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OBSTRUCTIONS TO DEFORMING CURVES ON A PRIME FANO

3-FOLD

HIROKAZU NASU

Abstract. We prove that for every smooth prime Fano 3-fold V , the Hilbert scheme

Hilbsc V of smooth connected curves on V contains a generically non-reduced irreducible

component of Mumford type. We also study the deformations of degenerate curves C

in V , i.e., curves C contained in a smooth anticanonical member S ∈ | −KV | of V . We

give a sufficient condition for C to be stably degenerate, i.e., every small (and global)

deformation of C in V is contained in a deformation of S in V . As a result, by using the

Hilbert-flag scheme of V , we determine the dimension and the smoothness of Hilbsc V at

the point [C], assuming that the class of C in PicS is generated by h := −KV

∣

∣

S
together

with the class of a line, or a conic on V .

1. Introduction

We work over an algebraically closed field k of characteristic 0. Let X be a smooth

Fano 3-fold of index r with Picard group PicX ≃ Z. Then by [9, 10], all such X are

classified into 17 classes up to deformation equivalence and we have 1 ≤ r ≤ 4. Let

HilbscX denote the Hilbert scheme of smooth connected curves in X . Mumford [20] first

proved that if r = 4 (i.e. X ≃ P
3), then HilbscX contains a generically non-reduced

(irreducible) component. This example was generalized in [5, 12, 3], etc., for X = P
3, and

in [18, 21] for many uniruled 3-folds X . It is known that if r = 3 (i.e. X ≃ Q3 ⊂ P
4) or

r = 2 (i.e. X is a del Pezzo 3-fold), then HilbscX contains (infinitely many) generically

non-reduced components.

In this paper, we discuss the existence of a generically non-reduced component of

HilbscX for every X with r = 1, i.e., a prime Fano 3-fold X , in the view point of a

further generalization of Mumford’s example. Let V be a prime Fano 3-fold of genus

g (:= (−KV )
3/2 + 1), and let Hilbsc

d,p V denote the subscheme of Hilbsc V parametrising

curves of degree d and genus p.

Theorem 1.1. The Hilbert scheme Hilbsc
4g,4g+1 V contains a generically non-reduced ir-

reducible component (of Mumford type) of dimension 5g + 1, whose general member C

satisfies:

(1) C is contained in a smooth anticanonical member S ∈ | −KV |,
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2 HIROKAZU NASU

(2) C belongs to the class −2KV

∣

∣

S
+ 2E in PicS for a good conic E ≃ P

1 on V , i.e.,

a conic with trivial normal bundle NE/V ≃ O2
P1, and

(3) h0(C,NC/V ) = 5g + 2.

This is a generalization of a result in [22] (for g = 3). We will sketch its proof. As is well

known, V contains good conics E, which are parametrised by an open subset Γ′ of the Fano

surface Γ := Hilb2,0 V of V (cf. Lemma 2.1). The pairs (E, S) of E and a smooth member

S ∈ |−KV | containing E are parametrised by an open subset U of a P
g−2-bundle over Γ′.

(Thus dimU = g.) We consider the maximal family W of curves C contained in a smooth

S ∈ | −KV |, and belonging to the linear equivalence class in (2) for some E. Then W is

isomorphic to an open subset of a P4g+1-bundle over U , and thus dimW = 5g+1. (See §3.1

for the construction of W .) On the other hand, we compute that h0(C,NC/V ) = 5g + 2,

using the fact that the Hilbert-flag scheme HFsc V is nonsingular at (C, S) of expected

dimension 5g+1 (cf. Lemma 2.12). By using a result in [22] (cf. Lemma 2.14), we show that

every C is obstructed in V . Then as in Mumford’s example, there exists an inequality

dimW ≤ dim[C]Hilb
sc V < h0(NC/V ) = dimW + 1, and this inequality immediately

implies that the closure W of W in Hilbsc V is an irreducible component of (Hilbsc V )red,

and Hilbsc V is generically non-reduced along W . In Table 1, for every integer 1 ≤ r ≤ 4

and every smooth Fano 3-fold X of index r with PicX ≃ Z, we list a series of generically

non-reduced components W ⊂ HilbscX “of Mumford type”:

Table 1. Generically non-reduced components of Mumford type

r class of S class of C E dimW

4 −3
4
KX 56 Mumford [20] (cf. Ex. 3.4)

3 −2
3
KX −KX

∣

∣

S
+ 2E line 42 [18] (cf. Ex. 3.5)

2 −1
2
KX 4n+ 4a [18, 21]

1 −KX −2KX

∣

∣

S
+ 2E conic 5g + 1 [22] (g = 3)

a Here n denotes the degree of a del Pezzo 3-fold X (i.e. n = (−KX)3/8).

As the second topic of this paper, we study the deformations of degenerate curves C

in V , i.e., curves contained in some member S ∈ | − KV |. We are interested in (i) the

stability of the degeneration of C, and also (ii) the (un)obstructedness of C in V . Here we

say C is stably degenerate if every small and global deformation C ′ of C in V is contained

in some deformation S ′ of S in V (cf. Definition 2.6).

Theorem 1.2. Let C be a smooth connected curve of genus g(C) on V contained in a

smooth anticanonical member S ∈ | −KV | of V , and let h denote the class of −KV

∣

∣

S
in

PicS. Suppose that we have either

[i] C ∼ nh for some integer n,
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[ii] S contains a good line E (cf. Example 2.9) on V and C ∼ ah + bE for some

integers a, b ≥ 0 with (a, b) 6= (0, 1), or

[iii] S contains a good conic E on V and C ∼ ah+ bE for some integers a, b ≥ 0 with

(a, b) 6= (0, 1).

Then

(1) C is stably degenerate in V .

(2) dim[C]Hilb
sc V =







g + g(C) + 1 if [i] with n ≥ 2 holds, and

g + g(C) otherwise.

(3) C is obstructed in V if and only if [iii] with a = b ≥ 2 holds.

The same subject was studied in [21] for degenerate curves on a del Pezzo 3-fold.

By [14], if S is general in | − KV |, then every smooth curve C on S is of type [i]. We

call a curve C on S of this type a complete intersection in S. On the other hand, in the

studies of Fano 3-folds V (cf. [9, 10]), lines and conics on V play an important role. Thus,

the curves on S of type [ii] or [iii] seem to be of the next natural class to consider their

deformations in V , other than the complete intersections in S. In Propositions 4.1, 4.3

and 4.4, we give the dimension of Hilbsc V at [C] more explicitly, in terms of (a, b) and n.

The organization of this paper is as follows. In §2.1, we recall some basic results on

prime Fano 3-folds. In §2.2, we discuss the Hilbert-flag schemes. We consider the image of

the first projection pr1 : HF
sc V → Hilbsc V sending (C, S) to [C], and prove Theorem 2.4,

which is a generalization of a result due to Kleppe [12] for V = P
3, although its proof is

not new. In §2.3, we apply this theorem to our case: C ⊂ S ⊂ V , where C is a curve, S is

a K3 surface, and V is a Fano 3-fold (cf. Lemma 2.13), and prepare the two key lemmas

(cf. Lemmas 2.12 and 2.14). We prove Theorems 1.1 in §3 and 1.2 in §4, respectively.

2. Preliminaries

2.1. Prime Fano 3-folds. In this section, we recall some basic facts on prime Fano 3-

folds. We refer to Iskovskih [10], or a survey in [24] for the details. A smooth projective

3-fold V is called a Fano 3-fold if the anticanonical divisor −KV of V is ample. The

maximal integer r such that −KV ∼ rH for some Cartier divisor H is called the (Fano)

index of V , and we have 1 ≤ r ≤ 4 for every V . We consider a prime Fano 3-fold V ,

i.e., a Fano 3-fold V with r = 1, and such that PicV is generated by H := −KV . Then

the genus g := H3/2 + 1 of V can be any integer between 2 and 12, except 11. The

linear system |H| on V defines a morphism Φ|H| : V → P
g+1, which is an embedding, or

a finite morphism of degree 2 onto its image in P
g+1. In the latter case, V is said to be

hyperelliptic. By virtue of the classification due to Iskovskih, together with Mukai’s work

([15, 16]), in which the anticanonical models of V (i.e. Φ|H|(V ) ⊂ P
g+1) were described

as linear or quadratic sections of homogeneous spaces Σ (g = 7, 9, 10), every prime Fano

3-fold V of genus g is isomorphic to V2g−2 (2 ≤ g ≤ 12) or V ′
4 in Table 2 (cf. [17]). Every
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Table 2. Prime Fano 3-folds

g anticanonical model (or morphism)

2 V2
2:1
−→ P

3: a double cover branched along (6) ⊂ P
3

3 V4 = (4) ⊂ P
4: a quartic hypersurface

V ′
4

2:1
−→ (2) ⊂ P

4: a double cover branched along (2) ∩ (4) ⊂ P
4

4 V6 = (2) ∩ (3) ⊂ P
5: a complete intersection of a quadric and a cubic

5 V8 = (2) ∩ (2) ∩ (2) ⊂ P
6: a complete intersection of three quadrics

6 V10 = [V5
a ⊂ P

7] ∩ (2): a quadratic hypersurface section of a del Pezzo 4-fold

7 V12 = [Σ10
12 = SO(10)/U(5) ⊂ P

15] ∩ P
8: a linear section of a orthogonal Grassmannian

8 V14 = [G(2, 6) ⊂ P
14] ∩ P

9: a linear section of a Grassmannian

9 V16 = [Σ6
16 = Sp6(6)/U(3) ⊂ P

13] ∩ P
10: a linear section of a symplectic Grassmannian

10 V18 = [Σ5
18 ⊂ P

13] ∩ P
11: a linear section of a G2-variety

12 V22
b ⊂ P

13: a Mukai-Umemura 3-fold (cf. [19])

a V5 is a del Pezzo 4-fold V5 = [G(2, 5) ⊂ P
9] ∩ P

7, or a cone over a quintic del Pezzo 3-fold.
b V22 is isomorphic to the variety G(3, 7, N) ⊂ P

13 associated with a non-degenerate 3-dimensional

subspace N ⊂ ∧2k7.

general member of | − KV | is a smooth K3 surface (cf. [26]), and a smooth projective

3-fold X ⊂ P
g+1 (for g ≥ 3) is a prime Fano 3-fold (of genus g) if every general linear

section [X ⊂ P
g+1] ∩ P

g−1 of codimension 2 is a canonical curve (of genus g in P
g−1).

We next recall the geometry of lines and conics on prime Fano 3-folds. By a line (resp.

a conic) on V , we mean a reduced irreducible rational curve E on V with (E.H)V = 1

(resp. (E.H)V = 2). There exists a line (cf. [25]) and a conic on every V , and V is not

covered by the family of lines (because its dimension is at most 1), but that of conics. Let

E be a conic on V . Then since V does not contain a plane, by e.g., [10, Lemma 4.2 and

Proposition 4.3], E is one of the following type:

(2.1) (k,−k) : NE/V ≃ OP1(k)⊕OP1(−k), k = 0, 1, 2.

In this paper, if NE/V is trivial, E is called a good conic, and a bad conic otherwise. For

every V , the Hilbert scheme Γ (= Hilbsc
2,0 V ) of conics on V is a smooth surface (but

possibly reducible, e.g., for g = 6), and called the Fano surface of conics on V . Every

general point of Γ corresponds to a good conic on V (of type (0, 0)). (Here we use the

assumption that char k = 0.) For the proof, we refer to [1] for g = 2, [2] for g = 3, and

[24, Proposition 4.2.5] for g ≥ 4 (whose proof works also for g = 4). Consequently, we

have

Lemma 2.1. Every prime Fano 3-fold V contains a good conic E, i.e., a conic of type

(0, 0). There exists an open dense subset of the Fano surface of V , which parametrises

good conics E ⊂ V .
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2.2. Hilbert-flag schemes. In this subsection, we recall some basic results on Hilbert-

flag schemes. See [12, 23] for the proofs. Given a projective scheme Z over k, we denote

by HFZ the Hilbert-flag schemes (or the nested Hilbert scheme) of Z, which parametrises

all pairs (X, Y ) of closed subschemes X and Y of Z satisfying X ⊂ Y . There are two

natural projections pri : HFZ → HilbZ (i = 1, 2) to the Hilbert scheme HilbZ of Z,

sending (X, Y ) to [X ] for i = 1, and to [Y ] for i = 2. We denote by N(X,Y )/Z the normal

sheaf of (X, Y ) in Z (see [23, 4.5.2] for its definition), which is a sheaf on Z with support

contained in Y . By definition, as OZ-modules, N(X,Y )/Z is isomorphic to a subsheaf of

the direct sum NX/Z ⊕NY/Z of the normal sheaves of X and Y . Moreover, there exists a

natural cartesian square

(2.2)

N(X,Y )/Z

π1

��

π2
//

�

NY/Z

|X
��

NX/Z

πX/Y
// NY/Z

∣

∣

X

of homomorphisms of sheaves on Z, by which N(X,Y )/Z is characterized, where |X is the

restriction of sheaves, πX/Y : NX/Z → NY/Z

∣

∣

X
is the natural projection of normal sheaves,

and πi (i = 1, 2) are induced by the projections to direct summands.

Suppose now that the two closed embeddings X →֒ Y and Y →֒ Z are regular em-

beddings, whose definition can be found in [23, §D.1]. Then by [23, Proposition 4.5.3],

H0(Z,N(X,Y )/Z) and H1(Z,N(X,Y )/Z) respectively represent the tangent space and the

obstruction space of HFZ at (X, Y ). Moreover, it follows from a general theory that

(2.3) h0(Z,N(X,Y )/Z)− h1(Z,N(X,Y )/Z) ≤ dim(X,Y )HFZ ≤ h0(Z,N(X,Y )/Z),

and HFZ is nonsingular at (X, Y ) if and only if dim(X,Y )HFZ = h0(Z,N(X,Y )/Z) (cf. [12,

Lemma 7]). The induced map pi = H0(Z, πi) by πi on the space of global sections is the

tangent map of pri for each i = 1, 2. Then the diagram (2.2) extends to a commutative

diagram

(2.4)

0 0




y





y

IX/Y ⊗Y NY/Z IX/Y ⊗Y NY/Z




y





y

0 −−−→ NX/Y −−−→ N(X,Y )/Z
π2−−−→ NY/Z −−−→ 0

‖ π1





y

|X





y

0 −−−→ NX/Y −−−→ NX/Z

πX/Y
−−−→ NY/Z

∣

∣

X
−−−→ 0





y





y

0 0
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of exact sequences of sheaves of OZ-modules. Taking a long exact sequence, we deduce

from the first column of (2.4) the fundamental exact sequence

(2.5)

0 −−−→ H0(Y, IX/Y ⊗Y NY/Z) −−−→ H0(Z,N(X,Y )/Z)
p1

−−−→ H0(X,NX/Z)

−−−→ H1(Y, IX/Y ⊗Y NY/Z) −−−→ H1(Z,N(X,Y )/Z)
o1−−−→ H1(X,NX/Z)

−−−→ H2(Y, IX/Y ⊗Y NY/Z) −−−→ . . .

of cohomology groups, and similarly from the first row of (2.4) the exact sequence

(2.6)

0 −−−→ H0(X,NX/Y ) −−−→ H0(Z,N(X,Y )/Z)
p2

−−−→ H0(Y,NY/Z)

−−−→ H1(X,NX/Y ) −−−→ H1(Z,N(X,Y )/Z)
o2−−−→ H1(Y,NY/Z)

−−−→ H2(X,NX/Y ) −−−→ . . .

(cf. [12, (2.7)]). Here oi represents the maps on the obstruction spaces induced by pri for

i = 1, 2. By [12, Lemma A10], if H1(Y, IX/Y ⊗Y NY/Z) = 0, then the morphism pr1 is

smooth at (X, Y ) (see also [11, Theorem 1.3.4]). Similarly one can deduce from (2.6) the

fact that if H1(X,NX/Y ) = 0, then pr2 is smooth at (X, Y ) (cf. [11, Proposition 1.3.7]).

Lemma 2.2 (cf. [12]). (1) If H1(Y,NY/Z) = 0, then

H1(Z,N(X,Y )/Z) ≃ cokerαX/Y ,

where αX/Y is the composition αX/Y : H0(Y,NY/Z)
|X
−→ H0(X,NY/Z

∣

∣

X
)

∂X/Y
−→

H1(X,NX/Y ) of the restriction map |X and the coboundary map ∂X/Y of the exact

sequence in the second row of (2.4).

(2) If H1(X,NX/Z) = 0, then

H1(Z,N(X,Y )/Z) ≃ coker βX/Y ,

where βX/Y is the composition βX/Y : H0(X,NX/Z)
πX/Y
−→ H0(Y,NY/Z

∣

∣

X
)

∪kX−→

H1(Y, IX/Y ⊗Y NY/Z) of πX/Y and the coboundary map ∪kX of the exact sequence

in the second column of (2.4).

Proof. We show (1). By assumption, H1(Z,N(X,Y )/Z) is isomorphic to the cokernel of the

coboundary map ∂′
X/Y : H0(Y,NY/Z) → H1(X,NX/Y ) of the exact sequence in the first

row of (2.4). By commutativity, we see that ∂′
X/Y factors through ∂X/Y . Similarly, (2)

follows from the diagram. �

Remark 2.3. The number in the left hand side of the inequality (2.3) is called the expected

dimension of HFZ at (X, Y ). The Euler characteristic χ(Z,N(X,Y )/Z) of N(X,Y )/Z can be

computed by the equation

χ(Z,N(X,Y )/Z) = χ(X,NX/Y ) + χ(Y,NY/Z) = χ(Y, IX/Y ⊗Y NY/Z) + χ(X,NX/Z),
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which follows from the additivity on Euler characteristics and (2.4). By definition, the

support of N(X,Y )/Z is a closed subset of Y . Hence we have H i(Z,N(X,Y )/Z) = 0 for all

integers i > dim Y .

If H0(Y, IX/Y ⊗Y NY/Z) = 0, then pr1 induces an embedding of a neighborhood U ⊂

HFZ of (X, Y ) into HilbZ. The following theorem is useful for estimating the (local)

codimension of the image of HFZ in HilbZ at [X ], and will be applied to Lemma 2.13.

Theorem 2.4 (cf. [12, 13]). Let OHilbZ,[X] and OHFZ,(X,Y ) denote the local rings of HilbZ

and HFZ at [X ] and (X, Y ), respectively. Let IX/YNY denote the sheaf IX/Y ⊗Y NY/Z on

Y , and suppose that H0(Y, IX/YNY ) = 0. Suppose furthermore that H i(Z,N(X,Y )/Z) = 0

for i = 1, 2. Then we have

(2.7)

h1(Y, IX/YNY )− h2(Y, IX/YNY ) ≤ dimOHilbZ,[X] − dimOHFZ,(X,Y ) ≤ h1(Y, IX/YNY ).

Here the inequality to the right is strict if and only if HilbZ is singular at [X ]. Let WX,Y

denote the unique irreducible component of HFZ passing through (X, Y ). Then,

(1) If h1(Y, IX/YNY ) = 0 or h2(Y, IX/Y NY ) = 0, then X is unobstructed in Z. More-

over, HilbZ is generically smooth along pr1(WX,Y ).

(2) If h1(Y, IX/YNY ) = 0, then pr1(WX,Y ) is an irreducible component of (HilbZ)red.

(3) If h2(Y, IX/YNY ) = 0, then pr1(WX,Y ) is of codimension h1(Y, IX/YNY ) in HilbZ

at [X ].

Proof. We see that the proof of [12, Theorem 10] works in our general setting, although

it is assumed there that V = P
3, Y is a smooth surfaces (of degree s) and X is a smooth

curve (of degree d > s2). In fact, it follows from a general theory that

(2.8) h0(X,NX/Z)− h1(X,NX/Z) ≤ dimOHilbZ,[X] ≤ h0(X,NX/Z),

and moreover, we have dimOHilbZ,X = h0(X,NX/Z) if and only if HilbZ is nonsingu-

lar at [X ]. Since H1(Z,N(X,Y )/Z) = 0, we have dimOHFZ,(X,Y ) = h0(Z,N(X,Y )/Z). By

subtracting this number from (2.8), we have

h0(X,NX/Z)− h0(Z,N(X,Y )/Z)− h1(X,NX/Z) ≤ dimOHilbZ,X − dimOHFZ,(X,Y )

≤ h0(X,NX/Z)− h0(Z,N(X,Y )/Z).

It follows from the exact sequence (2.5) and H1(Z,N(X,Y )/Z) = H0(Y, IX/YNY ) = 0 that

h0(X,NX/Z)−h0(Z,N(X,Y )/Z) = h1(Y, IX/YNY ). Since we have H
2(Z,N(X,Y )/Z) = 0 also,

the same sequence shows that h1(X,NX/Z) = h2(Y, IX/Y NY ). Thus we have obtained

(2.7). The first part of (1) is clear, because we have dimOHilbZ,X −dimOHFZ,(X,Y ) ≥ 0 by

assumption, while the last part of (1), (2) and (3) follow from the upper semicontinuity

on cohomology groups. �
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Remark 2.5. (1) As is mentioned in [12, Remark 11], by replacing the middle term

dimOHilbZ,[X] − dimOHFZ,(X,Y )

in (2.7) with

(2.9) dimOHilbZ,[X] − dimOHFZ,(X,Y ) + h0(Y, IX/Y NY ),

we can still prove Theorem 2.4 without assuming that H0(Y, IX/YNY ) = 0. In

fact, since h0(Y, IX/Y NY ) is greater than or equal to the dimension of the fiber at

[X ] of the restriction pr′1 : WX,Y → HilbZ of pr1 to WX,Y , the number (2.9) is

non-negative, and similarly we obtain all of (1), (2) and (3) in Theorem 2.4.

(2) Theorem 2.4 (2) more directly follows from the smoothness (or more precisely, the

flatness) of the morphism pr1 at (X, Y ) (cf. [11, Thm. 1.3.4 and Cor. 1.3.5]).

2.2.1. Stably degenerate curves, Y -maximal family. From now on, we assume that HilbZ

is nonsingular at [Y ], and X is a smooth connected curve. Let WY denote the irreducible

component of HilbZ passing through [Y ], and let Z ×WY ⊃ Y
pr2
−→ WY be the universal

subscheme over WY . We consider the Hilbert scheme Hilbsc Y of smooth connected curves

in Y , i.e., the relative Hilbert scheme of Y/WY . Then Hilbsc Y is isomorphic to an open

subscheme of the Hilbert-flag scheme HFsc Z (:= pr−1
1 (Hilbsc Z)), where pr1 : HFZ →

HilbZ is the first projection. Let pr′1 : Hilbsc Y → Hilbsc Z denote the restriction of pr1
to Hilbsc Y ⊂ HFZ.

Definition 2.6. X is stably (Y -)degenerate if pr′1 is surjective in a (Zariski) open neigh-

borhood of [X ] ∈ Hilbsc Z.

By definition, X is stably degenerate if and only if there exists an open neighborhood

UX ⊂ Hilbsc Z of [X ] such that for any member X ′ of UX , there exists a deformation

of Y ′ of Y in Z such that X ′ ⊂ Y ′ and [Y ′] ∈ WY . The following is one of the most

fundamental results on the stability of degenerate curves.

Lemma 2.7. If HFsc Z is nonsingular at (X, Y ) and pr1 is smooth at (X, Y ), then X is

stably degenerate and unobstructed in Z.

Proof. By a property of smooth morphisms, Hilbsc Z is nonsingular at [X ]. Since the

smoothness is a local property, pr′1 is smooth at (X, Y ) and Hilbsc Y is nonsingular at

(X, Y ). Let WX,Y denote the unique irreducible component of Hilbsc Y passing through

(X, Y ). Then by the smoothness, its image WX,Y := pr′1(WX,Y ) is an irreducible com-

ponent of Hilbsc Z, and this is the only one passing through [X ]. Hence pr′1 is dominant

near [X ]. �

In general, the image WX,Y of an irreducible component WX,Y ⊂ Hilbsc Y is just an ir-

reducible closed subset of Hilbsc Z, and called the Y -maximal family of curves (containing

X) (cf. [18, 22]).
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2.3. Curves and K3 surfaces in a Fano 3-fold. In this section, we recall some results

from [22], concerned with the deformations of curves and K3 surfaces in a smooth Fano

3-fold. Lemmas 2.12 and 2.14 are two key lemmas to prove Theorems 1.1 and 1.2.

Let V be a smooth Fano 3-fold, S a smooth member of | − KV |, i.e., a smooth K3

surface, C a smooth connected curve on S. Since KS ∼ 0, we have by adjunction that

NC/S ≃ KC and NS/V ≃ −KV

∣

∣

S
, and then H1(C,NC/S) ≃ k. By the ampleness of −KV ,

we see that H i(S,NS/V ) = 0 for all integers i > 0, and hence S is unobstructed in V .

Then by Lemma 2.8 below, the Hilbert-flag scheme HFsc V of V is nonsingular at (C, S) of

expected dimension χ(V,N(C,S)/V ), i.e., we have H1(V,N(C,S)/V ) = 0, if and only if there

exists a first order deformation S̃ of S in V to which C does not lift. By Remark 2.3, or

more directly from [22, Lemma 2.10], the Euler characteristic of N(C,S)/V is computed as

(2.10) χ(V,N(C,S)/V ) = (−KV )
3/2 + g(C) + 1,

where g(C) denotes the arithmetic genus of C.

Lemma 2.8 (cf. [22]). Let V be a smooth projective scheme, S ⊂ V a smooth surface,

C ⊂ S a smooth curve.

(1) Suppose that H1(S,NS/V ) = 0 and H1(C,NC/S) ≃ k. Then H1(V,N(C,S)/V ) = 0

if and only if there exists a first order deformation S̃ of S in V , to which C does

not lift.

(2) If H2(S,NS/V ) = 0, then H i(V,N(C,S)/V ) = 0 for i > 1.

Proof. (1) By (2.6) and assumption, there exists an exact sequence

H0(V,N(C,S)/V )
p2

−−−→ H0(S,NS/V ) −−−→ H1(C,NC/S) −−−→ H1(V,N(C,S)/V ) −→ 0.

Then since H1(C,NC/S) is of dimension 1, we have H1(V,N(C,S)/V ) = 0 if and only

if p2 is not surjective. Thus we have proved (1). By Remark 2.3, it suffices to show

H2(V,N(C,S)/V ) = 0 for (2), which follows from (2.6) and that dimC = 1. �

The following example shows that even if the second projection pr2 : HF
sc V → Hilbsc V

is not surjective in any neighborhood of [S], its tangent map p2 : H0(V,N(C,S)/V ) →

H0(S,NS/V ) at (C, S) can be surjective (and hence H1(V,N(C,S)/V ) 6= 0).

Example 2.9. Suppose that V is a prime Fano 3-fold of genus g, and let E be a line on

V (i.e. E ≃ P
1 and (−KV .E)V = 1). Then E is called a good line on V , if NE/V is of type

(0,−1), and a bad line, otherwise, i.e., NE/V is of type (1,−2). Suppose that S contains

E. Then we have

H1(V,N(E,S)/V ) ≃







0 (E: good)

k (E: bad)
.

Moreover, HFsc V is nonsingular at (E, S) if and only if E is good. In fact, the exact

sequence 0 → NE/S → NE/V → NS/V

∣

∣

E
→ 0 on E splits if and only if E is bad. Suppose
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that E is good. Then by H1(E,NE/V ) = 0, the coboundary map ∂E/S : H0(E,NS/V

∣

∣

E
) →

H1(E,NE/S)(≃ k) is surjective. Note that the restriction mapH0(S,NS/V )
|E
−→ H0(E,NS/V

∣

∣

E
)

is also surjective, because E is a line. Then by Lemma 2.2, we have H1(V,N(E,S)/V ) ≃

cokerαE/S = 0. Conversely, we suppose that E is bad. Then by splitting, we have

∂E/S = 0 and H1(V,N(E,S)/V ) ≃ H1(E,NE/S) ≃ k. We also note that pr1 is smooth at

(E, S) by H1(S,NS/V (−E)) = 0. Since Hilbsc V is singular at [E], so is HFsc V at (E, S).

Since E is not a complete intersection in S, i.e., E 6∼ n(−KV

∣

∣

S
) for any n ∈ Z, we see

that pr2 is not surjective in any neighborhood of [S] by [14], although p2 is surjective for

(E, S).

Repeating the same argument in Example 2.9 for a conic E on V , we obtain the following

lemma.

Lemma 2.10. Suppose that V is prime, and E is a line or conic on V contained in S.

If E is good, or a conic of type (1,−1) (cf. (2.1)), then we have H1(V,N(E,S)/V ) = 0.

For the proof of Lemma 2.12 below, we recall a criterion for the lifting of invertible

sheaves. Given a smooth projective scheme X and an invertible sheaf L on X , we denote

by c(L) the Atiyah extension class of L in H1(X,ΩX) ≃ Ext1(TX ,OX). Here c(L) is

the image of the class of L in PicX ≃ H1(X,O×
X), under the map induced by the map

d log : O×
X → Ω1

X taking logarithmic derivatives (cf. [6, V, Ex. 1.8]). Given an element τ ∈

H1(X, TX), i.e., an abstract first order deformation X̃ of X , L lifts to an invertible sheaf

on X̃ if and only if the cup product τ ∪ c(L) via the pairing H1(X, TX)×H1(X,ΩX)
∪

−→

H2(X,OX) is zero (cf. [7, Ex. 10.6]).

Lemma 2.11. Let V be a smooth projective scheme, S a smooth closed subscheme of

V , L an invertible sheaf on V , and M := L
∣

∣

S
its restriction to S. If τ ∈ H1(S, TS) is

contained in the image of the coboundary map δ : H0(S,NS/V ) → H1(S, TS) of the exact

sequence

(2.11) 0 −−−→ TS
ι

−−−→ TV

∣

∣

S
−−−→ NS/V −−−→ 0,

then we have τ ∪ c(M) = 0 in H2(S,OS).

Proof. Let ι be the inclusion of sheaves in (2.11). Then its dual ι∨ induces a map

H1(ι∨) : H1(S,ΩV

∣

∣

S
) → H1(S,ΩS) on the cohomology groups. There exists a commuta-

tive diagram

H1(V,O×
V )

|S
��

c
// H1(V,ΩV )

|S
��

H1(S,O×
S )

c
// H1(S,ΩS) H1(S,ΩV

∣

∣

S
).

H1(ι∨)
oo

Therefore, we have c(M) = H1(ι∨)(c(L)
∣

∣

S
) in H1(S,ΩS). Then

τ ∪ c(M) = τ ∪H1(ι∨)(c(L)
∣

∣

S
) = H1(ι)(τ) ∪ c(L)

∣

∣

S
,
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where the map H1(ι) : H1(S, TS) → H1(S, TV

∣

∣

S
) is induced by ι. By assumption, we have

H1(ι)(τ) = 0, and hence we have finished the proof. �

Lemma 2.12 (char k 6= 0). Let i : S →֒ V be the closed embedding of S into V , and E

an effective Cartier divisor on S satisfying H1(S,OS(E)) = H1(V,N(E,S)/V ) = 0. If the

class of C − bE in PicS is contained in the image of the pullback map i∗ : Pic V → PicS

for some integer b 6= 0, then we have H1(V,N(C,S)/V ) = 0.

Proof. By Lemma 2.8, there exists a first order deformation S̃ of S in V to which E does

not lift. Let α ∈ H0(S,NS/V ) be the global section corresponding to S̃, and τ := δ(α) its

image in H1(S, TS) by the coboundary map δ of (2.11). Then by Lemma 2.11, we have

τ∪c(OS(C−bE)) = 0 in H2(S,OS). On the other hand, since c : H1(S,O×
S ) → H1(S,ΩS)

is a group homomorphism, we have τ ∩ c(OS(C)) = bτ ∩ c(OS(E)). If the invertible sheaf

OS(E) on S lifts to S̃, then so does E as a closed subscheme of S by H1(S,OS(E)) = 0

(cf. [4, Remark 4.5]). Therefore, we have τ ∩ c(OS(E)) 6= 0 and hence τ ∩ c(OS(C)) 6= 0

by b 6= 0. Then OS(C) does not lift to S̃, hence neither does C (cf. [7, Ex. 6.7]). Thus we

have finished the proof by Lemma 2.8 again. �

We define a Cartier divisor D on S by

(2.12) D := C +KV

∣

∣

S
.

Then since IC/S ⊗S NS/V ≃ OS(−D), the Serre duality shows that

(2.13) H i(S, IC/S ⊗S NS/V ) ≃ H2−i(S,D)∨

for all integers i. Applying Theorem 2.4, we have the following lemma.

Lemma 2.13. Let WC,S ⊂ Hilbsc V be the S-maximal family of curves containing C.

(See §2.2.1 for its definition.) Suppose that H0(S,−D) = H1(V,N(C,S)/V ) = 0. Then

dimWC,S = (−KV )
3/2 + g(C) + 1, and we have

h1(S,D)− h0(S,D) ≤ dimOHilbsc V,[C] − dimWC,S ≤ h1(S,D).

Moreover, Hilbsc V is singular along WC,S if and only if the inequality to the right is strict.

In particular,

(1) If h1(S,D) = 0 or h0(S,D) = 0, then C is unobstructed in V , and moreover

Hilbsc V is generically smooth along WC,S.

(2) If h1(S,D) = 0, then WC,S is an irreducible component of (Hilbsc V )red. In partic-

ular, C is stably degenerate.

(3) If h0(S,D) = 0, then WC,S is of codimension h1(S,D) in Hilbsc V .

Proof. Since H0(S, IC/S⊗SNS/V ) ≃ H0(S,−D) = 0, HFsc V and WC,S are locally isomor-

phic in a neighborhood of (C, S), and hence dimWC,S = dimOHFV,(C,S) = (−KV )
3/2 +

g(C) + 1. �
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Finally we recall a result from [22]. Given a curve E on S, we define the π-map

(2.14) πE/S(E) : H0(E,NE/V (E)) −→ H0(E,NS/V (E)
∣

∣

E
)

for E (or for the pair (E, S)) as the map on cohomology groups induced by the sheaf

homomorphism [NE/V

πE/S
−→ NS/V

∣

∣

E
] ⊗E OE(E). The following is another key lemma to

prove Theorems 1.1 and 1.2.

Lemma 2.14 ([22, Theorem 1.2 and Corollary 1.3]). Suppose that H1(V,N(C,S)/V ) = 0.

Let D be the divisor on S defined by (2.12), and suppose that D ≥ 0 and D2 ≥ 0. If there

exists a (−2)-curve E on S such that

(a) E.D = −2,

(b) H1(S,D − 3E) = 0, and

(c) the π-map πE/S(E) is not surjective,

then C is stably degenerate, and obstructed in V .

Remark 2.15. If an effective divisor D on a K3 surface S with D2 ≥ 0 satisfy the above

two conditions (a) and (b) for some (−2)-curve E, then we have h1(S,D) = 1. (See [22,

Claim 4.1] for the proof.) Thus in applying Lemma 2.14, the tangent map p1 of the first

projection pr1 is not surjective and coker p1 is of dimension 1 (cf. (3.3)).

3. Non-reduced components of Hilbert schemes

In this section, we prove Theorem 1.1. As a result, we obtain an example of a generi-

cally non-reduced component of the Hilbert scheme HilbscX (of Mumford type) for every

smooth Fano 3-fold X with PicX ≃ Z of any index r (cf. Corollary 3.6, Table 1).

3.1. Construction. Let V be a prime Fano 3-fold of genus g. By Lemma 2.1, there

exists a good conic E ≃ P
1 on V . Then we have (−KV .E)V = 2 and NE/V is trivial. As

in the proof of [24, Lemma 4.2.1], there exists a smooth member S ∈ | −KV | containing

E. Then S is a K3 surface, and we have the self-intersection number E2 = −2 on S.

Put h := −KV

∣

∣

S
, an ample divisor on S. Then h2 = (−KV

∣

∣

S
)2 = (−KV )

3 = 2g − 2 and

h.E = 2. We consider a complete linear system

Λ := |2h+ 2E|

of divisors on S. By using the intersection numbers on S, we can show that h + E is

nef and big. It is known that for every nef and big line bundle L on a K3 surface, Lk is

globally generated if k ≥ 2 (cf. [8, Chap. 3, Remark 3.4]). Therefore, by Bertini’s theorem,

Λ contains a smooth connected curve C. The degree and the genus of C are computed as

d(C) = C.h = 4g and g(C) = C2/2 + 1 = 4g + 1, respectively.

Let W ⊂ Hilbsc
4g,4g+1 V be the family of such curves C ⊂ V , i.e., smooth connected

curves C contained in a smooth S ∈ | − KV |, and such that C is a member of Λ for

some good conic E on V . For each C ∈ W , the surface S and the conic E are uniquely
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determined by C, because we deduce h0(V, IC/V ⊗V OV (−KV )) ≃ k from the exact

sequence

(3.1) [0 −−−→ OV (KV ) −−−→ IC/V
|S

−−−→ OS(−C) −−−→ 0]⊗V OV (−KV )

and moreover, E is recovered from C and S as the unique base component of the linear

system |C + h| on S. Thus there exists a morphism W → HFsc V to the Hilbert-flag

scheme HFsc V of V , sending [C] to (E, S), and the fiber at (E, S) is isomorphic to an

open subset of Λ ≃ P
4g+1 = P

g(C) of smooth curves. As in §1, the pairs (E, S) such that

E ⊂ S ⊂ V are parametrised by an open subset U of Pg−2-bundle over an open surface

Γ′ ⊂ Γ. Thus there exists a diagram

(3.2)

C ∈
❴

��

W (5g+1) ⊂

P
4g+1-bundle

��

Hilbsc
4g,4g+1 V

(E, S) ∈
❴

��

U (g) ⊂

P
g−2-bundle

��

HFsc V

��

E ∈ Γ′(2) ⊂ Hilbsc
2,0 V

of fiber bundles, where the upper script (d) of X(d) denotes d = dimX . Since E is a good

conic on V , by Lemmas 2.10 and 2.12, we have H1(V,N(C,S)/V ) = 0. Then the Hilbert-flag

scheme HFsc V is nonsingular at (C, S) of expected dimension

h0(V,N(C,S)/V ) = χ(V,N(C,S)/V ) = (g − 1) + (4g + 1) + 1 = 5g + 1

by (2.10). Let D be the divisor on S defined by (2.12). Then it follows from (2.5) and

(2.13) that there exists an exact sequence

(3.3) 0 −−−→ H0(V,N(C,S)/V )
p1

−−−→ H0(C,NC/V ) −−−→ H1(S,D)∨ −−−→ 0.

We will show that H1(S,D) ≃ k, which implies that h0(C,NC/V ) = h0(V,N(C,S)/V ) + 1 =

5g+2. In fact, since D ∼ h+2E, we have H i(S,D−E) = 0 for i = 1, 2. Then it follows

from the exact sequence

(3.4) 0 −−−→ OS(D − E) −−−→ OS(D) −−−→ OE(D) −−−→ 0

on S that H1(S,D) ≃ H1(E,OE(D)). Since E.D = −2 and E ≃ P
1, we have H1(S,D) ≃

k. Thus we have a dichotomy between

(A) The closure W of W in Hilbsc V is an irreducible component of (Hilbsc V )red, and

moreover Hilbsc V is singular along W , and

(B) There exists an irreducible component Z such that dimZ > dimW and Hilbsc V

is generically nonsingular along W .

3.2. Proof of non-reducedness. We prove that the case (B) of the dichotomy in the

previous subsection does not occur.
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Proof of Theorem 1.1. LetW ⊂ Hilbsc V be the family of curves C in V as above. Then

by the dichotomy, it suffices to show that C is obstructed in V . We apply Lemma 2.14

to C. It is easy to see that D2 = 2g− 2 > 0. Moreover, since NE/V is globally generated,

the π-map πE/S(E) (cf. (2.14)) is not surjective by [22, Lemma 2.14]. Thus we have only

to check that H1(S,D − 3E) = H1(S,h− E) = 0. Since E is a conic on V ⊂ P
g+1, E is

linearly normal, i.e., H1(Pg+1, IE/P(1)) = 0. Therefore the restriction mapH0(V,−KV ) →

H0(E,−KV

∣

∣

E
) to E is surjective, and so is the map H0(S,h) → H0(E,h

∣

∣

E
). Thus we

deduce H1(S,h − E) = 0 from (3.4) with D = h and that H1(S,h) = 0. Thus we have

finished the proof. �

Remark 3.1. By construction, the closure W of W in Hilbsc V is nothing but the S-

maximal family WC,S of curves in V containing C (cf. §2.2.1). In fact, we have W ⊂ WC,S

and dimW = WC,S = 5g + 1 (= dimOHFsc V,(C,S)).

Remark 3.2. By using the same construction and the same proof, we can show that

Hilbsc V contains infinitely many generically non-reduced components (cf. [22, Example

5.8]). In fact, for every integer n ≥ 2, we define a complete linear system Λn on S by

Λn := |nh+ nE|.

Then every general member Cn is a smooth connected curve on S of degree 2ng and

genus n2g+1. Moreover, Cn is parametrised by an irreducible locally closed subset Wn ⊂

Hilbsc
2ng,n2g+1 V of dimension (n2+1)g+1 and we have h0(Cn, NCn/V ) = dimWn +1. The

above argument (for n = 2) works forWn in general. Indeed, the generic member Cn ofWn

is obstructed in V (cf. Proposition 4.4). Thereby, the closure W n of Wn is an irreducible

component of (Hilbsc
2ng,n2g+1 V )red and Hilbsc

2ng,n2g+1 V is generically non-reduced alongW n.

In particular, Hilbsc V contains infinitely many generically non-reduced components.

Remark 3.3. For some prime Fano 3-folds V , the Hilbert scheme Hilbsc
1,0 V of lines on

V is known to contain a generically non-reduced component (cf. [24, Proposition 4.2.2]).

In the following two cases, Hilbsc
1,0 V contains a generically non-reduced component Γ,

whose general point corresponds to a bad line on V , i.e., a line on V of type (1,−2)

(cf. Example 2.9):

(1) V is a smooth quartic hypersurface V4 ⊂ P
4 (i.e. g = 3), and there exists a ruled

surface R swept out by lines from Γ and R is a cone over a smooth plane curve of

degree 4, e.g., V4 is the Fermat quartic VFer = (
∑4

i=0 x
2
i = 0) ⊂ P

4
x0,...,x4

.

(2) R is swept out by projective tangent lines to some curve B ⊂ V , e.g., V is a

Mukai-Umemura 3-fold V22 ⊂ P
13 (cf. [19]).

By the following examples, for every smooth Fano 3-fold X of index 4 and 3, there

exists a generically non-reduced component of HilbscX (of Mumford type).
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Example 3.4 (Mumford [20], r = 4). Let S ⊂ P
3 be a smooth cubic surface, E a (−1)-P1

on S and C ⊂ S a smooth member of the linear system | − KP3

∣

∣

S
+ 2E| ≃ P

37 on S.

Then C is of degree 14 and genus 24. Such C’s are parametrized by W (56) ⊂ Hilbsc
P
3,

which is an open subset of a P
37-bundle over |OP3(3)| ≃ P

19. Then the closure W
(56)

is

an irreducible component of (Hilbsc
P
3)red and Hilbsc

P
3 is everywhere non-reduced along

W 56.

Example 3.5 (r = 3). Let Q be a smooth hyperquadric in P
4, and S a smooth complete

intersection of Q with some other hyperquadric, i.e., S ∼ (−2/3)KQ. Let h ∼ OS(1) ∈

PicS be the class of hyperplane sections of S. Since S is a del Pezzo surface of degree 4

(namely, −KS ≃ h and h2 = 4), S is isomorphic to a blown up of P2 (at 5 points). Thus

there exists a (−1)-curve E ≃ P
1 on S such that E.h = 1 (i.e. a line E). We consider

a complete linear system | − KQ

∣

∣

S
+ 2E| = |3h + 2E| on S. Then its general member

C is a smooth connected curve on S of degree 14 and genus 16. Since NC/S ≃ KC(1)

and NS/Q ≃ KS(3), we have for all i > 0 that H i(C,NC/S) = H i(S,NS/Q) = 0 and hence

H i(Q,N(C,S)/Q) = 0 by (2.6), which implies that HFQ is nonsingular at (C, S) of expected

dimension χ(C,NC/S) + χ(S,NS/Q) = χ(C,KC(1)) + χ(S,−2KS) = (d(C) + g(C)− 1) +

13 = 42. Since H1(S,NS/Q(−C)) ≃ H1(S,−h − 2E) ≃ k, it follows from (2.5) that

h0(C,NC/Q) = 43. Then the S-maximal family WC,S ⊂ HilbscQ of curves containing C is

a closed subset of HilbscQ of codimension 1 in H0(C,NC/Q). Since for the generic member

C ′ ofWC,S, the line E
′ on S determined by E ′ = Bs |C ′−2h| is a good line on Q (i.e. NE′/Q

is of type (1, 0)), by using the same technique in [18], we can show that C ′ is obstructed

in Q. Then by the same argument shown in §3.1 using a dichotomy, we see that WC,S is

an irreducible component of (HilbscQ)red, and hence HilbscQ is generically non-reduced

along WC,S. Consequently, HilbscQ contains a generically non-reduced component of

Mumford type.

For the index 2 case, we refer to [18, 21]. As a result, we have proved the following.

Corollary 3.6. For every smooth Fano 3-fold X with PicX ≃ Z, the Hilbert scheme

HilbscX of smooth connected curves on X contains a generically non-reduced component

of Mumford type (cf. Table1).

4. Deformations of degenerate curves

In this section, we discuss the deformations of curves C on a prime Fano 3-fold V

and prove Theorem 1.2. We focus on the problem on determining whether C is stably

degenerate or not (cf. Definition 2.6) for curves C lying on a smooth anticanonical member

S of V . In [21], the same problem was discussed for a smooth del Pezzo 3-fold V , with

curves lying on a smooth half-anticanonical member S ∈ | − 1
2
KV |.

Let V be a prime Fano 3-fold of genus g, and C a smooth connected curve on V . We

suppose that there exists a smooth member S ∈ | −KV | containing C. We recall that a
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curve C on S is called a complete intersection in S if C ∼ nh in PicS for some integer n,

where h is the class −KV

∣

∣

S
(of hyperplane sections of S).

4.1. Complete intersection case. We first consider the complete intersection case.

Given a positive integer n, let Wn ⊂ HFsc V denote the (maximal) family of pairs (C, S)

of a smooth member S ∈ | − KV | and a smooth curve C ⊂ S satisfying C ∼ nh in

PicS. Then the second projection pr2 induces a morphism pr′2 : Wn → |−KV | ≃ P
g+1 to

the Hilbert scheme of hyperplane sections of V . It is clear that pr′2 is dominant, and its

fiber at [S] is isomorphic to an open subset of the projective space |OS(C)| ≃ |OS(nh)|.

Therefore, Wn is an irreducible locally closed subset of HFsc V , and hence so is its image

Wn := pr1(Wn) in Hilbsc V by the first projection pr1.

Proposition 4.1. Let n ≥ 1 be an integer, and let C and Wn ⊂ Hilbsc V be as above.

Then C is unobstructed and stably degenerate in V . Moreover, the closure W n of Wn is

an irreducible component of Hilbsc V of dimension (n2 + 1)(g − 1) + 3 for n ≥ 2, and 2g

for n = 1.

Proof. By using the Riemann-Roch theorem on S, we compute that dim |OS(C)| = g(C) =

(nh)2/2+1 = n2(g−1)+1. Hence dimWn = dim |−KV |+dim |OS(C)| = (n2+1)(g−1)+3.

Let pr′1 denote the restriction of pr1 toWn. Then its fiber pr′−1
1 ([C]) at [C] is isomorphic to

the linear system Λ := |IC/V ⊗V OV (−KV )| on V . It follows from (3.1) andH1(V,OV ) = 0

that

dimΛ = h0(S,−KV

∣

∣

S
− C)) = h0(S, (1− n)h),

which is equal to 1 if n = 1, and 0 otherwise. Thus we obtain the dimension of Wn as

stated in the proposition. It is also easy to see that h0(V,NC/V ) = dimWn. In fact, there

exists an exact sequence 0 → KC → NC/V → OC(−KV ) → 0 on C, because NS/V ≃

−KV

∣

∣

S
. Since C is a complete intersection in S, this sequence splits and the restriction

map H0(S,−KV

∣

∣

S
) → H0(C,−KV

∣

∣

C
) to C is surjective. Therefore, we compute that

h0(C,NC/V ) = h0(C,KC)+h0(C,−KV

∣

∣

C
) = dim |OS(C)|+dim |−KV |−dimΛ = dimWn.

Since dimWn ≤ dimOHilbsc V,[C], we see by (2.8) that C is unobstructed in V . Then it

follows from H1(S,NS/V (−C)) = 0 that pr′1 is smooth at (C, S). This implies that HFsc V

is nonsingular at (C, S) and hence C is stably degenerate by Lemma 2.7. �

Remark 4.2. We note that in Proposition 4.1, HFsc V is nonsingular, but not of expected

dimension at (C, S), because H1(V,N(C,S)/V ) ≃ k. Moreover, Wn coincides with the S-

maximal family WC,S containing C for every member C of Wn and a member S ∈ Λ

(cf. §2.2.1).

4.2. Non-complete intersection case. We next consider the case where C is not a

complete intersection in S. For a technical reason (cf. Remark 4.6), we assume that the

class of C in PicS is generated by h together with a line E (cf. Proposition 4.3) or a

conic E (cf. Proposition 4.4) with non-negative coefficients, i.e., C ∼ ah + bE with two
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integers a ≥ 0 and b ≥ 0. Since every line and every conic on V is stably degenerate,

and there are many references, e.g., [10, 24], for their (un)obstructedness in V , in what

follows, we also assume that C is not a complete intersection in S (i.e. b 6= 0), and

C 6= E (i.e. (a, b) 6= (0, 1)). Let WC,S ⊂ Hilbsc V denote the S-maximal family of curves

containing C.

Proposition 4.3. Suppose that E is a good line on V . Then

(1) C is stably degenerate, and unobstructed in V , and

(2) WC,S is an irreducible component of (Hilbsc V )red of dimension (a2 + 1)(g − 1) +

b(a− b) + 2.

Proof. We have E.h = 1 and E2 = −2. Since C 6= E, we have C.E ≥ 0, which

implies that a ≥ 2b. By assumption, we have b ≥ 1, and hence H1(V,N(C,S)/V ) = 0 by

Lemmas 2.10 and 2.12. Let D := C + KV

∣

∣

S
= (a − 1)h + bE. Since D is effective and

D 6∼ 0, we have H0(S,−D) = 0. We note that H1(E,D
∣

∣

E
) = 0 by D.E ≥ −1. Since

D−E = (a− 2b+1)h+ (b− 1)(2h+E) and 2h+E is nef and big, we see that D−E is

ample and hence H1(S,D − E) = 0. Thus it follows from the exact sequence (3.4) that

we have H1(S,D) = 0. Then by Lemma 2.13, we obtain (1). We compute the genus g(C)

of C as g(C) = C2/2 + 1 = a2(g − 1) + ab − b2 + 1. Thus by the same lemma, we have

proved (2). �

Proposition 4.4. Suppose that E is a good conic on V . Then

(1) C is stably degenerate,

(2) C is obstructed in V if and only if a = b ≥ 2, and

(3) WC,S is an irreducible component of (Hilbsc V )red of (the maximal) dimension (a2+

1)g − (a− b)2 + 1 (passing through [C]).

Proof. The proof is similar to that of Proposition 4.3. We have E.h = 2 and E2 = −2.

Since C 6= E and b ≥ 1, we have a ≥ b and H1(V,N(C,S)/V ) = 0, respectively. Put

D := C + KV

∣

∣

S
= (a − 1)h + bE, a divisor on S, as before. Then H0(S,−D) = 0 by

D ≥ 0 and D 6= 0. We consider the exact sequence (3.4) for the computation of H1(S,D).

First we note that D − E = (a − b)h + (b − 1)(h + E). Since h + E is nef and big, so

is D − E, and hence we have H1(S,D − E) = 0 by the Kodaira-Ramanujam vanishing

theorem. Since D.E = 2(a− b)− 2, we see that if a > b, then H1(E,D
∣

∣

E
) = 0 and hence

H1(S,D) = 0 by (3.4). Then in this case, by Lemma 2.13, we obtain the conclusions (1),

(2) and (3), together with dimWC,S = (−KV )
3/2+g(C)+1, where g(C) = a2g−(a−b)2+1.

If a = b = 1, then we have H1(S,D) = H1(S,E) = 0, and hence the proof is done.

Suppose now that a = b = n ≥ 2. Then we have D2 = (2g − 2)(n − 1)2 > 0, D ≥ 0,

D.E = −2 and D− 3E = (n− 1)h+(n− 3)E. Since we have D− 3E = h−E for n = 2,

and D−3E = 2h+(n−3)(h+E) for n ≥ 3, we conclude that H1(S,D−3E) = 0. Since E

is a good conic on V , the π-map πE/S(E) is not surjective, as in the proof of Theorem 1.1.
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Thus by Lemma 2.14, C is stably degenerate and obstructed in V . Moreover, we have

h1(S,D) = 1 by Remark 2.15, and hence h0(C,NC/V ) = h0(V,N(C,S)/V )+1 = dimWC,S+1

by (3.3). Then we have the dichotomy between (A) and (B) in §3.1 for W = WC,S again.

Then the obstructedness immediately shows that the case (B) does not occur. Hence WC,S

is an irreducible component of (Hilbsc V )red of the maximal dimension passing through

[C]. �

Consequently, Theorem 1.2 has been proved as a combination of Propositions 4.1, 4.3

and 4.4.

Remark 4.5. We have assumed that (a, b) 6= (0, 1), i.e., C is not E itself, in Propositions

4.3, 4.4, and hence in Theorem 1.2. If the condition [ii] or [iii] of this theorem holds with

(a, b) = (0, 1) (i.e. C = E), then all the conclusions of the theorem are true, except for

the dimension of Hilbsc V at [C], which is computed as follows. Since C = E is a good

line or a good conic on V , we have H1(E,NE/V ) = 0, and it follows from (2.8) that

dim[E]Hilb
sc V = χ(E,NE/V ) = (−KV .E)V , that is equal to 1 for [ii], and 2 for [iii].

Remark 4.6. Here we restrict ourselves to the case where the class [C] of C in PicS is

generated by h together with a line or a conic on S. Of course, this is not enough for

determining the stability of every S-degenerate non-complete intersection curves C in V .

It follows from a general principle (cf. Lemmas 2.7 and 2.13) that if H1(V,N(C,S)/V ) =

H1(S,D) = 0, then C is stably degenerate and unobstructed in V . On the other hand,

for some curves C with H1(S,D) 6= 0, it is difficult to prove that C is stably degenerate.

For example, if [C] is generated by h and a (−2)-curve E on S of degree E.h > 2, then

the intersection number D.E = (C − h).E can be less than −2 (and then h1(S,D) > 1),

and thereby Lemma 2.14 does not apply to C. For a detailed study of the stability of

S-degenerate curves on a smooth quartic 3-fold V (g = 3), we refer to [22], in which S is

assumed to be of Picard rank 2.

Remark 4.7. Let d(C) denotes the degree (−KV .C)V of C. Then by counting dimensions,

we see that if H1(V,N(C,S)/V ) = 0 and g(C) < d(C)− g, then C is not stably degenerate.

In fact, by assumption we have

dim(C,S)HF
sc V = (−KV )

3/2 + g(C) + 1 = g(C) + g,

while every component of the Hilbert scheme Hilbsc V is of dimension at least χ(C,NC/V ) =

d(C) by (2.8). Thus if pr′1 : Hilb
sc S(⊂ HFsc V ) → HilbV is surjective in a neighborhood

of [C], then we have g(C) + g ≥ d(C).
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