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Abstract. This paper investigates the geometrical structures of invariant

graphs of skew product systems of the form F : Θ × I → Θ × I, (θ, y) 7→
(Sθ, fθ(y)) driven by a hyperbolic base map S : Θ → Θ (e.g. a baker map or
an Anosov surface diffeomorphism) and with monotone increasing fibre maps

(fθ)θ∈Θ having negative Schwartzian derivatives. We recall a classification,

with respect to the number and to the Lyapunov exponents of invariant graphs,
for this class of systems. Our major goal here is to describe the structure of

invariant graphs and study the properties of the pinching set, the set of points

where the values of all of the invariant graphs coincide. In [18], the authors
studied skew product systems driven by a generalized Baker map S : T2 → T2

with the restrictive assumption that fθ depend on θ = (ξ, x) only through the
stable coordinate x of θ. Our aim is to relax this assumption and construct a

fibre-wise conjugation between the original system and a new system for which

the fibre maps depend only on the stable coordinate of the derive.

1. Introduction

1.1. Motivation and related works. The main objective in this paper is to
describe the geometric structures of invariant graphs of a certain class of skew
products. The existence of invariant graphs considerably simplifies the dynamics
of the forced systems and they are currently object of intense study.

A skew product system is a dynamical system (Θ× Y, F ) which can be written
as

F : Θ× Y→ Θ× Y, (θ, y) 7→ (Sθ, fθ(y)).

Here the dynamics on the fibre space Y may be interpreted as being driven by
another system (Θ, S) since the transformations fθ : Y 7→ Y depend on θ. For
example, θ can be used to induce an additive or multiplicative external noise, i.e.
fθ is of the form

• fθ(y) = h(y) + g(y), or
• fθ(y) = g(θ)h(y),

where g(θ) represents the random noise. On the other hand, the space Y is princi-
pally considered as the fibre space over the basis dynamics (Θ, S), i.e. the fibre map
fθ can be considered as a map from {θ}×Y to {Sθ}×Y, where {θ}×Y is the fibre
space over θ ∈ Θ. In fact, this natural structure appears in innumerable examples
of the dynamics which are relevant theoretically or for applications. Furthermore,
an invariant graph φ : Θ→ Y is a function that satisfies

F (θ, φ(θ)) = (Sθ, φ(Sθ)),
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for all θ ∈ Θ.
In [32, 33], Stark provided conditions for the existence and regularity of invari-

ant graphs and discussed a number of applications to the filtering of time series,
synchronization and quasiperiodically forced systems. Campbell and Davies [6]
proposed related results on the ergodic properties of attracting graphs and stability
results for such graphs under deterministic perturbations. Invariant graphs have a
wide variety of applications in many branches of nonlinear dynamics, some knowl-
edge of such applications is also available, through works of several authors (e.g.
[6, 7, 9, 10, 11, 15, 18, 23, 34] etc.).

In this paper, we study geometrical structures of the invariant graphs in a simple
but important case where Y = I ⊆ R and fθ is monotone increasing. Besides, we
focus on skew product systems whose monotone fibre maps (fθ)θ∈Θ possess negative
Schwarzian derivatives. Here the last condition means that

f ′′′θ
f ′θ
− 3

2

(f ′′θ
f ′θ

)2

< 0,

is satisfied for all θ ∈ Θ. Note that in our setting this condition guarantees that
there do not exist more than three invariant graphs, which especially allows us to
study the bounding graphs, i.e. the lower and upper outermost graphs φ− and φ+.
In other words, with this technical tool, we can investigate the fine structure of all
of the invariant graphs that possibly appear. Moreover, we assume that the skew
product dynamic is in total compressing, in the sense that F (Θ × I) ⊆ Θ × Io.
Our major goal here is to describe the structure of invariant graphs and study
the properties of the pinching set, the set of points where the values of all of the
invariant graphs coincide, mainly, in the case that the basis dynamical system is an
Anosov diffeomorphism or a generalized Baker map on the two-dimensional torus
T2 = R2/Z2.
If S : T2 → T2 is the Baker map and if instead of branches with negative Schwarzian
derivative one studies affine branches fθ(y) = λy+cos(2πx) with λ ∈ (1/2, 1) (where
θ = (ξ, x)), it turns out that φ+ = φ− everywhere and that this is the graph of
a classical Weierstrass function - a Hölder-continuous but nowhere differentiable
function. These functions and their generalizations have received much attention
during the last decades, culminating in the recent result that the graph of this
function has Hausdorff dimension 2 + log λ

log 2 for all λ ∈ (1/2, 1), i.e. in the range

of parameters for which the skew product system F is partially hyperbolic [1, 28].
Related, but less complete results were also obtained for generalizations where the
cosine function is replaced by other suitable functions, where the Baker map is
replaced by some of its nonlinear variants, or where the slope λ of the contracting
branches is also allowed to depend on x, see e.g. [24, 19, 22]. In all these cases,
however, the fibre maps remain affine. Other results deal with the local Hölder
exponents of these graphs [3, 2].
Let S : T1 → T1 be an irrational circle rotation. Such quasi-periodically forced
systems were studied by Jäger in [11, 13]. He gives the following result [11] under the
additional assumption that (θ, y) 7→ f ′θ(y) is continuous: There are three possible
cases:

(1) There exists only one Lebesgue equivalence class of invariant graphs φ, and
λ(φ) ≤ 0. This equivalence class contains at least an upper and a lower semi-
continuous representative.
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(2) There exist two invariant graphs φ and φ∗ with λ(φ) < 0 and λ(φ∗) = 0. The
upper invariant graph is upper semi-continuous, the lower invariant graph lower
semi-continuous.

(3) There exist three invariant graphs φ− ≤ φ∗ ≤ φ+ with λ(φ±) < 0 and λ(φ∗) >
0. φ− is lower semi-continuous and φ+ is upper semi-continuous. If φ∗ is neither
upper nor lower semi–continuous, then supp(mφ−) = supp(mφ∗)
= supp(mφ+).

All three cases occur. For case (iii) this was proved in [13]. In this note, we
replace the quasi-periodic base by a chaotic one, namely by an Anosov diffeomor-
phism or a Baker transformation. Roughly speaking, we shall assume that the
dynamic is in total compressing and investigate the pinching set of the outermost
graphs. Interestingly, it turns out that the separating graph φ∗ plays also a key role
in our study. Also, A. Bonifant and J. Milnor studied in [4] skew product systems
fairly similar to ours, i.e. ones with a chaotic basis dynamical system whose fibre
maps have negative Schwarzian derivatives. In spite of the fact that the pictures of
their skew product dynamics are significantly different from what we study here,
there are some relations. Thus we give a brief remark on this point. Namely, they
assumed that the two outermost invariant graphs φ− and φ+ are constant, say -1
and 1, and both of them are attracting simultaneously. More recently, G. Keller
and A. Otani studied in [18] the hyperbolic case where S : T2 → T2 is a general-
ized Baker map with the restrictive assumption that fθ depend on θ = (ξ, x) only
through the stable coordinate x, so that fθ can be written as fx, and x 7→ fx is
continuous on T1, where T1 is the one-dimensional torus. Also f ′x > 0 and Sfx < 0.
In this paper we are going to get rid of this assumption that fibre dynamics depend
on θ ∈ Θ only through the stable coordinate of the drive.

1.2. Contribution of this paper. We are interested in skew product systems with
chaotic basis dynamical systems. In this paper, we concentrate on skew product
systems which have a nice hyperbolic structure at the base.

In Section 2, Proposition 2.8 and Theorem 2.12 , we construct a fibre-wise conju-
gation between the original system and a new system which satisfies the restrictive
assumption that the fibre dynamics depend only on the stable direction of the drive.
By applying this technical tool and in the case that the basis dynamical system is
an Anosov diffeomorphism, we describe the structure of the pinching set which
consists of those points at which the global attractor is pinched to one point in
the fibre spaces (Theorem 2.18): it is a union of complete global stable fibers. In
Section 3, we focus on skew products driven by a generalized Baker transformation
and study the structure of pinching set in Theorem 3.9.

The construction of the fibre maps that depend only on the stable direction of
the drive is inspired by Sinai’s [31] construction of a function on a one-sided shift
space that is cohomologous to a given one on a two-sided shift space, see also [5,
Lemma 1.6].

1.3. General setting. We describe the general assumptions of this paper which
specify the basic concepts introduced in Subsection 1.1. Note that at the beginning,
we only restrict the fibre maps and leave the basis dynamical system arbitrary. After
several general facts are discussed, we shall consider more specific basis maps. More
precisely, we are interested in skew product dynamical systems F : Θ× I→ Θ× I,
F (θ, y) = (Sθ, fθ(y)), defined as below:
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Definition 1.1. F denotes the family of all skew product transformations F on
Θ× I where

• (Θ, d) is a compact metric space and S : Θ → Θ is a Borel measurable
invertible map.
• I = [−M,M ] is a compact interval and Io = (−M,M) where M ∈ R.
• The fibre maps fθ : I → Io are given by fθ(y) = π2 ◦ F (θ, y) with π2

the natural projection from Θ× [−M,M ] to [−M,M ]. Its derivative with
respect to y ∈ I will be denoted by f ′θ. We will assume that the fiber maps
fθ are uniformly bounded increasing C3-maps with negative Schwarzian
derivative, i.e.

(1.1) inf
(θ,y)∈Θ×I

f ′θ(y) > 0, and sup
(θ,y)∈Θ×I

Sfθ(y) < 0,

where Sfθ :=
f ′′′θ
f ′θ
− 3

2

(f ′′θ
f ′θ

)2

.

Remark 1.2. By definition, the dynamic compresses the whole space, i.e. F (Θ×I) ⊂
Θ× Io.

For the iterates Fn of F we adopt the usual notation Fn(θ, y) = (Snθ, fnθ (y))

where fnθ = fSn−1(θ) ◦ · · · ◦ fθ . Hence fn+k
θ (y) = fnSkθ(f

k
θ (y)). For n = 1 and

k = −1 this includes the identity f−1
θ (y) = (fS−1θ)

−1(y).

1.4. Bounding graphs, Lyapunov exponents, and pinch points. In this sub-
section, we introduce the concepts and the notations which are basic for the study
in the following sections.
Invariant graphs are fundamental objects in the study of skew product systems,
and they are of major interest.

Definition 1.3 (Invariant graph). Let F ∈ F . A measurable function φ : Θ → I
is called an invariant graph (with respect to F ) if for all θ ∈ Θ:

F (θ, φ(θ)) = (Sθ, φ(Sθ)), equivalently fθ(φ(θ)) = φ(Sθ).

The point set Φ := {(θ, φ(θ)) : θ ∈ Θ} will be called invariant graph as well, but it
is labeled with the corresponding capital letter. Denote by cl(Φ) the closure of Φ
in Θ× I, and by [Φ] its filled-in closure in Θ× I, i.e.

[Φ] =
{

(θ, y) ∈ Θ× I : ∃y1, y2 ∈ I s.t (θ, y1), (θ, y2) ∈ cl(Φ), y1 ≤ y ≤ y2

}
.

Definition 1.4. Let φ±n (θ) := fnS−nθ(±M) for θ ∈ Θ and n ∈ N. Define

φ±(θ) := lim
n→∞

φ±n (θ).

We call φ+, φ− the upper and the lower bounding invariant graph, respectively. In
order to simplify notations put: Kn(θ) := [φ−n (θ), φ+

n (θ)] and K(θ) := [φ−(θ), φ+(θ)].

The limit exists and is measurable, because φ−n (θ)↗ φ−(θ) and φ+
n (θ)↘ φ+(θ)

in view of the monotonicity of fibre maps (the invariance follows from the mono-
tonicity and continuity of the fibre maps). If the fibre maps are not monotone one
can still define an upper and a lower bounding graph, but then these graphs no
longer have to be invariant (see [8] for details).
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Denote by MS(Θ) the set of all S-invariant probability measures on Θ, and by
ES(Θ) the ergodic ones among them. Let µ ∈ MS(Θ). For any invariant graph φ
denote µφ := µ ◦ (idΘ, φ)−1. Since φ is an invariant graph, it is obvious that the
new measure µφ is an F -invariant measure.

In the investigation of skew product systems, attracting invariant graphs are
often useful characteristics, which we simply call attractors. Formally, we introduce
the following definition. Note that the effect of the attraction is observed only in
the fibre space I.

Definition 1.5. A point (θ, y) ∈ Θ × I is attracting, if there is a constant δ > 0
such that

lim
n→∞

|fnθ (y)− fnθ (z)| = 0,

for all z ∈ (y − δ, y + δ). Furthermore, an invariant graph φ is called an attractor
with respect to the invariant probability µ if µ-almost every point is attracting.

Definition 1.6 (Global attractor). Let F ∈ F . Then the global attractor of this
system is defined by

GA =
⋂
n∈N

Fn(Θ× I).

Remark 1.7. Note that the φ− and φ+ are the functions representing the lower and
upper bounding graphs of the set GA. In particular, these are the same objects as
what are called the bounding graphs in [11]. Since any invariant graph can only
exist inside GA, the bounding graphs φ− and φ+ are the minimal and maximal
invariant graphs, respectively.

Remark 1.8. If Θ is a compact metric space and in case that S is a homeomorphism,
it is evident that φ−, φ+ are lower and upper semi-continuous, respectively, by
construction, and the global attractor GA is compact.

There is a third relevant invariant graph φ∗ that satisfies φ− ≤ φ∗ ≤ φ+. To
see the existence of such an object, we start to consider the average Lyapunov
exponents in the fibre direction.

Definition 1.9 (Lyapunov exponent). Let F ∈ F and (θ, y) ∈ Θ× I . If the limit

λ(θ, y) := lim
n→∞

1

n
log(fnθ )′(y),

exists, it is called the normal Lyapunov exponent of F in (θ, y). Furthermore, if
µ ∈ ES(Θ) and φ is a µ-a.e. invariant graph with log f ′θ(φ(θ)) ∈ L1

µ, then its (fibre)
Lyapunov exponent w.r.t. µ is defined as

λµ(φ) :=

∫
Θ

log f ′θ(φ(θ))dµ(θ).

Note that by the Birkhoff ergodic theorem

λ(θ, φ(θ)) = lim
n→∞

1

n
log(fnθ )′(φ(θ)) = lim

n→∞

1

n

n−1∑
k=0

log f ′Skθ(f
k
θ (φ(θ))

= lim
n→∞

1

n

n−1∑
k=0

log f ′Skθ(φ(Skθ)) =

∫
Θ

log f ′θ(φ(θ))dµ(θ)

= λµ(φ)
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for µ-a.e. θ ∈ Θ. So the average Lyapunov exponent of an invariant graph equals
its point-wise Lyapunov exponent for µ-a.e. θ ∈ Θ .

The following proposition is a slight modification of some results in [11], which
describes all possible scenarios in our skew product system in terms of the invari-
ant graphs and the fibre Lyapunov exponents. Its proof is based on the striking
property of functions with negative Schwarzian derivatives that the cross ratio dis-
tortion increases, if they are applied, (see [21] for the details of the cross ratio
distortion). In addition, the reason that the Lyapunov exponents of the lower and
the upper bounding graphs are always non-positive is our compressing assumption
(Remark1.2) .

Proposition 1.10. φ−, φ+ are measurable invariant graphs defined everywhere as
pullback-limits and GA = {(θ, y) ∈ Θ× I : φ−(θ) ≤ y ≤ φ+(θ)}. Furthermore, there
is a measurable graph φ∗ defined everywhere, satisfying φ− ≤ φ∗ ≤ φ+ and such
that for µ ∈ ES(Θ) exactly one of the following three cases occurs:

(1) φ− = φ∗ = φ+ µ-a.s. and λµ(φ±) ≤ 0.
(2) φ− = φ∗ < φ+ µ-a.s. and λµ(φ+) < 0 = λµ(φ−) or φ− < φ∗ = φ+ µ-a.s. and

λµ(φ−) < 0 = λµ(φ+).
(3) φ− < φ∗ < φ+ µ-a.s., λµ(φ−) < 0, λµ(φ+) < 0, λµ(φ∗) > 0, and φ∗ is µ a.s.

invariant.

In all three cases hold:

• Each graph which is µ−a.s. invariant equals φ−, φ+ or φ∗ µ-a.s. In particu-
lar, µφ− , µφ+ and µφ∗ are the only F -invariant ergodic probability measures
that project to µ.

• For µ-a.e. θ ∈ Θ and every y ∈ [φ−(θ), φ+(θ)] \ {φ∗(θ)}
lim
n→∞

|fnθ (y)− φ−(Snθ)| = 0 if y < φ∗(θ),

lim
n→∞

|fnθ (y)− φ+(Snθ)| = 0 if y > φ∗(θ).
(1.2)

Corollary 1.11. For µ-a.e. θ ∈ Θ and every y ∈ I,

λ(θ, y) = lim
n→∞

1

n
log(fnθ )′(y) =


λµ(φ−) if y < φ∗(θ)

λµ(φ∗) if y = φ∗(θ)

λµ(φ+) if y > φ∗(θ).

The main goal of this paper is to investigate the properties of the pinch points set,
which consist of those base points, over which the system synchronizes trajectories
with different initial values on the same fibre.

Definition 1.12 (pinch points). Let

P :=
{
θ ∈ Θ : φ+(θ) = φ−(θ)} = {θ ∈ Θ : (GA)θ is a singleton set

}
,

where (GA)θ :=
{
y ∈ I : (θ, y) ∈ GA

}
.

2. Chaotically driven skew product systems with fibre maps with
negative Schwarzian derivative

In this section we consider the case of a hyperbolic base transformation S : Θ→
Θ. We attempt to compare such a system with fibre maps depending locally on
both, stable and unstable coordinates to one with fibre maps depending locally only
on the stable coordinate, and to transfer knowledge about the latter system to the
original one.
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2.1. Preliminaries. As we will see later we need to measure how far compositions
of branches are from identity. In this regard, let D(I) be the space of all increasing
C1 maps g : Ig ⊆ I → I with g′ > 0. Let Jg := g(Ig). Then the maps g : Ig → Jg
are diffeomorphisms.

Definition 2.1. Let g, h ∈ D(I) such that Ih ⊆ Ig. Define:

d0(g, h) := sup{|g ◦ h−1(y)− y| : y ∈ Jh}
= sup{|g(x)− h(x)| : x ∈ Ih},

and

d1(g, h) := d0(g, h) + ||g′ − h′||∞
= d0(g, h) + sup{|g′(x)− h′(x)| : x ∈ Ih}.

Remark 2.2. It is easy to see that in general, d0 is not symmetric but, if Ig = Ih
then d0(g, h) = d0(h, g). Also, d0(g, h) = d0(g ◦ h−1, id |Jh).

We make the following general assumptions to keep the technicalities at a mod-
erate level.

Hypothesis 1. Define: f• : Θ → D(I), θ 7→ fθ. Assume f• is Lipschitz w.r.t d1,
i.e there exists a real constant L such that for all θ, θ′ ∈ Θ

d1(fθ, fθ′) ≤ Ld(θ, θ′).

Any such L is referred to as a Lipschitz constant for the function f•. In view
of (1.1), this implies that supy∈I | log f ′θ(y) − log f ′θ′(y)| ≤ L′d(θ, θ′) for constant
L′ > 0 and all θ, θ′ ∈ Θ.

Hypothesis 2. Assume there is a piecewise expanding and piecewise C1+ mixing
Markov map1 Ŝ : T1 → T1 with finitely many branches which is a factor of S−1,
i.e.

Ŝ ◦Π = Π ◦ S−1 for some measurable Π : Θ→ T1.

More precisely we assume there is an injection σ : T1 → Θ which is Hölder con-
tinuous on monotonicity intervals of Ŝ, which satisfies Π ◦ σ = idT1 , and which is
such that each θ ∈ Θ belongs to the local stable fibre of σΠθ w.r.t S−1 in the sense
that:

(2.1) ∃C > 0 ∃α ∈ (0, 1) ∀θ ∈ Θ ∀n > 0 : d(S−nθ, S−n(σΠθ)) ≤ Cαnd(θ, σΠθ).

Hypothesis 3. Let Qf := sup(θ,y)∈Θ×I f
′
θ(y) and Q′f := sup(θ,y)∈Θ×I |(log f ′θ(y))′|.

Assume

α ·Qf < 1 and Q′f <∞.

In the next example we describe how Anosov surface diffeomorphisms fit the
general framework of this paper.

Example 2.3 (Anosov surface diffeomorphism). Let Θ = T2 and let S : T2 → T2

be a C2 Anosov diffeomorphism. Denote by TθΘ = Es(θ) + Eu(θ) the splitting of
the tangent bundle over θ ∈ Θ into its stable and unstable subbundles. Sinai [29, 30]
constructed Markov partitions for Anosov diffeomorphisms (a simpler treatment can
be found in [5]). As indicated in the proof of Lemma 3 in [25], one can construct

1Here and in the sequel C1+ means ”C1 with Hölder continuous derivative” without specifying
the Hölder exponent.
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a C1+ expanding Markov interval map Ŝ : T1 → T1 that is a factor of S−1, i.e.
Ŝ ◦ Π = Π ◦ S−1 with the projection Π : T2 → T1 and the injection σ : T1 → T2

(see section 6.3 of [15] for more details).

Proposition 2.4. If S is continuous, the sets cl(Φ±) and [Φ±] are forward F -
invariant.

Proof. Let (θ, y) ∈ cl(Φ±), then there are θn(n ∈ N) such that θn 7→ θ and
φ±(θn) 7→ y. According to the continuity of S and Hypothesis 1,

F (θ, y) = (Sθ, fθ(y)) = lim
n7→∞

(Sθn, fθn(φ±(θn))) = lim
n 7→∞

(Sθn, φ
±(Sθn))) ∈ cl(Φ±).

The forward F -invariance of [Φ±] is an immediate consequence. �

Lemma 2.5. Suppose f, g, h ∈ D(I) , Ig ⊆ Ih, Ig ⊆ If and Jh ⊆ If . If, for given
ε, ε′ > 0, we have d0(h, id) ≤ ε and d0(f ◦ g−1, id) ≤ ε′ then d0(f ◦ h ◦ g−1, id) ≤
ε′ +Qε, where Q = supy∈If f

′(y).

Proof. For every y ∈ Ih , |h(y) − y| ≤ ε. Let ∆(y) = h(y) − y, then, by the mean
value theorem, for every z ∈ Jg there is δ ∈ If such that

|f ◦ h ◦ g−1(z)− z| = |f(g−1(z)) + f ′(δ) ·∆(g−1(z))− z| ≤ ε′ +Qε,

where Q = supy∈If f
′(y). By Definition 2.1,

d0(f ◦ h ◦ g−1, id) = sup{|f ◦ h ◦ g−1(z)− z| : z ∈ Jg} ≤ ε′ +Qε.

�

Lemma 2.6. Suppose h, hi,R, hi,L ∈ D(I), i = 1, · · · , k; Ihi,R
⊆ Jhi−1,R

, i =
2, · · · , k; Jhi,L

⊆ Ihi+1,L
, i = 1, · · · , k − 1 ; Ih1,R

⊆ Ih and Jh ⊆ Ih1,L
. For given

ε0, ε1, ε2, · · · , εk, if we have d0(hi,L, hi,R) ≤ εi, i = 1, · · · , k and d0(h, id) ≤ ε0, then

d0(hk,L · · · ◦ h1,L ◦ h ◦ h−1
1,R · · · ◦ h

−1
k,R, id) ≤ εk +

k−1∑
j=0

(

k∏
i=j+1

Qi)εj ,

where Qi = supy∈Ihi,L
h′i,L(y) for i = 1, · · · , k.

Proof. For k = 1 the result is obvious according to the previous lemma:

d0(h1,L ◦ h ◦ h−1
1,R, id) ≤ ε1 +Q1 · ε0.

By induction we assume the result is correct for k − 1. Then for k we have:

d0(hk,L ◦ hk−1,L ◦ · · · ◦ h ◦ · · · ◦ h−1
k−1,R ◦ h

−1
k,R, id)

≤ εk +Qk(εk−1 +

k−2∑
j=0

(

k−1∏
i=j+1

Qi)εj) = εk +

k−1∑
j=0

(

k∏
i=j+1

Qi)εj .

�

Lemma 2.7. Let θ ∈ Θ and θ′ belong to the local stable fibre of θ ∈ Θ, in the sense
of (2.1). For arbitrary n, k we have

d0(fkS−nθ ◦ (fkS−nθ′)
−1, id) ≤ C ′αn−kd(θ, θ′),

where C ′ = αCL
1−αQf

.
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Proof. Since θ → fθ is Lipschitz,

d0(fS−(n+1−i)θ, fS−(n+1−i)θ′) ≤ Ld(S−(n+1−i)θ, S−(n+1−i)θ′) for every i = 1, · · · , k.

Since θ, θ′ are in the same local stable fibre, by Hypothesis 2

d(S−(n+1−i)θ, S−(n+1−i)θ′) ≤ Cαn+1−id(θ, θ′) for every i = 1, · · · , k.

In order to apply Lemma 2.6, for every i = 1, · · · , k put:

h = id,

hi,L = fS−(n−i+1)(θ),

hi,R = fS−(n−i+1)(θ′),

εi = C · L · d(θ, θ′) · αn+1−i,

ε0 = 0.

On Kk(S−(n−k)θ) = [φ−k (S−(n−k)θ′), φ+
k (S−(n−k)θ′)],

d0(fkS−nθ ◦ (fkS−nθ′)
−1, id)

= d0(fS−(n−k+1)θ ◦ · · · ◦ fS−nθ ◦ (fS−nθ′)
−1 ◦ · · · ◦ (fS−(n−k+1)θ′)

−1, id)

≤
k∑
j=0

Qk−jf εj = C · L · d(θ, θ′) ·
k∑
j=1

αn+1−j ·Qk−jf

≤ C · L · d(θ, θ′) · αn−k+1 ·
∞∑
i=0

(αQf )i

= C ′ · d(θ, θ′) · αn−k,

where C ′ = αCL
1−αQf

. �

2.2. Main results. In the following proposition we introduce a family of partial
diffeomorphisms Gθ between subintervals of I. In Theorem 2.12 we prove that it
plays the role of a conjugacy between the old and the new system restricted to
their respective global attractors. Throughout we assume that Hypotheses 1–3 are
satisfied.

Proposition 2.8. For each θ ∈ Θ and each θ′ belonging to the local stable fibre of
θ ∈ Θ in the sense of (2.1), let

(2.2) Gθ,θ′,n : Kn(θ)→ Kn(θ′), y 7→ fnS−nθ′ ◦ (fnS−nθ)
−1(y).

Then the limit

Gθ,θ′ := lim
n→∞

Gθ,θ′,n(2.3)

exists uniformly on K(θ), where Kn(θ) = [φ−n (θ), φ+
n (θ)] and K(θ) = [φ−(θ), φ+(θ)].

Moreover, Gθ,θ′(K(θ)) = K(θ′), and there is a continuous function Hθ,θ′ : K(θ)→ R
such that limn→∞G′θ,θ′,n = Hθ,θ′ uniformly on K(θ), G′θ,θ′ = Hθ,θ′ on K(θ)o, and

this equality extends to the one-sided derivatives of Gθ,θ′ at the endpoints of K(θ).
In this sense, Gθ,θ′ : K(θ) → K(θ′) is an orientation preserving diffeomorphism
whenever θ 6∈ P .
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Proof. Recall that φ−n (θ)↗ φ−(θ) and φ+
n (θ)↘ φ+(θ). Therefore, for k ≥ 1,

Kn+k(θ) ⊂ Kn(θ).

Also for every k ≥ 1,

d0(Gθ,θ′,n, Gθ,θ′,n+k) = d0(Gθ,θ′,n ◦ (Gθ,θ′,n+k)−1, id |Kn+k(θ′)).

For every y ∈ Kn+k(θ′),

Gθ,θ′,n ◦G−1
θ,θ′,n+k(y)

= (fnS−nθ′ ◦ (fnS−nθ)
−1 ◦ fn+k

S−(n+k)θ
◦ (fn+k

S−(n+k)θ′
)−1)(y)

= (fnS−nθ′ ◦ (fnS−nθ)
−1 ◦ fnS−nθ ◦ f

k
S−(n+k)θ ◦ (fkS−(n+k)θ′)

−1 ◦ (fnS−nθ′)
−1)(y)

= (fnS−nθ′ ◦ f
k
S−(n+k)θ ◦ (fkS−(n+k)θ′)

−1 ◦ (fnS−nθ′)
−1)(y).

By Lemma 2.7,

d0(fkS−(n+k)θ ◦ (fkS−(n+k)θ′)
−1, id) ≤ C ′αnd(θ, θ′).

In order to apply Lemma 2.5 and Hypothesis 3, let

h = fkS−(n+k)θ ◦ (fkS−(n+k)θ′)
−1,

f = g = fnS−nθ′ ,

ε′ = 0,

ε = C ′αnd(θ, θ′).

Then

d0(Gθ,θ′,n ◦G−1
θ,θ′,n+k, id) = d0(fnS−nθ′ ◦ f

k
S−(n+k)θ ◦ (fkS−(n+k)θ′)

−1 ◦ (fnS−nθ′)
−1, id)

≤ ε′ +Qnf ε

= C ′(αQf )nd(θ, θ′).

Thus d0(Gθ,θ′,n ◦G−1
θ,θ′,n+k, id) ≤ C ′ · (αQf )n · d(θ, θ′) uniformly for all k ≥ 0 where

C ′ is the constant αCL
1−αQf

. We proved the sequence Gθ,θ′,n = fnS−nθ′ ◦ (fnS−nθ)
−1 is

uniformly Cauchy and consequently uniformly convergent.
We turn to the uniform convergence of the derivatives. Observe first that

logG′θ,θ′,n(y) = log
(
(fnS−nθ′)

′((fnS−nθ)
−1(y)) · ((fnS−nθ)

−1)′(y)
)

=

n−1∑
k=0

log f ′Sk−nθ′(f
k
S−nθ′ ◦ (fnS−nθ)

−1(y))− log(fnS−nθ)
′((fnS−nθ)

−1(y))

=

n−1∑
k=0

log
f ′Sk−nθ′(f

k
S−nθ′ ◦ (fnS−nθ)

−1(y))

f ′
Sk−nθ

(fkS−nθ ◦ (fnS−nθ)
−1(y))

.
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Now let n > m . Then

logG′θ,θ′,n(y)− logG′θ,θ′,m(y)

=

n−1∑
j=0

log
f ′Sj−nθ′(f

j
S−nθ′((f

n
S−nθ)

−1(y)))

f ′Sj−nθ(f
j
S−nθ((f

n
S−nθ)

−1(y)))
−
m−1∑
k=0

log
f ′Sk−mθ′(f

k
S−mθ′((f

m
S−mθ)

−1(y)))

f ′
Sk−mθ

(fkS−mθ((f
m
S−mθ)

−1(y)))

=

n−m−1∑
j=0

log
f ′Sj−nθ′(f

j
S−nθ′((f

n
S−nθ)

−1(y)))

f ′Sj−nθ(f
j
S−nθ((f

n
S−nθ)

−1(y)))

+

n−1∑
j=n−m

log
f ′Sj−nθ′(f

j
S−nθ′((f

n
S−nθ)

−1(y)))

f ′Sj−nθ(f
j
S−nθ((f

n
S−nθ)

−1(y)))
−
m−1∑
k=0

log
f ′Sk−mθ′(f

k
S−mθ′((f

m
S−mθ)

−1(y)))

f ′
Sk−mθ

(fkS−mθ((f
m
S−mθ)

−1(y)))

= I + II,

where

I =

n−m−1∑
j=0

log
f ′Sj−nθ′(f

j
S−nθ′((f

n
S−nθ)

−1(y)))

f ′Sj−nθ(f
j
S−nθ((f

n
S−nθ)

−1(y)))
,

II =

n−1∑
j=n−m

log
f ′Sj−nθ′(f

j
S−nθ′((f

n
S−nθ)

−1(y)))

f ′Sj−nθ(f
j
S−nθ((f

n
S−nθ)

−1(y)))
−
m−1∑
k=0

log
f ′Sk−mθ′(f

k
S−mθ′((f

m
S−mθ)

−1(y)))

f ′
Sk−mθ

(fkS−mθ((f
m
S−mθ)

−1(y)))
.

Consider z = (fnS−nθ)
−1(y),

I =

n−m−1∑
j=0

log
f ′Sj−nθ′(f

j
S−nθ(z))

f ′Sj−nθ(f
j
S−nθ(z))

+ log
f ′Sj−nθ′(f

j
S−nθ′(z))

f ′Sj−nθ′(f
j
S−nθ(z))

.

By Hypothesis 1, θ 7→ log f ′• is Lipschitz. Hence

I ≤
n−m−1∑
j=0

L′d(Sj−nθ, Sj−nθ′) +Q′f · |f
j
S−nθ′(z)− f

j
S−nθ(z)|.

By Lemma 2.7 and Hypothesis 2,

I ≤
n−m−1∑
j=0

L′Cαn−jd(θ, θ′) +Q′fC
′αn−jd(θ, θ′)

≤
n−m−1∑
j=0

C ′′αn−jd(θ, θ′) where C ′′ = L′C +Q′fC
′

=

n∑
l=m+1

C ′′αld(θ, θ′)

≤
∞∑
l=m

C ′′αld(θ, θ′)

= C ′′
αm

1− α
d(θ, θ′).
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Now consider (II). If we change the index j to k + n−m then

II =

m−1∑
k=0

log
f ′Sk−mθ′(f

k+n−m
S−nθ′ ((fnS−nθ)

−1(y)))

f ′
Sk−mθ

(fk+n−m
S−nθ ((fnS−nθ)

−1(y)))
−
m−1∑
k=0

log
f ′Sk−mθ′(f

k
S−mθ′((f

m
S−mθ)

−1(y)))

f ′
Sk−mθ

(fkS−mθ((f
m
S−mθ)

−1(y)))

=

m−1∑
k=0

log
f ′Sk−mθ′((f

k
S−mθ′ ◦ f

n−m
S−nθ′)((f

n−m
S−nθ)

−1 ◦ (fmS−mθ)
−1(y)))

f ′
Sk−mθ

((fm−k
Sk−mθ

)−1(y))

−
m−1∑
k=0

log
f ′Sk−mθ′((f

k
S−mθ′(f

m
S−mθ)

−1(y)))

f ′
Sk−mθ

((fm−k
Sk−mθ

)−1(y))

=

m−1∑
k=0

log
f ′Sk−mθ′((f

k
S−mθ′ ◦ f

n−m
S−nθ′)((f

n−m
S−nθ)

−1 ◦ (fmS−mθ)
−1(y)))

f ′
Sk−mθ′

(fkS−mθ′((f
m
S−mθ)

−1(y)))
.

Let t = (fmS−mθ)
−1(y) and t′ = (fn−mS−nθ′) ◦ (fn−mS−nθ)

−1(t). According to Lemma 2.7,

| t− t′ |≤ C ′ · αm · d(θ, θ′),

and observing Hypothesis 3, this implies

| fkS−mθ′(t)− f
k
S−mθ′(t

′) |≤ C ′ · αm ·Qkf · d(θ, θ′).

So by the same hypothesis we have

II =

m−1∑
k=0

log
f ′Sk−mθ′(f

k
S−mθ′(t

′))

f ′
Sk−mθ′

(fkS−mθ′(t))
≤
m−1∑
k=0

Q′f · C ′ · αm ·Qkf · d(θ, θ′)

≤
Q′fC

′

Qf − 1
(αQf )md(θ, θ′).

Hence

I + II ≤ C ′′ α
m

1− α
d(θ, θ′) +

Q′fC
′

Qf − 1
(αQf )md(θ, θ′),

where αQf < 1 by Hypothesis 3. This shows that {logG′θ,θ′,n} is a uniform Cauchy

sequence, so that Hθ,θ′ := limn→∞G′θ,θ′,n exists uniformly on K(θ) and Gθ,θ′,n
converges in d1-distance to Gθ,θ′ . See e.g Theorem 7.17 of [27]. As f ′θ > 0 for all θ,
we have Hθ,θ′ ≥ 0, so that Gθ,θ′ is orientation preserving.

Finally, We prove that Gθ,θ′(K(θ)) = K(θ′). Let x ∈ K(θ). According to (2.3),
Gθ,θ′(x) = limn→∞ yn, where yn := Gθ,θ′,n(x). On the other hand since Kn(θ) ↘
Kθ then,

yn ∈ Gθ,θ′,n(K(θ)) ⊆ Gθ,θ′,n(Kn(θ)) = Kn(θ′).

Hence

Gθ,θ′(x) = lim
n→∞

yn ∈ K(θ′).

So Gθ,θ′(K(θ)) ⊆ K(θ′). The inverse is obvious by interchanging the role of θ and θ′

and observing that Gθ′,θ = limn→∞Gθ′,θ,n = limn→∞G−1
θ,θ′,n = G−1

θ,θ′ on K(θ′). �

Definition 2.9. According to Hypothesis 2, σΠθ and θ are in the same local stable
fibre. In order to simplify the notations define:

Gθ,n := Gθ,σΠθ,n, and Gθ := Gθ,σΠθ.(2.4)

Definition 2.10. Suppose φ is an invariant graph. Define :

φ̂ : Θ→ I, θ 7→ Gθ(φ(θ)).
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Lemma 2.11. φ̂
±

: Θ 7→ I depend on θ only through Πθ.

Proof. By Proposition 2.8, Gθ : K(θ)→ K(σΠθ) is an orientation preserving home-
omorphism for each θ ∈ Θ, so

(2.5) φ̂
±

(θ) = Gθ(φ
±(θ)) = φ±(σΠθ).

�

For θ ∈ Θ denote K̂(θ) := [φ̂
−

(θ), φ̂
+

(θ)] = K(σΠθ) and let

(2.6) f̂θ := fS−1(σΠSθ) ◦GσΠθ,S−1σΠSθ.

This is well defined, because

σΠ(S−1σΠSθ) = σŜ(Πσ)ΠSθ = σŜΠSθ = σΠS−1Sθ = σΠθ = σ(Πσ)Πθ

= σΠ(σΠθ),

so that, by Hypothesis 2, σΠ(S−1σΠSθ) and σΠθ are in the same local stable fibre.

Theorem 2.12. For each θ ∈ Θ,

(2.7) f̂θ(K̂(θ)) = K̂(Sθ),

(2.8) fθ = G−1
Sθ ◦ f̂θ ◦Gθ,

and the map f̂θ depends on θ only through Π(Sθ) ∈ Θ. (This is the point which

represents the local stable fibre through θ, see Hypothesis 2.) If θ 6∈ P , then f̂θ :

K̂(θ)→ K̂(Sθ) is an orientation preserving diffeomorphism.

Proof. In view of (2.6)

f̂θ(K̂(θ)) = fS−1(σΠSθ) ◦GσΠθ,S−1σΠSθ(K(σΠθ)) = fS−1(σΠSθ)(K(S−1σΠSθ))

= K(σΠSθ) = K̂(Sθ),

which is (2.7). If θ 6∈ P , then f̂θ : K(σΠθ)→ K(σΠSθ) is an orientation preserving
diffeomorphism by Proposition 2.8.

As σΠθ = σΠS−1(Sθ) = σŜ(ΠSθ), a look at (2.6) reveals that the map f̂θ
depends on θ only through Π(Sθ) ∈ Θ.

Let f̂θ,n := fS−1(σΠSθ) ◦ GσΠθ,S−1σΠSθ,n, and observe that limn→∞ f̂θ,n = f̂θ
uniformly on K̂(θ). By (2.4) and (2.2) we have

f̂θ,n ◦Gθ,n = fS−1(σΠSθ) ◦GσΠθ,S−1σΠSθ,n ◦Gθ,σΠθ,n

= fS−1(σΠSθ) ◦Gθ,S−1σΠSθ,n

= fn+1
S−n(S−1σΠSθ) ◦ (fnS−nθ)

−1

= GSθ,n+1 ◦ fθ.
Hence

(2.9)
d0(f̂θ ◦Gθ, GSθ ◦ fθ) ≤ d0(f̂θ ◦Gθ, f̂θ ◦Gθ,n) + d0(f̂θ ◦Gθ,n, f̂θ,n ◦Gθ,n)

+ d0(GSθ,n+1 ◦ fθ, GSθ ◦ fθ).

According to Definition 2.1, if f, g, h ∈ D(I), Ig ⊆ If , Jh ⊆ Ig, Jh ⊆ If , one can see
easily

d0(f ◦ h, g ◦ h) ≤ d0(f, g).
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So the right hand side of (2.9) is less than

d0(f̂θ ◦Gθ, f̂θ ◦Gθ,n) + d0(f̂θ, f̂θ,n) + d0(GSθ,n+1, GSθ).

In view of Proposition 2.8 and the continuity of f̂θ, the last sum tends to zero as
n→∞. This means

d0(f̂θ ◦Gθ, GSθ ◦ fθ) = 0,

and consequently

fθ = G−1
Sθ ◦ f̂θ ◦Gθ.

�

Lemma 2.13. φ̂
±

: Θ 7→ I are invariant graphs for the family (f̂θ)θ∈Θ in the sense
that

f̂θ(φ̂
±

(θ)) = φ̂
±

(S(θ)).

Proof. By (2.8),

f̂θ(φ̂
±

(θ)) = f̂θ(Gθ(φ
±(θ))) = GSθ(fθ(φ

±(θ)) = GSθ(φ
±(Sθ)) = φ̂

±
(Sθ).

�

Remark 2.14. Lyapunov exponents for the family (f̂θ)θ∈Θ are defined as those for
the family (fθ)θ∈Θ in Definition 1.9:

λ̂(θ, y) := lim
n→∞

1

n
log(f̂

n

θ )′(y)

whenever this limit exists, and

λ̂µ(φ̂) :=

∫
Θ

log f̂
′
θ(φ̂(θ))dµ(θ)

when µ ∈ ES(Θ) with µ(P ) = 0 and φ̂ is a graph invariant µ-a.e. for the family

(f̂θ)θ∈Θ with log f̂
′
θ(φ̂(θ)) ∈ L1

µ. The condition µ(P ) = 0 guarantees that f̂
′
θ(φ̂(θ))

is well defined for µ-a.a θ.

Lemma 2.15. The Lyapunov exponents of φ̂
±

coincide with those of φ±, namely

λµ(φ̂
±

) = λµ(φ±) =

∫
log f ′θ(φ

±(θ))dµ(θ).

Proof. The Lyapunov exponents of φ̂
±

are equal to

λµ(φ̂
±

) =

∫
log |f̂

′
θ(φ̂
±

(θ))|dµ(θ)

=

∫ (
log |G′Sθ(fθ ◦G−1

θ (φ̂
±

(θ)))|+ log |f ′θ(G−1
θ (φ̂

±
(θ)))|

− log |G′θ(G−1
θ (φ̂

±
(θ)))|

)
dµ(θ)

=

∫
(log |G′Sθ(φ±(Sθ))|+ log |f ′θ(φ±(θ))| − log |(G′θ(φ±(θ))|)dµ(θ)

= λµ(φ±).

�
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Definition 2.16. Denote by cl(Φ̂
±

) the closure of the graph of φ̂
±

in Θ× I and by

[Φ̂
±

] its filled-in closure in Θ× I. Let P̂ := {θ ∈ Θ : φ̂
+

(θ) = φ̂
−

(θ)} be the set of

pinch points of the new system, and denote by Ĉ± ⊆ Θ the set of continuity points

of φ̂
±

.

Proposition 2.17. 1) P = P̂ .
2) P is forward and backward S-invariant.

3) ΠP is forward and backward Ŝ-invariant.

Proof. 1) According to Proposition 2.8, Gθ : K(θ)→ K(σΠθ) is a homeomorphism.
So, the end points of K(θ) are equal if and only if their images are equal, hence by

Lemma 2.11, and definition of P and P̂ it is clear that P = P̂ .
2) fθ is invertible so

θ ∈ P ⇔ fθ(φ
−(θ)) = fθ(φ

+(θ))⇔ φ−(Sθ) = φ+(Sθ)⇔ Sθ ∈ P.

3) Let u ∈ Ŝ
−1

(ΠP ), then there exist θ ∈ P and θ′ ∈ Θ such that Ŝu = Πθ, u = Πθ′.
So

σΠθ = σŜu = σŜΠθ′ = σΠS−1θ′.

On the other hand, θ ∈ P if and only if σΠθ ∈ P. Indeed

θ ∈ P ⇔ θ ∈ P̂ ⇔ φ̂
−

(θ) = φ̂
+

(θ)⇔ φ−(σΠθ) = φ+(σΠθ)⇔ σΠθ ∈ P.

So according to part 2,

θ ∈ P ⇔ σΠθ ∈ P ⇔ σΠ(S−1θ′) ∈ P ⇔ S−1θ′ ∈ P ⇔ θ′ ∈ P.

This shows that u ∈ ΠP and so Ŝ
−1

ΠP ⊆ ΠP . Conversely, assume u ∈ ΠP . Then
there exists θ′ ∈ P such that u = Πθ′. So

Ŝu = Π(S−1θ′) ∈ Π(S−1P ) = ΠP.(2.10)

Hence Ŝ(ΠP ) ⊆ ΠP . �

We see in the next theorem how this idea can be applied when the base map is
an Anosov surface diffeomorphism.

Theorem 2.18. Let Θ = T2 and let S : T2 → T2 be a C2 Anosov diffeomorphism.
Then the set of pinch points consists of complete global stable fibre.

Proof. By Proposition 2.17 (1), for the arbitrary Markov partition {R1, · · · , Rn},
the set P is a union of local stable fibres (i.e. of connected components of inter-
sections of global stable fibers with Markov rectangles). Hence, by part (2) of the
same proposition, the set P consists of complete global stable fibre. �

3. Negative Schwarzian branches driven by a Baker map

In order to deal with the set of discontinuity points at the base, and keep the
technicalities at minimum, we consider Baker transformations. These maps are
bijective with discontinuity at a ∈ (0, 1), i.e.

S(ξ, x) =

{
(τ(ξ), ax) if ξ ∈ [0, a]

(τ(ξ), a+ (1− a)x) if ξ ∈ [a, 1]
,
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Figure 1. discontinuity of φ+
2 , where the parameters are ε =

0.1, r = 1.1

with

τ(ξ) =

{
a−1ξ if ξ ∈ [0, a)

(1− a)−1(ξ − a) if ξ ∈ [a, 1)
.

Example 3.1. Let τ(x) = 2x mod 1, fθ(y) = arctan(ry) + ε cos(2π(x+ ξ)) , where
r = 1.1 and ε ∈ [0, 0.1]. Then, choosing M = 0.86 and I = [−M,M ], one checks
that fθ(I) ⊆ [−0.858, 0.858] ⊂ Io for all θ ∈ Θ = T2. Figure 1 shows that in this
case we loose the continuity of upper and lower bounding graphs.

Remark 3.2. If S is Baker transformation with discontinuity at a, then the sets
cl(Φ±) and [Φ±] are nearly forward F -invariant from the measure-theoretic point
of view in the sense that F (cl(Φ±))\ cl(Φ±) ⊆ {(0, x, y) ∈ Θ× I : 0 ≤ x < 1, y ∈ I}.

We often will identify points x ∈ T1 = R/Z with points x ∈ A := [0, 1). In this
case we also identify (ξ, x) ∈ T2 with (ξ, x) ∈ A2.

Remark 3.3. Notice that an important point in the definition of S is its symmetry.
That is, if S(ξ, x) = (τ(ξ), ρκ(ξ)(x)), then it is easily calculated that the inverse
map has a symmetric expression, i.e.

(3.1) S−1(ξ, x) = (ρκ(x)(ξ), τ(x)).

Moreover, if we define Π : A2 → A by Π(ξ, x) = x then Lemma 2.11 states that φ̂±

depend only on x, so that P̂ is a union of fibers A× {z}.

Definition 3.4. Define Ln as the set of all discontinuity points of S−n,

Ln :=

n−1⋃
k=0

S−k(A× {a}),

and

L :=

∞⋃
n=1

Ln =

∞⋃
k=0

S−k(A× {a}).
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Also define

φ̃+(θ) := lim
r 7→0

sup{φ+(θ′) : d(θ′, θ) < r},

φ̃−(θ) := lim
r 7→0

inf{φ−(θ′) : d(θ′, θ) < r}.

Denote by P̃ = {θ ∈ Θ : φ̃+(θ) = φ̃−(θ)} the set of pinch points and C̃± the set of

continuity points of φ̃±.

Remark 3.5. (1) The sets Ln are finite unions of horizontal segments A× {z},
and L is a countable union of such segments.

(2) µ(Ln) = 0 for each n and each S-invariant probability measure µ.
(3) φ±n is continuous at all points θ ∈ Θ\Ln .

(4) φ̃+ is upper semi-continuous and φ̃− is lower semi-continuous and φ̃− ≤
φ− ≤ φ+ ≤ φ̃+. Thus, they are both Baire 1 functions. Consequently,
C̃+, C̃− and also their intersection is residual.

Lemma 3.6. For every θ ∈ Θ\L we have φ̃±(θ) = φ±(θ) .

Proof. By definition, φ+(θ) ≤ φ̃+(θ) for all θ ∈ Θ. Let ε > 0 and θ ∈ Θ\L. There
exists n > 0 such that φ+(θ) ≥ φ+

n (θ) − ε. As θ /∈ L, there exists r > 0 such that
for every θ′ ∈ Θ with d(θ′, θ) < r, then |φ+

n (θ′) − φ+
n (θ)| < ε. Hence for every

θ′ ∈ Br(θ) :

(3.2) φ+(θ) ≥ φ+
n (θ)− ε ≥ φ+

n (θ′)− 2ε ≥ φ+(θ′)− 2ε.

Hence

sup{φ+(θ′) : d(θ′, θ) < r} ≤ φ+(θ) + 2ε.

And so

φ̃+(θ) ≤ φ+(θ) + 2ε.

�

Corollary 3.7. P̃ ⊆ P ⊆ P̃ ∪ L.

Lemma 3.8. (C̃+ ∩ C̃−)\P̃ ⊆ Θ\P̃ .

Proof. Let θ ∈ C̃+ ∩ C̃− but θ /∈ P̃ . According to the definition of φ̃± there
exists r > 0 such that for every θ′ ∈ Br(θ), φ̃

+(θ′) > φ̃−(θ′). This means that

Br(θ) ∩ P̃ = ∅, and therefore θ /∈ P̃ . �

Theorem 3.9. Either P ⊆ L or C̃+ ∩ C̃− = P̃ ⊆ P .

Proof. Recall from Proposition 2.17 and Remark 3.3 that P = P̂ and P̂ is a union
of segments A× {z}. Hence, if P 6⊆ L, there exists z ∈ A such that (A× {z}) ⊆ P
but (A × {z}) ∩ L = ∅. Since P is S-invariant and P\L contains the dense set⋃∞
k=0 S

k(A×{z}), so P\L is dense. As P\L ⊆ P̃ in view of the last corollary, also

P̃ is dense, i.e P̃ = Θ . Then Lemma 3.8 implies C̃+ ∩ C̃− ⊆ P̃ . The converse
inclusion P̃ ⊆ C̃+ ∩ C̃− follows at once from the semi-continuity of φ̃±. �

Corollary 3.10. Either P ⊆ L or P is residual.
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