, yq ă ̺ we have

| φpxq ´ φpyq |ă ε, where | ¨ | is the usual absolute modulus. Now for each γ P Γf such that

dΓf
ppγ, γq ă ̺, we have

Ψpγq ´ Ψppγq “ φpγptmqq ´ max
tPr0,1s

φppγptqq ő φpγptmqq ´ φppγptmqq,

where tm P r0, 1s is the point where the maximum of φpγptqq is attained. Since

dF ppγptmq, γptmqq ő dΓf
ppγ, γq ă ̺,

it follows that Ψpγq ´ Ψppγq ă ε. Reverting the roles of pγ and γ yields that

| Ψppγq ´ Ψpγq |ă ε.
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Thus Ψ satisfies all conditions of Theorem 2.2, and hence, for every ǫ ą 0 there exists γǫ P Γf

such that

Ψpγǫq ő c ` ǫ, (2.8)

Ψpγǫq ő Ψpγq ` ǫdΓf
pγ, γǫq, @γ ‰ γǫ P Γf . (2.9)

Without loss of generality we may assume

0 ă ǫ ă c ´ a. (2.10)

Now we show that there is s P r0, 1s such that for all seminorms we have

‖ φ1pγǫpsqq ‖nBő ǫ, (2.11)

We prove the inequality (2.11) by contradiction. Notice that

‖ φ1pγǫpsqq ‖nB“ sup
gnPB

xφ1pγǫpsqq, gny.

Define the set

Spǫq – ts P r0, 1s : c ´ ǫ ő φpγǫpsqqu. (2.12)

It follows from (2.10) that a ă c ´ ǫ. Since γǫp0q “ 0 and φp0q ő a, we obtain that 0 R Spǫq.

Furthermore, the functional φ is continuous on F and the set Spǫq is closed so Spǫq is compact.

Suppose for all s P r0, 1s the inequality (2.11) does not hold. Then, for all s P Spǫq

‖ φ1pγǫpsqq ‖Bą ǫ, @B P B.

Thus, for each s P Spǫq there exist points gns P F such that

xφ1pγǫpsq, gns y ă ´ǫ. (2.13)

Since φ1 is continuous on F , it follows from (2.13) that for each s P Spǫq there exist αs ą 0

and an open interval Bs Ă r0, 1s such that

xφ1pγǫptq ` hq, gns y ă ´ǫ, (2.14)

for all t P Bs and all h P F with ‖ h ‖nFă αsp@n P Nq.

The family tBsusPSpǫq covers the compact set Spǫq so there exists a finite subcovering

Bs1, ¨ ¨ ¨ , Bsk of Spǫq. Since 0 R Spǫq, we may assume 0 R Bsi. Thus, r0, 1szBsi is closed and

not empty for all i “ 1, ¨ ¨ ¨ k. Therefore, if t P
Ťk

i“1
Bsi , then

kÿ

i“1

distpt, r0, 1szBsiq ą 0.
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Now define the function χjptq : r0, 1s Ñ r0, 1s by

χjptq “

$
’&
’%

řk

i“1

distpt, r0, 1szBsjqřk

i“1
distpt, r0, 1szBsiq

t P
Ťk

i“1
Bsi ,

0 otherwise.

It is easily seen that χj is continuous and

kÿ

j“1

χjptq ő 1 @t P r0, 1s (2.15)

and χjptq “ 0 if t R Bj .

Fix a continuous function χ : r0, 1s Ñ r0, 1s such that

χptq “

$
&
%
1 c ő φpγǫptqq,

0 φpγǫptqq ő c ´ ǫ.

Let α “ mintαs1 , ¨ ¨ ¨ , αsku. For an arbitrary fixed n P N, define the continuous function

µn : r0, 1s Ñ F by

µnptq “ γǫptq ` αχptq
kÿ

j“1

χjptqg
n
sj
.

Now we show that µn P Γf . By (2.10), for t P t0, 1u we have

φpγǫptqq ő a ă c ´ ǫ,

therefore χptq “ 0 and hence µnptq “ γǫptq. From (2.14) and the mean value theorem (cf. [8])

it follows that for each t P Spǫq there is θn P p0, 1q such that

φpµnptqq ´ φpγǫptqq “ xφ1
´
γǫptq ` θnαχptq

kÿ

j“1

χjptqg
n
sj

¯
, αχptq

kÿ

j“1

χjptqg
n
sj

y

“ αχptq
kÿ

j“1

χjptqxφ1
´
γǫptq ` θnαχptq

kÿ

j“1

χjptqg
n
sj

¯
, gnsjy

ő ´ǫαχptq. (2.16)

The inequality (2.16) follows from (2.15) and (2.14).

Let t1 be such that φpµnpt1qq “ Ψpµnq therefore

φpγǫpt1q ŕ φpµnpt1qq ŕ c.

Whence χpt1q “ 1 and t1 P Spǫq because if t1 R Spǫq then χpt1q “ 0.

From (2.16) it follows that φpµnpt1qq ´ φpγǫpt1qq ő ´ǫα and so

Ψpµnq ` ǫα ő φpγǫpt1qq ő Ψpγǫq
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and µn ‰ γǫ. But, by the definition of µn we have dΓf
pµn, γǫq ă α, therefore,

Ψpµnq ` ǫdΓf
pµ, γǫq ă Ψpγǫq

which contradicts (2.9) and complete the proof of (2.11). Therefore, for every ǫ ą 0 there

exists tε P Spǫq such that all seminorms satisfy

‖ φ1pγǫptǫqq ‖nBő ǫ. (2.17)

and

c ´ ǫ ő φpγǫptǫqq.

Therefore, by (2.8) we have

c ´ ǫ ő φpγǫptǫqq ő Ψpγǫq ő c ` ǫ. (2.18)

Now it suffices to consider the sequence fn “ γ1{npt1{nq and use the pPSqc-condition. By (2.18)

we have φpfnq Ñ c, and by (2.17) we have φ1pfnq Ñ 0, therefore, fn has a convergent subse-

quence, denoted again by fn. If the limit of fn is h, in view of Theorem 2.1 it follows that h

is a critical point and φphq “ c. �

Remark 2.1. Note that we could have used the weaker pPSqc-condition instead of PS-

condition, with c being the c in the proof. But in application c is not known explicitly. This

constrains us to verify pPSqc-condition for all possible values c.

3. The existence of a global diffeomorphism

In this section we prove a global diffeomorphism theorem in the category of tame Fréchet

spaces. With respect to the metric (2.1), dF , we define an open ball Brpxq centered at x

with radius r. Its closure and boundary is denoted by Brpxq and BBrpxq, respectively.

Theorem 3.1. Let E and F be tame Fréchet spaces and τ : E Ñ F a smooth tame map.

Let ι : F Ñ r0,8s be a C1-functional such that ιpxq “ 0 if and only if x “ 0 and ι1pxq “ 0 if

and only if x “ 0. If the following conditions hold

C1: the derivative τ 1peqp “ k has a unique solution p “ νpeqk for all e P E and all k,

and the family of inverses ν : E ˆ F Ñ E is a smooth tame map;

C2: for any f P F the functional φf defined on E by

φf peq “ ιpτpeq ´ fq

satisfies the Palais-Smale condition at all levels.

Then τ is a global diffeomorphism.
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Proof. The map τ satisfies the assumptions of the Nash-Moser inverse function theorem, the

condition C1, which implies that τ is a local diffeomorphism. Thus, it suffices to show that

τ is surjective and bijective.

To prove that τ is surjective suppose that f P F is any arbitrary point. Then, by the

Palais-Smale condition the functional φf has a critical point p P E, and the assumptions on

ι yields that τppq “ f . The functional φf is bounded from below and is of class C1 as it is

the composition of two C1 maps. Since φf satisfies the Palais-Smale condition it follows by

Theorem 2.1 that it attains its critical point at some p P E so φ1
fppq “ 0. From the chain

rule [7, Corollary 1.3.2] it follows that

φ1
fppq “ ι1pτppq ´ fq ˝ τ 1ppq “ 0. (3.1)

By the assumption the map τ 1 is invertible and hence (3.1) implies that ι1pτppq ´ fq “ 0

therefore τppq “ f . Thus, τ is surjective.

To prove that τ is injective we argue by contradiction, assume e1 ‰ e2 P E and τpe1q “

τpe2q “ l. Then we will construct the functional φl on E that satisfies the assumptions of

Theorem 2.3 and hence it has a critical point h which its existence violates the assumptions

on ι.

Since τ is a local diffeomorphism it is an open map. Therefore, there exists αr ą 0 such

that

Bαr
plq Ă τpBrpe1qq, (3.2)

for r ą 0. Let ρ ą 0 be small enough such that

e2 R Bρpe1q. (3.3)

Consider the functional φlpeq “ ιpτpeq ´ lq, therefore φlpe1q “ φlpe2q “ 0.

Without the loose of generality we can suppose e1 “ 0. For e P BBρp0q, in virtue of (3.2)

we have τpeq R Bαρ
plq and so τpeq ‰ l. Therefore, the assumption on ι yields

φlpeq ą 0 “ maxtφlp0q, φlpe2qu.

Thus, all assumptions of Theorem 2.3 hold for the functional φl and the points 0 and e2.

Therefore, there exists a critical point h P E with φlphq “ c for some c ą 0. But

c “ φlphq “ ιpτphq ´ lq ą 0,

therefore, the assumption on ι implies

τphq ‰ l. (3.4)
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By the chain rule we have φ1
lphq “ ι1pτphq ´ lq ˝ τ 1phq “ 0. Thus, since τ 1 is invertible it

follows that ιpτphq ´ lq “ 0 so τphq “ l which contradicts (3.4). �
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