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Abstract. A mathematical model of autoresonance in nonlinear systems with com-
bined parametric and external chirped frequency excitation is considered. Solutions
with a growing amplitude and a bounded phase mismatch are associated with the
autoresonant capture. By applying Lyapunov function method we investigate the
conditions for the existence and stability of autoresonant modes and construct long-
term asymptotics for stable solutions. In particular, we show that unstable regimes
become stable when the system parameters pass through certain threshold values.
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Introduction

Autoresonance is a phenomenon of persistent phase synchronization between an oscillatory
nonlinear system and a small resonant chirped frequency perturbation that leads to a significant
increase in the amplitude of the oscillator [1]. Autoresonance was fist realized in relativistic
particles accelerators in the middle of the twentieth century, and nowadays, it is considered as
a universal phenomenon that occurs in a wide range of physical systems [2–6]. In recent times,
the mathematical models of autoresonance are actively studied numerically and analytically
(see [7], and references therein). However, up to now the autoresonance in nonlinear systems
with parametric [8,9] and external [10] driving has been treated separately. To the best of our
knowledge, the effect of the combined excitation on the capture into autoresonance has not
previously been discussed. In this paper, parametric and external perturbations are consid-
ered together, and all possible autoresonant modes are described with a help of the Lyapunov
function technique.

The paper is organized as follows. In section 1, the mathematical formulation of the problem
is given. In section 2 particular isolated autoresonant solutions are constructed. Section 3
provides linear and nonlinear stability analysis of these solutions. Asymptotic analysis of general
autoresonant solutions is contained in section 4. The paper concludes with a brief discussion
of the results obtained.

1. Problem statement

Consider the system of two differential equations:

dρ

dτ
+ µ(τ)ρ sin(2ψ + ν) = sinψ,

ρ
[dψ
dτ

− ρ2 + λτ + µ(τ) cos(2ψ + ν)
]
= cosψ,

(1)
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with the parameters λ 6= 0, ν ∈ [0, π) and a smooth bounded given function µ(τ). This
model system arises in the study of the autoresonance phenomena in a wide class of nonlinear
oscillators with a time-periodic slowly-varying perturbation and describes the principal terms
of the asymptotic behaviour of the oscillators at the initial step of the capture. We assume that
the function µ(τ), corresponding to the amplitude of a parametric driving, has a power-law
asymptotics:

µ(τ) = µ0τ
−1/2 +

∞∑

k=1

µkτ
−(2k+1)/2, τ → ∞, µk = const.

The unknown functions ρ(τ) and ψ(τ) play the role of the amplitude and the phase mismatch,
respectively. The solutions with ρ(τ) → ∞ and ψ(τ) = O(1) as τ → ∞ are associated with the
phase-locking [11] and the autoresonance [1]. In addition to autoresonant modes, system (1)
also has solutions with a limited amplitude and an increasing phase mismatch. Such solutions
correspond to the phase-slipping phenomenon and are not investigated in the framework of the
present paper.

Note that (1) with µ ≡ 0 corresponds to the case of a pure external excitation, see [10, 12].
If µ ≡ 1, the action of the external driving becomes insignificant and system (1) reduces to a
weak perturbation of the model of parametric autoresonance [8, 13]. The combined excitation
takes effect only in the case when µ ∼ τ−1/2.

In this paper, we investigate the conditions for the existence and stability of autoresonant
solutions to system (1) and construct long-term asymptotics for such solutions. In the first step,
particular autoresonant solutions with special power-law asymptotics at infinity are constructed
and their Lyapunov stability is investigated. Linear stability analysis allows us to identify only
the conditions that guarantee the instability of solutions; the stability at this level cannot
be determined due to certain features of the equations. To solve the stability problem, it
is necessary to carry out a careful nonlinear analysis with the Lyapunov function method.
The presence of stability will ensure the existence of a two-parameter family of autoresonant
solutions. For such solutions, the asymptotics at infinity will be constructed at the last step.

As but one example we consider Duffing’s oscillator with small combined parametric and
external excitation:

d2u

dt2
+ (1 + εB(t))(u− γεu3) = εA(t),(2)

where A(t) = cosφ(t), B(t) = β(1 + εt)−1/2 cos(2φ(t) + ν), φ(t) = t− αt2, 0 < ε, α≪ 1, β, γ =
const, γ > 0. It is easy to see that equation (2) without perturbation (A(t) ≡ B(t) ≡ 0) has
stable fixed point (u, u′) = (0, 0) and periodic solutions. Consider the solutions of the perturbed
equation with small enough initial values (u(0), u′(0)). Numerical analysis shows that for some
initial data there are solutions whose the energy E(t) ≡ (u(t))2/2 − γε(u(t))4/4 + (u′(t))2/2
significantly increases with time and the phase Φ(t) ≡ arctan

(
u′(t)/u(t)

)
is synchronised with

the pumping: ∆(t) ≡ φ(t) + Φ(t) = O(1). Such solutions are associated with the capture
into the autoresonance. For non-captured solutions, the energy remains small and the phase
mismatch increases: |∆| → ∞, see. Fig. 1. For the description of a long-term evolution of
solutions to equation (2), the method of two scales can be used. We introduce a slow time
τ = εt/(2κ), (κ = (4/3γ)1/3) and a fast variable φ = φ(t), then the asymptotic substitution
u(t) = κρ(τ) cos

(
−φ+ψ(τ)

)
+O(ε) in equation (2) and the averaging over the fast variable φ

in the leading-order term in ε lead to system (1) for the slowly varying functions ρ(τ) and ψ(τ)
with λ = 8αε−2κ2 and µ(τ) = β(1 + 2κτ)−1/2

√
2κ/4. Similarly, system (1) appears in many

other problems of nonlinear physics related to autoresonance.
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Figure 1. The evolution of E(t) and ∆(t) for solutions of (2) with ε = 10−2,
α = 0.25 · 10−4, β = 1, γ = 1/6, ν = 0 and various initial data.

2. Particular autoresonant solutions

The simplest asymptotic expansion for autoresonant solutions is constructed in the form of
power series with constant coefficients:

ρ∗(τ) = ρ−1τ
1/2 + ρ0 +

∞∑

k=1

ρkτ
−k/2, ψ∗(τ) = ψ0 +

∞∑

k=1

ψkτ
−k/2, τ → ∞.(3)

Substituting this series in system (1) and grouping the terms of the same power of τ , we can
determine all the coefficients ρk and ψk. In particular, ρ−1 = λ1/2, ρ0 = 0, and ψ0 satisfies the
following equation:

P(ψ0; δ, ν) ≡ δ sin(2ψ0 + ν)− sinψ0 = 0, δ = µλ1/2,(4)

that has a different number of roots depending on the values of the parameters δ and ν. Besides,
if the inequality P ′(ψ0; δ, ν) 6= 0 holds, the remaining coefficients ρk, ψk as k ≥ 1 are determined
from the chain of linear equations:

2ρ−1ρk = Fk(ρ0, . . . , ρk−1, ψ0, . . . , ψk−2),

P ′(ψ0; δ, ν)ψk = Gk(ρ−1, . . . , ρk−1, ψ0, . . . , ψk−1),
(5)

where

F1 = 0, F2 = (δ cos(2ψ0 + ν)− cosψ0)λ
−1/2, F3 = −ψ1(2δ sin(2ψ0 + ν)− sinψ0)λ

−1/2,

G1 = −ρ−1

2
, G2 = −P ′′(ψ0; δ, ν)

ψ2
1

2
− µ2ρ−1 sin(2ψ0 + ν),

G3 = −P ′′(ψ0; δ, ν)ψ1ψ2 − P ′′′(ψ0; δ, ν)
ψ3
1

6
− µρ2 sin(2ψ0 + ν),

etc. Note that the pair of equations P(ψ0; δ, ν) = 0 and P ′(ψ0; δ, ν) = 0 defines the bifurcation
curves

Γ−

def
= {(δ, ν) ∈ R× [0, π) : ℓ(δ, ν) = 0, δ < 0}, Γ+

def
= {(δ, ν) ∈ R× [0, π) : ℓ(δ, ν) = 0, δ > 0}

on the parameter plane (δ, ν), where ℓ(δ, ν) ≡ (4δ2 − 1)3 − 27δ2 sin2 ν. It can easily be checked
that system (5) is solvable whenever (δ, ν) 6∈ Γ±. The bifurcation curves divide the parameter
plane into the following parts (see Fig. 2):

Ω−

def
= {(δ, ν) ∈ R× [0, π) : ℓ(δ, ν) < 0}, Ω+

def
= {(δ, ν) ∈ R× [0, π) : ℓ(δ, ν) > 0}.

If (δ, ν) ∈ Ω−, the equation P(ψ0; δ, ν) = 0 has four different roots on the interval [0, 2π). In
the case (δ, ν) ∈ Ω+, there are only two different roots. Thus we have
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Figure 2. Partition of the parameter plane.

Theorem 1. If (δ, ν) ∈ Ω+, system (1) has 4 different solutions with asymptotic expansion in

the form of a series (3). If (δ, ν) ∈ Ω−, system (1) has 2 different solutions with asymptotic

expansion in the form of a series (3).

The existence of solutions ρ∗(τ), ψ∗(τ) with the asymptotics (3) as τ ≥ τ∗ follows from [14,15],
and comparison theorems [16] applied to system (1) ensure that the solutions can be extended
to the semi-axis. In the next sections, the stability of such solutions is discussed, as well as the
asymptotics for two-parameter family of autoresonant solutions to system (1) is constructed.

As an example, let us fix ν = 0, then Γ± = (±1/2, 0), Ω− = {|δ| < 1/2, ν = 0}, Ω+ = {|δ| >
1/2, ν = 0}. For (δ, ν) ∈ Ω+, equation (4) has 4 roots: {0, π,± arccos(2δ)−1}; in the opposite
case (δ, ν) ∈ Ω+, there are only 2 roots: {0, π}.

3. Stability analysis

1. Linearization. Let ρ∗(τ), ψ∗(τ) be one of the particular autoresonant solutions with
asymptotics (3). Then, the change of variables ρ(τ) = ρ∗(τ) + r(τ), ψ(τ) = ψ∗(τ) + p(τ) leads
to the following system

dr

dτ
= sin(ψ∗ + p)− sinψ∗ +m(τ)

[
ρ∗ sin(ψ∗ + ν)− (ρ∗ + r) sin(2ψ∗ + 2p+ ν)

]
,

dp

dτ
= 2ρ∗r +

cos(ψ∗ + p)

ρ∗ + r
− cosψ∗

ρ∗
+m(τ)

[
cos(2ψ∗ + ν)− cos(ψ∗ + p+ ν)

]
,

(6)

with a fixed point at (0, 0). Consider the linearized system:

d

dτ

(
r
p

)
= A(τ)

(
r
p

)
, A(τ) =




−m(τ) sin(2ψ∗ + ν) cosψ∗ − 2ρ∗m(τ) cos(2ψ∗ + ν)

2ρ∗ −
cosψ∗

ρ2
∗

2m(τ) sin(2ψ∗ + ν)− sinψ∗

ρ∗



 .

It can easily be checked that the roots z±(τ) of the characteristic equation |A(τ)− zI| = 0 can

be represented in the form z±(τ) = x(τ)±
√
y(τ), where

x(τ) = − 1

4τ
+O(τ−3/2),

y(τ) = (4λτ)1/2
(
−P ′(ψ0; δ, ν)− P ′′(ψ0; δ, ν)ψ1τ

−1/2 +O(τ−1)
)
, τ → ∞.
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Therefore, if P ′(ψ0; δ, ν) < 0, the leading asymptotic terms of the eigenvalues z±(τ) are real
of different signs. This implies that the fixed point (0, 0) of (6) is a saddle in the asymptotic
limit, and the corresponding autoresonant solutions ρ∗(τ), ψ∗(τ) to system (1) are unstable. In

the opposite case, when P ′(ψ0; δ, ν) > 0, we have z±(τ) = ±i(4λτ)1/4
√
P ′(ψ0; δ, ν) +O(τ−1/4),

ℜz±(τ) = O(τ−1) as τ → ∞ and the fixed point (0, 0) is a center in the asymptotic limit.
Note that in the case ℜz±(τ) → 0 as τ → ∞, linear stability analysis fails and it is necessary
to consider nonlinear terms of equations. Indeed, let us consider as an example the non-
autonomous system of differential equations:

da

dt
= abt−1/4 − at−1,

db

dt
= − b

2
t−1.(7)

The solution has the form: a(t) = a0t
−1 exp(4b0t

1/4), b(t) = b0t
−1/2 with arbitrary parameters

a0 and b0. These formulas indicate that the fixed point (0, 0) of system (7) is unstable. However,
both roots of the characteristic equation for the corresponding linearized system are negative:
z±(t) = (−3± 1)/(4t) < 0.

Thus we have

Theorem 2. If P ′(ψ0; δ, ν) < 0, the solution ρ∗(τ), ψ∗(τ) with asymptotics (3) is unstable.

2. Lyapunov function. In the case when linear stability analysis fails, the stability problem
can be solved using the Lyapunov function method. We have

Theorem 3. If P ′(ψ0; δ, ν) > 0, then the solution ρ∗(τ), ψ∗(τ) with asymptotics (3) is asymp-

totically stable. Moreover, there exist d0 > 0 and τ0 > 0 such that for all (r0, φ0): (r0−ρ∗(τ0))2+
(φ0−ψ∗(τ0))

2 < d20 the solution ρ(τ), ψ(τ) to system (1) with initial data ρ(τ0) = r0, ψ(τ0) = φ0

has the asymptotics:

ρ(τ) =
√
λτ + o(τ−1/4), ψ(τ) = ψ0 + o(1), τ > τ0.(8)

Proof. In system (1) we make the change of variables

ρ(τ) = ρ∗(τ) + ω0τ
−1/4R(η), ψ(τ) = ψ∗(τ) + Ψ(η), η = κτ 5/4,(9)

ω0 =
(
P ′(ψ0; δ, ν)

)1/2
(4λ)−1/4, κ = 4/5 and for new functions R(η), Ψ(η) we study the stability

of the fixed point (0, 0) for the following system

dR

dη
= −∂ΨH(R,Ψ, η),

dΨ

dη
= ∂RH(R,Ψ, η) + F (R,Ψ, η),(10)

where

H = ω0κ
2/5η−2/5ρ∗R

2 +
1

ω0

(
cos(ψ∗ +Ψ)− cosψ∗ + Ψ sinψ∗

)
+ ω2

0κ
3/5η−3/5R

3

3
− η−1RΨ

5

−mρ∗
2ω0

(
cos(2ψ∗ + 2Ψ + ν)− cos(2ψ∗ + ν)− 2Ψ sin(2ψ∗ + ν)

)

−κ
1/5mη−1/5

(
cos(2ψ∗ + 2Ψ+ ν)− cos(2ψ∗ + ν)

)R
2

and

F = η−1Ψ

5

+κ
1/5η−1/5

[ cos(ψ∗ +Ψ)

ρ∗ + ω0κ
1/5η−1/5R

− cosψ∗

ρ∗
+
m

2

(
cos(2ψ∗ + ν)− cos(2ψ∗ + 2Ψ + ν)

)]
.

The construction of the Lyapunov function proposed here is based on the asymptotic behavior
of the right-hand side of system (10) as η → ∞. By taking into account (3) one can readily
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write out the asymptotics of the functions H(R,Ψ, η) and F (R,Ψ, η):

H(R,Ψ, η) = H0(R,Ψ) +H1(Ψ)η−2/5 +O(η−3/5),

F (R,Ψ, η) = F1(Ψ)η−3/5 + F2(Ψ)η−1 +O(η−6/5),

where

H0 = ω0λ
1/2R2 +

1

ω0

Ψ∫

0

P(ψ0 + φ; δ, ν) dφ, H1 =
ψ1κ

2/5

ω0

(
P(ψ0 +Ψ; δ, ν)−P ′(ψ0; δ, ν)Ψ

)
,

F1 =
κ

3/5

λ1/2

Ψ∫

0

P(ψ0 + φ; δ, ν) dφ, F2 =
Ψ

5
+
ψ1κ

λ1/2
P(ψ0 +Ψ; δ, ν).

Note that all asymptotic estimates written out here and bellow in the form O(η−q) and O(dq),
(d =

√
R2 +Ψ2), are uniform with respect to (R,Ψ, η) in the domain D(d∗, η∗) = {(R,Ψ, η) ∈

R
3 : d < d∗, η > η∗}, where d∗, η∗, q = const > 0.
A Lyapunov function candidate is constructed of the form:

V (R,Ψ, η) =
1

ω0λ1/2

[
H(R,Ψ, η) + v1(R,Ψ)η−3/5 + v2(R,Ψ)η−1

]
,(11)

where

v1 = κ
3/5R

[2ω2
0R

2

3
+ λ−1/2

Ψ∫

0

P(ψ0 + φ; δ, ν) dφ
]
, v2 = −RΨ

10
.

Since H0(R,Ψ) = ω0λ
1/2(R2 + Ψ2) + O(d3) and vi(R,Ψ) = O(d2) as d → 0, then for all

0 < σ < 1 there exist d0 > 0 and η0 > 0 such that

(1− σ)d2 ≤ V (R,Ψ, η) ≤ (1 + σ)d2

for (R,Ψ, η) ∈ D(d0, η0). The derivatives of H(R,Ψ, η), v1(R,Ψ), and v2(R,Ψ) with respect to
η along the trajectories of system (10) have the following asymptotics:

dH

dη

∣∣∣
(10)

= η−3/5κ
3/5

ω2
0λ

P(ψ0 +Ψ; δ, ν)

Ψ∫

0

P(ψ0 + φ; δ, ν) dφ− η−12Ψ
2

5
+

+O(d3)O(η−1) +O(d2)O(η−6/5),

dv1
dη

∣∣∣
(10)

= −κ
3/5

ω2
0λ

P(ψ0 +Ψ; δ, ν)

Ψ∫

0

P(ψ0 + φ; δ, ν) dφ+O(d3)O(η−2/5) +O(d2)O(η−3/5),

dv2
dη

∣∣∣
(10)

=
Ψ2 −R2

5
+O(d3) +O(d2)O(η−2/5).

These formulas are used to calculate the expression for the total derivative of the function
V (R,Ψ, η), which happens to have a sign-definite leading term of the asymptotics:

dV

dη

∣∣∣
(10)

= − 1

5η
[R2 +Ψ2 +O(d3)] +O(d2)O(η−6/5).

Since the remainders in the latter expression can be made arbitrarily small, it follows that for
all 0 < σ < 1 there exist d0 > 0 and η0 > 0 such that

dV

dη

∣∣∣
(10)

≤ −(1 − σ)d2

5η
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for all (R,Ψ, η) ∈ D(d0, η0). In addition, the Lyapunov function has the following property: for

all 0 < ǫ < d0 there exist δ(ǫ) = ǫ
√

(1− σ)/(2 + σ) such that

sup
d<δ(ǫ),η>η0

V (R,Ψ, η) ≤ (1 + σ)δ2(ǫ) < (1− σ)ǫ2 ≤ inf
d=ǫ,η>η0

V (R,Ψ, η).

The last estimates and the negativity of the total derivative of the function V (R,Ψ, η) ensure

that any solution of system (10) with initial data
√
R2(η0) + Ψ2(η0) ≤ δ(ǫ) cannot leave ǫ-

neighborhood of the equilibrium (0, 0) as η > η0. Therefore, the fixed point (0, 0) is stable
as η > η0. The stability on the finite time interval (0, η0] follows from the theorem on the
continuity of the solution to the Cauchy problem with respect to the initial data.

Let us show that the fixed point (0, 0) is asymptotically stable. Indeed, consider the solution

R(η), Ψ(η) to system (10) with initial data
√
R2(η0) + Ψ2(η0) ≤ d0, then the function v(η) ≡

V (R(η),Ψ(η), η) satisfies the inequality:

dv

dη
≤ −ςv

η
, ς =

(1− σ)

5(1 + σ)
> 0.(12)

Integrating the last expression with respect to η, we obtain 0 ≤ v(η) ≤ v0η
−ς with the parameter

v0, depending on d0 and η0. This implies the asymptotic estimate: R2(η) + Ψ2(η) = O(η−ς)
as η > η0. Returning to the original variables we derive asymptotic estimates (8) with τ0 =

η
4/5
0 κ

−4/5 for solutions to system (1) with initial data (r0, φ0) from a neighbourhood of the
point (ρ∗(τ0), ψ∗(τ0)). �

Let us consider again the case ν = 0. If |δ| < 1/2, system (1) has two particular autoresonant
solutions with ψ0 = 0 and ψ0 = π, and if |δ| > 1/2, there is an additional pair of solutions
with ψ0 = ± arccos(2δ)−1. It is easy to calculate that P ′(0; δ, 0) = 2δ − 1. Hence the unstable
solution ρ∗(τ), ψ∗(τ) with ψ0 = 0 becomes asymptotically stable when the parameter δ = µλ1/2

exceeds the threshold value δ0 = 1/2. At the same time, P ′(π; δ, 0) = 2δ+ 1, then the stability
of the solution with ψ0 = π persists as δ > −1/2 and is lost when δ < −1/2. However, since
P ′(± arccos(2δ)−1; δ, 0) = (1 − 4δ2)/(2δ), the additional solutions are unstable as δ > 1/2.
Thus the points (δ0, 0) ∈ Γ+ and (−δ0, 0) ∈ Γ− correspond to non-autonomous version of the
center-saddle bifurcation: stable and unstable solutions coalesce and disappear. The situation
is similar when ν 6= 0, and the threshold value δν for unstable solutions can be found from the
equation P ′(ψ0; δν , ν) = 0.

4. Asymptotic analysis

The stability of the particular solutions ρ∗(τ), ψ∗(τ) ensures the existence of a two-parameter
family of autoresonance solutions. At this section we construct the asymptotics for such so-
lutions by averaging method [17] with some modifications, related to the involvement of the
Lyapunov function, constructed in the previous section.

Theorem 4. If P ′(ψ0; δ, ν) > 0, then system (1) has two-parameter family of autoresonant

solutions ρ(τ ; a, ϕ), ψ(τ ; a, ϕ) with the asymptotics

ρ(τ) =
√
λτ + τ−1/4

∞∑

k=1

ρk(S; a)τ
−k/8, ψ(τ) = ψ0 +

∞∑

k=1

ψk(S; a)τ
−k/8, τ → ∞,(13)

where the functions ρk(S; a), ψk(S; a) are 2π-periodic in S, and the function S(τ) has the

following asymptotics as τ → ∞:

S(τ) = ϕ+
8ω0

5
λ1/2τ 5/4 +

4∑

k=1

c−k(a)τ
k/4 + c−6(a) log τ +

∞∑

k=1

ck(a)τ
−k/4, ck(a) = const,

ρ1 = aω0 cosS, ψ1 = a sinS, c−4 = a2P ′′′(ψ0; δ, ν)/(16ω0), ω0 = (P ′(ψ0; δ, ν))
1/2(4λ)−1/4.
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Figure 3. Level lines of the Hamiltonian H0(R,Ψ); λ = 1, ν = 0, ψ0 = π, (a)
δ = 0, (b) δ = 1.

Proof. We make change of variables (9) in system (1) and study the asymptotics for solutions
to near-Hamiltonian system (10) in a neighbourhood of the stable fixed point (0, 0). Let us
consider the Hamiltonian system:

dR

dη
= −∂ΨH0(R,Ψ),

dΨ

dη
= ∂RH0(R,Ψ),

where H0(R,Ψ) = lim
η→∞

H(R,Ψ, η), H0(0, 0) = 0. It follows from the properties of the function

H0(R,Ψ) that the level lines H0(R,Ψ) = h define a family of closed curves on the phase space
(R,Ψ) parametrized by the parameter h ∈ (0, h0), h0 = const > 0 (see Fig. 3). To each closed
curve there corresponds a periodic solution R0(η, h), Ψ0(η, h) of period T (h) = 2π/ω(h), where
ω(h) = 2ω0λ

1/2 + hP ′′′(ψ0; δ, ν)/(16ω
2
0λ

1/2) +O(h2) as h→ 0.
Define auxiliary 2π-periodic functions r(s, h) = R0(s/ω(h), h) and p(s, h) = Ψ0(s/ω(h), h),

satisfying the equations:

ω(h)
∂r

∂s
= −∂pH0(r, p), ω(h)

∂p

∂s
= ∂rH0(r, p),

and consider the transformation of variables

R(η) = r(s(η), h(η)), Ψ(η) = p(s(η), h(η))(14)

in system (10). The Jacobian of this transformation is different from zero:
∣∣∣∣
∂hr ∂hp
∂sr ∂sp

∣∣∣∣ =
1

ω(h)
6= 0,

It can easily be checked that in new variables system (10) takes the form:

dh

dη
= −ω(h)

[
∂sH̃(s, h, t) + ∂srF̃ (s, h, t)

]
,

ds

dt
= ω(h)

[
∂hH̃(s, h, t) + ∂hrF̃ (s, h, t)

]
,(15)

where F̃ (s, h, η) ≡ F (r(s, h), p(s, h), η) and H̃(s, h, η) ≡ H(r(s, h), p(s, h), η) are 2π-periodic
functions with respect to s. Moreover, system (15) is asymptotically Hamiltonian with decaying
non-Hamiltonian terms as η → ∞. Solutions to such systems can be investigated by the
averaging method. To simplify asymptotic constructions, we make one more transformation of
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variables. Introduce a new dependent variable v(η) associated with the Lyapunov function (11)
such that

v(η) = Ṽ (s(η), h(η), η),(16)

where Ṽ (s, h, η) ≡ V (r(s, h), p(s, h), η) is 2π-periodic function in s. It follows from the proper-

ties of the Lyapunov function that Ṽ and its total derivative with respect to η have the following
asymptotics

Ṽ (s, h, η) =
h

ω0λ1/2
+O(h)O(η−3/5),

dṼ

dη

∣∣∣
(10)

= − 1

5η

[ h

ω0λ1/2
+O(h3/2)

]
+O(h)O(η−6/5)

as η > η0, h < h0, uniformly with respect to s ∈ R. Hence the transformation (s, h) 7→ (s, v) is

invertible: ∂hṼ 6= 0. System (15) in new variables takes the form:

dv

dη
=W (s, v, η),

ds

dη
= U(s, v, η),(17)

where

W (s, Ṽ (s, h, η), η) ≡
[
− ∂rV ∂pH + ∂pV (∂rH + F ) + ∂ηV

]
(r(s, h), p(s, h), η),

U(s, Ṽ (s, h, η), η) ≡ ω(h)
[
∂hH̃ + ∂hrF̃

]
(s, h, η).

(18)

It is not difficult to deduce from (18) and (12) the asymptotics of the functions W (s, v, η) and
U(s, v, η) as η → ∞:

W (s, v, η) = η−1
∞∑

k=0

wk(s, v)η
−k/5, U(s, v, η) = u0(v) +

∞∑

k=1

uk(s, v)η
−k/5,

where wk(s, v) and uk(s, v) are 2π-parametric functions with respect to s, w0(s, v) = −v/5 +
O(v3/2), u0(v) = ω(0) + ω0λ

1/2ω′(0)v +O(v2) as v → 0. To construct asymptotic solutions to
system (17), it is convenient to single out a Hamiltonian part:

dv

dη
= −∂sQ(s, v, η) +G(s, v, η),

ds

dη
= ∂vQ(s, v, η),(19)

where

Q(s, v, η) =

∫
U(s, v, η) dv, G(s, v, η) =W (s, v, η) + ∂sQ(s, v, η).

The asymptotic solution to the first equation in (19) is sought in the form [18]: v(η) = v̂(η) +
ϑ(s, v̂(η), η), where v̂(η) is determined from the averaged equation

dv̂

dη
= 〈G(s, v̂ + ϑ(s, v̂, η), η)〉s = 〈W (s, v̂ + ϑ(s, v̂, η), η)〉s,(20)

and ϑ(s, v̂, η) is 2π-periodic function with respect to s such that

〈ϑ(s, v̂, η)〉s
def
=

1

2π

2π∫

0

ϑ(s, v̂, η)ds ≡ 0,

and satisfies the following equation

∂σQ(s, v̂ + ϑ, η) + ∂vQ(s, v̂ + ϑ, η)∂sϑ+ ∂ηϑ = G(s, v̂ + ϑ, η)

−[1 + ∂v̂ϑ]〈G(s, v̂ + ϑ(s, v̂, η), η)〉s.
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Note that the last equation can be integrated with respect to s by choosing the constant of
integration in such a way that the result has a zero average:

Q(s, v̂ + ϑ(s, v̂, η), η)− 〈Q(s, v̂ + ϑ(s, v̂, η), η)〉s + ∂η

∫
ϑ(s, v̂, η) ds =

=

∫ [
W (s, v̂ + ϑ, η)− 〈W (s, v̂ + ϑ(s, v̂, η), η)〉s

]
ds

−〈W (s, v̂ + ϑ(s, v̂, η), η)〉s∂v̂
∫
ϑ(s, v̂, η)ds.

(21)

The asymptotic for ϑ(s, v̂, η) is sought in the form:

ϑ(s, v̂, η) = η−1

∞∑

k=1

ϑk(s, v̂)η
−k/5.

Substituting this series into equation (21), and equating the terms of the same power of η, we
obtain the following chain of equations: u0(v̂)ϑk(s, v̂) = Λk(s, v̂), k ≥ 1, where each function
Λk(s, v̂) is expressed through ϑ1, . . . , ϑk−1 such that 〈Λk(s, v̂)〉s = 0. For example,

Λ1(s, v̂) =
〈
q1(s, v̂)

〉
s
− q1(s, v̂),

Λ2(s, v̂) =
〈
q2(s, v̂)

〉
s
− q2(s, v̂) +

〈
u1(s, v̂)ϑ1(s, v̂)

〉
s
− u1(s, v̂)ϑ1(s, v̂)

−u
′

0(v̂)

2

(
ϑ2(s, v̂)−

〈
ϑ2(s, v̂)

〉
s

)
,

where qk(s, v) =
∫
uk(s, v) dv. Thus, all coefficients ϑk are uniquely determined in the class of

2π-periodic functions with zero average 〈ϑk(s, v̂)〉s = 0.
The next step consists in the asymptotic integration of the equation for the angle s. The

solution is sought in the form s(η) = ŝ(η) + θ(ŝ(η), v̂(η), η), where

dŝ

dη
=

〈
∂vQ

(
ŝ + θ(ŝ, v̂, η), v̂ + ϑ(ŝ+ θ(ŝ, v̂, η), v̂, η), η

)〉
ŝ
,(22)

and the function θ(ŝ, v̂, η) satisfies the following equation:
(
∂ŝθ + 1

)〈
∂vQ

(
ŝ+ θ(ŝ, v̂, η), v̂ + ϑ(ŝ+ θ(ŝ, v̂, η), v̂, η), η

)〉
ŝ
+ ∂ηθ =

= ∂vQ
(
ŝ+ θ(ŝ, v̂, η), v̂ + ϑ(ŝ + θ(ŝ, v̂, η), v̂, η), η

)
− ∂v̂θ〈W (s, v̂ + ϑ(s, v̂, η), η)〉s,

(23)

with the additional condition: 〈θ(ŝ, v̂, η)〉ŝ = 0. Asymptotics for θ(ŝ, v̂, η) is constructed in the
form:

θ(ŝ, v̂, η) =

∞∑

k=1

θk(ŝ, v̂)η
−k/5.

Substituting the series into equation (23) and grouping the expressions of the same power of
η give the following chain of differential equations: u0(v̂)∂ŝθk(ŝ, v̂) = ∆k(ŝ, v̂) − 〈∆k(ŝ, v̂)〉ŝ,
k ≥ 1. Note that each function ∆k(ŝ, v̂) is expressed through θ1, . . . , θk−1. For example,

∆1(ŝ, v̂) = u1(ŝ, v̂) + u′0(v̂)ϑ1(ŝ, v̂),

∆2(ŝ, v̂) = u2(ŝ, v̂) + u′0(v̂)
(
ϑ2(ŝ, v̂) + ∂sϑ1(ŝ, v̂)θ1(ŝ, v̂)

)
+
u′′0(v̂)

2
ϑ21(ŝ, v̂)

+∂vu1(ŝ, v̂)ϑ1(ŝ, v̂) + ∂su1(ŝ, v̂)θ1(ŝ, v̂)

−∂sθ1(ŝ, v̂)
〈
u′0(v̂)ϑ1(ŝ, v̂) + u1(ŝ, v̂)

〉
ŝ
.

It follows that all coefficients θk are uniquely determined in the class of 2π-periodic functions
with 〈θk(ŝ, v̂)〉ŝ = 0.
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In the last step, we integrate the averaged equations (20) and (22). Let us remark that the
stability of the trivial solution to system (10) ensures that v(η) → 0 as η > η0. Therefore,
we can use the asymptotic behavior of the function W (s, v, η) as v → 0 and η → ∞ in the
asymptotic integration of the averaged equations. Thus we have

dv̂

dη
= − 1

5η
[v̂ +O(v̂3/2)][1 +O(η−1/5)].

It follows from the last equation that v̂(η) = v0η
−1/5[1 + o(1)] with an arbitrary parameter

v0 > 0. Moreover, there is a complete asymptotic expansion:

v̂(η) = v0η
−1/5 +

∞∑

k=1

vk(v0)η
−(k+1)/5, η → ∞, vk(v0) = const.

The averaged equation (22) for the angle is integrated trivially:

ŝ(η) = s0 +

∫ 〈
∂vQ

(
ŝ+ θ(ŝ, v̂(η), η), v̂(η) + ϑ(ŝ+ θ(ŝ, v̂(η), η), v̂(η), η), η

)〉
ŝ
dη,

where s0 is the integration parameter. The asymptotics of ŝ(η) is defined by the expansions for
v̂, ϑ, and θ. Thus we have

ŝ(η) = s0 +

5∑

k=1

s−k(v0)η
k/5 + s−6(v0) log η +

∞∑

k=1

sk(v0)η
−k/5, η → ∞,

where sk(v0) = const. In particular, s−5 = 2ω0λ
1/2 and s−4 = 5v0ω0λ

1/2ω′(0)/4. The justifica-
tion of the constructed asymptotics follows from [18].

The transformation formulas (14) and (16) allow us to reconstruct the asymptotics for solu-
tions to system (10):

R(η) = v
1/2
0 η−1/10

[
cos ŝ(η) +O(η−1/5)

]
, Ψ(η) = v

1/2
0 η−1/10

[
sin ŝ(η) +O(η−1/5)

]
.

Returning to the original variables we obtain the result of the theorem. �

Note that using the Lyapunov function in the averaging method allows us to immediately
write down the averaged equation for the action variable, that determines the structure of a
complete asymptotic expansion. The proposed method for constructing two-parameter family
asymptotic solutions can be applied to the study of various nonlinear non-autonomous systems
that can be reduced to a near-Hamiltonian form. The construction of the Lyapunov functions
for such systems was discussed in [19].

5. Conclusion

The results obtained for the model system can be used to describe the capture of au-
toresonance in systems of the form (2) with combined excitation. It can easily be checked
that the bifurcation parameter δ = µλ1/2 is expressed in terms of system (2) as follows
δ = 2βε−1α1/2(3γ)−1/2. Therefore, if δ 6= δν , there exist a stable autoresonant mode such
that

u(t) = κρ(εt) cos
(
ψ(εt)− φ(t)

)
+O(ε), 0 ≤ t ≤ O(ε−1),

where ρ(τ) =
√
λτ + O(τ−3/8) and ψ(τ) = ψ0 + O(τ−1/4) as τ → ∞ with ψ0 satisfying

P(ψ0; δ, ν) = 0 and P ′(ψ0; δ, ν) > 0. At the same time, the autoresonant mode with ψ0 such
that P ′(ψ0; δ, ν) < 0 is not observed because it is unstable. However, if δ passes through the
value δν , this mode becomes stable.

In summary, we have investigated the model system of equations describing the capture into
autoresonant for nonlinear oscillators with combined parametric and external excitation. We
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have considered the isolated autoresonant solutions with a special asymptotics at infinity and
have investigated the dependence of their stability on the values of the perturbation parameters.
In particular, it was shown that the unstable autoresonant solutions become stable as the
bifurcation parameter passes through a threshold value. The behaviour of solutions at the
bifurcation points has not been considered here. This will be discussed elsewhere.
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