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Abstract

We investigate the F-Borel complexity of topological spaces in their different compactifications. We
provide a simple proof of the fact that a space can have arbitrarily many different complexities in different
compactifications. We also develop a theory of representations of F-Borel sets, and show how to apply
this theory to prove that the complexity of hereditarily Lindelöf spaces is absolute (that is, it is the same
in every compactification). We use these representations to characterize the complexities attainable by
a specific class of topological spaces. This provides an alternative proof of the first result, and implies
the existence of a space with non-absolute additive complexity. We discuss the method used by Talagrand
to construct the first example of a space with non-absolute complexity, hopefully providing an explanation
which is more accessible than the original one. We also discuss the relation of complexity and local
complexity, and show how to construct amalgamation-like compactifications.
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1 Introduction

We investigate complexity of F -Borel sets, that is, of the sets from the smallest system containing closed sets
and stable under taking countable unions and intersections. This is of particular interest because the F -Borel
classes are not absolute (unlike the Borel classes - see [Tal] and, for example, [HS]). In particular, we investi-
gate which values of F -Borel complexity may a given space assume. We further study various representations
of F -Borel sets.

Let us start by basic definitions and exact formulation of problems. All topological spaces in this work
will be Tychonoff (unless the contrary is explicitly specified – see Section 7.4). For a family of sets C, we
will denote by Cσ the collection of all countable unions of elements of C and by Cδ the collection of all
countable intersections of elements of C. If α is an ordinal and Cβ, β ∈ [0, α), are collections of sets, we
denote C<α :=

⋃
β<α Cβ.

In any topological space Y , we have the family F of closed sets, Fσ sets, Fσδ sets and so on. Since this
notation quickly gets impractical, we use the following definition:

Definition 1.1 (F -Borel1 hierarchy). We define the hierarchy of F-Borel sets on a topological space Y as

• F0(Y ) := F(Y ) := closed subsets of Y ,

• Fα(Y ) := (F<α(Y ))σ for 0 < α < ω1 odd,

• Fα(Y ) := (F<α(Y ))δ for 0 < α < ω1 even.2

The classes Fα for odd (resp. even) α are called additive (resp. multiplicative). Next, we introduce the class
of K-analytic spaces, and a related class of Suslin-F sets, which contains all F -Borel sets ([Rog, Part I,
Cor. 2.3.3]):

Definition 1.2 (Suslin-F sets and K-analytic spaces). Let Y be a topological space and S ⊂ Y . S is said to
be Suslin-F in Y if it is of the form

S =
⋃

n0,n1,...

⋂

k∈ω

Fn0,...,nk

for closed sets Fn0,...,nk
⊂ Y , ni ∈ ω, i, k ∈ ω. By Fω1(Y ) we denote the collection of Suslin-F subsets of Y .

A topological space is K-analytic if it is a Suslin-F subset of some compact space.

(Typically, K-analytic spaces are defined differently, but our definition equivalent by [Rog, Part I, Thm. 2.5.2].)
Note that if Y is compact, then F0-subsets of Y are compact, F1-subsets are σ-compact, F2-subsets are

Kσδ, Fα-subsets for α < ω1 are “Kα”, and Suslin-F subsets of Y are K-analytic.
By complexity of a topological space X in some Y we mean the following:

Definition 1.3 (Complexity of X in Y ). Suppose that X is Suslin-F subset of a topological space Y . By
complexity of X in Y we mean

Compl (X,Y ) := the smallest α ≤ ω1 for which X ∈ Fα(Y ), that is

the unique α ≤ ω1 for which X ∈ Fα(Y ) \ F<α(Y ).

Recall that a K-analytic space is Suslin-F in every space which contains it ([Han, Theorem 3.1]). Conse-
quently, K-analytic spaces are precisely those X for which Compl (X,Y ) is defined for every Y ⊃ X , and this
is further equivalent to Compl (X,Y ) being defined for some space Y which is compact.

Central to this work is the following notion of complexities attainable in different spaces Y containing
a given space. To avoid pathological cases such as Compl (X,X) = 0 being true for arbitrarily “ugly” X , we
have to restrict our attention to “sufficiently nice” spaces Y .

1The F-Borel sets are also sometimes called F-Borelian, to denote the fact that we only take the system generated by
countable unions and intersections of closed sets, rather than the whole σ-algebra generated by closed sets. Since there is little
space for confusion in this paper, we stick to the terminology of Definition 1.1.

2Recall that every ordinal α can be uniquely written as α = λ+m, where λ is a limit ordinal or 0 and m ∈ ω. An ordinal is
said to be even, resp. odd, when the corresponding m is even, resp. odd.
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Definition 1.4 (Attainable complexities). The set of complexities attained by a space X is defined as

Compl(X) := {α ≤ ω1 | α = Compl (X, cX) for some compactification cX of X}

=
{
α ≤ ω1 | α = Compl (X,Y ) for some Y ⊃ X s.t. X

Y
is compact

}
.

(The second identity in Definition 1.4 holds because X ⊂ K ⊂ Y implies Compl (X,K) ≤ Compl (X,Y ).)
If X satisfies Compl(X) ⊂ [0, α] for some α ≤ ω1, we say that X is an absolute Fα space. The smallest
such ordinal α is called the absolute complexity of X – we clearly have α = sup Compl(X). Sometimes, X
for which Compl(X) contains α is said to be an Fα space. Finally, if Compl(X) is empty or a singleton,
the complexity of X said to be absolute. Otherwise, the complexity of X is non-absolute.

The goal of this paper is to investigate the following two problems:

Problem 1.5 (X of a given complexity). Let C ⊂ [0, ω1]. Is there a topological space X with Compl(X) = C?

Problem 1.6 (Complexity of an arbitrary X). For any topological space X, describe Compl(X).

Inspired by behavior of complexity in Polish spaces, one might suspect that any Fα space is automatically
absolutely Fα. However, this quite reasonably sounding conjecture does not hold – there exists an Fσδ space
T which is not absolutely Fα for any α < ω1 ([Tal]; T is also defined here, in Definition 7.7). The following
proposition summarizes the results related to Problem 1.5 known so far.

Proposition 1.7 (Attainable complexities: state of the art).

(1) A topological space X is K-analytic if and only if Compl(X) is non-empty.

(2) For a topological space X, the following propositions are equivalent:

(i) X is compact (resp. σ-compact);

(ii) Compl(X) = {0} (resp. {1});

(iii) Compl(X) contains 0 (resp. 1).

(3) The complexity of any separable metrizable space is absolute. In particular, for every α ≤ ω1, there exists
a space satisfying Compl(X) = {α}.

(4) For every 2 ≤ α ≤ β ≤ ω1, β even, there exists a topological space X = Xβ
α satisfying

{α, β} ⊂ Compl (X) ⊂ [α, β].

Proof. (2) is trivial, since continuous images of compact sets are compact. Regarding (1), we have already
mentioned that any Suslin-F subset of a compact space is K-analytic, and any K-analytic space is Suslin-F
in every space which contains it. Since (Suslin-F)(Y ) = Fω1(Y ) ⊃

⋃
α<ω1

Fα(Y ) holds for any Y , (1) follows.
The first part of (3) is by no means obvious – we are dealing with the complexity of X in all compact-

ifications, not only those which are metrizable. Nonetheless, it’s proof is fairly elementary; see for example
[Kov, Theorem 2.3]. The “in particular” part follows from the fact that the Borel hierarchy in Polish spaces
is non-trivial (see, for example, the existence of universal sets in [Sri]).

(4): By (3) of this proposition, there is some space Xα
α satisfying

Compl(Xα
α ) = {α}.

By [Tal], there exists a space T which is Fσδ in βT, but we have T /∈ F<ω1(cT) for some compactification
cT of T. Since such a space is K-analytic, it satisfies

{2, ω1} ⊂ Compl (T) ⊂ [2, ω1].

For β = ω1, the topological sum X := Xα
α ⊕T clearly has the desired properties.

For even β < ω1, take the topological sum X := Xα
α ⊕Xβ

2 , where Xβ
2 is some space satisfying

{2, β} ⊂ Compl (T) ⊂ [2, β]. (1.1)

The existence of such Xβ
2 follows from [Kov, Theorem 5.14].
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2 Main Results and Open Problems

The first contribution of this paper is showing that (4) from Proposition 1.7 holds not only for even ordinals,
but for general β ∈ [2, ω1]:

Theorem 2.1 (Non-absolute space of additive complexity). For every 2 ≤ α ≤ β ≤ ω1, there exists a topo-
logical space X = Xβ

α satisfying
{α, β} ⊂ Compl (X) ⊂ [α, β].

Proof. As in the proof of Proposition 1.7 (4), we can assume that α = 2. The existence of Xβ
2 follows from

[Kov, Theorem 5.14] for even β, resp. from Corollary 7.28 for odd β.

The second contribution to Problem 1.5 made by this paper is the following generalization of Theorem 2.1,
which resolves the uncertainty about the set (α, β)∩Compl(Xβ

α) by showing that there is such a space X[α,β]

for which Compl(X[α,β]) is the whole interval [α, β].

Theorem 2.2 (Attainable complexities). For every closed interval I ⊂ [2, ω1], there is a space X with

Compl (X) = I.

The proof of Theorem 2.2 is presented at the end of Section 4.1.
Regarding Problem 1.6, we (weakly) conjecture that the set of attainable complexities always has the fol-

lowing properties:

Conjecture 2.3 (Compl(·) is always a closed interval). For K-analytic space X,

(i) the set Compl(X) is always an interval,

(ii) the set Compl(X) is always closed in [0, ω1].

If Conjecture 2.3 holds, Theorem 2.2 would actually be a complete solution of Problem 1.5:

Conjecture 2.4 (Solution of Problem 1.5). For any space X, exactly one of the following options holds:

(1) X is not K-analytic and Compl(X) = ∅.

(2) X is compact and Compl(X) = {0}.

(3) X is σ-compact and Compl(X) = {1}.

(4) Compl(X) = [α, β] holds for some 2 ≤ α ≤ β ≤ ω1.

Moreover, any of the possibilities above is true for some X.

Regarding Problem 1.6, we prove the following stronger version of (3) from Proposition 1.7:

Proposition 2.5. The complexity of any hereditarily Lindelöf space is absolute.

(This result was previously unpublished, but the core observation behind it is due to J. Spurný and P. Holický
– our contribution is enabling a simple formal proof.)

We also mention an open problem related to Problem 1.6 which is not further discussed in this paper:
So far, the only known examples of spaces with non-absolute complexity are based on Talagrand’s broom
space T. An interesting question is therefore whether having absolute complexity is the “typical case” for
a topological space (and T is an anomaly), or whether there in fact exist many spaces with non-absolute
complexity (but somehow this is difficult to prove). As a specific example, recall that for some Banach
spaces, the unit ball BX with weak topology is Fσδ the bi-dual unit ball BX⋆⋆ with w⋆ topology. Is (BX , w)
absolutely Fσδ?
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We now give a brief overview of the contents of the paper. Section 3 contains some preliminary concepts
– compactifications, the (mostly standard) terminology describing the trees on ω, and several elementary
results regarding derivatives on such trees. Section 4 is devoted to providing a simple proof of Theorem 2.2
by treating the spaces Xβ

α from Theorem 2.1 as atomic and taking their generalized topological sums (“zoom
spaces”, introduced in Section 4.1).

In Section 5, we introduce the concept of a simple Fα-representation, and show how this concept can be
used to give an elegant proof of Proposition 5.10. We also investigate the concept of local complexity and its
connection with the standard complexity. As a side-product, we prove that a “typical” topological space X
cannot have a “universal Fα-representation”, even when its complexity is absolute.

In Section 6, we introduce and investigate the concept of a regular Fα-representation. As the name
suggests, this is a (formally) stronger notion than that of a simple Fα-representation. In particular, it allows
us to take any two spaces X ⊂ Y , and construct “Fα-envelopes” of X in Y , looking for an ordinal α for
which the Fα-envelope of X will be equal to X . We also justify the concept of a regular Fα-representation
by showing that if X is an Fα subset of Y , then it does have a regular Fα-representation in Y .

In Section 7, we study the class of the so-called “Talagrand’s broom spaces” – spaces based on Talagrand’s
example T. We investigate the class of “amalgamation-like” compactifications of broom spaces in an abstract
setting. As an application of regular Fα-representations, we compute which complexities are attainable by
these spaces. In particular, this gives an alternative proof of Theorem 2.2. What makes this method valuable
is that, unlike the simple approach from Section 4, it holds a promise of being applicable not only to broom
spaces, but to some other topological spaces as well.

It should be noted that many parts of this article can be read independently of each other, as explained
by the following remark.

Remark 2.6 (How to use this paper). It is not necessary to read Sections 4, 5 and 6 in order to read
the subsequent material.

Sections 5, 6 and 7 all rely on the notation introduced in Section 3.2. This notation is, however, not required
in Section 4. Section 4 deals with topological sums, and can be read independently of the content of any of
the following sections. Moreover, Sections 5, 6 and 7 are only loosely related, and can be read independently
of each other with one exception: Section 7.2 relies on one result from Section 6.3. But if the reader is willing
to use this result as a “black box”, this dependency can be ignored.

3 Preliminaries

This section reviews some preliminary results. The article assumes familiarity with the concept of compacti-
fications, whose basic overview can be found in Section 3.1. Section 3.2 introduces the notation used to deal
with sequences, trees, and derivatives on trees.

3.1 Compactifications and Their Ordering

By a compactification of a topological space X we understand a pair (cX, ϕ), where cX is a compact space
and ϕ is a homeomorphic embedding of X onto a dense subspace of cX . Symbols cX , dX and so on will
always denote compactifications of X .

Compactification (cX, ϕ) is said to be larger than (dX,ψ), if there exists a continuous mapping f :
cX → dX , such that ψ = f ◦ ϕ. We denote this as cX � dX . Recall that for a given T3 1/2 topological

space X , its compactifications are partially ordered by � and Stone-Čech compactification βX is the largest
one. Sometimes, there also exists the smallest compactification αX , called one-point compactification or
Alexandroff compactification, which only consists of a single additional point.

In this paper, we will always assume that cX ⊃ X and that the corresponding embedding is identity. In
particular, we will simply write cX instead of (cX, id|X).

Much more about this topic can be found in many books, see for example [Fre]. The basic relation between
the complexity of a space X and the ordering of compactifications is the following observation:

5



Remark 3.1 (Larger compactification means smaller complexity). For any α ≤ ω1, we have

X ∈ Fα(dX), cX � dX =⇒ X ∈ Fα(cX).

3.2 Trees and Derivatives on Trees

We now introduce the notation needed by Sections 5, 6 and 7. We start with sequences in ω:

Notation 3.2 (Finite and infinite sequences in ω). We denote

• ωω := infinite sequences of non-negative integers := {σ : ω → ω},

• ω<ω := finite sequences of non-neg. integers := {s : n→ ω| n ∈ ω}.

Suppose that s ∈ ω<ω and σ ∈ ωω. We can represent σ as (σ(0), σ(1), . . . ) and s as (s(0), s(1), . . . , s(n−1))
for some n ∈ ω. We denote the length of s as |s| = dom(s) = n, and set |σ| = ω. If for some t ∈ ω<ω ∪ ωω

we have |t| ≥ |s| and t||s| = s, we say that t extends s, denoted as t ⊏ s. We say that u, v ∈ ω<ω are
non-comparable, denoting as u ⊥ v, when neither u ⊏ v nor u ⊐ v holds.

Unless we say otherwise, ωω will be endowed with the standard product topology τp, whose basis consists
of sets N (s) := {σ ⊐ s| σ ∈ ωω}, s ∈ ω<ω.

For n ∈ ω, we denote by (n) the corresponding sequence of length 1. By ŝ t we denote the concatenation
of a sequences s ∈ ω<ω and t ∈ ω<ω ∪ ωω. We will also use this notation to extend finite sequences by
integers and sets, using the convention t̂ k := t̂ (k) for k ∈ ω and t̂ S := {t̂ s | s ∈ S} for S ⊂ ω<ω ∪ ωω.

Next, we introduce the notation related to trees.

Definition 3.3 (Trees on ω). A tree (on ω) is a set T ⊂ ω<ω which satisfies

(∀s, t ∈ ω<ω) : s ⊏ t & t ∈ T =⇒ s ∈ T.

By Tr we denote the space of all trees on ω. For S ⊂ ω<ω ∪ ωω we denote by

clTr (S) :=
{
u ∈ ω<ω| ∃s ∈ S : s ⊐ u

}

the smallest tree “corresponding” to S (for S ⊂ ω<ω, clTr(S) is the smallest tree containing S). Recall that
the empty sequence ∅ can be thought of as the ‘root’ of each tree, since it is contained in any nonempty tree.
For any t ∈ T , we denote the set of immediate successors of t in T as

imsT (t) := {t̂ n| n ∈ ω, t̂ n ∈ T }. (3.1)

A leaf of a tree T is a sequence t ∈ T with no immediate successors in T , and the set of all leaves of T is
denoted as l(T ). Finally, we denote as T t the tree corresponding to t in T :

T t := {t′ ∈ ω<ω| t̂ t′ ∈ T }. (3.2)

For each non-empty tree T , we clearly have

T = {∅} ∪
⋃

{m T̂ (m) | (m) ∈ imsT (∅)}.

If each of the initial segments σ|n, n ∈ ω, of some σ ∈ ωω belongs to T , we say that σ is an infinite branch
of T . By WF we denote the space of all trees which have no infinite branches (the well-founded trees). By
IF, we denote the complement of WF in Tr (the ill-founded trees).

Useful notion for studying trees is the concept of a derivative:

Definition 3.4 (Derivative on trees). A mapping D : Tr → Tr is a derivative on trees if it satisfies D(T ) ⊂ T
for every T ∈ Tr.
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Any derivative on trees admits a natural extension to subsets of ω<ω ∪ ωω by the formula D(S) :=
D(clTr (S)). We define iterated derivatives Dα in the standard way:

D0(S) := clTr (S) ,

Dα+1 (S) := D (Dα (S)) for successor ordinals,

Dλ (S) :=
⋂

α<λ

Dα (S) for limit ordinals.

Clearly, the iterated derivatives of any S either keep getting smaller and smaller, eventually reaching ∅, or
there is some α for which the iterated derivatives no longer change anything, giving Dα(T ) = Dα+1(T ) 6= ∅.
Since each T ∈ Tr is countable, it suffices to consider α < ω1. This allows us to define a rank corresponding
D (on subsets of ω<ω ∪ ωω):

r(S) :=





−1 for S = ∅

min{α < ω1| D
α+1 (S) = ∅} for S 6= ∅, if there is some α < ω1 s.t. Dα+1 (S) = ∅

ω1 if no α as above exists.

Note that when S is non-empty and r(S) < ω1, then r(S) is the highest ordinal for which Dr(S)(S) is
non-empty (or equivalently, for which Dr(S)(S) contains the empty sequence). For more details and examples
regarding ranks, see for example [Kec, ch. 34 D,E]. We will be particularly interested in the following three
derivatives on trees:

Definition 3.5 (Examples of derivatives). For T ∈ Tr, we denote

Dl(T ) :=
{
t ∈ T | T contains some extension s 6= t of t

}
,

Di(T ) :=
{
t ∈ T | T contains some infinitely many extensions of t

}
,

Diie(T ) :=
{
t ∈ T | T contains infinitely many incomparable

extensions of s of different length
}
.

We use the appropriate subscripts to denote the corresponding iterated derivatives and ranks.

Using transfinite induction, we obtain the following recursive formula for the leaf-rank

(∀t ∈ T ) : rl(T
t) = sup{rl(T

s) + 1 | s ∈ imsT (t)} (3.3)

(with the convention that a supremum over an empty set is 0). It is straightforward to check that the leaf-

rank rl(T
t) of T t is the highest ordinal for which t belongs to the iterated leaf-derivative D

rl(T )
l (T ) of T . In

particular, leaves of T are precisely those t ∈ T which satisfy rl(T
t) = 0.

If each non-leaf t ∈ T has immediately many successors in T , we clearly have Dα
i (T ) = Dα

l (T ) for each
α < ω. In particular, we have ri(T ) = rl(T ) for any such T . For a general T ∈ Tr, rl(T ) is countable if and
only if ri(T ) is countable, and this happens if and only if T is well founded. Note that on well founded trees,
Di behaves the same way as the derivative from [Kec, Exercise 21.24], but it leaves any infinite branches
untouched.

The following trees serve as examples of trees of rank α for both rl and ri:

Notation 3.6 (“Maximal” trees of height α). For each limit α < ω1, fix a bijection πα : ω → α. We set

T0 := {∅},

Tα := {∅} ∪
⋃

n∈ω

nˆTα−1 for countable successor ordinals,

Tα := {∅} ∪
⋃

n∈ω

nˆTπα(n) for countable limit ordinals,

Tω1 := ω<ω.

7



In particular, we have Tk = ω≤k for k ∈ ω and Tω = {∅} ∪ (0) ∪ 1̂ ω≤1 ∪ 2̂ ω≤2 ∪ . . . . Denoting
πα(n) := α − 1 for successor α, we can write Tα as Tα = {∅} ∪

⋃
n∈ω

n T̂πα(n) for both limit and successor

ordinals. A straightforward induction over α yields rl(Tα) = ri(Tα) = α for each α ≤ ω1.
Every ordinal α can be uniquely written as α = λ + 2n + i, where λ is 0 or a limit ordinal, n ∈ ω and

i ∈ {0, 1}. We denote α′ := λ+n. In Section 6.2, we will need trees which serve as intermediate steps between
Tα and Tα+1. These will consist of trees {∅} ∪ n T̂α, n ∈ ω. While we could call these trees something like
‘Tα+ 1

2
’, we instead re-enumerate them as

T cα := Tα′ for even α ≤ ω1,

T cα,n := {∅} ∪ nˆTα′ for i ∈ ω and odd α < ω1, (3.4)

T cα := {∅} ∪ 1̂ Tα′ = T cα,1 for odd α < ω1.

4 Attaining Complexities via Topological Sums

Suppose we have topological spaces X and Y satisfying

{α, β} ⊂ Compl(X) ⊂ [α, β] and {α, γ} ⊂ Compl(Y ) ⊂ [α, γ]

for some α ≤ β ≤ γ. It is straightforward to verify that the topological sum X ⊕ Y satisfies

{α, β, γ} ⊂ Compl(X ⊕ Y ) = [α, γ].

In this section, we extend this observation to topological sums of infinitely many spaces. We shall do so with
the help of the concept of “zoom” spaces, of which topological sums are a special case. Moreover, we will
be able to put together uncountably many spaces – not exactly as a topological sum, but in a very similar
manner – and show that that this gives the existence of a space with Compl(X) = [2, ω1].

In Section 4.1, we introduce and investigate zoom spaces. In Section 4.2, we apply this theory to topolog-
ical sums, thus proving Theorem 2.2. Apart from that, the results of Section 4 are independent on the other
parts of the paper.

4.1 Zoom spaces

Let Y be a topological space. Throughout this section, we shall denote by IY the set of all isolated points of
Y and by Y ′ = Y \ IY the set of all non-isolated points of Y .

Definition 4.1 (Zoom space). Let Y be a topological space and X = (Xi)i∈IY a collection of non-empty
topological spaces. We define the zoom space Z(Y,X ) of Y with respect to X as the disjoint union Y ′∪

⋃
X .

The basis of topology of Z(Y,X ) consists of open subsets of Xi, i ∈ IY , and of all sets of the form

VU := (U \ IY ) ∪
⋃

{Xi| i ∈ U ∩ IY }, U ⊂ Y open in Y.

Note that the definition above works even if the indexing set IY of the collection X is replaced by some
I ⊂ IY . Moreover, any collection (Xi)i∈I indexed by such a subset can be extended to X ∪ ({x})x∈IY \I and
the corresponding zoom space is identical to Z(Y,X ).

The following notation for collections of sets shall be used throughout the whole paper:

Notation 4.2 (Collection of compactifications). Let X = (Xi)i∈I be a collection of topological spaces and
suppose that for every i ∈ I, cXi is a topological space containing Xi. We denote

cX := {cXi| i ∈ I}.

The basic properties of zoom spaces are as follows:

8



Proposition 4.3 (Basic properties of zoom spaces). Let Z(Y,X ) be a zoom space.

(i) Z(Y,X ) is a Tychonoff space and Y is its quotient. Each Xi is homeomorphic to the clopen subset
Xi ⊂ Z(Y,X ). For any selector s of X , Y is homeomorphic to the closed set Ys := Y ′∪s(IY ) ⊂ Z(Y,X ).

(ii) If Y is a dense subspace of Ỹ and each Xi is a (dense) subspace of X̃i, then Z(Y,X ) is a (dense)

subspace of Z(Ỹ , X̃ ).

(iii) If Y and all Xi are compact (Lindelöf), then Z(Y,X ) is compact (Lindelöf).

(iv) If cY and cXi, i ∈ IY , are compactifications, then Z(cY, cX ) is a compactification of Z(Y,X ).

Proof. (i): Clearly, Definition 4.1 correctly defines a topology on Z(Y,X ) by giving its basis. By definition
of this topology, a set U ⊂ Xi is open in Z(Y,X ) if and only if it is open in Xi, so the topology on each Xi

is preserved. For every i ∈ IY , Y \ {i} is open in Y . It follows that each Z(Y,X ) \Xi = VY \{i} is open and
hence each Xi is clopen in Z(Y,X ).

To see that Y is a quotient of Z(Y,X ), it is enough to observe that the following mapping q : Z(Y,X ) → Y
is continuous, surjective and open:

q(x) :=

{
x, for x ∈ Y ′

i, for x ∈ Xi, i ∈ IY .

Indeed, q is clearly continuous (since q−1(U) = VU ) and surjective. Moreover, it maps basic open sets in
Z(Y,X ) onto open sets: we have q(V ) = {i} ∈ IY for non-empty V ⊂ Xi and q(VU ) = U for U ⊂ Y .

Let s : IY →
⋃
X be a selector of X and denote by fs the following restriction of q:

fs := q|Y ′∪s(IY ) : Y ′ ∪ s(IY ) → Y.

Clearly, this restriction of q is injective and continuous. The restriction is an open mapping, because the image
of V ⊂ Xi is either empty (when s(i) /∈ V ) or equal to {i} and for U ⊂ Y we have fs(VU ) = q(VU ) = U . In
particular, the range of fs is Y , so Ys := Y ′ ∪ s(IY ) and Y are homeomorphic.

The topology on Z(Y,X ) is easily seen to be Hausdorff – indeed, if x, y ∈ Z(Y,X ) are distinct, then either
both of them belong to some Xi (which is Hausdorff and open in Z(Y,X )), or one of them belongs to Xi

and the other to Z(Y,X ) \Xi (so we separate x from y by Xi and its complement), or both belong to Y ′. In
the last case, we use the fact that Y is Hausdorff to separate x and y in Y by open subsets U,U ′ of Y and
note that VU and VU ′ are open sets separating x and y in Z(Y,X ).

To see that Z(Y,X ) is Tychonoff, let F ⊂ Z(Y,X ) be closed and x ∈ Z(Y,X ) \ F . If x ∈ Y ′, we find
and open subset U of Y such that x ∈ VU ⊂ Z(Y,X ) \ F . We separate x from Y \ U in Y by a continuous
function f : Y → [0, 1] and note that f ◦ q is a continuous function separating x from F in Z(Y,X ).

If x ∈ Xi, we find continuous f : Xi → [0, 1] which separates x from F ∩Xi. Since Xi is clopen in Z(Y,X ),
f can be extended into a function f̃ which separates x from F in Z(Y,X ).

(ii) immediately follows from the definition of Z(·, ·) and its topology.
(iii): Assume that Y and all Xi are Lindelöf and let V be an open cover of Z(Y,X ). Without loss of

generality, we can assume that V consists only of basic open sets, that is, we have V = V0 ∪
⋃
i∈I Vi where

each Vi, i ∈ I, only contains open subsets of Xi and V0 only contains sets of the form VU for U ⊂ Y open in
Y . Denote

U0 := {U ⊂ Y | VU ∈ V0}.

By definition of topology on Z(Y,X ), U0 is a cover Y ′. Since Y is Lindelöf and Y ′ is closed, there is a countable
U⋆0 ⊂ U0 such that

⋃
U⋆0 ⊃ Y ′. The set

I⋆ := Y \
⋃

U⋆0 = IY \
⋃

U⋆0

9



is closed and discrete in Y , and hence countable. Since each Xi is Lindelöf, each Vi has a countable subcover
V⋆i . The system V⋆ := V0 ∪

⋃
i∈I⋆ V

⋆
i is then a countable subcover of V .

The proof of the compact case is the same.
(iv): This follows from (ii) and (iii).

Recall that Definition 4.1 introduced the sets of the form VF for F ⊂W :

VF := F ∪
⋃

{Xi| i ∈ IW , F ∋ i} ⊂ Z(W,Z).

The following lemma investigates the complexity of these sets.

Lemma 4.4 (Complexity of basic sets). For a zoom space Z(W,Z), Z = (Zi)i, the sets VF satisfy

(∀F ⊂W ) : F ∈ Fα(W ) =⇒ VF ∈ Fα(Z(W,Z)). (4.1)

Proof. Indeed, if F is closed, then Z(W,Z)\VF = VW\F is open by definition of topology on Z(W,Z), so VF
is closed. Moreover,

⋃
E∈E VE = V⋃ E and

⋂
E∈E VE = V⋂ E holds for any E ⊂ P(W ). This implies the result

for higher F -Borel classes (by transfinite induction) and for F ∈ Fω1 (by showing that if F is Suslin in W ,
then VF is Suslin in Z(W,Z)).

Before computing the complexity of a general zoom space, we need to following technical lemma:

Lemma 4.5 (Upper bound on zoom space complexity). Let Z(W,Z), Z = (Zi)i∈I , be a zoom space and
C = (Ci)i∈I a system satisfying Ci ⊂ Zi for each i ∈ I. Then for any α ≤ ω1, we have

((∀i ∈ I) : Ci ∈ Fα(Zi)) =⇒ Z(W, C) ∈ Fα(Z(W,Z)). (4.2)

Proof. For α = 0, Z(W, C) is closed in Z(W,Z) since Zi \ Ci are basic open sets and

Z(W, C) = Z(W,Z) \
⋃

i∈I

(Zi \ Ci).

For 0 < α < ω1, (4.2) follows by transfinite induction, because we have

(
(∀i ∈ I) : Ci =

⋃

n

Cni

)
=⇒ Z (W, C) = Z(W, (

⋃

n

Cni )i) =
⋃

n

Z (W, (Cni )i)

and the analogous formula holds when each Ci satisfies Ci =
⋂
n C

n
i .

For α = ω1, the following formula shows that Z(W, C) is Suslin in Z(W,Z):

(
(∀i ∈ I) : Ci =

⋃

σ∈ωω

⋂

n

C
σ|n
i , where each C

σ|n
i is closed in Zi

)
=⇒

Z (W, C) = Z

(
W,

(
⋃

σ∈ωω

⋂

n

C
σ|n
i

)

i

)
=
⋃

σ∈ωω

⋂

n

Z
(
W, (C

σ|n
i )i

)

∈ Fω1 (Z(W,Z)) ,

where at the last line we have used (4.2) with α = 0.

The following result then states that the complexity of zoom spaces can be retrieved from the complexity
of its parts.
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Proposition 4.6 (Complexities attained by a zoom space). Let Z(Y,X ) be a zoom space. If Y is a dense

subspace of Ỹ and each Xi is a subspace of X̃i, then the spaces Z(Y,X ) ⊂ Z(Ỹ , X̃ ) satisfy

Compl
(
Z(Y,X ), Z(Ỹ , X̃ )

)
= max

{
Compl

(
Y, Ỹ

)
, sup
i∈IY

Compl
(
Xi, X̃i

)}
,

whenever at least one of the sides is defined.

Proof. ”≥”: Let Y , Ỹ , X and X̃ be as in the statement. Assume that the LHS is defined and Z(Y,X ) ∈

Fα(Z(Ỹ , X̃ )) holds for some α ≤ ω1. Let s be a selector of X . Since Ỹ and Y have the same isolated points,

s is also a selector of X̃ . Using the notation from Proposition 4.3 (i), we have

Ys ⊂ Ỹs ⊂ Z(Ỹ , X̃ ) & Ys = Ỹs ∩ Z(Y,X ) ⊂ Z(Ỹ , X̃ )

Xi ⊂ X̃i ⊂ Z(Ỹ , X̃ ) & Xi = X̃i ∩ Z(Y,X ) ⊂ Z(Ỹ , X̃ ),

where Ỹs and X̃i are closed subsets of Z(Ỹ , X̃ ). In particular we get (by definition of the subspace topology)

that each Xi satisfies Xi ∈ Fα(X̃i) and Ys satisfies Ys ∈ Fα(Ỹs). Since Ỹs is homeomorphic to Ỹ , we get

Y ∈ Fα(Ỹ ). It follows that the RHS is defined and at most equal to the LHS.

”≤”: Let Y , Ỹ , X and X̃ be as in the proposition. Assume that the RHS is defined and we have
Y ∈ Fα(Ỹ ) and Xi ∈ Fα(X̃i), i ∈ IY , for some α ≤ ω1. Rewriting the space Z(Y,X ) as

Z := Z (Y,X ) = Z
(
Y, X̃

)
∩ Z

(
Ỹ ,X

)
⊂ Z

(
Ỹ , X̃

)
=: Z̃, (4.3)

we obtain an upper bound on its complexity:

Compl
(
Z, Z̃

)
≤ max

{
Compl

(
Z
(
Y, X̃

)
, Z̃
)
,Compl

(
Z
(
Ỹ ,X

)
, Z̃
)}

.

Working in the zoom space Z(Ỹ , X̃ ), we have Z(Y, X̃ ) = VY . Applying (4.1) (with W := Ỹ , Z := X̃ and α),
we get

Compl
(
Z
(
Y, X̃

)
, Z̃
)

= Compl
(
VY , Z(Ỹ , X̃ )

) (4.1)

≤ Compl
(
Y, Ỹ

)
≤ α.

Application of (4.2) (with W := Ỹ , Z := X̃ , C := X and α) implies that Compl
(
Z
(
Ỹ ,X

)
, Z̃
)
≤ α. It

follows that the LHS is defined and no greater than the RHS.

As a corollary of the proof of Proposition 4.3, we obtain the following result:

Corollary 4.7 (Stability under the zoom space operation). A zoom space Z(Y,X ) is is compact (σ-compact,
K-analytic) if and only if Y each Xi is compact (σ-compact, K-analytic).

Proof. =⇒: By Proposition 4.3 (i), Z(Y,X ) contains Y and each Xi as a closed subspace – this implies
the result.

⇐=: The compact case is the same as Proposition 4.3 (iii). If Y and each Xi is σ-compact, then each
of these spaces is Fσ in its Čech-stone compactification. By Proposition 4.6, Z(Y,X ) is an Fσ subset of
Z(βY, βX ). The later space is compact by the compact case of this proposition, which implies that Z(Y,X )
is σ-compact.

Consider the case where Y and each Xi is K-analytic. In the proof of Proposition 4.6, we have shown
that both Z (Y, βX ) and Z (βY,X ) are Suslin in Z(βY, βX ). It follows that both these sets are K-analytic.
By (4.3), Z(Y,X ) is an intersection of two K-analytic sets, which implies that it it itself K-analytic.
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4.2 Topological sums as zoom spaces

In this section, we give some natural examples of zoom spaces, and prove the first part of our main results.

Example 4.8 (Topological sums as zoom spaces). Whenever X = (Xi)i∈I is a collection of topological
spaces, the topological sum

⊕
X is homeomorphic to the zoom space Z(I,X ) of the discrete space I.

Proof. This follows from the fact that each Xi is clopen in Z(I,X ) and that in this particular case, we have
II = I and hence Z(I,X ) is a disjoint union of Xi, i ∈ I.

In the particular case of countable sums, we can use Proposition 4.6 to fully describe the complexity of
the resulting space:

Proposition 4.9 (Complexities attainable by a topological sum).

(i) If Xk, k ≤ n, are compact, then
n⊕
k=0

Xk is compact.

(ii) If Xk, k ∈ ω, are σ-compact, then
⊕
k∈ω

Xk is σ-compact.

(iii) If Xk, k ∈ ω, are K-analytic and at least one Xk is not compact, then

Compl

(
⊕

k∈ω

Xk

)
=

{
sup f | f ∈

∏

k∈ω

Compl(Xk)

}
.

Proof. (i) and (ii) are obvious. To get (iii), note that by Example 4.8, the topological sum
⊕

kXk can be
rewritten as

X :=
⊕

k∈ω

Xk = Z(ω, (Xk)k).

We will prove each of the two inclusions between Compl(X) and {sup f | f ∈ ΠkCompl(Xk)}.
”⊃”: Let f be a selector for (Compl(Xk))k. By definition of Compl(·), there exist compactifications cXk,

k ∈ ω, such that Compl (Xk, cXk) = f(k). Applying Proposition 4.3 (iv), we obtain a compactification of X :

cX := Z(ω + 1, (cXk)k).

Since ω is σ-compact, the complexity of ω in ω + 1 is 1. We have supk∈ω Compl (Xk, cXk) ≥ 1 (since not
every Xk is compact). By Proposition 4.6, the complexity of X in cX is the maximum of these two numbers,
so we get

sup f = sup
k∈ω

Compl (Xk, cXk) = Compl (X, cX) ∈ Compl(X).

”⊂”: Let cX be a compactification of X and denote Y :=
⋃
k∈ωXk

cX
. Define f : ω → [1, ω1] by

f(k) := Compl
(
Xk, Xk

cX
)

and set α := sup f . Note that each Xk is an Fα-subset of Y . Since Y is

σ-compact and α ≥ 1, it is enough to show that X is an Fα-subset of Y .
If Fα is an additive class, X =

⋃
Xk is a countable union of Fα sets, so we have X ∈ Fα(Y ). If Fα is

a multiplicative class, we have to proceed more carefully. Let k, l ∈ ω be distinct. We set K l
k := Xk

Y
∩Xl

Y

and note that by definition of topological sum, K l
k is a compact disjoint with Xl. Since Xl is K-analytic, and

hence Lindelöf, we can apply [KS, Lemma 14] to obtain a set Elk ∈ Fσ(Y ) satisfying

Xl ⊂ Elk ⊂ Xl
Y
\K l

k = Xl
Y
\Xk

Y
. (4.4)
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Denote Ek :=
⋃
l 6=k E

l
k ∈ Fσ(Y ). We finish the proof by starting with (4.4) and taking the union over

l ∈ ω \ {k} . . .

⋃

l 6=k

Xl ⊂
⋃

l 6=k

Elk = Ek ⊂
⋃

l 6=k

Xl
Y
\Xk

Y
= Y \Xk

Y

. . . then adding Xk . . .

X = Xk ∪
⋃

l 6=k

Xl ⊂ Xk ∪ Ek ⊂ Xk ∪
(
Y \Xk

Y
)

= Y \
(
Xk

Y
\X

)

. . . and intersecting over k ∈ ω

X ⊂
⋂

k∈ω

(
Xk ∪ Ek

)
⊂ Y \

⋃

k∈ω

(
Xk

Y
\X

)
= X.

This proves that X is an intersection of Fα-subsets of Y . Since Fα is multiplicative, this completes the proof.

Proposition 4.9 and its proof imply that for any closed interval I ⊂ [2, ω1], there exists a space satisfying
Compl(X) = I:

Proof of Theorem 2.2. Let I = [α, β] ⊂ [2, ω1] be a closed interval. For γ ∈ [α, β], let Xγ
α be a topological

space from Theorem 2.1 satisfying
{α, γ} ⊂ Compl (Xγ

α) ⊂ [α, γ]

and denote X := (Xγ
α)γ∈[α,β].

If α = β = ω1, we simply set X := Xω1
ω1

. Next, consider the case when β < ω1. The family X is countable
and it satisfies {

sup f | f is a selector of (Compl(X))X∈X

}
= [α, β].

By Proposition 4.9 (iii), the space X :=
⊕

X has the desired properties.
Finally, suppose that β = ω1. We can assume that α = 2 – otherwise, it would suffice to construct

X̃ corresponding to I = [2, ω1] and set X := X̃ ⊕ Xα
α . Denote by K the one-point compactification of

the discrete space [2, ω1] (instead of the usual ordinal topology). Since IK = [2, ω1], it makes sense to
consider the space X := Z(K,X ). By Corollary 4.7, Z(K,X ) is K-analytic but not σ-compact, which implies
that Compl(Z(K,X )) ⊂ [2, ω1]. Clearly, we have

[2, ω1] =
{

sup f | f is a selector of (Compl(Xγ
2 ))γ∈[2,ω1]

}
.

To finish the proof, it is enough to prove the inclusion
{

sup f | f is a selector of (Compl(Xγ
2 ))γ∈[2,ω1]

}
⊂ Compl(Z(K,X )).

This can be done exactly as in the “⊃”-part of the proof of Proposition 4.6.

5 Simple Representations

We begin with an example of different ways of describing and representing of Fσδ-sets. This example will be
rather trivial; however, it will serve as a motivation for studying higher classes of the F -Borel hierarchy.

Suppose that Y is a topological space and X ∈ F2(Y ).
By definition of F2(Y ), X can be described in terms of F1-subsets of Y as X =

⋂
mXm, where Xm ∈

F1(Y ). And by definition of F1(Y ), each Xm can be rewritten as Xm :=
⋃
nXm,n, where Xm,n ∈ F0(Y ).

We could say that the fact that X is an F2-subset of Y is represented by the collection H := (Xm,n)(m,n)∈ω2 .
For (n0, n1, . . . , nk) ∈ ω<ω, we can set C(n0, n1, . . . , nk) := X0,n0 ∩ X1,n1 ∩ · · · ∩ Xk,nk

. We then have
s ⊏ t =⇒ C(t) ⊂ C(s) and for each m ∈ ω, {C(s)| s ∈ ωm} covers X . The fact that X is an F2-subset of
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Y is then represented by the collection C := (C(s))s, in the sense that X =
⋂
m∈ω

⋃
s∈ωm C(s). We denote

this as X = R2(C).
In both cases, X is represented in terms of closed subsets of Y . We can also represent X by collections

of subsets of X , by working with HX := (Xm,n ∩ X)(m,n)∈ω2 and CX := (C(s) ∩ X)s instead. X is then

represented by the collection H′ := HX
Y

, resp. as X = R2(CX
Y

) =: R2(CX , Y ) (where for a collection A of

subsets of Y , A
Y

denotes the collection of the corresponding closures in Y ).
We call the former representation a simple F2-representation of X in Y , and the later representation a

regular F2-representation of X in Y .
The advantage of representing X by a collection of subsets of X is that this collection might be able to

represent X in more than just one space Y . This allows us to define a universal representation of X (either
simple or regular) – a collection which represents X in every space which contains it. It turns out that
only very special topological spaces admit universal representations, but in Section 7.2, we will see that it is
the case for the class of the so-called broom spaces.

This section is organized as follows: In Section 5.1, we introduce the concept of a simple representation and
discuss its main properties. In Section 5.2, we give a sample application of this concept by providing a simple
proof of the fact that the complexity of hereditarily Lindelöf spaces is absolute. In Section 5.3, we investigate
the concept of local complexity and its relation to standard complexity and universal representations (resp.
their non-existence). Reading this section might make it easier to understand the intuition behind Section 6,
where regular representations are introduced. However, the results of this section are in no way formally
required by the subsequent parts of this paper.

5.1 Definition of Simple Representations

This section will make an extensive use of the notions introduced in Section 3.2, in particular those related
to the leaf-derivative on trees. We will repeatedly use collections of sets which are indexed by leaves of some
tree:

Definition 5.1 (Leaf-scheme). A collection H = (Ht)t∈l(T ), where T ∈ WF, is said to be a leaf-scheme.

When we need to specify the indexing set, we will say that H is an l(T )-scheme. Saying that a l(T )-scheme
is closed in Y , for a topological space Y , shall mean that H(t) is closed in Y for each t ∈ l(T ).

Any l(T )-scheme H can be viewed as a mapping with domain l(T ). H has a natural extension to T ,
defined by the following recursive formula:

H(t) :=





H(t) when t is a leaf of T⋃
{H(s)| s ∈ imsT (t)} when rl(T

t) > 0 is odd⋂
{H(s)| s ∈ imsT (t)} when rl(T

t) > 0 is even.

(5.1)

It should be fairly obvious that closed leaf-schemes in any topological space Y naturally correspond to
F -Borel subsets of Y , in the sense that a set X ⊂ Y is F -Borel in Y if and only if it is of the form X = H(∅)
for some closed leaf-scheme H in Y . For now, we only prove one direction of this claim (the other will be
shown in Proposition 5.6).

Lemma 5.2 (Complexity of sets corresponding to leaf-schemes). Let H be an l(T )-scheme in a topological
space Y . If H is closed in Y , then H(∅) ∈ Frl(T )(Y ).

In particular, if H is a closed l(Tα)-scheme in Y for some α < ω1, then H(∅) ∈ Fα(Y ).

Proof. The “in particular” part is a special case of the first part because rl(Tα) = α. For the general part,
suppose that Y is a topological space, and H is a closed l(T )-scheme in Y .

To prove the lemma, it suffices to use induction over α to obtain the following complexity estimate:

(∀t ∈ T ) : rl(T
t) = α =⇒ H(t) ∈ Fα(Y ). (5.2)
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For α = 0, the t-s for which rl(T
t) = 0 are precisely the leaves of T . For these we have H(t) ∈ F0(Y ) because

H is closed in Y .
< α 7→ α: Suppose that (5.2) holds for every β < α, and t ∈ T satisfies rl(T

t) = α. By (3.3), we
have rl(T

s) < rl(T
t) = α for every s ∈ imsT (t). It then follows from the induction hypothesis that each

s ∈ imsT (s), H(s) belongs to F<α(Y ). When α is odd, we have

H(t)
α is
=
odd

⋃
{H(s) | s ∈ imsT (s)} ∈ (F<α(Y ))σ

α is
=
odd

Fα(Y ).

When α is even, we have

H(t)
α is
=

even

⋂
{H(s) | s ∈ imsT (s)} ∈ (F<α(Y ))δ

α is
=

even
Fα(Y ).

Lemma 5.2 motivates the following definition of (simple) Fα-representation:

Definition 5.3 (Simple representations). Let X ⊂ Y be topological spaces, and H an l(T )-scheme in Y . H
is said to be a

• simple representation of X in Y if it satisfies H(∅) = X;

• simple F -Borel-representation of X in Y if it is both closed in Y and a simple representation of X in
Y ;

• simple Fα-representation of X in Y , for some α < ω1, if it is a simple F-Borel-representation of X in
Y and we have rl(T ) ≤ α.

Unless we need to emphasize that we are not talking about the regular representations from the upcoming
Section 6, we omit the word ‘simple’. We note that the following stronger version of Lemma 5.2 also holds,
which allows for a different, but equivalent, definition of a simple Fα-representation:

Remark 5.4 (Alternative definition of Fα-representations). In Lemma 5.2, we even get H(∅) ∈ Fri(T )(Y ).

Consider the derivative Di from Definition 3.5 which cuts away sequences which only have finitely many
extensions, and the corresponding rank ri. Using the fact that the class of closed sets (and of Fα-sets as
well) is stable under finite unions and intersections, we can prove that when a tree T is finite and we have
H(t) ∈ Fα(Y ) for each t ∈ l(T ), then H(∅) ∈ Fα(Y ). It follows that the conclusion of Lemma 5.2 also holds
when we replace ‘rl’ by ‘ri’. In particular, we could equally well define Fα-representations as those F -Borel
representations which are indexed by trees which satisfy ri(T ) ≤ α. We will mostly work with trees on which
the ranks rl and ri coincide, so the distinction will be unimportant.

Before proceeding further, we remark that as long as the intersection with X is preserved, cutting away
some pieces of a representing leaf-scheme still yields a representation of X :

Lemma 5.5 (Equivalent representations). Let X ⊂ Y be topological spaces, H and H′ two l(T )-schemes in
Y , and suppose that H is a representation of X in Y .

If H′ satisfies H(t) ∩X ⊂ H′(t) ⊂ H(t) for every t ∈ l(T ), then H′ is also a representation of X in Y .

Proof. Let X , Y , T , H and H′ be as above. By the assumptions of the lemma, we have the following formula
for every t ∈ l(T ):

H(t) ∩X ⊂ H′(t) & H′(t) ⊂ H(t). (5.3)

Using (5.1) and induction over rl(T
t), we get (5.3) for every t ∈ T . Applying (5.3) to t = ∅, we get the desired

conclusion of the lemma:
X = H(∅) = H(∅) ∩X ⊂ H′(∅) ⊂ H(∅) = X.
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The existence of simple representations is guaranteed by the following result:

Proposition 5.6 (Existence of F -Borel representations). For topological spaces X ⊂ Y and α < ω1, the fol-
lowing conditions are equivalent.

(i) X ∈ Fα(Y )

(ii) X has a simple Fα-representation in Y ; that is, H(∅) = X holds for some closed l(T )-scheme H in Y ,
where rl(T ) ≤ α.

(iii) H(∅) = X holds for some closed l(Tα)-scheme H in Y .

Denoting H
Y

:=
(
H(t) ∩ Y

Y
)
t∈l(T )

for any l(T )-scheme H, this is further equivalent to:

(iv) H
Y
(∅) = X holds for some l(T )-scheme H in X, where rl(T ) ≤ α.

(v) H
Y
(∅) = X holds for some l(Tα)-scheme H in Y .

Proof. Since the leaf-schemes H
Y

in (iv) and (v) are closed in Y , it follows from Lemma 5.2 that any of
the conditions (ii)-(v) implies (i). The implications (iii) =⇒ (ii) and (v) =⇒ (iv) are trivial. By Lemma 5.5,

we have (ii) =⇒ (iv) and (iii) =⇒ (v) (set HX(t) := H(t)∩X and H′(t) := HX
Y

in Lemma 5.5). Therefore, it
remains to prove (i) =⇒ (iii). We will first prove (i) =⇒ (ii), and then note how to modify the construction
such that it gives (i) =⇒ (iii).

(i) =⇒ (ii): We proceed by induction over α. For α = 0, let X be a closed subset of Y . We set H(∅) := X ,
and observe that such H is a closed l(S)-scheme in Y , where S = {∅}.

α 7→ α + 1 for odd α + 1: Suppose that X =
⋃
n∈ωXn, where Xn ∈ Fα(Y ). For each n ∈ ω, we apply

the induction hypothesis to obtain a closed l(Sn)-scheme Hn such that Hn(∅) = Xn and rl(Sn) = α. For
n ∈ ω and s ∈ l(Sn), we set H(n ŝ) := Hn(s). This defines a leaf-scheme indexed by the leaves of the tree
S := {∅} ∪

⋃
n nˆSn, and the formula H(n ŝ) = Hn(s) obviously holds for every n ŝ ∈ S. By (3.3), we have

rl(S) = supn rl(Sn) + 1 = α+ 1. Since α+ 1 is odd, it follows that

H(∅) =
⋃

n

H(∅̂ n) =
⋃

n

H(n ∅̂) =
⋃

n

Hn(∅) =
⋃

n

Xn = X.

< α 7→ α for even α: Suppose that X =
⋂
n∈ωXn, where Xn ∈ Fαn

(Y ) holds for some αn < α. Since
Fβ(Y ) ⊂ Fγ(Y ) holds whenever β is smaller than γ, we can assume that either α is a successor and we have
αn = α− 1 for each n, or α is limit and we have supn αn = α. In either case, we have supn(αn + 1) = α.

The remainder of the proof proceeds as in the previous case – applying the induction hypothesis, defining
an l(S)-scheme as H(n ŝ) := Hn(s), and observing that H(∅) =

⋂
nXn (because rl(S) = α is even).

(i) =⇒ (iii): We prove by induction that in each induction-step from the proof of ’(i) =⇒ (ii)’, the tree S
can be of the form S = Tα. Recall here the Notation 3.6 (which introduces these trees).

In the initial step of the induction, we have S = {∅} = T0 for free. Similarly for the odd successor step,
we have S = Tα+1 provided that each Sn is equal to Tα.

Consider the “< α 7→ α for even α” step. By the remark directly below Notation 3.6, we have T =
{∅} ∪

⋃
n nˆTπα(n). Therefore, it suffices to show that we can assume αn ≤ πα(n) for each n ∈ ω. By

replacing the formula X =
⋂
nXn by

X = X0 ∩X
Y
∩X1 ∩X

Y
∩X2 ∩ . . . ,

we can guarantee that αn = 0 holds for infinitely many n ∈ ω. Re-enumerating the sets Xn, we can ensure
that αn ≤ πα(n) holds for each n ∈ ω.

The conditions (iv) and (v) motivate the definition of a universal simple representation:
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Definition 5.7 (Universal representation). A leaf-scheme H in X is said to be a universal simple F -Borel-

representation of X if for every Y ⊃ X, H
Y
is a simple F-Borel-representation of X in Y .

Clearly, compact and σ-compact spaces have universal representations. In Section 7.2, we show an example
of more complex spaces with universal representation. In Section 5.3, we show that these spaces are rather
exceptional, because sufficiently topologically complicated spaces do not admit universal representations.

5.2 The Complexity of Hereditarily Lindelöf Spaces

We note that simple representations can be used not only with the F -Borel class, but also be with other
descriptive classes:

Remark 5.8. Simple representations based on C-sets.

Let Y be a topological space and C(Y ) a family of subsets of Y . Analogously to Definition 1.1, we define

• C0(Y ) := C(Y ),

• Cα(Y ) := (C<α(Y ))σ for 0 < α < ω1 odd,

• Cα(Y ) := (C<α(Y ))δ for 0 < α < ω1 even.

Analogously to 5.3, an l(T )-scheme H which represents X in Y is said to be a simple Cα-representation
of X in Y when the tree T satisfies rl(T ) ≤ α and we have H(t) ∈ C(Y ) for each t ∈ l(T ).

Clearly, the equivalence (i) ⇐⇒ (ii) ⇐⇒ (iii) in Proposition 5.6 holds for Cα-sets and Cα-representations
as well. (The proof literally consists of replacing ‘F ’ by ‘C’ in Lemma 5.2 and in the proof of Proposition 5.6.)

To prove the main result of this subsection, we need the following separation lemma, which is an immediate
result of [KS, Lemma 14].

Lemma 5.9 (Fσ-separation for Lindelöf spaces). Let L be a Lindelöf subspace of a compact space C. Then
for every compact set K ⊂ C \ L, there exists H ∈ Fσ (C), such that L ⊂ H ⊂ C \K.

Recall that a topological space is said to be hereditarily Lindelöf if its every subspace is Lindelöf. For
example, separable metrizable spaces (or more generally, spaces with countable weight) are hereditarily
Lindelöf. The following proposition shows that the F -Borel complexity of such spaces is absolute:

Proposition 5.10 (J. Spurný and P. Holický). For a hereditarily Lindelöf space and α ≤ ω1, the following
statements are equivalent:

(i) X ∈ Fα(Y ) holds for every Y ⊃ X;

(ii) X ∈ Fα(cX) holds for some compactification cX.

In [KK] the author of the present paper, together with his supervisor, proved Proposition 5.10 for the class
of Fσδ sets (α = 2). J. Spurný later remarked that it should be possible to give a much simpler proof using
the fact that the classes originating from the algebra generated by closed sets are absolute ([HS]). Indeed,
this turned out to be true, and straightforward to generalize for Fn, n ∈ ω. However, the proof in the general
case of Fα, α ∈ ω1, would would not be very elegant, and can be made much easier by the use of simple
representations.

Proof. For α = 0, α = 1, and α = ω1, this follows from the fact that compact, σ-compact and K-analytic
spaces are absolute.

To prove (ii) =⇒ (i), it suffices to show that (ii) implies that X is Fα in every compactification (by, for
example, [Kov, Remark 1.5]).
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Let α ∈ [2, ω1), suppose that X ∈ Fα(cX) holds for some compactification cX , and let dX be another
compactification of X . Since we have

F(cX) ⊂ {F ∩G| F ⊂ cX is closed, G ⊂ cX is open} =: (F ∧ G)(cX),

it follows that X ∈ (F ∧ G)α(cX). The classes (F ∧ G)α are absolute by [HS, Corollary 14], so we have
X ∈ (F ∧G)α(dX). By Remark 5.8, X has a simple (F ∧ G)α-representation in dX – that is, there exists an
l(Tα)-scheme H in dX , such that X = H(∅), and we have H(t) ∈ (F ∧ G)(dX) for each t ∈ l(Tα).

Let t ∈ l(Tα) and denote H(t) as H(t) = Ft ∩Gt, where Ft is closed in dX and Gt is open in dX . Since
X is hereditarily Lindelöf, the intersection X ∩ Gt is Lindelöf. Applying Lemma 5.9 to “L”= X ∩ Gt and
“K”= cX \ Gt, we get a set Ht ∈ Fσ(dX) s.t. X ∩ Gt ⊂ Ht ⊂ Gt. Denote H′(t) := Ft ∩ Ht. H′ is an
l(Tα)-scheme in dX , such for each t ∈ l(Tα), we have H′(t) ∈ Fσ(dX) and X ∩H(t) ⊂ H′(t) ⊂ H(t).

It follows that H′(∅) ∈ (Fσ)α(dX) (Remark 5.8) and H′(∅) = H(∅) = X (Lemma 5.5). Since (Fσ)1(·)
coincides with F1(·), it follows that (Fσ)α(dX) = Fα(dX). This shows that X ∈ Fα(dX).

5.3 Local Complexity and Spaces with No Universal Representation

It is evident that only a space which is absolutely Fα stands a chance of having a universal (simple) Fα-
representation. We will show that even among such spaces, having a universal representation is very rare.
(Obviously, this does not include spaces which are Fσ in some compactification – such spaces are σ-compact,
and the representation X =

⋃
nKn works no matter where X is embedded.) To obtain this result, we first

discuss the notion of local complexity.
Let X be a K-analytic space, Y a topological space containing X , and y ∈ Y . Consider open neighbor-

hoods of y in Y , and the corresponding sets of the form U
Y
∩ X . Clearly, we have Compl

(
U
Y
∩X,Y

)
≤

Compl (X,Y ). Moreover, if U ⊂ V are two neighborhoods of y, then Compl
(
U
Y
∩X,Y

)
will be smaller

than Compl
(
V
Y
∩X,Y

)
. It follows that there exists a limit of this decreasing sequence (or rather, net) of

ordinals. And since the ordinal numbers are well-ordered, the limit is attained for some neighborhood V of
y (and thus for all U ⊂ V as well). We shall call the limit the local complexity of X in Y at y:

Definition 5.11 (Local complexity). Let X ∈ Fω1(Y ) and y ∈ Y . The local complexity of X in Y at y is
the ordinal

Comply(X,Y ) := min
{

Compl
(
U
Y
∩X,Y

)
| U is a neighborhood of y in Y

}
.

We define the local complexity of X in Y as

Complloc(X,Y ) := sup
x∈X

Complx(X,Y ). (5.4)

We also set Complloc (X,Y ) := supy∈Y Comply(X,Y ).

Note that for x ∈ X , we can express the local complexity of X in Y at x as

Complx(X,Y ) = min
{

Compl
(
U
X
, Y
)
| U is a neighborhood of x in X

}
.

Also, if the local complexity of X in Y is a non-limit ordinal, then the supremum in (5.4) is in fact a maximum.
We have the following relation between the local and “global” complexity:

Lemma 5.12 (Complexity and local complexity). For any K-analytic space X and any Y ⊃ X, we have

Complloc (X,Y ) ≤ Complloc (X,Y ) ≤ Compl(X,Y ) ≤ Complloc(X,Y ) + 1. (5.5)

Moreover, if either Complloc(X,Y ) is odd, or Compl(X,Y ) is even, we get

Complloc (X,Y ) = Complloc (X,Y ) = Compl(X,Y ).
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When Y is compact, we have

Compl(X,Y ) = Complloc (X,Y ) = max
y∈Y

Comply(X,Y ).

Proof. Let X be a K-analytic space and Y ⊃ X , and denote γ := Complloc (X,Y ) and α := Compl(X,Y ).

The first inequality in (5.5) is trivial. The second follows from the fact that the complexity of U
Y
∩ X

in Y is at most the maximum of the complexity of U
Y

in Y (that is, 0) and Compl (X,Y ). The last one
immediately follows from the following claim:

Claim 5.13. X can be written as a countable union of Fγ-subsets of Y .

To prove the claim, assume that for each x ∈ X there exists an open neighborhood Ux of x in X which

satisfies Ux
X

∈ Fγ(Y ). Since X is K-analytic, it is in particular Lindelöf ([KKLP, Proposition 3.4]). Let

{Uxn
| n ∈ ω} be a countable subcover of {Ux| x ∈ X}. It follows that X =

⋃
n∈ω Uxn

=
⋃
n∈ω Uxn

X
is

a countable union of Fγ(Y ) sets, and hence X ∈ (Fγ(Y ))σ.
Next, we prove the “moreover” part of the lemma. When γ is odd, we have (Fγ(Y ))σ = Fγ , so the claim

yields Compl(X,Y ) ≤ γ (and the conclusion follows from (i)).
Suppose that α is even and assume for contradiction that γ < α. The claim implies that X belongs to

the additive F -Borel class (Fγ(Y ))σ. Since we have γ < α and the class Fα(Y ) is multiplicative, it follows
that (Fγ(Y ))σ ( Fα(Y ). This contradicts the definition of Compl(X,Y ) (which states that α is the smallest
ordinal satisfying X ∈ Fα(Y )).

Lastly, suppose that Y is compact and denote η := Complloc (X,Y ). For each y ∈ Y , let Uy ⊂ Y be an

open neighborhood of y in Y s.t. U
Y
∩X is an Fη-subset of Y . Since Y is compact, we have Y = Uy0∪· · ·∪Uyk

for some yi ∈ Y , k ∈ ω. It follows that X can be written as X =
⋃k
i=0(Uyi

Y
∩X) of finitely many Fη-subsets

of Y . This shows that X ∈ Fη(Y ), and thus Compl(X,Y ) ≤ γ. Since the supremum in Complloc (X,Y ) is
equal to the supremum of finitely many numbers Complyi (X,Y ), it is in fact a maximum.

Note that (5.5) is optimal in the sense that when Compl(X,Y ) is odd, it could be equal to either of the
numbers Complloc (X,Y ) and Complloc(X,Y ) + 1. Indeed, consider the examples X1 := (0, 1) ⊂ [0, 1] =: Y
and X2 = Q ∩ [0, 1] ⊂ [0, 1] = Y .

In Section 7.2, we construct absolute Fα spaces Tα, each of which has a special point ∞ ∈ Tα. For any
Y ⊃ Tα, the local complexity of Tα in Y is 0 at every x ∈ Tα \ ∞ and 1 at every y ∈ Y \Tα. (This shall
immediately follow from the fact that the only non-isolated point of X is ∞ and any closed subset of Tα

which does not contain ∞ is at most countable.) This in particular shows that in general, it is not useful to
consider the supremum of supy Comply(X,Y ) over Y \X .

We will use the following local variant of the notion of descriptive “hardness”:

Definition 5.14 (local Fα-hardness). Let X ⊂ Y be topological spaces s.t. X ∈ Fω1(Y ). For α ≤ ω1, X is
said to be

• Fα-hard in Y at y, for some y ∈ Y , if we have Comply (X,Y ) ≥ α;

• locally Fα-hard in Y if it is Fα-hard in Y at every x ∈ X.

Note that X is locally Fα-hard in Y if and only if we have U
X
/∈ F<α(Y ) for every open subset U of X (or

equivalently, when F /∈ F<α(Y ) holds for every regularly closed3 subset of X).

Note that if X is locally Fα-hard in Y , then it is Fα-hard in Y at every point of X
Y
\X .

Lemma 5.15 (Density of “too nice” sets). Let X ⊂ Y be topological spaces. Suppose X ⊂ H ∈ F<α(Y )
holds for some H and α ≤ ω1.

(i) If X is dense in Y and locally Fα-hard in Y , then H \X is dense in Y .

3Recall that a set F is regularly closed if it is equal to the closure of its interior.
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(ii) More generally, if X is Fα-hard in Y at some y ∈ Y , then y ∈ H \X
Y
.

In particular, (i) says that if a space X is locally hard in Y , then any set H ⊃ X of lower complexity
than X must be much bigger than X , in the sense that the closure of H \X is the same as that of X .

Proof. (i): By density of X in Y (and the remark just above this lemma), (i) follows from (ii).
(ii): Suppose we have X ⊂ H ⊂ Y , H ∈ F<α(Y ), and that X is Fα-hard in Y at some y ∈ Y . Let U be

an open neighborhood of y in Y . Let V be some open neighborhood of y in Y which satisfies V
Y
⊂ U . Since

Comply (X,Y ) ≥ α, we have V
Y
∩X /∈ F<α(Y ). On the other hand, the assumptions imply that

V
Y
∩X ⊂ V

Y
∩H ∈ F<α(Y ). (5.6)

Since the two sets in (5.6) have different complexities, they must be distinct. In particular, the intersection

V
Y
∩ (H \ X) ⊂ U ∩ (H \ X) is non-empty. Since U was arbitrary, this shows that y is in the closure of

H \X .

Before proceeding further, make the following simple observation:

Lemma 5.16 (Gδ-separation of F -Borel sets). Let X be a F-Borel subset of Y . Then for every y ∈ Y \X,
there is a Gδ subset G of Y which satisfies x ∈ G ⊂ Y \X.

Proof. We proceed by transfinite induction over the complexity of X in Y . When X is closed in Y , the con-
clusion holds even with the open set G := Y \X .

Suppose that X =
⋃
nXn and y ∈ Y \ X . If each Xn satisfies the conclusion – that is, if we have

y ∈ Gn ⊂ Y \Xn for some Gδ subsets Gn of Y – then the set
⋂
nGn is Gδ in Y and we have

y ∈
⋂

n

Gn ⊂
⋂

n

(Y \Xn) = Y \
⋃

n

Xn = Y \X.

Suppose that X =
⋂
nXn and let y ∈ Y \X . Let n0 ∈ ω be s.t. yY \Xn. By the induction hypothesis,

there is some Gδ set G which satisfies the conclusion for Xn0 . Clearly, G satisfies the conclusion for X as
well.

We are now ready to prove that the existence of universal representation is rare. Recall that a point x is
a cluster point of a sequence (xn)n when each neighborhood of x contains xn for infinitely many n-s.

Proposition 5.17 (Non-existence of universal representations). Let X be a K-analytic space which is not
σ-compact. Suppose that X has a compactification cX, such that one of the following conditions holds for
some even α < ω1:

(a) X is locally Fα-hard in cX;

(b) there is a sequence (xn)n∈ω in X with no cluster point in X, such that X is Fα-hard in cX at each xn;

(c) X is Fα-hard in cX at some point of cX \X.

Then X does not have a universal simple Fα-representation.

Proof. Note that both (a) and (b) imply (c). Indeed, by the remark between Definition 5.14 and Lemma 5.15,
(a) implies that X is Fα-hard at each point of the (non-empty) set cX \X . If (b) holds, then (xn)n must
have some cluster point y in cX \ X . And since each neighborhood of y is a neighborhood of some xn, X
must be Fα-hard in cX at y:

Comply(X, cX) ≥ inf
n∈ω

Complxn
(X, cX) ≥ α.
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It remains to show that (c) implies the non-existence of universal Fα-representation of X . Suppose that
X is Fα-hard in cX at some y ∈ cX \ X . By Lemma 5.16, there is some Gδ subset G of Y , such that
y ∈ G ⊂ cX \X . Since cX is regular, we can assume that G =

⋂
nGn, where Gn are open subsets of cX

which satisfy Gn+1 ⊂ Gn.
Let H be a “candidate for a universal simple representation of X” – that is, an l(Tα)-scheme inX satisfying

X = H
cX

(∅). We shall prove that H is not a universal representation by constructing a compactification dX

in which H
dX

is not a representation of X (that is, we have H
dX

(∅) 6= X).

Since α is even, we get H
cX

(∅) =
⋂
nH

cX
(n). By Lemma 5.2 (or more precisely, by (5.2) from the proof

of Lemma 5.2), the sets H
cX

(n) satisfy X ⊂ H
cX

(n) ∈ F<α(Y ). In this setting, we can use Lemma 5.15 (ii)

to get y ∈ H
cX

(n) \X
cX

. In particular, there exists some xn ∈
(
H
cX

(n) \X
)
∩Gn.

Set K := {xn| n ∈ ω}
cX

. Since we have
⋂
nGn

cX
=
⋂
nGn ⊂ cX \ X , it follows that K is a compact

subset of cX which is disjoint with X . Let dX := cX/K be the compact space obtained by “gluing together”
the points of K (formally, we define an equivalence ∼ on cX as

x ∼ y ⇐⇒ (x = y) ∨ (x, y ∈ K),

and define dX as the corresponding quotient of cX). We can identify dX with the set {[K]}∪ cX \X , where
a set containing [K] is open in dX if and only if it is of the form {[K]} ∪ U \ K for some open subset of
U ⊃ K of cX . Since K is disjoint from X , dX is a compactification of X .

We finish the proof by showing [K] ∈ H
dX

(∅) \X . Let n ∈ ω. The topology of dX is such that for every

A ⊂ X , we have A
cX

∋ xn =⇒ A
dX

∋ [K]. In particular, we obtain the following implication for any leaf
t ∈ l(Tα):

H
cX

(t) = H(t)
cX

∋ xn =⇒ H
dX

(t) = H(t)
dX

∋ [K].

It follows (by (5.1) and induction over rl(T
t
α)) that the following implication holds for every t ∈ Tα

H
cX

(t) ∋ xn =⇒ H
dX

(t) ∋ [K].

And since H
cX

(n) contains xn, we get [K] ∈ H
dX

(n). Because n was arbitrary, this concludes the proof:

H
dX

(∅)
α is
=

even

⋂

n

H
dX

(n) ∋ [K].

In particular, we obtain the following corollary for Banach spaces:

Corollary 5.18 (No universal representations for Banach spaces). A Banach space X is either reflexive (and
therefore weakly σ-compact), or (X,w) has no universal Fσδ representation.

Proof. Let X be a non-reflexive Banach space. By Proposition 5.6 (a), it is enough to note that X is locally
Fσδ-hard in some compactification. Since (X⋆⋆, w⋆) is σ-compact, being locally Fσδ-hard in (X⋆⋆, w⋆) implies
being locally Fσδ-hard in, for example, β(X⋆⋆, w⋆). By the remark between Definition 5.14 and Lemma 5.15,
it suffices to show that no regularly closed subset of (X,w) is Fσ in (X⋆⋆, w⋆). In this particular setting, this
means showing that weakly regularly closed sets in X are not weakly σ-compact.

For contradiction, assume that there is a sequence of weakly compact sets Kn ⊂ X , such that
⋃
nKn has

got a non-empty interior in weak topology. In particular, the interior contains a norm-open set. Consequently,
Baire category theorem yields n0 ∈ ω such that Kn0 contains an open ball UX(x, ǫ). However, this would
imply that the closed ball BX(x, ǫ2 ) – a weakly closed subset of Kn0 – is weakly compact. This is only true
for reflexive spaces.
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6 Regular Representations

In this section, we introduce representations which are more structured than the simple representations from
Section 5. In Section 6.1, we recall the notion of a Suslin scheme and some related results. Section 6.2
introduces the concept of a regular representation and investigates its basic properties. In Section 6.3, we
give an alternative description of regular representations. This yields a criterion for estimating Compl (X,Y ),
which will in particular be useful in Section 7. Section 6.4 is optional, and justifies the concept of regular
representation by proving their existence.

6.1 Suslin Schemes

A tool relevant to K-analytic sets and F -Borel complexities is the notion of complete sequence of covers.

Definition 6.1 (Complete sequence of covers). Let X be a topological space. Filter on X is a family of
subsets of X, which is closed with respect to supersets and finite intersections and does not contain the empty
set. A point x ∈ X is said to be an accumulation point of a filter F on X, if each neighborhood of x intersects
each element of F .

A sequence (Cn)n∈N
of covers of X is said to be complete, if every filter which intersects each Cn has an

accumulation point in X.

A notion related to Suslin sets is that of a Suslin scheme:

Definition 6.2 (Suslin schemes and sets). By a Suslin scheme in Y we will understand a family C =
{C(s)| s ∈ ω<ω} ⊂ P(Y ) which satisfies the following monotonicity condition:

(
∀s, t ∈ ω<ω

)
: t ⊐ s =⇒ C(t) ⊂ C(s).

A Suslin operation is the mapping

A : C 7→ A(C) :=
⋃

σ∈ωω

⋂

n∈ω

C(σ|n).

Let C be a Suslin scheme in Y and X ⊂ Y . We say that C

• is closed in Y if C ⊂ F0(Y );

• covers X if it satisfies A(C) ⊃ X;

• is a Suslin scheme on X if it is actually a Suslin scheme in X which covers X;

• is complete on X if it is Suslin scheme on X and (Cn) is a complete sequence of covers of X, where

Cn := {C(s)| s ∈ ωn} .

Note that a subset of Y is Suslin-F in Y if it is the image under Suslin operation of some closed Suslin
scheme in Y . The existence of complete Suslin schemes is guaranteed by the following result.

Proposition 6.3 (Existence of complete Suslin schemes). On any K-analytic space, there is a complete
Suslin scheme.

Proof. By [Fro, Theorem 9.3], any K-analytic space has a complete sequence of countable covers. Enumerate

the n-th cover as Cn = {Ckn| k ∈ ω}. Denoting C(∅) := X and C(s) := C
s(0)
0 ∩ C

s(1)
1 ∩ · · · ∩ C

s(k)
k , we obtain

a Suslin scheme (in X) covering X . Moreover, C is easily seen to be complete on X .

The main reason for our interest in complete Suslin schemes is their the following property:

Lemma 6.4. Let C be a Suslin scheme on X. If C is complete on X, then A(C
Y
) = X holds for every Y ⊃ X.

Proof. This holds, for example, by [KK, Lemma 4.7].
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6.2 Definition of a Regular Representation

The basic tool for the construction of regular representations will be the following mappings from trees to
sequences:

Definition 6.5 (Admissible mappings). Let T ∈ Tr be a tree and ϕ : T → ω<ω a mapping from T to
the space of finite sequences on ω. We will say that ϕ is admissible, if it satisfies

(i) (∀s, t ∈ T ) : s ⊏ t =⇒ ϕ(s) ⊏ ϕ(t)

(ii) (∀t = (t0, . . . , tk) ∈ T ) : |ϕ(t)| = t(0) + · · · + t(k).

The next lemma completely describes how these mappings look like. (Recall from Section 3.2 that each
non-empty tree T can be rewritten as T = {∅} ∪

⋃
{m T̂ (m) | m ∈ imsT (∅)}, where T (m) is defined as

{t′ ∈ ω<ω | m t̂′ ∈ T }.)

Lemma 6.6 (Construction of admissible mappings).

(i) The only admissible mapping with range {∅} is the mapping ϕ : ∅ 7→ ∅.

(ii) A mapping ϕ : T → ω<ω is admissible if and only if it is a restriction of some admissible mapping
ψ : ω<ω → ω<ω.

(iii) For {∅} 6= T ∈ Tr, a mapping ϕ : T → ω<ω is admissible if and only if it is defined by the formula

ϕ(t) =

{
∅, for t = ∅

smˆϕm(t′), for t = m t̂′ (where (m) ∈ imsT (∅) , t′ ∈ T (m))

for some sequences sm ∈ ωm and admissible mappings ϕm : T (m) → ω<ω.

Proof. (i): By definition of an admissible mapping, we have |ϕ(∅)| = 0, so ϕ(∅) must be equal to the empty
sequence ∅.

(ii): Let T ∈ Tr. From the definition of an admissible mapping, we see that if ψ : ω<ω → ω<ω is
admissible, then ψ|T : T → ω<ω is also admissible. Moreover, any admissible mapping ϕ : T → ω<ω is of
this form. To see this, fix any σ ∈ ωω. For every s ∈ ω<ω, there exists some t ∈ T , such that s = t̂ h holds
for some h ∈ ω<ω. Denoting by h = (h(0), . . . , h(k)) ∈ ω<ω the sequence corresponding to the longest such
t ∈ T , we set ψ(s) := ϕ(t)̂ σ|h(0) + · · · + h(k). Clearly, ψ is admissible and coincides with ϕ on T .

(iii): Denote M := imsT (∅). Firstly, note that if ϕ : T → ω<ω is admissible, then ϕ(∅) = ∅, for every
m ∈M we have sm := ϕ(m) ∈ ωm and for other elements of the tree, we have ϕ(t) = ϕ(m t̂′) ⊐ sm for some
m ∈M and t′ ∈ T (m). Denoting ϕ(m t̂′) =: smˆϕm(t′), we get mappings ϕm : T (m) → ω<ω which are easily
seen to be admissible.

On the other hand, it is not hard to see that if mappings ϕm : T (m) → ω<ω are admissible and the se-
quences sm for m ∈M are of the correct length, then the formula in (iii) defines an admissible mapping.

Before defining the desired regular representations, we introduce the following RT -sets (of which regular
representations will be a special case, for particular choices of C and T ):

Definition 6.7 (Regular representation). Let T be a tree and C a Suslin scheme. We define

RT (C) :=
{
x ∈ C(∅) |

(
∃ϕ : T → ω<ω admissible

)
(∀t ∈ T ) : x ∈ C (ϕ(t))

}
.

Let X ⊂ Y be topological spaces. The pair (C, T ) is said to be a regular representation of X in Y if C is a
Suslin scheme in Y and we have X = RT (C).

When x satisfies x ∈
⋂
T C(ϕ(t)) for some admissible ϕ : T → ω<ω, we shall say that ϕ witnesses that x

belongs to RT (C). We also need a technical version of the notation above. For h ∈ ω<ω, we set

Rh
T (C) :=

{
x ∈ C(∅) |

(
∃ϕ : T → ω<ω admissible

)
(∀t ∈ T ) : x ∈ C (hˆϕ(t))

}
.

The technical properties of RT -sets are summarized by the following lemma:
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Lemma 6.8 (Basic properties of RT -sets). Let C be a Suslin scheme, S, T ∈ Tr and h ∈ ω<ω.

(i) Suppose that there is a mapping f : T → S satisfying

• (∀t0, t1 ∈ T ) : t0 ⊏ t1 =⇒ f(t0) ⊏ f(t1),

• (∀t = (t(0), . . . , t(k)) ∈ T ) : f(t)(0) + · · · + f(t)(k) ≥ t(0) + · · · + t(k).

Then RS(C) ⊂ RT (C).

(ii) In particular, we have RS(C) ⊂ RT (C) whenever S ⊃ T .

(iii) We have Rh
{∅}(C) = C(h) and the following recursive formula:

Rh
T (C) =

⋂

(m)∈imsT (∅)

⋃

sm∈ωm

Rhˆsm
T (m) (C).

(iv) If T ∈ IF has a branch with infinitely many non-zero elements, then RT (·) coincides with the Suslin
operation A(·).

We can view the mapping f : T → S from Lemma 6.8 (i) as an embedding of the tree T into S. In this
light, (i) implies that “larger tree means smaller R(·)(C)” and for “equivalent” trees, the corresponding sets
R(·)(C) coincide.

Proof. Let C, T and h be as above. For simplicity of notation, we will assume that h = ∅ and therefore we
will only work with the sets RT (C). However, the proof in the general case is exactly the same as for h = ∅.

(i): Let f : T → S be as in the statement and suppose that ϕ : S → ω<ω witnesses that x ∈ RS(C).
Using the properties of f , we get that the following formula defines an admissible mapping:

ψ : t ∈ T 7→ ϕ(f(t))|t(0)+···+t(|t|−1).

Using monotonicity of C, we prove that ψ witnesses that x belongs to RT (C):

x ∈
⋂

s∈S

C(ϕ(s))
f(T )⊂S

⊂
⋂

t∈T

C (ϕ(f(t)))
mon.
⊂
of C

⋂

t∈T

C
(
ϕ(f(t))|∑ t(k)

) def.
⊂
of ψ

⋂

t∈T

C(ψ(t)).

(iii): The identity R{∅}(C) = C(∅) follows from Lemma 6.6 (i). For {∅} ( T , we can rewrite T as

T = {∅} ∪
⋃

{m T̂ (m)| m ∈M},

where M := imsT (∅).
Let x ∈ C(∅). By definition of RT , we have x ∈ RT (C) if and only if there exists a witnessing mapping

– that is, an admissible mapping ϕ : T → ω<ω which satisfies x ∈
⋂
T C(ϕ(t)). Since C is monotone, this is

further equivalent to the existence of admissible ϕ : T → ω<ω s.t.

x ∈
⋂

T

C(ϕ(t)) =
⋂

M

⋂

t′∈T (m)

C(ϕ(m t̂)).

By Lemma 6.6 (iii), this is true if and only if there are sequences sm ∈ ωm, m ∈M , and admissible mappings
ϕm : T (m) → ω<ω, m ∈ M , for which x belongs to

⋂
Tm C(smˆϕm(t′)). This is precisely when, for each

m ∈M , there exist some mapping witnessing that x ∈ Rsm
T (m)(C) holds for some sm ∈ ωm.

(iv): This part immediately follows from (iii).
(v): Let T be as in the statement and C be a Suslin scheme. To show that A(C) ⊂ RT (C), it suffices to

show that A(C) ⊂ Rω<ω(C) (by (ii)). Let x ∈
⋂
m∈ω C(σ|m) ⊂ A(C) and define ϕ : ω<ω → ω<ω as

ϕ( (t(0), . . . , t(k)) ) := σ|t(0)+···+t(k).
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Since ϕ is admissible, it witnesses that x belongs to Rω<ω(C).
For the reverse inclusion, let ν be a branch of T with

∑
k ν(k) = ∞ and ϕ : T → ω<ω be an admissible

mapping. The sequence ϕ(ν|0) ⊏ ϕ(ν|1) ⊏ ϕ(ν|2) ⊏ . . . eventually grows to an arbitrary length, which means
that there exists σ ∈ ωω such that for each m ∈ ω there is k ∈ ω such that σ|m ⊏ ϕ(ν|k). In particular, we
have ⋂

t∈T

C(ϕ(t)) ⊂
⋂

k∈ω

C(ϕ(ν|k)) ⊂
⋂

m∈ω

C(σ|m) ⊂ A(C).

Since our goal is to study F -Borel sets, we will focus on RT -sets corresponding to closed Suslin schemes.
The following notation is handy for that purpose.

Definition 6.9 (RT (C, Y )-sets). For any Suslin scheme C, tree T , and a topological space Y , we define

RT (C, Y ) := RT (C̄Y ), where C̄Y :=
{
C(s) ∩ Y

Y
| s ∈ ω<ω

}
.

We have the following complexity estimate for RT -sets:

Lemma 6.10 (Complexity of RT -sets). Let C be a closed Suslin scheme in a topological space Y , and
T ∈ WF. Denoting the leaf-rank of T as rl(T ) = λ+ n (where λ is a limit ordinal or 0 and n ∈ ω), we have:

(i) RT (C) ∈ Fλ+2n(Y );

(ii) If imsT (∅) is finite, then RT (C) ∈ Fλ+2n−1(Y ).

(The expression in (ii) is well-defined because if imsT (∅) is finite, then rl(T ) cannot be a limit ordinal.)

Proof. We proceed by induction over rl(T ). For rl(T ) = 0, we necessarily have T = {∅}, which yields

RT (C) = R{∅}(C)
L6.6(i)

= C(∅) ∈ F0(Y ).

Let C be a closed Suslin scheme in Y , T ∈ WF a tree s.t. ri(T ) = λ + n. Suppose, as an induction
hypothesis, that for every closed Suslin scheme D in Y and every S ∈ Tr with rl(S) < λ + n, we have
RS(D) ∈ Fβ(Y ) for some even ordinal βS < λ+ 2n. Denoting M := imsT (∅), Lemma 6.8 (iii) yields

RT (C) =
⋂

m∈M

⋃

s∈ωm

Rs
T (m)(C). (6.1)

Let m ∈ M . We have rl(T
(m)) < λ + n, and Rs

T (m)(C) can be rewritten as RT (m)(D), where D :=
(C(ŝ u))u∈ω<ω is a closed Suslin scheme in Y . Using the induction hypothesis, we get Rs

T (m)(C) ∈ Fβm
(Y ) =

F<βm+1(Y ) for some even βm < λ+ 2n. Since βm + 1 is odd, we get

⋃

s∈ωm

Rs
T (m)(C) ∈ (F<βm+1(Y ))σ = Fβm+1(Y ) ⊂ F<λ+2n(Y ).

(i): It follows that RT (C) ∈ (F<λ+2n(Y ))δ = Fλ+2n(Y ).
(ii): When the set M is finite, we necessarily have n ≥ 1. It follows that each

⋃
s∈ωm Rs

T (m)(C) belongs
to F<λ+2n(Y ) = Fλ+2n−1(Y ). Since the intersection in (6.1) is finite, it follows that RT (C) belongs to
Fλ+2n−1(Y ) as well.

It follows from Lemma 6.10 (and Lemma 6.8 (iv)) that for each T ∈ Tr, there exists αT ≤ ω1 such that
RT (C, Y ) ∈ FαT

(Y ) holds for every C and Y . In this sense, each RT (·, Y ) can be understood as an operator
which maps Suslin schemes to FαT

-subsets of Y .
It follows from (ii) in Lemma 6.8 that for the purposes of studying the RT -sets, many trees are in fact

equivalent. We therefore focus our attention on the “canonical” trees T cα, α ≤ ω1. In Proposition 6.23, we
show that this is sufficient – every Fα-subset X of Y can be written as X = RT c

α
(C, Y ) for some C.
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Definition 6.11 (Rα-sets). For a Suslin scheme C and α ≤ ω1, we denote

Rα(C) := RT c

α
(C).

We define Rα(C, Y ), Rh
α(C) and Rh

α(C, Y ) analogously.

As a special case of Lemma 6.10, we get that the sets Rα(·, ·) are always Fα:

Proposition 6.12 (Rα-sets are Fα). For any Suslin scheme C and α ≤ ω1, we have Rα(C, Y ) ∈ Fα(Y ) for
any topological space Y .

Proof. For α < ω1, this follows from Lemma 6.10. For α = ω1, this holds by (iv) from Lemma 6.8.

Let X ⊂ Y be topological space and C a Suslin scheme in X , and suppose that C covers X . These
assumptions in particular imply A(C) = X and C(∅) = X . By definition of R0(·) (and Lemma 6.6 (i)), we

have R0(C) = C(∅). Consequently, the corresponding closed Suslin scheme C
Y

in Y satisfies A(C
Y
) ⊃ X and

R0(C, Y ) = C(∅)
Y

= X
Y

. As a particular case of (i) from Lemma 6.8, we get

X
Y

= C(∅)
Y

= R0(C, Y ) ⊃ R1(C, Y ) ⊃ . . .Rα(C, Y ) ⊃ · · · ⊃ Rω1(C, Y ) = A(C
Y
) ⊃ X. (6.2)

In the sense of (6.2), the sets Rα(C, Y ), α ≤ ω1, can be viewed as approximations of X in Y , or as its Fα-
envelopes in Y . The set R0(C, Y ) is the nicest (in other words, closed) approximation, but also the biggest.
We can get a more accurate approximation by increasing α, but this comes at a cost of increased complexity.
We might get lucky with the choice of C, and get Rα(C, Y ) = X at some point (and thus also Rβ(C, Y )
for every β ∈ [α, ω1]). In that case, we would say that C is a regular Fα-representation of X in Y . This is

the case when C is complete, because then X = A(C
Y
) (Lemma 6.4). But even then, there is no reason to

expect that α = Compl (X,Y ).
We have seen that a regular representation of X in Y can also be specified by picking a Suslin scheme C

in X and providing an ordinal α for which this C “works”. This motivates the following definition:

Definition 6.13 (Regular Fα-representations). A Suslin scheme C in X is said to be a

• regular Fα-representation of X in Y , for some Y ⊃ X and α ≤ ω1, if it satisfies X = Rα(C, Y );

• universal regular Fα-representation of X if it is a regular Fα-representation of X in every Y ⊃ X.

The existence of regular Fα-representations is studied in Section 6.4. However, as this work is not a
detective novel, we can go ahead and spoil the surprise right away: any Fα-subset X of Y has some regular
Fα-representation (Proposition 6.23). And when either X or Y is K-analytic, this representation can be
made complete “without loss of generality” (Theorem 6.18).

Clearly, the condition of having a universal regular Fα-representation is even stronger than being an
absolute Fα space (at least formally). In Section 7.2 we study a class of spaces (the so-called “broom
spaces”) which do admit universal regular representations. However, these spaces are rather simple from
the topological point of view – they only have a single point which is not isolated. As we have seen is
Section 5.3, this is rather an exception.

Next, we describe Rα-sets in terms of a “Suslin scheme rank” on trees.

6.3 Regular Representations and Suslin Scheme Ranks

For a Suslin scheme C in X and a point y ∈ Y ⊃ X we denote

SC(y) := {s ∈ ω<ω| C(s)
Y
∋ y}. (6.3)

Note that SC(y) is always a tree (by the monotonicity property of Suslin schemes). The rank of y corresponding
to C is defined as rC(y) := riie(SC(y)). The following lemma ensures that as long as we investigate only points

from Y \ A(C
Y
), we can assume that rC is countable.
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Lemma 6.14 (SC(·) and WF). Let X ⊂ Y be topological spaces, α ≤ ω1, and C a Suslin scheme in Y .

(i) For every y ∈ Y , we have y ∈ A(C
Y
) ⇐⇒ SC(y) ∈ IF ⇐⇒ ri(SC(y)) = ω1.

(ii) If A(C
Y
) = X, we have SC(y) ∈ WF for every y ∈ Rα(C, Y ) \X.

By Lemma 6.4, the assumptions of (ii) are in particular satisfied when C is complete on X .

Proof. The first equivalence in (i) is immediate once we rewrite A(C
Y
) as

⋃
σ

⋂
n C(σ|n)

Y
. The second

equivalence follows from the fact the derivative Di leaves a branch of a tree “untouched” if and only if
the branch is infinite.

(ii): We have A(C
Y
) ⊂ X . By (i), the tree SC(y) corresponding to y ∈ Y \X must not be ill-founded.

We have seen that Rα(C, Y ) ⊃ A(C
Y
) ⊃ X holds for every α ≤ ω1. In other words, Rα(C, Y ) always

contains X , and then maybe some extra points from Y \X . It is our goal in this subsection to characterize
this remainder of Rα(C, Y ) in Y . We claim that for even α, this remainder can be written as

Rα(C, Y ) \X = {y ∈ Y \X | rC(y) ≥ α′}.4

Unfortunately, we haven’t found any such succinct formulation for odd α. We will therefore describe the re-
mainder in terms of Diie-derivatives of SC(y). (The proof of this description is presented later in this section.)

Proposition 6.15 (Description of regular representations via Diie). Let α < ω1 and let C be a Suslin scheme

on X ⊂ Y satisfying A(C
Y
) = X.

(i) For even α, we have Rα(C, Y ) \X = {y ∈ Y \X | Dα′

iie(SC(y)) 6= ∅}

(ii) For odd α, we have Rα(C, Y ) \X = {y ∈ Y \X | Dα′

iie(SC(y)) ) {∅}}.

(iii) Moreover, we have RT c
α′,i

(C, Y ) \X = {y ∈ Y \X | Dα′

iie(SC(y)) ∩ ωi 6= ∅} for any i ∈ ω.

(Recall that for α = ω1 and complete C on X , we have Rω1(C, Y ) = X .)
For even α we have α′ = (α + 1)′ and the set Dα′

iie(SC(y)) is always a tree. Therefore, the case (i), resp.

(ii) and (iii), of the proposition says that the remainder is equal to those y ∈ Y \X for which Dα′

iie(SC(y))
contains a sequence of length 0 (that is, the empty sequence ∅), resp. some sequence of length 1 (equivalently,
any s 6= ∅), resp. some sequence of length i.

This gives the following criterion for bounding the complexity of X in Y from above (actually, even for
showing that X admits a regular Fα-representation in Y ):

Corollary 6.16 (Sufficient condition for being Fα). A space X ⊂ Y satisfies X ∈ Fα(Y ) for some α < ω1,

provided that there is a Suslin scheme C on X, s.t. A(C
Y
) = X and one of the following holds:

(i) α is even and Dα′

iie(SC(y)) is empty for every y ∈ Y \X;

(ii) α is odd and Dα′

iie(SC(y)) is either empty or it only contains the empty sequence for every y ∈ Y \X;

(iii) α is odd and there is i ∈ ω s.t. Dα′

iie(SC(y)) only contains sequences of length ≤ i (that is, it is a subset
of ω≤i) for every y ∈ Y \X.

We now proceed to give the proof of Proposition 6.15. For the “⊃” inclusion, it suffices to construct a
suitable admissible mapping.

4Recall that for α = λ+ 2n+ i we have α′ := λ+ n (where λ is limit or 0, n ∈ ω , and i ∈ {0, 1}).
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Proof of Proposition 6.15, the “⊃” part. Recall that for any derivative D on ω<ω, the corresponding rank r
is defined such that for every S ⊂ ω<ω, r(S) is the highest ordinal for which Dr(S)(S) is non-empty.

(i): Let C be a Suslin scheme in X ⊂ Y , α < ω1 even, and y ∈ Y s.t. rC(y) = riie(SC(y)) ≥ α′. (This

direction of the proof does not require C to satisfy A(C
Y
).) Recall that Rα(C, Y )

def.
= RTα′ (C, Y ) and, as noted

below Notation 3.6, rl(Tα′) = α′ ≤ rC(y).
We will prove that for every T ∈ Tr and y ∈ Y satisfying rl(T ) ≤ rC(y), there exists an admissible

mapping witnessing that y belongs to RT (C, Y ). In particular, we will use induction over |t| ∈ ω, to construct
a mapping ϕ : T → ω<ω which satisfies (a) and (b) for every t ∈ T :

(a) If t = t′ˆm for some t′ ∈ T and m ∈ ω, then we have ϕ(t) ⊐ ϕ(t′) and |ϕ(t)| = |ϕ(t′)| +m.

(b) For every γ < ω1, we have t ∈ Dγ
l (T ) =⇒ ϕ(t) ∈ Dγ

iie(SC(y)).

By (a), the resulting mapping will be admissible. By (b) with γ = 0, we have ϕ : T → SC(y), which proves
that ϕ witnesses that y ∈ RT (C, Y ).

|t| = 0: The only sequence of length 0 is the empty sequence, so (a) is trivially satisfied by setting ϕ(∅) := ∅.
Any γ satisfying ∅ ∈ Dγ

l (T ) is smaller than rl(T ) by definition, and we have rl(T ) ≤ riie(SC(y)) = rC(y). It
follows that ϕ(∅) belongs to Dγ

iie(SC(y)):

Dγ
iie(SC(y)) ⊃ D

rl(T )
iie (SC(y)) ⊃ D

riie(SC(y))
iie (SC(y)) ∋ ∅

(where the last set is non-empty by definition of riie).
Let t = t′ˆm ∈ T (where t′ ∈ T and m ∈ ω) and suppose we already have ϕ(t′) satisfying (a) and (b). Let

γt be the highest ordinal for which t ∈ Dγt
l (T ). By definition of Dl, we have t′ ∈ Dγt+1

l (T ). Consequently,
the induction hypothesis gives ϕ(t′) ∈ Diie(D

γt
iie(SC(y))). By definition of Diie, there is some sm ∈ Dγt

iie(SC(y))
for which |sm| ≥ |ϕ(t′)| +m. We set ϕ(t) = ϕ(t′ˆm) := sm||ϕ(t′)|+m. Clearly, ϕ(t) satisfies (a) and (b).

(ii), (iii): (ii) is a special case of (iii), so it suffices to prove (iii). Let C be a Suslin scheme on X ⊂ Y ,
i ∈ ω, and α < ω1 an even ordinal (so that α + 1 is odd – recall that (α + 1)′ = α′). Let y ∈ Y be s.t.
Dα′

iie(SC(y)) contains some sequence sy of length i.

Since T cα+1,i
def.
= {∅} ∪ î T cα, an application of Lemma 6.8 (iii) yields the first identity in the following

formula:
RT c

α,i
(C, Y ) =

⋃

s∈ωi

Rs
T c
α

(C, Y ) ⊃ R
sy
T c
α

(C, Y ) = Rsy
α (C, Y ) = Rα (D, Y ) ,

where D := (C(sy t̂))t∈ω<ω . Clearly, SD(y) contains all sequences t for which sy t̂ belongs to SC(y). In

particular, Dα′

iie(SD(y)) is non-empty, so y, α and D satisfy all assumptions used in the proof of case (i).
Therefore, y belongs to Rα (D, Y ) ⊂ RT c

α,i
(C, Y ), which concludes the proof.

For the “⊂” inclusion, we start with the following lemma:

Lemma 6.17 (Points from the remainder force big SC(·)). Let C be a Suslin scheme on X, T ∈ Tr, and ϕ

witnesses that y ∈ RT (C, Y ). If A(C
Y
) = X and y /∈ X, then SC(y) ⊃ ϕ(Dγ

i (T )) holds for every γ < ω1.

Proof. Let C, T , y and ϕ be as in the lemma. Since y ∈
⋂
T C(ϕ(t))

Y
, we have ϕ(T ) ⊂ SC(y) by definition

of SC(y). Since SC(y) is a tree (by monotonicity of C), we even get

Dγ
iie(ϕ(T )) ⊂ clTr (ϕ(T )) ⊂ SC(y)

for every γ < ω1. Consequently, it suffices to prove the following implication for every γ < ω1

t ∈ Dγ
i (T ) =⇒ ϕ(t) ∈ Dγ

iie(ϕ(T )). (6.4)

We proceed by induction over γ. For γ = 0, (6.4) holds trivially:

t ∈ D0
i (T ) = clTr (T ) = T =⇒ ϕ(t) ∈ ϕ(T ) ⊂ clTr (ϕ(T )) = D0

iie(ϕ(T )).
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γ 7→ γ + 1: Let t ∈ Dγ+1
i (T ) = Di(D

γ
i (T )). By definition of Di, there exist infinitely many n ∈ ω for

which t̂ n ∈ Dγ
i (T ). By the induction hypothesis, we have ϕ(t̂ n) ∈ Dγ

iie(ϕ(T )) for any such n. Consider
the tree

S := clTr ({ϕ(t̂ n)| n ∈ ω, ϕ(t̂ n) ∈ Dγ
iie(ϕ(T ))}) ⊂ Dγ

iie(ϕ(T )) ⊂ SC(y).

Since ϕ is admissible, we have ϕ(t) ⊏ ϕ(t̂ n) and |ϕ(t̂ n)| = |ϕ(t)| + n for every n ∈ ω. It follows that S is
infinite – since SC(y) ∈ WF holds by Lemma 6.14 – well-founded. By König’s lemma, there is some s ∈ ω<ω

and an infinite set M ⊂ ω such that {ŝ m| m ∈M} ⊂ S. For every m ∈M , we denote by nm the integer for
which ϕ(t̂ n) ⊐ ŝ m. The set {ϕ(t̂ nm)| m ∈M} then witnesses that S contains infinitely many incomparable
extensions of ϕ(t). It follows that

ϕ(t) ∈ Diie(S) ⊂ Diie(D
γ
iie(ϕ(T ))) = Dγ+1

iie (ϕ(T )).

Let λ < ω1 be limit and suppose that (6.4) holds for every γ < λ. By definition of Dλ
iie and Dλ

i , (6.4)
holds for λ as well:

t ∈ Dλ
i (T ) =

⋂

γ<λ

Dγ
i (T )

(6.4)
=⇒ ∀γ < λ : ϕ(t) ∈ Dγ

iie(ϕ(T )) =⇒ ϕ ∈
⋂

γ<λ

Dγ
iie(ϕ(T )) = Dλ

iie(ϕ(T )).

We can now finish the proof of Proposition 6.15:

Proof of Proposition 6.15, the “⊂” part. Let α < ω1 and let C be a Suslin scheme satisfying A(C
Y
) = X .

Recall that by definition of Rα(·), we have Rα(·) = RT c
α

(·).

(i): Suppose that α is even. The tree T cα
def.
= Tα′ is constructed to satisfy ri(Tα′) = α′, so we have

Dα′

i (Tα′) 6= ∅. In particular, Dα′

i (Tα′) contains the empty sequence. By Lemma 6.17, Dα′

iie(SC(y)) contains

ϕ(∅). In particular, Dα′

iie(SC(y)) is non-empty, which proves the inclusion “⊂” in (i).

(ii): Suppose that α is odd. The tree T cα is defined as T cα
def.
= {∅} ∪ 1̂ Tα′ . Since ∅ ∈ Dα′

i (Tα′), it follows

that Dα′

i (1̂ Tα′) contains the sequence 1̂ ∅ = (1). By Lemma 6.17, Dα′

iie(SC(y)) contains ϕ((1)). Since ϕ is

admissible, we have |ϕ((1))| = 1, which implies ∅ 6= ϕ((1)). This shows that Dα′

iie(SC(y)) contains some other
sequence than ∅, and therefore proves the inclusion “⊂” in (ii).

The proof of (iii) is the same as the proof of (ii), except that we get (i) ∈ Dα′

iie(SC(y)) instead of (1) ∈

Dα′

iie(SC(y)), and the admissibility of ϕ gives |ϕ((i))| = i.

6.4 Existence of a Regular Representation for F-Borel Sets

The goal of this section is to prove the following theorem:

Theorem 6.18 (Existence of regular Fα-representations). Let X be a K-analytic space and α ≤ ω1. For
Y ⊃ X, the following conditions are equivalent:

(1) X ∈ Fα(Y );

(2) X = Rα(C) for some closed Suslin scheme in Y ;

(3) X has a regular Fα-representation in Y – that is, X = Rα(C, Y ) for some Suslin scheme in X;

(4) X = Rα(C, Y ) for some complete Suslin scheme on X.

First, we take a look at the implications in Theorem 6.18 in more detail. The implications (4) =⇒
(3) =⇒ (2) are trivial, and the implication (2) =⇒ (1) follow from Proposition 6.12. The implication
(1) =⇒ (2) is the hardest one, and follows from Proposition 6.23. The implication (2) =⇒ (3) is
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straightforward – when X = Rα(C) holds for some closed Suslin scheme C in Y , we define a Suslin scheme

on X as C′ := (C(s) ∩X)s, and note that Rα(C′, Y ) =
⋃
ϕ

⋂
t C(ϕ(t)) ∩X

Y
satisfies

Rα(C) = Rα(C) ∩X
def.
=
⋃

ϕ

⋂

t

C(ϕ(t)) ∩X ⊂
⋃

ϕ

⋂

t

C(ϕ(t))
Y C is

=
closed

⋃

ϕ

⋂

t

C(ϕ(t))
def.
= Rα(C)

(where the unions are taken over all admissible mappings ϕ : T cα → ω<ω, and the intersections over t ∈ T cα).
Lastly, any regular representation can be made complete by Lemma 6.24 (provided that X is K-analytic),
which proves the implication (3) =⇒ (4).

Next, we aim to prove the implication (1) =⇒ (2). The following lemma shows that (1) and (2) are
equivalent for α = 2. More importantly, it will used in the induction step when proving the equivalence for
general α.

Lemma 6.19 (Existence of regular representations for Fσδ sets). For any α < ω1 and X = X ∈ (Fα(Y ))σδ,
there exist a Suslin scheme {Xs| s ∈ ω<ω} in Y satisfying

(i) X =
⋂
m∈ω

⋃
s∈ωm Xs,

(ii) (∀s ∈ ω<ω) : Xs ∈ Fα(Y ),

(iii) X covers X.

Proof. Let α and X be as above. Since X belongs to (Fα(Y ))σδ, there exists some countable families
Pm ⊂ Fα(Y ), such that X =

⋂
m∈ω

⋃
Pm. Using the notation A ∧ B = {A ∩B| A ∈ A, B ∈ B}, we set

Rm := P0 ∧ P1 ∧ · · · ∧ Pm.

Clearly, we have X =
⋂
m∈ω

⋃
Rm and Rm ⊂ Fα(Y ). Since Pm are all countable, we can enumerate them

as Pm =: {Pmn | n ∈ ω}. We then get

Rm = {P 0
n0

∩ · · · ∩ Pmnm
| ni ∈ ω, i ≤ m} = {P 0

s(0) ∩ . . . P
m
s(m)| s ∈ ωm+1}.

Denoting Xs := P 0
s(0) ∩ · · · ∩ Pms(m) for s = (s(0), . . . , s(m)) ∈ ω<ω, we get a Suslin scheme X in Y which

satisfies the conditions (i) and (ii). Moreover, any Pm is a cover of X , so X covers X .

The following proposition shows that the equivalence between (1) and (2) holds for α = 4. While
the proposition is not required for the proof of Theorem 6.18, we include it to demonstrate the method of
the proof in a less abstract setting. The proof also introduces the notation necessary to get the general result.

Proposition 6.20 (Existence of regular representations for Fσδσδ sets). A set X ⊂ Y is Fσδσδ in Y if and
only if there exists a closed Suslin Scheme C in Y s.t.

X =
⋂

m∈ω

⋃

s∈ωm

⋂

n∈ω

⋃

t∈ωn

C(ŝ t).

Proof. Let X be a subset of Y . Since the implication from right to left is immediate, we need to prove that
if X is an Fσδσδ subset of Y , it has a representation with the desired properties.

By Lemma 6.19, there exists a Suslin scheme X = {Xs| s ∈ ω<ω} ⊂ Fσδ(Y ) covering X such that

X =
⋂

m∈ω

⋃

s∈ωm

Xs.

Using Lemma 6.19 once more on each Xs, we obtain Suslin schemes Xs = {Xt
s| t ∈ ω<ω} such that

• for each s, we have Xs =
⋂
n∈ω

⋃
t∈ωn Xt

s,
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• for each s and t, Xt
s is closed in Y ,

• for each s, {Xt
s| t ∈ ω<ω} covers Xs.

It follows that X can be written as
X =

⋂

m∈ω

⋃

s∈ωm

⋂

n∈ω

⋃

t∈ωn

Xt
s.

The idea behind the proof is the following: If it was the case that Xt
s = Xv

u held whenever ŝ t = u v̂,
we could define C(ŝ t) as Xt

s, and the proof would be finished. Unfortunately, there is no reason these sets
should have such a property. However, by careful refining and re-indexing of the collection {Xt

s| s, t ∈ ω<ω},
we will be able to construct a new family {Cts| s, t ∈ ω<ω} for which the above condition will hold. And since
the condition above holds, we will simply denote the sets as C(ŝ t) instead of Cts.

We now introduce the technical notation required for the definition of C. For a less formal overview of
what the notation is about, see Figure 1.

Notation 6.21. • S0 := {∅}, Sm := ω2 × ω3 × · · · × ωm+1 for m ≥ 1 and S :=
⋃
m∈ω Sm,

• Elements of S will be denoted as

~sm = (s1, s2, . . . , sm)

=
((
s01, s

1
1

)
,
(
s02, s

1
2, s

2
2

)
, . . . ,

(
s0m, s

1
m, . . . , s

m
m

))
,

where sk ∈ ωk+1 and slk ∈ ω. By length |~sm| of ~sm we will understand the number of sequences it
contains – in this case ‘m’. If there is no need to specify the length, we will denote an element of S
simply as ~s.

• πk : ωk → ω will be an arbitrary fixed bijection (for k ≥ 2) and we set π :=
⋃∞
k=2 πk.

• We define ̺0 : ∅ ∈ S0 7→ ∅, for m ≥ 1 we set

̺m : ~sm ∈ Sm 7→ (π2(s1), π3(s2), . . . , πm+1(sm)) ∈ ωm

and we put these mappings together as ̺ :=
⋃
m∈ω ̺m : S → ω<ω.

• For k ∈ ω we define the mapping ∆k as

∆k : ~s ∈
⋃

m≥k

Sm 7→
(
s11, s

2
2, . . . , s

k
k

)
∈ ωk

(where ∆0 maps any ~s ∈ S to the empty sequence ∅).

• We also define a mapping ξk for k ∈ ω:

ξk : ~s ∈
⋃

m≥k

Sm 7→
(
skk+1, s

k
k+2, . . . , s

k
|~s|

)
∈ ω|~s|−k.

Suppose that w ∈ ωm satisfies w = ̺(~s) for some ~s ∈ Sm. Without yet claiming that this correctly defines
a Suslin scheme, we define C(w) as

C (̺ (~s)) :=

|~s|⋂

k=0

X
ξk(~s)
∆k(~s)

= X
ξ0(~s)
∆0(~s)

∩X
ξ1(~s)
∆1(~s)

∩ · · · ∩X
ξ|~s|(~s)

∆|~s|(~s)

= X
s01s

0
2...s

0
m

∅ ∩X
s12s

1
3...s

1
m

s11
∩X

s23s
2
4...s

2
m

s11s
2
2

∩ · · · ∩X∅
s11s

2
2...s

m
m
.

In order to show that C indeed does have the desired properties, we first note the following properties of
̺, ∆k and ξk (all of which immediately follow from the corresponding definitions).
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ω0 ∋ “s0”= ∅ −→ ∅
ω2 ∋ s1 = (s01 s11) −→ π(s1) ∈ ω
ω3 ∋ s2 = (s02 s12 s22) −→ π(s2) ∈ ω
ω4 ∋ s3 = (s03 s13 s23 s33) −→ π(s3) ∈ ω
ω5 ∋ s4 = (s04 s14 s24 s34 s44) −→ π(s4) ∈ ω

. . . . . . . . .
ωm+1 ∋ sm = (s0m s1m s2m s3m ... smm) −→ π(sm) ∈ ω

Sm ∋ ~sm −→ ̺(~sm) ∈ ωm

Figure 1: An illustration of the notation from the proof of Proposition 6.20. Each sequence sk ∈ ωk+1 is
mapped to an integer π(sk) via a bijection. This induces a mapping of the “sequence of sequences” ~sm to
a sequence ̺(~sm) of length |~sm| = m. The diagonal sequence highlighted in dark gray corresponds to ∆2(~sm).
Note that the letter ∆ stands for ‘diagonal’ and the lower index (2 in this case) corresponds to the length of
this sequence. The part of the column highlighted in light gray corresponds to the sequence ξ2(~sm).

Lemma 6.22. The functions ̺, ∆k and ξk have the following properties:

(a) (∀~s ∈ S) (∀k ≤ |~s|) : |∆k(~s)̂ ξk(~s)| = |~s| = |̺(~s)|.

(b) ̺ : S → ω<ω is a bijection.

(c) (∀u, v ∈ ω<ω) : v ⊐ u ⇐⇒ ̺−1(v) ⊐ ̺−1(u).

(d)
(
∀~s,~t ∈ S

)
(∀k ≤ |~s|) : ~t ⊐ ~s =⇒ ∆k(~t) = ∆k(~s) & ξk(~t) ⊐ ξk(~s).

From (b) it follows that each C(̺(~s)) is well defined and that C(w) is defined for every w ∈ ω<ω. To see
that C is a Suslin scheme, we need to verify its monotonicity. Let v ⊐ u be two elements of ω<ω. We have

C(v) =

|̺−1(v)|⋂

k=0

X
ξk(̺

−1(v))
∆k(̺−1(v))

(c)
⊂

|̺−1(u)|⋂

k=0

X
ξk(̺

−1(v))
∆k(̺−1(v))

(c),(d)
=

|̺−1(u)|⋂

k=0

X
ξk(̺

−1(v))
∆k(̺−1(u)) ⊂

|̺−1(u)|⋂

k=0

X
ξk(̺

−1(u))
∆k(̺−1(u)) = C(u),

where the first and last identities are just the definition of C(·) and the last inclusion holds because we
have ξk(̺−1(v)) ⊐ ξk(̺−1(u)) (by (c) and (d)) and X∆k(̺−1(u)) = (Xt

∆k(̺−1(u)))t is a Suslin scheme (and

hence monotone).
Next, we will show that

X ⊂
⋃

σ∈ωω

⋂

m∈ω

C(σ|m) = A(C) = Rω1(C) ⊂ R4(C) =
⋂

m∈ω

⋃

s∈ωm

⋂

n∈ω

⋃

t∈ωn

C(ŝ t).

Going from right to left, the identities (resp. inclusions) above follow from: definition of R4, Lemma 6.8 (i),
Lemma 6.8 (iv), and definition of A(·); it remains to prove the first inclusion. Let x ∈ X . Our goal is
to produce µ ∈ ωω such that x ∈ C(µ|m) holds for each m ∈ ω. We shall do this by finding a sequence
~s0 ⊏ ~s1 ⊏ . . . , ~sm ∈ Sm, for which which x ∈

⋂
m C(̺(~sm)). Once we have done this, (c) ensures that

µ|m := ̺(~sm) correctly defines the desired sequence µ.
To this end, observe that since {Xs| s ∈ ω<ω} covers X , there exists a sequence σ ∈ ωω such that

x ∈
⋂
kXσ|k. Similarly, {Xt

σ|k| t ∈ ω} covers Xσ|k for any k ∈ ω, so there are sequences νk ∈ ωω, k ∈ ω, for

which x ∈
⋂
mX

νk|m
σ|k . For m ∈ ω we denote

sm := (ν0(m− 1), ν1(m− 2), . . . , νk(m− 1 − k), . . . , νm−1(0), σ(m− 1))
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and define ~sm := (s1, s2, . . . , sm). For k ≤ m we have

∆k(~sm) =(s11, . . . , s
k
k) = (σ(0), σ(1), . . . , σ(k − 1)) = σ|k,

ξk(~sm) =(skk+1, s
k
k+2, . . . , s

k
m)

= (νk(k + 1 − 1 − k), νk(k + 2 − 1 − k), . . . , νk(m− 1 − k))

= (νk(0), νk(1), . . . , νk(m− k − 1)) = νk|m− k.

It follows that X
ξk(~sm)
∆k(~sm) = X

νk|m−k
σ|k ∋ x holds for every k ≤ m. As a consequence, we get C(̺(~sm)) =

⋂m
k=0X

νk|m−k
σ|k ∋ x for every m ∈ ω, which shows that C covers X .

In order to finish the proof of the theorem, it remains to show that
⋂

m∈ω

⋃

u∈ωm

⋂

n∈ω

⋃

v∈ωn

C(u v̂) ⊂
⋂

m∈ω

⋃

s∈ωm

⋂

n∈ω

⋃

t∈ωn

Xt
s = X.

To get this inclusion, it is enough to prove that

(
∀u ∈ ω<ω

) (
∃su ∈ ω|u|

) (
∀v ∈ ω<ω

) (
∃tuv ∈ ω|v|

)
: C(u v̂) ⊂ Xtuv

su .

We claim that a suitable choice is su := ∆|u|(̺
−1(u)) and tuv := ξ|u|(̺

−1(u v̂)). Indeed, for any u ∈ ωm and
v ∈ ωn we have

C(u v̂)
def.
=

m+n⋂

k=0

X
ξk(̺

−1(uˆv))
∆k(̺−1(uˆv)) ⊂ X

ξm(̺−1(uˆv))
∆m(̺−1(uˆv))

(d)
= X

ξm(̺−1(uˆv))
∆m(̺−1(u)) = Xtuv

su .

The following proposition proves the implication (1) =⇒ (2) of Theorem 6.18.

Proposition 6.23 (Existence of regular representations). Let X ⊂ Y and α ≤ ω1. Then X ∈ Fα(Y ) if and
only if X = Rα(C) holds for some Suslin scheme C which is closed in Y and covers X.

Proof. The implication “⇐=” follows from Proposition 6.12, so it remains to prove the implication “ =⇒ ”.
For α = 0, X is closed and any Suslin scheme C satisfies R0(C) = C(∅). Consequently, it suffices to

set C(u) := X
Y

for every s ∈ ω<ω. We already have the statement for α = 2 (Lemma 6.19), α = 4
(Proposition 6.20) and α = ω1 ((5) from Lemma 6.8).

Suppose that the statement holds for an even ordinal α < ω1 and let X ∈ Fα+1(Y ). By induction
hypothesis we have

X =
⋃

m∈ω

Xm =
⋃

m∈ω

Rα(Cm)

for some Suslin schemes Cm, m ∈ ω, which are closed in Y and cover Xm. We define C as C(∅) := X
Y

and,

for m ∈ ω and t ∈ ω<ω, C(m t̂) := X
Y
∩Cm(t). Clearly, C is a Suslin scheme which is closed in Y and covers

X . Recall that for odd α+ 1 we have T c
α+1 = {∅} ∪ 1̂ T c

α. For x ∈ Y we have

x ∈ X ⇐⇒ (∃m ∈ ω) : x ∈ Rα(Cm)

⇐⇒ (∃m ∈ ω)
(
∃ϕ : T c

α → ω<ω adm.
)

: x ∈
⋂

t′∈T c
α

Cm(ϕ(t′)) =
⋂

t′∈T c
α

C(mˆϕ(t′))

⇐⇒
(
∃ψ : 1̂ T c

α → ω<ω adm.
)

: x ∈
⋂

1ˆt′∈1ˆT c
α

C(ψ(m t̂′)) & x ∈ X
Y

= C(∅)

⇐⇒
(
∃ψ : T c

α+1 → ω<ω adm.
)

: x ∈
⋂

t∈T c
α+1

C(ψ(t))

⇐⇒ x ∈ Rα+1(C).
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Finally, suppose that X ∈ Fα(Y ) holds for 0 < α < ω1 even and that the statement holds for all β < α.
If α is a successor ordinal, we can use Lemma 6.19 to obtain a Suslin scheme {Xs| s ∈ ω<ω} ⊂ Fα−2(Y )

satisfying the conditions (i)-(iii) from the lemma. For each m ∈ ω, we set αm := α− 2 and define

T := {∅} ∪
⋃

m∈ω

m T̂ c
αm
. (6.5)

Since T = T cα, we trivially have RT (·) = Rα(·) and the definition of αm is chosen to satisfy the following:

(
∀s ∈ ω<ω

)
: Xs ∈ Fα|s|

(Y ). (6.6)

For limit α, we can repeat the proof of Lemma 6.19 to obtain a sequence (αm)m and a Suslin scheme
{Xs| s ∈ ω<ω} which satisfies (i)-(iii) from Lemma 6.19, (6.6) and αm < α for each m ∈ ω. Moreover, we
can assume without loss of generality that supm αm = α. Let T be the tree defined by (6.5). We claim that
the trees T c

α and T are equivalent in the sense of (i) from Lemma 6.8, so that we have RT (·) = Rα(·) even
when α is limit.

Indeed, the sequence (πα(n))n, defined in Notation 3.6, converges to α with increasing n, so for every
m ∈ ω there exists nm ≥ m such that πα(nm) ≥ α|m|. Since any canonical tree can be embedded (in the sense
of Lemma 6.8 (i)) into any canonical tree with a higher index, mˆT c

αm
can be embedded by some fm into

nm T̂ c
πα(nm). Defining f∅ : ∅ 7→ ∅ and f := f∅ ∪

⋃
m∈ω fm, we have obtained the desired embedding of T into

T c
α. The embedding of T c

α into T can be obtained by the same method.
Since α|s| < α for every s ∈ ω<ω, we can apply the induction hypothesis and obtain a Suslin scheme Cs

which is closed in Y , covers Xs, and satisfies Xs = Rαm
(Cs). This in particular gives

X =
⋂

m∈ω

⋃

s∈ωm

Xs =
⋂

m∈ω

⋃

s∈ωm

Rαm
(Cs) .

Analogously to the proof of Proposition 6.20, we define

C (̺(~s)) :=

|~s|⋂

k=0

C∆k(~s) (ξk(~s)) .

Using the exactly same arguments as in the proof of Proposition 6.20, we get that this correctly defines
a Suslin scheme C which is closed in Y and covers X .

To finish the proof, it remains to show that Rα(C) ⊂ X , which reduces to proving the inclusion in
the following formula:

Rα(C) = RT (C) ⊂
⋂

m∈ω

⋃

s∈ωm

Rαm
(Cs) = X.

Using the definition of RT (·) and the fact that Tm := {t′ ∈ ω<ω| m t̂′ ∈ T } = T c
αm

for any m ∈ ω, we get

x ∈ RT (C) ⇐⇒
(
∃ϕ : T → ω<ω adm.

)
: x ∈

⋂

t∈T

C(ϕ(t))

L6.6
⇐⇒
(iii)

(∀m ∈ ω) (∃s ∈ ωm)
(
∃ϕm : Tm → ω<ω adm.

)
: x ∈

⋂

t′∈Tm

C(ŝ ϕm(t′))

⇐⇒ (∀m ∈ ω) (∃s ∈ ωm)
(
∃ϕm : T c

αm
→ ω<ω adm.

)
: x ∈

⋂

t′∈T c
αm

C(ŝ ϕm(t′))

⇐⇒ (∀m ∈ ω) (∃s ∈ ωm) : x ∈ Rs
αm

(C)

⇐⇒ x ∈
⋂

m∈ω

⋃

s∈ωm

Rs
αm

(C).
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We claim that for each s ∈ ωm there exists s̃ ∈ ωm such that Rs
αm

(C) ⊂ Rαm
(Cs̃). Once we prove this claim,

we finish the proof by observing that

RT (C) =
⋂

m∈ω

⋃

s∈ωm

Rs
αm

(C) ⊂
⋂

m∈ω

⋃

s∈ωm

Rαm
(Cs̃) ⊂

⋂

m∈ω

⋃

s̃∈ωm

Rαm
(Cs̃) = X.

Let s ∈ ωm. To prove the claim, observe first that for any v ∈ ω<ω we have

C(ŝ v) =

m+|v|⋂

k=0

C∆k(ρ−1(sˆv))

(
ξk(ρ−1(ŝ v))

)
⊂ C∆m(ρ−1(sˆv))

(
ξm(ρ−1(ŝ v))

)

L6.22
=
(d)

C∆m(ρ−1(s))

(
ξm(ρ−1(ŝ v))

)
= Cs̃

(
ξm(ρ−1(ŝ v))

)
(6.7)

(where we denoted s̃ := ∆m(ρ−1(s)) ∈ ωm). By definition, any x ∈ Rs
αm

(C) satisfies x ∈
⋂
t∈T c

αm

C(ŝ ϕ(t))

for some admissible ϕ : T c
αm

→ ω<ω. Taking v = ϕ(t) in the computation above, we get

x ∈
⋂

t∈T c
αm

C(ŝ ϕ(t)) =⇒ x ∈
⋂

t∈T c
αm

Cs̃
(
ξm(ρ−1(ŝ ϕ(t)))

)
.

Since s ∈ ωm, it follows from Lemma 6.22 that the mapping t ∈ T c
αm

7→ ξm
(
(ρ−1(ŝ ϕ(t))

)
is admissible. It

follows that the intersection on the right side of (6.7) is contained in Rαm
(Cs̃), so Rs

αm
(C) = Rαm

(Cs̃) and
the proof is complete.

To prove Theorem 6.18, it remains the prove that every regular representation can be “made com-
plete without loss of generality”, in sense of the following proposition. When we say that a regular Fα-
representation C of X in Y is complete, we mean that C is complete on X . A regular Fα-representation C is
a refinement of a regular Fα-representation D when for every s ∈ ω<ω, there is some t ∈ ω<ω with |t| = |s|
s.t. C(s) ⊂ D(s).

Lemma 6.24 (Completing regular representations). Let X be K-analytic space and Y ⊃ X. For any regular
Fα-representation D of X in Y , there is a complete regular Fα-representation C of X in Y which refines D.

Proof. Suppose that a K-analytic space X satisfies X ∈ Fα(Y ) for some α ≤ ω1. By Proposition 6.3, there
exists some Suslin scheme R which is complete on X . Let D be a regular Fα-representation of X in Y . We
fix an arbitrary bijection π : ω2 → ω and denote by

̺ : (s, t) =
((
s(0), t(0)

)
, . . . ,

(
s(k), t(k)

))
∈
⋃

m∈ω

ωm × ωm 7→
(
π
(
s(0), t(0)

)
, . . . , π

(
s(k), t(k)

))
∈ ω<ω

the bijection between pairs of sequences and sequences induced by π. Finally, we define a complete Suslin
scheme C as

C(u) := D(̺−1
1 (u)) ∩R(̺−1

2 (u)) (or equivalently, C(̺(s, t)) := D(s) ∩R(t)).

Denoting Cm := {Cs| s ∈ ωm}, we obtain a sequence of covers (Cm)m which is a refinement of the complete
sequence (Rm)m. By a straightforward application of the definition of completeness, (Cm)m is complete on
X as well. In particular, Lemma 6.4 yields

Rα(C, Y ) = Rα(C
Y
) ⊃ Rω1(C

Y
) = A(C

Y
) = X.

For the converse inclusion, let x ∈ Rα(C, Y ) and suppose that ϕ is an admissible mapping witnessing5 that x
belongs to Rα(C, Y ). The mapping ψ := ̺−1

1 ◦ ϕ is clearly admissible as well, and for any u ∈ ω<ω, we have

C(ϕ(u)) = D(̺−1
1 (ϕ(u))) ∩R(̺−1

2 (ϕ(u))) ⊂ D(̺−1
1 (ϕ(u))) = D(ψ(u)).

In particular, ψ witnesses that x belongs to Rα(D, Y ) = X .
5Recall that an admissible mapping ϕ witnesses that x belongs to Rα(C, Y ) if and only if its domain is the canonical tree

T c
α and we have x ∈

⋂
Tc
α
C(ϕ(t))

Y
.
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7 Complexity of Talagrand’s Broom Spaces

In this section, we study the so-called “broom spaces”, based on the non-absolute Fσδ space T from [Tal]
(also defined in Definition 7.7 here). In [Kov] the author shows that for each even α, there is a broom space
T with {2, α} ⊂ Compl(T ) ⊂ [2, α]. We improve this results in two ways, by providing conditions under
which the set Compl(T ) of complexities attainable by a broom space T is equal to the whole interval [2, α]
for any α ∈ [2, ω1].

The existence of spaces with this property already follows from Theorem 2.2. The interesting part will
instead be the methods used to prove this result. First of all, to show that a space T attains many different
complexities, we need to find many different compactifications of T . In each such cT , we need to bound
Compl (T, cT ) from below and from above. To obtain the lower estimate, we describe a refinement of a
method from [Tal]. For the upper bound, we use a criterion from Section 6.3 (Corollary 6.16).

This section is organized as follows: In Section 7.1, we describe the hierarchy of broom sets, which are then
used in Section 7.2 to define corresponding hierarchy of topological spaces, called broom spaces. Section 7.2
also explores the basic complexity results related to broom spaces. Section 7.3 reformulates and refines some
tools from [Tal], useful for obtaining complexity lower bounds. In Section 7.4, we study compactifications of
broom spaces in the abstract setting of amalgamation spaces. We conclude with Sections 7.5 and 7.6, where
all of these results are combined in order to compute the complexities attainable by broom spaces.

We note that while reading the subsections in the presented order should make some of the notions more
intuitive, it is not always strictly required; Sections 7.3 and 7.4 are completely independent, and their only
relation to Section 7.2 is that broom spaces constitute an example which one might wish to use to get an
intuitive understanding of the presented abstract results.

7.1 Broom sets

This section introduces a special sets of finite sequences on ω, called finite broom sets, and related sets
of infinite sequences on ω, called infinite broom sets. We will heavily rely on the notation introduced in
Section 3.2.

Definition 7.1 (Finite broom sets). A forking sequence is a sequence (fn)n∈ω of elements of ω<ω such that
for distinct m,n ∈ ω we have fn(0) 6= fm(0).

We denote B0 := { {∅} }. For α ∈ [1, ω1] we inductively define the hierarchy of (finite) broom sets as

Bα :=

{
B<α ∪ {hˆB| B ∈ Bα−1, h ∈ ω<ω} for α odd

B<α ∪ {
⋃
n fnˆBn| Bn ∈ B<α, (fn)n is a forking seq.} for α even.

By hB we denote the handle of a finite broom set B, that is, the longest sequence common to all s ∈ B.

Note that hB is either the empty sequence or the sequence h from Definition 7.1, depending on whether
B belongs to Bα \ B<α for even or odd α.

For odd α, every B ∈ Bα can be written as B = hBˆB′, where B′ ∈ Bα−1. Moreover, we have h0ˆB
′ ∈ Bα

for any h0 ∈ ω<ω.
We claim that the hierarchy of finite broom sets is strictly increasing and stabilizes at the first uncountable

step (the ‘strictly’ part being the only non-trivial one):

B0 ( B1 ( B2 ( · · · ( Bω1 = B<ω1 . (7.1)

Indeed, for odd α, if h ∈ ω<ω is not the empty sequence and α is the smallest ordinal for which B ∈ Bα−1,
then it follows from the above definition that hˆB ∈ Bα \ B<α. For α, if (fn)n is a forking sequence and α is
the smallest ordinal satisfying {Bn| n ∈ ω} ⊂ B<α, then

⋃
n fnˆBn belongs to Bα \ B<α.

By extending each sequence from a finite broom set into countably many infinite sequences (in a particular
way), we obtain an infinite broom set of the corresponding rank:
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Definition 7.2 (Infinite broom sets). A countable subset A of ωω is an infinite broom set if there exists
some B ∈ Bω1 such that the following formula holds:

(∃{νsn| s ∈ B, n ∈ ω} ⊂ ωω) (∃ forking sequences (f sn)n, s ∈ B) : A = {ŝ f sn ν̂
s
n| s ∈ B, n ∈ ω}. (7.2)

If A and B satisfy (7.2), we say that A is a broom-extension of B. For α ∈ [0, ω1], the family of Aα consists
of all broom-extensions of elements of Bα.

When a broom extension A of B belongs to some A ⊂ Aω1 , we will simply say that A is an A-extension
of B. Note that the set B of which A is a broom extension is uniquely determined, so A ∈ Aα holds if and
only if B ∈ Bα. Using the definition of broom-extension and (7.1), we get

A0 ( A1 ( A2 ( · · · ( Aω1 = A<ω1 .

We claim that in Definition 7.2, we have

B̃ := {ŝ f sn| s ∈ B, n ∈ ω} ∈ B2+α. (7.3)

(Recall that for infinite α, we have 2 + α = α.) It follows from (7.3) that each Aα is actually the family of
“normal infinite extensions” of certain B2+α-brooms. We define Aα as in Definition 7.2 to simplify notation
later (the previous paper of the author, [Kov], uses the corresponding “alternative” numbering).

We omit the proof of (7.3), since it is a simple application of transfinite induction, and the above remark
is not needed anywhere in the remainder of this paper.

The following result estimates the rank of broom sets.

Lemma 7.3 (Rank of broom sets). Let α ∈ [0, ω1].

1) Let B ∈ Bα. Then

(i) Dα′

iie(B) is finite and

(ii) if α is even, then Dα′

iie(B) is either empty or equal to {∅}.

2) Let A ∈ Aα. Then

(i) Dα′

iie(Diie(A)) is finite and

(ii) if α is even, then Dα′

iie(Diie(A)) is either empty or equal to {∅}.

Proof. 1): The proof of this part is essentially the same as the proof of Proposition 4.11(i) from [Kov], where
an analogous result is proven for derivative

Di(B) := {s ∈ ω<ω| clTr(B) contains infinitely many extensions of s}.

For any B ∈ Bω1 , the initial segment clTr(hB) is finite. Moreover, for B ∈ Bα \ B<α, α even, we have
clTr(hB) = {∅}. Therefore – since we clearly have Dα′

iie(B) ⊂ Dα′

i (B) – it suffices to prove

(∀B ∈ Bω1) : B ∈ Bα =⇒ Dα′

i (B) ⊂ clTr(hB). (7.4)

To show that (7.4) holds for α = 0 and α = 1, note that every B ∈ B1 is of the form B = {h} = {hB} for
some h ∈ ω<ω. Since 1′ = 0′ = 0, such B satisfies

D1′

i (B) = D0′

i (B) = D0
i (B) = clTr (B) = clTr ({hB}) .

Let α = λ + 2n, where n ≥ 1, and suppose that (7.4) (and hence also 1) from the statement) holds for
every β < α. We will prove that (7.4) holds for α and α+ 1 as well. Let B ∈ Bα \ B<α. By definition of Bα,
we have B =

⋃
n hB f̂nˆBn for some forking sequence (fn)n, broom sets Bn ∈ B<α and hB = ∅. Clearly,

α− 1 = λ+ 2n = λ+ 2(n− 1) + 1
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is an odd ordinal, so we have B ∈ Bλ+2(n−1)+1. Since λ+ 2(n− 1) + 1 is strictly smaller than α and we have

(λ+ 2(n− 1) + 1)′ = λ+ n− 1 = α′ − 1,

the induction hypothesis implies that Dα′−1
i (fnˆBn) is finite. Consequently, Dα′

i (fnˆBn) is empty. It follows
that the longest sequence that might be contained in

Dα′

i (B) = Dα′

i (
⋃

n

hB f̂nˆBn)

is hB, which gives (7.4).
For B ∈ Bα+1 \ Bα, the proof is the same, except that hB 6= ∅.
When α = λ is a limit ordinal, the proof is analogous.
2): If A ∈ Aα is a broom-extension of B, we observe that D(A) = clTr(B):

Diie(A) = {t ∈ ω<ω| clTr(A) contains infinitely many incomparable

extensions of t of different length}

= {t ∈ ω<ω| A contains infinitely many extensions of t} (7.5)

= {t ∈ ω<ω| the set {ŝ f sn ν̂
s
n| s ∈ B, n ∈ ω} contains

infinitely many extensions of t}

= {t ∈ ω<ω| t ⊏ s holds for some s ∈ B} = clTr(B),

The results then follows from 1), because the derivatives of clTr(B) are the same as those of B, and B is an
element of Bα.

Finally, we describe a particular family of brooms sets, used in [Tal], which has some additional properties.
Let ϕn : (Bω1)n → S, for n ∈ ω, be certain functions (to be specified later), such that for each (Bn)n∈ω,

(ϕn((Bi)i<n))n∈ω is a forking sequence. The collection BT of finite Talagrand’s brooms is defined as the
closure of B0 = { {∅} } in Bω1 with respect to the operations B 7→ hˆB, for h ∈ ω<ω, and

(Bn)n∈ω 7→
⋃

n∈ω

fnˆBn, where fn = ϕn((Bi)i<n). (7.6)

For α ≤ ω1, we set BTα := BT ∩ Bα. Clearly, finite Talagrand’s brooms satisfy an analogy of (7.1).
The family AT of infinite Talagrand’s brooms consists of broom-extensions of elements of BT , where for

each B, only certain combinations (to be specified later) of (f sn)n, s ∈ B, and {νsn| s ∈ B, n ∈ ω} are allowed.
For α ≤ ω1, we set AT

α := AT ∩Aα.
The precise form of the as-of-yet-unspecified parameters above can be found in [Tal]. However, our only

concern is that the following lemma holds. (Recall that a family A is almost-disjoint if the intersection of
any two distinct elements of A is finite.)

Lemma 7.4 (The key properties of AT and BT ). The functions ϕn and the “allowed combinations” above
can be chosen in such a way that the following two properties hold:

(i) AT is almost-disjoint;

(ii) Let B ∈ BT and let Ls, s ∈ B, be some sets. If each Ls ∩N (s) is τp-dense in N (s), then there is some
AT -extension A of B s.t. each A ∩ Ls is infinite.

Proof. (i) follows from [Tal, Lemma 4]. (ii) follows from [Tal, Lemma 3].

A third important property of Talagrand’s broom sets is the following:

Remark 7.5. For Talagrand’s brooms, the conclusion of Lemma 7.3 is optimal.
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By “conclusion being optimal” we mean that for every B ∈ BTα \ BT<α the derivative Dα′

iie(B) is non-empty,

and similarly Dα′

iie(Diie(A)) is non-empty for every A ∈ AT
α \ AT

<α). The “importance” of this property only
appears implicitly – if this property, Talagrand’s brooms would not be useful for our purposes. From this
reason, we do not include the proof here, as we will not need the result in the following text. However, it can
be proven analogously to Proposition 4.11 (ii) from [Kov].

7.2 Broom spaces

Next, we introduce the class of broom spaces and state the main result of Section 7. A useful related concept
is that of a space with a single non-isolated point:

Definition 7.6 (Space with a single non-isolated point). Let Γ be a set, A ⊂ P(Γ) and ∞ a point not in Γ.
We define the space with a single non-isolated point corresponding to Γ and A as (Γ ∪ {∞}, τ(A)), where
τ(A) is the topology in which

• each γ ∈ Γ is isolated,

• the neighborhood subbasis of ∞ consists of all sets of the form

{∞} ∪ Γ \ {γ} for γ ∈ Γ and

{∞} ∪ Γ \A for A ∈ A.

Broom spaces are a particular type of spaces with a single non-isolated point:

Definition 7.7 (Broom spaces). A broom space TA corresponding to a non-empty family A ⊂ Aω1 of infinite
broom sets is defined as

TA := (ωω ∪ {∞}, τ(A)) ,

that is, as the space with a single non-isolated point corresponding to Γ = ωω and A. If the family A is
almost-disjoint, the corresponding TA is said to be an AD broom space.

We define Talagrand’s broom spaces as

Tα := TAT
<α

for α ∈ [1, ω1] and

Sα := TAT
<α\AT

<(α−1)
= TAT

α−1\A
T
<(α−1)

for non-limit α ∈ [1, ω1].

The Talagrand’s broom space T is defined as T := Tω1 (emphasis on ‘the’).

Formally, the main result of Section 7 is the following theorem. (But as we mentioned earlier, we consider
the methods to be the more interesting part.)

Theorem 7.8 (Complexity of Talagrand’s broom spaces). Talagrand’s broom spaces satisfy

α ∈ [2, ω1] =⇒ Compl (Tα) = [2, α]

α ∈ [2, ω1] is non-limit =⇒ Compl (Sα) = [2, α] .

For every topological space Y ⊃ T and y ∈ Y , we set

S(y) :=
{
s ∈ ω<ω| N (s)

Y
∋ y
}
. (7.7)

The following computation appears several times throughout the paper, so we formulate it separately.

Lemma 7.9 (Sufficient condition for being Fα). Let T be a broom space, Y ⊃ T a topological space, and
α ∈ [2, ω1]. Suppose that for each y ∈ Y \ T , S(y) is either finite or it can be covered by finitely many sets
Diie(A), A ∈ A<α. Then T ∈ Fα(Y ).
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The proof of this lemma is the only place where Section 7 relies on the concept of regular Fα-representations
and the results of Section 6. Reader willing to treat this lemma as a “black box” is invited to ignore Section
6 altogether, and skip ahead to Proposition 7.11.

In the terminology of Section 6, Lemma 7.9 actually shows that N is a regular Fα-representation of T in
Y , in the sense of Definition 6.13. This immediately follows from the remark just above Corollary 6.16.

To prove Lemma 7.9 for a broom space T contained in a topological space Y , we first need to have a

Suslin scheme C in T which satisfies A(C
Y
) = T . It turns out that the basic open sets N (s) = {σ ∈ ωω| σ ⊐ s}

from the product topology of ωω provide a canonical solution:

Lemma 7.10 (N as universally useful Suslin scheme). For every broom space T , the Suslin scheme N =

(N (s))s∈ω<ω on ωω ⊂ T satisfies A(N
Y
) = T for every topological space Y ⊃ T .

Proof. This holds, for example, by [Kov, Lemma 5.10].

Note that S(·) = SN (·), so S(·) is a special case of the general definition in (6.3). By definition of broom

topology, the closure of any uncountable subset of ωω contains ∞. It follows that N (s)
Y

= N (s) ∪ {∞}
Y

holds for every s ∈ ω<ω. In other words, we could equally well work with a Suslin scheme (N (s) ∪ {∞})s
which covers X (but this scheme would not be disjoint).

Proof of Lemma 7.9. Let T ⊂ Y and α be as in the lemma. We shall verify that every y ∈ Y \T satisfies the
assumptions of Corollary 6.16, obtaining T ∈ Fα(Y ) as a result. In particular, we shall show that Dα′

iie(S(y))
is empty when α is even, resp. that it can only contain the empty sequence when α is odd.

Let y ∈ Y \ T . When S(y) is finite, we have Dα′

iie(S(x)) = ∅, independently of the parity of α (because

α ≥ 2 implies α′ ≥ 1 and Dα′

iie(·) ⊂ Diie(·), and Diie-derivative of a finite set is empty).
Suppose that α is odd. We then have

Dα′

iie(S(y)) ⊂ Dα′

iie(
⋃

A′

Diie(A)) =
⋃

A′

Dα′

iie(Diie(A))
α−1
=
≤α

⋃

A′

D
(α−1)′

iie (Diie(A)).

Since A′ ⊂ A ⊂ A = A<α = Aα−1, it follows from 2) (ii) in Lemma 7.3 that each D
(α−1)′

iie (Diie(A)) is either

empty or only contains the empty sequence. This gives Dα′

iie(S(y)) ⊂ {∅}.
Suppose that α is even. Let A ∈ A′. Since A′ ⊂ A<α, we have A ∈ Aβ for some β < α. We have β′ < α′

(because α is even), which implies Dα′

iie(·) ⊂ Diie(D
β′

iie(·)). Since Dβ′

iie(Diie(A)) is finite (by 2) (i) from Lemma

7.3), Diie(D
β′

iie(Diie(A))) is empty, and thus Dα′

(Diie(A)) is empty as well. As in the case of odd α, this gives

Dα′

iie(S(y)) = ∅.

Actually, the proof of Lemma 7.9 did not use any special properties of T and S(·), so the lemma holds when
T is replaced by an abstract topological space X and S(·) is replaced by SC(·) for some complete Suslin
scheme C on X .

We are now in a position to obtain the following (upper) bounds on the complexity of broom spaces:

Proposition 7.11 (Basic broom space complexity results). Any broom space TA satisfies:

(i) [Tal] TA is Fσδ in βTA, but it is not σ-compact;

(ii) If A ⊂ A<α holds for some α ∈ [2, ω1], then TA is an absolute Fα space.

(In the language of Section 6, (ii) even proves that N is a universal regular representation of TA, in the
sense of Definition 6.13. This follows from the remark below Lemma 7.9.)
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Proof. (i) is proven in [Tal, p. 197], so it remains to prove (ii). For even α, the result is proven in [Kov,
Prop. 5.13] (but the proof below also applies).

Suppose we have A ⊂ A<α for α ∈ [2, ω1] and let Y ⊃ TA be a topological space. Let y ∈ Y \ TA. By
Lemma 7.9, it suffices to prove that S(y) can be covered by finitely many sets Diie(A), A ∈ A ⊂ A<α.

Since y 6= ∞, there must be some open neighborhood V of y in Y which satisfies ∞ /∈ V
Y

. By definition

of topology τ(A), V
Y
∩ TA can be covered by a union of some finite A′ ⊂ A and a finite set F ⊂ ωω. It

follows that S(y) =
⋃

A′ Diie(A) holds for some finite A′ ⊂ A:

s ∈ S(y)
(7.7)
⇐⇒ y ∈ N (s)

Y
⇐⇒ y ∈ N (s)

Y
∩ V

Y def.
⇐⇒

of τ(A)
y ∈ N (s) ∩

(⋃
A′ ∪ F

)Y

y/∈T
=⇒ N (s) ∩

(⋃
A′ ∪ F

)
is infinite ⇐⇒ N (s) ∩ A is inf. for some A ∈ A′

⇐⇒ some A ∈ A′ contains infinitely many incomparable extensions of s

(7.5)
⇐⇒ s ∈ Diie(A) for some A ∈ A′ ⇐⇒ s ∈

⋃

A′

Diie(A). (7.8)

7.3 Talagrand’s lemma

In this subsection, we consider the following general problem: We are given a K-analytic space X , and a
space Y which contains it. We “know” X , but not its complexity in Y – we would like to obtain a lower
bound on Compl (X,Y ). To solve the problem, we take an arbitrary “unkown” set Z ⊂ Y , about which we
however do know that it belongs to Fα(Y ). The mission shall be successful if we show that any such Z which
contains a big enough part of X must also contain a part of Y \ X . (Of course, the values of α for which
this can work depend on the topology of X and Y , so some more assumptions will be needed. In Sections
7.5 and 7.6, we consider some suitable combinations of X and Y .)

The method we adopt closely mimics the tools used in [Tal] (namely, Lemma 1 and Lemma 3), and refines
their conclusions. The author of the present article has found it hard to grasp the meaning of these tools.
From this reason, Notations 7.12 and 7.15 introduce some auxiliary notions, which – we hope – will make
the statements easier to parse.

The setting we consider is as follows:

• X is a K-analytic space of cardinality at least continuum.

– We assume that X contains ωω as a subset.

– By default, ωω is equipped with the subspace topology inherited from X . This subspace topology
need not have any relation with the product topology τp of ωω; whenever τp is used, it shall be
explicitly mentioned.

• Y is a topological space containing X .

• Z is a subset of Y .

To get a quicker grasp of the notions, we can just imagine that

ωω ⊂ X = Z ∈ Fα(Y ) for some α < ω1,

and we are aiming to arrive at a contradiction somewhere down the road.
The first auxiliary notion is that of “witnessing”:6

6The author is aware of the fact that the word “witness” from Notation 7.12 is neither very original, nor particularly
illuminating. Any ideas for a more fitting terminology would be appreciated. The same remark applies to the notion of
“correspondence” from Notation 7.15.
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Notation 7.12 (Witnessing). W ⊂ Y is a witness of Z in Y if there exists an indexing set I and a family
{Li| i ∈ I} of closed subsets of Y satisfying

(i)
⋂
i∈I Li ⊂ Z;

(ii) (∀i ∈ I) : Li ∩W is infinite.

Of course, any infinite Z which is closed in Y is its own witness, since we can just set I := {i0} and
Li0 := Z. But when the complexity of Z is higher, we might need a much larger collection. In general, there
might even be no witnesses at all – such as when Z is discrete and Y is its one-point compactification.

The key property of this notion is the following observation (used in [Tal]). It shows that sets with certain
properties cannot be witnesses, because they force the existence of points outside of Z.

Lemma 7.13 (No discrete witnesses in certain spaces). Let W be a closed discrete subset of Z. If Y is s.t.

W
Y

is the one-point compactification of W , then W cannot be a witness for Z in Y .

For any discrete space D, we denote its one-point compactification as αD =: D ∪ {xD}. We have

F ⊂ D is infinite =⇒ F
αD

= F ∪ {xD}. (7.9)

Proof of Lemma 7.13. Suppose that W is closed and discrete in Z and W
Y

is the one-point compactification
ofW (and hence xW /∈ Z). For contradiction, assume that there exists a family {Li | i ∈ I} as in Notation 7.12.
Since each Li ∩W is infinite by (ii), we have

xW
(7.9)
∈ Li ∩W

Y
⊂ Li

Y
= Li.

By (i), we have xW ∈
⋂
I Li ⊂ Z – a contradiction.

Note that whenever W ⊂ Y is a witness of Z in Y , then so is any W̃ with W ⊂ W̃ ⊂ Y . However, it is

more practical to have small witnesses, as it gives us more control over which elements appear in Li ∩W
Y

.
Regarding positive results, we have the following refinement of [Tal, Lemma 3]:

Lemma 7.14 (Existence of broom witnesses). If X ∈ Fα(Y ), then X has an AT
α -witness in Y .

As we will see later (in Lemma 7.27 and Lemma 7.32), combining Lemma 7.14 and Lemma 7.13 yields
a lower bound on Compl (X,Y ) for certain X and Y (more precisely, for those X ⊂ Y where each A ∈ AT

α

is closed discrete in X , and satisfies A
Y

= αA). Before giving the proof of Lemma 7.14, we first need some
technical results.

Setting W = ωω and I = B ⊂ ω<ω in Notation 7.12, and strengthening the condition (ii), we obtain the
following notion of “correspondence”. Its purpose is to allow the construction of AT -witnesses via Lemma
7.4 (ii).

Notation 7.15 (Correspondence). A set B ⊂ ω<ω corresponds to Z (in Y ) if there exists a family {Ls| s ∈
B} of closed subsets of Y satisfying

(i)
⋂
s∈B Ls ⊂ Z;

(ii) (∀s ∈ B) : Ls ∩ N (s) is τp-dense in N (s).

Talagrand’s Lemma 1 says that when X is F -Borel in Y , there is a BT broom set which corresponds
to X . We refine this result to include the exact relation between complexity of X and the “rank” of the
corresponding broom set. The proof itself is identical to the one used in [Tal] – the non-trivial part was
finding the “right definitions” for Fα and Bα such that the correspondence holds.

Lemma 7.16 (Exicence of corresponding brooms). Let α < ω1. If X ∈ Fα(Y ), then there is some B ∈ BTα
which corresponds to X in Y .
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Proof. Recall that if B ∈ BTα+1 holds for even α and hB = ∅, we actually have B ∈ BTα . We shall prove the
following stronger result. (Setting Z := X and h := ∅ in Claim 7.17 gives the conclusion of Lemma 7.16.)

Claim 7.17. Suppose that Z ∈ Fα(Y ) and Z ∩ N (h) is τp-dense in N (h) for some h ∈ ω<ω.

(i) For odd α, there is B ∈ BTα with hB ⊐ h which corresponds to Z in Y .

(ii) For even α, there is B ∈ BTα+1 with hB = h which corresponds to Z in Y .

Let Z and h be as in the assumption of the claim. We shall prove the conclusion by transfinite induction.
For α = 0, Z is closed, so we set B := {h} and Lh := Z.

Suppose that α is odd and the claim holds for α − 1. We have Z =
⋃
n Zn for some Zn ∈ Fα−1(Y ). By

the Baire theorem, some Zn0 is non-meager in (N (h), τp). It follows that Zn0 is τp dense in N (h0) for some
h0 ⊐ h. By the induction hypothesis, there is some B ∈ BT(α−1)+1 = BTα with hB = h0 ⊐ h which corresponds
to Zn0 . In particular, this B also corresponds to Z ⊃ Zn0 .

Suppose that α ∈ (0, ω1) is even and the the claim holds for every β < α. We have Z =
⋂
n Zn, where

Zn ∈ Fαn
(Y ) for some odd αn < α. Suppose we have already constructed (fi)i<n, (B′

i)i<n and (Bi)i<n for
some n ∈ ω. Let fn := ϕn((B′

i)i<n) (where ϕn is the function from Lemma 7.4). By the induction hypothesis,
there is some Bn ∈ BTαn

which corresponds to Zn and satisfies hBn
⊐ h f̂n. As noted in Section 7.1, Bn can

be rewritten as h f̂nˆB
′
n, where B′

n ∈ BTαn
⊂ BT<α.

Once we have fn and B′
n for every n ∈ ω, we get a broom set B′ :=

⋃
n fnˆB

′
n. Since we have both

B′ ∈ Bα and B′ ∈ BT , B belongs to BTα . It follows that B := hˆB′ ∈ BTα+1.
It remains to prove that B corresponds to Z. Since each Bn corresponds to Zn, there are some closed sets

Ls, s ∈ Bn, such that
⋂
Bn

Ls ⊂ Zn (and (ii) from Notation 7.15 holds). Since B =
⋃
n h f̂nˆB

′
n =

⋃
nBn,

we have ⋂

s∈B

Ls =
⋂

n∈ω

⋂

s∈Bn

Ls ⊂
⋂

n∈ω

Zn ⊂ Z,

which shows that B corresponds to Z.

Lemma 7.14 is now a simple corollary of Lemma 7.16:

Proof of Lemma 7.14. Let B ∈ BTα be the set which corresponds to X in Y by Lemma 7.16. Let Ls, s ∈ B,
be the closed subsets of Y as in Notation 7.15. By Lemma 7.4, there is an AT -extension A of B, such that
each Ls ∩ A is infinite. Setting I := B, we see that A is a witness for X in Y . Since we also have A ∈ Aα

(by definition of Aα), we have A ∈ AT
α and the proof is complete.

We will also need the following technical version of Lemma 7.14. As it contains no particularly novel
ideas, we recommend skipping it on the first reading.

Lemma 7.18 (Existence of broom witnesses – technical version). Suppose that X ∈ Fη(Y ) holds for some
η < ω1. Then for every δ ∈ [η, ω1), there is some A ∈ AT

δ \ AT<δ and h0 ∈ ω<ω s.t. A ∩ N (h0) ∈ AT
η is a

witness for X in Y .

Proof. Assume that X ∈ Fη(Y ) and η ≤ δ < ω1. First, construct a set B ∈ BTδ \ BT<δ and h0 ∈ ω<ω, such
that the following set B0 belongs to BTη and corresponds to X :

B0 := {s ∈ B| s ⊐ h0}.

Denote heven := ∅ and choose an arbitrary hodd ∈ ω<ω \ {∅} (this notation is chosen merely so that it is
simpler to explain how the construction differs depending on the parity of δ).

Suppose first that δ is even. Recall that ϕn, n ∈ ω, are the functions from Lemma 7.4. Set f0 := ϕ0(∅),
h0 := heven f̂0. By Claim 7.17, there is some B0 ∈ BTη which corresponds to Z and satisfies hB0 ⊐ h0. Denote

by B′
0 the BTη -set satisfying B0 = h f̂0ˆB

′
0. We either have B0 ∈ BTδ \ BT<δ (in which case we set B := B0 and

the construction is complete), or B0, B
′
0 ∈ BT<δ.
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Assume the second variant is true. Let (B′
n)∞n=1 be such that δ is the smallest ordinal s.t. each B′

n, is
contained in BT<δ. For n ≥ 1, we set fn := ϕn((B′

i)i<n). By (7.6), the following set B belongs to BTδ :

B :=
⋃

n

fnˆB
′
n =

⋃

n

heven f̂nˆB
′
n.

The choice of (B′
n)∞n=1 ensures that B ∈ BTδ \ BT<δ.

To get the result for odd δ = δ̃ + 1, we just repeat the above process with hodd in place of heven and δ̃ in
place of δ.

We now construct A with the desired properties. Let Ls, s ∈ B0, be some sets which ensure that B0

corresponds to X and denote Ls := X
Y

for s ∈ B \ B0. By Lemma 7.4, there is some AT -extension A of B
such that each Ls ∩ A is infinite. By definition of AT

(·), we have A ∈ AT
δ \ AT<δ. Moreover, A ∩ N (h0) is a

broom-extension of B0 ∈ BTη , which gives A ∩ N (h0) ∈ AT
η . Finally, Ls ∩ A = Ls ∩ (A ∩ N (h0)) is infinite

for each s ∈ B0, and
⋂
Ls ⊂ X holds even when the intersection is taken over s ∈ B0. This proves that

A ∩ N (h0) is a witness of X in Y .

In the next part, we study broom spaces and their compactifications in a more abstract setting. The
purpose is to isolate the few key properties which are required to obtain the results we need, while ignoring
all the other details.

7.4 Amalgamation spaces

In Section 7.4 (and only here), we retract our standing assumption that every topological space is Tychonoff.
In Section 4.1, we were able to take a space Z(cY,X ) and construct its compactification Z(cY, cX ) by

separately extending each Xi into cXi. Recall that this was easily doable, since the spaces Xi were pairwise
disjoint and clopen in Z(cY,Xi). Our goal is to take an AD broom space TA, extend each A ∈ A separately
into a compactification cA, and thus obtain a compactification of TA. However, the family A is not disjoint,
so we need a generalization of the approach from Section 4.1.

We will only need the following properties of broom spaces:

Lemma 7.19 (Example: Broom spaces). Any AD broom space X = TA satisfies the following four conditions:

(A1) A consists of clopen subsets of X.

(A2) For distinct A,A′ ∈ A, the intersection A ∩ A′ is compact.

(A3) K := X \
⋃
A is compact.

(A4) Whenever U is a collection of open subsets of X which covers K, there exists a finite family A′ ⊂ A,
s.t. for every A ∈ A \ A′, we have U ∪

⋃
A′ ⊃ A for some U ∈ U .

To summarize the properties, we can say that the family A consists of clopen sets with small intersections.
The third and fourth condition then ensure, in somewhat technical manner, that the only parts where
the space X is not compact are the sets A ∈ A.

Proof. Let TA be an AD broom space. (A1) holds by the definition of topology τ(A) on TA. (A2) because
the intersection of two distinct elements of A is, in fact, even finite.

(A3): Often, A will cover the whole space TA except for ∞. In this case, (A3) holds trivially. However
even in the non-trivial case where K = TA \

⋃
A is infinite, the subspace topology on K = TA \

⋃
A coincides

with the topology of one-point compactification of ωω \
⋃
A (by Definition 7.6). This shows that K is

compact.
(A4): Whenever U is an open cover of K, there is some U ∈ U which contains ∞. By definition of τ(A), U

contains some basic open set TA \ (
⋃
A′ ∪F ), where A′ ⊂ A and F ⊂ K are finite. The fact that TA satisfies

(A4) for U is then witnessed by A′ and U . Note that U is a universal witness, as we have U ⊃ A \
⋃
A′ for

every A ∈ A \A′.
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In the remainder of this section, we will work with an abstract topological space X and a fixed family
A ⊂ P(X) s.t. the conditions (A1) − (A4) from Lemma 7.19 hold.

Let E = (E(A))A∈A be a collection of topological spaces such that for each A ∈ A, A is a dense subset of
E(A). Informally speaking, our goal is to find a space whose “local behavior” is “E(A)-like”, but the “global
properties” are similar to those of X .

Without yet defining any topology on it, we set Amg (X, E) := X ∪
⋃

AE(A), assuming that each A is
“extended into E(A) separately”:

(∀A ∈ A) : X ∩ E(A) = A

(∀A,A′ ∈ A) : A 6= A′ =⇒ E(A) ∩ E(A′) = A ∩ A′ (7.10)

To define the topology on Amg (X, E), we first need the following lemma.

Lemma 7.20 (Largest open set with given trace). Let P ⊂ Q be topological spaces and G,G′ open subsets

of P . Denote by WQ
P (G) the largest open subset W of Q which satisfies W ∩ P = G ∩ P .

(i) WQ
P (G) is well defined.

(ii) G ⊂ G′ =⇒ WQ
P (G) ⊂WQ

P (G′).

(iii) WQ
P (G ∩G′) = WQ

P (G) ∩WQ
P (G′) .

(iv) If P is dense in Q, we have WQ
P (G) ⊂ IntQG

Q
.

(v) For any compact C ⊂ P , we have WQ
P (P \ C) = Q \ C.

Proof. Let P,Q,G and G′ be as in the statement.
(i): Since P is a topological subspace of Q, there always exists some open subset W which satisfies

W ∩ P = G. Consequently, we can define WQ
P (G) as

WQ
P (G) :=

⋃
{W ⊂ Q open | W ∩ A = G}. (7.11)

(ii): Suppose that G ⊂ G′. The set W ′ := WQ
P (G) ∪WQ

P (G′) is open in Q and satisfies

W ′ ∩ P = (WQ
P (G) ∩ P ) ∪ (WQ

P (G′) ∩ P ) = G ∪G′ = G′.

Applying (7.11) to G′, we have W ′ ⊂WQ
P (G′). It follows that WQ

P (G) ⊂WQ
P (G′).

(iii): “⊂” follows from (ii). “⊃” holds by (7.11), since WQ
P (G) ∩WQ

P (G′) is open in Q and satisfies

WQ
P (G) ∩WQ

P (G′) ∩ P = (WQ
P (G) ∩ P ) ∩ (WQ

P (G′) ∩ P ) = G ∩G′.

(iv): P is dense in Q and WQ
P (G) ⊂ Q is open. Consequently, WQ

P (G)∩P is dense in WQ
P (G) and we get

WQ
P (G) ⊂WQ

P (G) ∩ P
Q

= G
Q
.

Since WQ
P (G) is open, the conclusion follows.

(v): This is immediate, because Q \ C is open in Q.

For an open subset U of X , we define

VU := U ∪
⋃

{W
E(A)
A (U ∩ A) | A ∈ A}.

It follows from Lemma 7.20 that these sets satisfy

U,U ′ ⊂ X are open in X =⇒ VU∩U ′ = VU ∩ VU ′ . (7.12)
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Definition 7.21 (Amalgamation space). The amalgamation of X and E is defined as the set Amg (X, E),
equipped with the topology whose basis7 B consists of all sets of the form

• W ⊂ E(A), where W is open in E(A) and A ∈ A;

• VU , where U ⊂ X is open in X.

In Lemma 7.22, we show that the system B is closed under intersections, and therefore the topology of
Amg (X, E) is defined correctly. We then follow with Lemma 7.24, which captures the basic and “local” prop-
erties of Amg (X, E). The “global properties” of amalgamation spaces are used implicitly in Proposition 7.25,
where amalgamations are used to compactify X .

Lemma 7.22. The topology of Amg (X, E) is correctly defined.

Proof. Let Amg (X, E) be an amalgamation space and B the system above, which we claim is a basis of
topology. Since B obviously covers Amg (X, E), it remains to show that intersection of any two elements of
B is again in B.

This trivially holds when W0,W1 are two open subsets of the same E(A). When W is an open subset of
E(A) and VU corresponds to some open U ⊂ X , we have VU ∩E(A) = WA

U , so W ∩VU is again an open subset
of E(A). When VU and VU ′ correspond to some opens subsets U,U ′ of X , we have VU ∩VU ′ = VU∩U ′ ∈ B by
(7.12).

It remains to consider the situation when W is an open subset of some E(A) and W ′ is an open some
E(A′), A′ 6= A. We need the following claim:

Claim 7.23. For every distinct A,A′ ∈ A, A′ ∩ E(A) is clopen in E(A).

Proof of the claim. Note that A′ ∩E(A) = A′ ∩ A is open in X , hence in A. Further, we have

A′ ∩ A ⊂W
E(A)
A (A′ ∩ A)

L7.20
⊂
(iv)

A′ ∩ A
E(A) (A2)

= A′ ∩ A.

Thus A′ ∩ A is open in E(A). It is also closed, as it is compact by (A2).

Since W ′ is open in E(A), W ′ ∩ E(A) is open in E(A′) ∩ E(A) = A′ ∩ A. This set is, in turn, open in
E(A) (by the claim). It follows that W ′ ∩ E(A) is open in E(A′), and thus W ∩W ′ ∈ B.

Lemma 7.24 (Basic properties of amalgamations). The space Amg (X, E) has the following properties:

(i) Each E(A) is clopen in Amg (X, E).

(ii) The subspace topologies (inherited from Amg (X, E)) on X and E(A) for A ∈ A coincide with the original
topologies of these spaces.

(iii) In particular, X = Amg (X,A).

(iv) The space Amg (X, E) satisfies conditions (A1) − (A4) for E.

(v) The space Amg (X, E) is Hausdorff, provided that X and each E ∈ E are Hausdorff .

Proof. (i): Let A ∈ A. E(A) is open in Amg (X, E) by definition (since it is open in itself).
To show that Amg (X, E) \ E(A) is open, we first prove E(A) = VA. For any A′ 6= A, we have

W
E(A′)
A′ (A ∩ A′)

L7.20
⊂
(iv)

A ∩A′E(A) (A2)
= A ∩ A′ ⊂ A. (7.13)

7We do not claim that it is obvious that B is a basis of topology. This is the content of Lemma 7.22.
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Since E(A) = W
E(A)
A (A), it follows that E(A) = VA:

E(A) = W
E(A)
A (A) ⊂ VA = A ∪W

E(A)
A (A) ∪

⋃

A′ 6=A

W
E(A′)
A′ (A ∩ A′)

(7.13)
⊂ A ∪ E(A) ∪

⋃

A′ 6=A

A = E(A).

It remains to show that every point from the set

Amg (X, E) \ E(A) = (X \A) ∪
⋃

A′ 6=A

E(A′) \A

is contained in some open set disjoint with E(A). For x ∈ E(A′) \ A, the set E(A′) \ E(A) = E(A′) \ A is
open in E(A′) (by Claim 7.23), and hence in Amg (X, E) as well. For x ∈ X \A, we have

x ∈ X \A ⊂ VX\A

(7.12)
⊂ Amg (X, E) \ VA = Amg (X, E) \ E(A).

(ii): Let A ∈ A. For any basic open set B in Amg (X, E), the intersection B ∩ E(A) is open E(A) (by
definition of topology of Amg (X, E)). Moreover, any W ⊂ E(A) which is open in E(A) is, by definition, also
open in Amg (X, E). This shows that the subspace topology of E(A) ⊂ Amg (X, E) coincides with the original
topology of E(A).

We now show that the subspace topology of X ⊂ Amg (X, E) coincides with the original topology of
X . Again, let B be a basic open subset of Amg (X, E). If B = VU holds for some open U ⊂ X , we have
B∩X = U . When B is an open subset of some E(A), B∩X = B∩A is open in A, and therefore also open in
X (because A is open in X). This shows that the original topology of X is finer than the subspace topology.

Conversely, for any open subset U of X , we have VU ∩X = U , which proves that the subspace topology
of X is finer than the original topology.

(iii): By (ii), X is embedded in Amg (X, E) for any E . Since Amg (X,A) adds no new points, this
“canonical” embedding is a homeomorphism.

(iv): (A1) for E (and Amg (X, E)) is equivalent to (i). By (7.10), distinct sets E(A), E(A′) ∈ E satisfy
E(A) ∩ E(A′) = A ∩ A′. Since A ∩ A′ is compact by (A2), we get (A2) for E as well. By (7.10), we have

Amg (X, E) \
⋃

E = X \
⋃

A = K,

which gives (A3) for E .
To prove (A4) for E , let V be a collection of open subsets of Amg (X, E) covering K. It suffices to work

with a suitable refinement – in particular, we can assume that V consists of basic open sets. Denote

VK := V ∩ {VU |U ⊂ X open}.

By (7.10), VK is an open (in Amg (X, E)) cover of K and

UK := {U ⊂ X | VU ∈ VK}

is an open (in X) cover of K. By (A4), there is a finite family A′ ⊂ A s.t. for every A ∈ A \ A′ we
have UA ⊃ A \

⋃
A′ for some UA ∈ U . For any A ∈ A \ A′, the set CA := A ∩

⋃
A′ is compact by (A2).

Consequently, we have

VUA
⊃W

E(A)
A (UA ∩ A)

L7.20
⊃
(ii)

W
E(A)
A (A \ CA)

L7.20
=
(v)

E(A) \ CA.

It follows that V := VUA
is an element of V satisfying V ∪

⋃
A′ ⊃ E(A), which shows that (A4) holds for E .

(v): First, we show that Amg (X, E) is Hausdorff. Let x, y ∈ Amg (X, E) be distinct. It suffices to consider
the cases where

1) x ∈ E(A) and y /∈ E(A) for some A ∈ A,
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2) x, y ∈ E(A) for some A ∈ A and

3) x, y ∈ K = X \
⋃
A.

In the first case, the open sets separating x from y are Amg (X, E) \ E(A) and E(A) (by (i)). In the second
case, we use the fact that E(A) is Hausdorff to find open W,W ′ ⊂ E(A) which separate x and y. By (i), W
and W ′ are open in Amg (X, E) as well.

In the last case, we use the fact that X is Hausdorff to get some disjoint open subsets U,U ′ of X for
which x ∈ U and y ∈ U ′. By (7.12), VU and VU ′ are disjoint as well.

To prove that Amg (X, E) is Tychonoff, it suffices to show that it is a subspace of some compact space. By
(iv), we can construct the amalgamation C := Amg (Amg (X, E) , βE). By (iii), Amg (X, E) is a subspace of
C. In Proposition 7.25, we show that the amalgamation C is compact (obviously, without relying on the fact
that Amg (X, E) is Tychonoff).

Proposition 7.25 (Compactifications of amalgamation spaces). Let X be a Tychonoff space, A ⊂ P(X)
a family satisfying (A1)-(A4) and cA, dA (Hausdorff) compactifications of A for every A ∈ A.

(i) For any regular topological space Z, a function f : Amg (X, E) → Z is continuous if and only if all
the restrictions f |X and f |E(A), A ∈ A, are continuous.

(ii) Amg (X, cA) is a compactification of X. In particular, Amg (X,A) is Tychonoff.

(iii) Amg (X, cA) � Amg (C, dA) holds whenever cA � dA for each A ∈ A.

(iv) For every compactification cX of X, we have Amg
(
X,A

cX
)
� cX.8

(v) In particular, βX = Amg (X, βA).

Proof. (i): It remains to prove “⇐”. Let f : Amg (X, E) → Z and suppose that all the restrictions are
continuous. We need to prove that f is continuous at each point of Amg (X, E).

Let x ∈ E(A) for some A ∈ A. Since E(A) is clopen in Amg (X, E) (by (i) of Lemma 7.24) and f |E(A) is
continuous (by the assumption), f is continuous at x.

Let x ∈ K. Let G be an open neighborhood of f(x) in Z and let H be an open neighborhood of f(x)
satisfying H ⊂ G. By continuity of f |X , there is some open neighborhood U of x in X which satisfies
f(U) ⊂ H . In particular, we have f(U ∩ A) ⊂ H for any A ∈ A. Since U ∩A ⊂ E(A) and f |E(A) is
continuous, we have

f(U ∩A) ⊂ f(U ∩A) ⊂ H ⊂ G.

It follows that f(U ∪
⋃

A U ∩ A) ⊂ G. This proves that VU is an open neighborhood of x which is mapped
into G:

x ∈ VU
def.
= U ∪

⋃

A∈A

W
E(A)
A (U ∩ A)

L7.20
⊂
(iv)

U ∪
⋃

A∈A

U ∩ A & f(U ∪
⋃

A

U ∩ A) ⊂ G.

(ii): By Lemma 7.24, we already know that Amg (X, cA) is Hausdorff. Once we know that Amg (X, cA)
is compact, we get that it is Tychonoff for free, which proves the “in particular” part.

Let V be an open cover. As in the proof of Lemma 7.24 (iv), we can assume that V consists of basic open
sets, denoting

VK := V ∩ {VU |U ⊂ X open} and

VcA := V ∩ {W |W ∩ cA 6= ∅}, A ∈ A.

Clearly, we have
⋃
VcA ⊃ cA for every A ∈ A, so there exist some finite subfamilies V ′

cA of VcA satisfying⋃
V ′
cA ⊃ cA. Similarly we have

⋃
VK ⊃ K and we denote by V ′

K be some finite subfamily of VK satisfying⋃
V ′
K ⊃ K.

8Analogously to Notation 4.2 we define A
cX

:= {A
cX

| A ∈ A}
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By Lemma 7.24 (iv), (A4) holds for Amg (X, cA) and cA. Applying (A4) yields a finite family cA′ ⊂ cA,
such that every cA ∈ cA\ cA′ satisfies V ∪

⋃
cA′ ⊃ cA for some V ∈ V ′

K . In particular, V ′
K covers the whole

space Amg (X, cA) except for
⋃
cA′.

It follows that V ′ := V ′
K ∪

⋃
cA′ V ′

cA is a finite subcover of Amg (X, cA).
(iii): For A ∈ A, denote by qA the mapping witnessing that cA � dA and define ϕ : Amg (T, dA) →

Amg (T, cA) as

ϕ(x) :=

{
x x ∈ K,

qA(x) for x ∈ dA, A ∈ A.

Clearly, ϕ satisfies ϕ|X = idX . By (i), the mapping ϕ is continuous. This proves that ϕ witnesses
Amg (T, cA) � Amg (T, dA).

(iv): Let X and cX be as in the statement. We denote by iA : Ā → cX the identity mapping between

Ā ⊂ Amg
(
X,A

cX
)

and Ā ⊂ cX . We also denote as iX : X → cX the identity between X ⊂ Amg
(
X,A

cX
)

and X ⊂ cX . By definition of topology on the amalgamation space, iX and each iA is an embedding. We

define a mapping ϕ : Amg
(
X,A

cX
)
→ cX as

ϕ(x) :=

{
iX(x) x ∈ X,

iA(x) for x ∈ Ā, A ∈ A.

The mapping ϕ is well-defined and continuous (by (i)). In particular, ϕ witnesses that cX � Amg
(
X,A

cX
)

.

(v): This is an immediate consequence of (iv).

In the following two subsections, we show two different ways of constructing compactifications of a broom
space T , and compute the complexity of T in each of them.

7.5 Compactifications cγT and Broom Spaces Tα

In one type of broom space compactifications, which we call cγT , the closures of each A ∈ A are either
the smallest possible compactification A (the Alexandroff one-point compactification), or the largest possible
one (the Čech-stone compactification):

Notation 7.26 (Compactifications cγT ). Let γ ≤ ω1. For A ∈ Aω1 , we denote

cγA :=

{
αA, for A ∈ A<γ

βA, for A ∈ Aω1 \ A<γ ,

where A is endowed with the discrete topology. For an AD broom space T = TA, we set cγT := Amg (T, cγA).

By Proposition 7.25, cγT is a compactification of T . Since A<0 = ∅, c0(·) assigns to each A its Čech-Stone
compactification. It follows that c0T = βT :

c0T
def.
=

of c0T
Amg (T, c0A)

A<0
=
=∅

Amg (T, βA)
P7.25

=
(v)

βT.

On the other hand, when γ is such that the whole A is contained in A<γ , every cγA will be equal to αA.
This gives the second identity in the following observation:9

A ⊂ A<α & γ ≥ α =⇒ cγT
def.
=

of cγT
Amg (T, cγA)

def.
=

of cγ
Amg (T, αA) .

9Amg(TA, αA) actually corresponds to the compactification from in [Tal], used to prove the existence of a non-absolute Fσδ

space.
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By Proposition 7.25 (iii), we obtain the following chain of compactifications

βT = c0T � c1T � · · · � cγT � · · · � cαT = cα+1T = · · · = cω1T,

which stabilizes at the first ordinal α for which A ⊂ A<α.
The next lemma is the only part which is specific to Talagrand’s broom spaces:

Lemma 7.27 (Lower bound on the complexity in cγT ). Let γ ∈ [2, α]. If an AD broom space T = TA
satisfies A ⊃ AT

<γ , then we have T /∈ F<γ(cγT ).

Proof. Assuming for contradiction that T ∈ F<γ(cγT ), we can apply Lemma 7.14 to X = T and Y = cγT .
It follows that there is an AT

<γ-witness A for T in cγT . Since A belongs to AT
<γ ⊂ A, it is closed and discrete

in T . By definition of cγT , we have A
cγT

= cγA = αA – this contradicts Lemma 7.13.

In particular, this yields the following result which we promised in Section 2:

Corollary 7.28 (Existence of spaces with additive complexity). For any odd β ∈ [3, ω1), there exists a space

Xβ
2 satisfying

{2, β} ⊂ Compl
(
Xβ

2

)
⊂ [2, β].

Proof. Let β ∈ [3, ω1) be odd and set Xβ
2 := Tβ . Since Tβ = TA<β

holds by definition, we can apply
Proposition 7.11 (ii) to get Compl(Tβ) ⊂ [0, β]. By Proposition 7.11 (i), we have 2 ∈ Compl(Tβ) and hence
(by Proposition 1.7 (2))

{2} ⊂ Compl (Tβ) ⊂ [2, β].

By Lemma 7.27, we have Compl (Tβ , cβTβ) ≥ β, which implies that Compl(Tβ) contains β. This shows that
Compl (Tβ) ⊂ [2, β] and concludes the proof.

The next lemma proves an upper estimate on the complexity of T in cγT .

Lemma 7.29 (Upper bound on the complexity in cγT ). For any AD broom space T and γ ∈ [2, ω1], we have
T ∈ Fγ(cγT ).

Proof. Let T = TA be an AD broom space and γ ∈ [2, ω1]. We shall prove that T , cγT and γ satisfy
the assumptions of Lemma 7.9 (which gives T ∈ Fγ(cγT )). To apply Lemma 7.9, we need to show that for
every x ∈ cγT \T , the following set S(x) is either finite or it can be covered by finitely sets Diie(A), A ∈ A<γ :

S(x) =
{
s ∈ ω<ω| N (s)

cγT
∋ x
}

First, we observe that N (s)
cγT

∩ A
cγT

= N (s) ∩ A
cγT

holds for any s ∈ ω<ω and A ∈ A. The inclusion

“⊃” is trivial. For the converse inclusion, let x ∈ N (s)
cγT

∩ A
cγT

and let U be an open neighborhood of

x in cγT . Since A
cγT

= cγA is open in cγT (Lemma 7.24 (i)), U ∩ A
cγT

is an open neighborhood of x. In

particular, x ∈ N (s)
cγT

gives U ∩ A
cγT

∩ N (s) 6= ∅. Since A
cγT

∩ N (s) = A ∩ N (s), it follows that U

intersects A ∩ N (s). This proves that x belongs to A ∩ N (s)
cγT

.

Recall that cγT \ T =
⋃

AA
cγT

\ A. As the first case, we shall assume that x ∈ A
cγT

\ A for some

A ∈ A \ A<γ , and prove that the set S(x) is finite. Suppose that such an x satisfies x ∈ N (s)
cγT

and

x ∈ N (t)
cγT

for two sequences s and t. By definition of cγT , we have A
cγT

= cγA = βA. It follows that

x ∈ N (s)
cγT

∩ N (t)
cγT

∩ A
cγT

= N (s) ∩ A
cγT

∩N (t) ∩ A
cγT

= N (s) ∩ A
βA

∩ N (t) ∩ A
βA
. (7.14)
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Recall that for any normal topological space X and closed E,F ⊂ X , we have E
βX

∩ F
βX

= E ∩ F
βX

. In
particular, this holds for A (which is discrete). Applying this to (7.14) yields

x ∈ N (s) ∩ N (t) ∩ A
βA

⊂ N (s) ∩ N (t) ∩ A
cγT

⊂ N (s) ∩ N (t)
cγT

.

Since x does not belong to T ⊃ N (s) ∩ N (t), the set N (s) ∩ N (t) must in particular be non-empty. The
only way this might happen is when the sequences s and t are comparable. Consequently, S(x) consists of

a single branch. Since x /∈ A(N
cγT

) by Lemma 7.10, this branch must necessarily be finite (by Lemma 6.14).

The remaining case is when x belongs to A
cγT

\A for some A ∈ A∩A<γ , that is, when we have x = xA.
We claim that such x satisfies S(xA) = Diie(A). Indeed, any s ∈ ω<ω satisfies

s ∈ S(xA) ⇐⇒ xA ∈ N (s)
cγT

⇐⇒ xA ∈ N (s) ∩ A
cγT

⇐⇒ N (s) ∩ A is infinite. (7.15)

Clearly, (7.15) is further equivalent to A containing infinitely many distinct extensions of s. This happens
precisely when clTr (A) contains infinitely many incomparable extensions of s. Since each branch of clTr (A)
is infinite, we can assume that each two of these extensions have different lengths. In other words, s belongs
to S(xA) precisely when it belongs to Diie(A).

Finally, we apply all the results to the particular case of T = Tα:

Proof of the “Tα” part of Theorem 7.8. Let α ∈ [2, ω1]. Since Tα corresponds to the family A = AT
<α ⊂

A<α, we can apply Proposition 7.11 to get

Compl(Tα) ⊂ [2, α].

For any γ ∈ [2, α], Tα is an Fγ subset of cγTα (by Lemma 7.29), but it is not its F<γ subset (by Lemma 7.27).
It follows that Compl (Tα, cγTα) = γ and therefore γ ∈ Compl(Tα). Since γ ∈ [2, α] was arbitrary, we get
the desired result:

Compl(Tα) = [2, α].

7.6 Compactifications dγT and Broom Spaces Sα

The construction from Section 7.5 is more involved than gluing together pre-existing examples, but nonethe-
less, it has somewhat similar flavor to the approach from Section 4. We will now show that we can get
the same result by “relying on the same sets the whole time”.

For A ∈ Aω1 and h ∈ ω<ω, we shall write

A(h) := {σ ∈ A| σ ⊐ h} .

When h = ∅, we have A(∅) = A and A(h) is “as complicated as it can be”, in the sense that its rank riie is
the same as the rank of A. Conversely, when h belongs to the B of which A is a broom-extension, then A(h)
is “as simple as it can be” – it belongs to A1. The following lemma shows that the intermediate possibilities
are also possible, an defines the corresponding set of “<γ-handles” of A.

Lemma 7.30 (H<γ(·), the set <γ-handles). Let A be a broom extension of B. For γ ∈ [2, ω1], denote the
set of <γ-handles of A as

H<γ(A) := {h ∈ clTr (B) | A(h) ∈ A<γ & no other s ⊏ h satisfies A(s) ∈ A<γ}.

(i) A is the disjoint union of sets A(h), h ∈ H<γ(A).

(ii) If A(h0) ∈ A<γ holds for some h0 ∈ ω<ω, then we have h ⊏ h0 for some h ∈ H<γ(A).
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Proof. Let A, B and γ be as in the statement. First, we give a more practical description of H<γ(A). For
each s ∈ B, A(s) is a broom extension of {s} ∈ B1 ⊂ B<γ . It follows that A(s) ∈ A<γ . Moreover, we have

(∀u ⊏ v ∈ clTr (B)) (∀α < ω1) : A(u) ∈ Aα =⇒ A(v) ∈ Aα.

Indeed, this follows from the definition of Bα. Consequently, for each s ∈ B, there exists a minimal n ∈ ω
for which A(s|ns) ∈ A<γ . We claim that

H<γ(A) = {s|ns | s ∈ B}.

Indeed, each s|ns belongs to H<γ(A) by minimality of ns. Conversely, any h ∈ clTr (B) satisfies h ⊏ s for
some s ∈ B, so h is either equal to s|ns, or it does not belong to H<γ(A).

(i): For each σ ∈ A, there is some s ∈ B s.t. s ⊏ σ. It follows that σ ∈ A(s|ns), which proves that A is
covered by the sets A(h), h ∈ H<γ(A).

For distinct s, t ∈ B, the initial segments s|ns and t|nt are either equal, or incomparable (by minimality
of ns and nt). It follows that distinct g, h ∈ H<γ(A) are incomparable, which means that distinct A(g) and
A(h) are disjoint.

(ii) follows from the minimality of ns (and the trivial fact that for each h ∈ clTr (B), there is some s ∈ B
with s ⊐ h).

By default, we equip each A ∈ Aω1 with a discrete topology. Using the sets of < γ-handles, we define
new compactifications of broom spaces. Unlike the compactifications from cγT from Section 7.5, these are no
longer “all or nothing”, but there are many intermediate steps between αA on one end and βA on the other:

Notation 7.31 (Compactifications dγT ). For γ ∈ [2, ω1] and A ∈ Aω1 , we define

Eγ(A) :=
⊕

h∈H<γ(A)

αA(h) =
⊕

h∈H<γ(A)

(
A(h) ∪ {xA(h)}

)
.

For an AD broom space T , we define a compactification dγT as

dγT := Amg (T, dγA) , where dγA := βEγ(A).

By Lemma 7.30(ii), we have Eγ(A) ⊃ A, as well as the fact that for distinct g, h ∈ H<γ(A), we have
xA(h) 6= xA(g).

We now show that the compactifications dγT have similar properties as cγT .

Lemma 7.32 (Lower bound on the complexity in dγT ). Let γ ∈ [2, ω1). If an AD system A ⊂ Aω1 contains
AT
<α \ AT

<α−1 for some non-limit α ≥ γ, then we have T /∈ F<γ(dγT ).

Proof. Assuming for contradiction that T ∈ Fη(dγT ) holds for some η < γ, we can apply Lemma 7.18 (with
‘δ’= α−1). It follows that there is some A ∈ AT

α−1\A
T
<α−1 ⊂ A and h0 ∈ ω<ω, such that A(h0) ∈ AT

η ⊂ AT
<γ

is a witness for T in dγT .
By Lemma 7.30 (iii), there is some h ∈ H<γ(A) s.t. h0 ⊐ h. Since A belongs to A, the sets A(h0) ⊂

A(h) ⊂ A are all closed discrete in T . Moreover, we have A(h)
dγT

= αA(h) by definition of dγT . Because
A(h0) is infinite, we get

A(h0)
dγT

= A(h0)
αA(h)

= A(h0) ∪ {xA(h)}.

We have found a closed (in T ) discrete witness for T in dγT , whose closure in dγT is homeomorphic to
its one-point compactification – a contradiction with Lemma 7.13.

Lemma 7.33 (Upper bound on the complexity in dγT ). For any AD broom space T and γ ∈ [2, ω1],
T ∈ Fγ(dγT ).
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Proof. Let x ∈ dγT \T . When x belongs to βEγ(A) \Eγ(A) for some A ∈ A, we use the exact same method
as in Lemma 7.29 to prove that S(x) is finite.

When x belongs to Eγ(A) \A for some A ∈ A, we have x = xA(h) for some h ∈ H<γ(A). By definition of
H<γ(A), we have A(h) ∈ A<γ . The approach from Lemma 7.29 yields S(xA(h)) = Diie(A (h)).

We have verified the assumptions of Lemma 7.9, which gives T ∈ Fγ(dγT ).

We have all the ingredients necessary to finish the proof of Theorem 7.8:

Proof of the “Sα” part of Theorem 7.8. Let α ∈ [2, ω1) be a non-limit ordinal. Since Sα corresponds to
the family

A = AT
<α \ AT

<α−1 ⊂ A<α,

we can apply Proposition 7.11 to get
Compl(Sα) ⊂ [2, α].

For any γ ∈ [2, α], Sα satisfies Compl (Sα, dγSα) ≤ γ (by Lemma 7.33) and Compl (Sα, dγSα) ≥ γ (by
Lemma 7.32). It follows that Compl (Sα, dγSα) = γ and therefore γ ∈ Compl(Sα). Since γ ∈ [2, α] was
arbitrary, we get

Compl(Sα) ⊃ [2, α],

which concludes the proof.
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work was supported by the research grants GAČR 17-00941S and GA UK No. 915.
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[KS] O.F.K. Kalenda and J. Spurný. A solution of the abstract Dirichlet problem for Baire-one functions.
Journal of Functional Analysis, 232(2):259–294, 2006.

[Rog] Claude Ambrose Rogers. Analytic sets. Academic Pr, 1980.

53



[Sri] Sashi Mohan Srivastava. A course on Borel sets, volume 180. Springer Science & Business Media,
2008.

[Tal] M. Talagrand. Choquet simplexes whose set of extreme points is K-analytic. In Annales de l’institut
Fourier, volume 35, pages 195–206, 1985.

54


	1 Introduction
	2 Main Results and Open Problems
	3 Preliminaries
	3.1 Compactifications and Their Ordering
	3.2 Trees and Derivatives on Trees

	4 Attaining Complexities via Topological Sums
	4.1 Zoom spaces
	4.2 Topological sums as zoom spaces

	5 Simple Representations
	5.1 Definition of Simple Representations
	5.2 The Complexity of Hereditarily Lindelöf Spaces
	5.3 Local Complexity and Spaces with No Universal Representation

	6 Regular Representations
	6.1 Suslin Schemes
	6.2 Definition of a Regular Representation
	6.3 Regular Representations and Suslin Scheme Ranks
	6.4 Existence of a Regular Representation for F-Borel Sets

	7 Complexity of Talagrand's Broom Spaces
	7.1 Broom sets
	7.2 Broom spaces
	7.3 Talagrand's lemma
	7.4 Amalgamation spaces
	7.5 Compactifications cT and Broom Spaces T alpha
	7.6 Compactifications dT and Broom Spaces S alpha


