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Abstract

We give two conditions that are necessary and sufficient for the uniqueness of Filip-

pov solutions of scalar, autonomous ordinary differential equations with discontinuous

velocity fields. When only one of the two conditions is satisfied, we give a natural

selection criterion that guarantees uniqueness of the solution.

1 Introduction and statement of the theorem

The purpose of this note is to derive necessary and sufficient conditions for the uniqueness
of Filippov solutions of the scalar, autonomous ordinary differential equation (ODE)

dX

dt
(t) = b(X(t)) for t > 0

X(0) = x0

(1)

where b : R → R is Borel measurable and locally bounded, and x0 ∈ R. If b is continuous
then the sense in which (1) holds is classical: X : [0,∞) → R is absolutely continuous
and d

dt
X(t) = b(X(t)) holds for almost every t > 0. It was shown by Binding [3] that the

solution is unique if and only if b satisfies the so-called Osgood condition at all zeroes of
b (see below). For instance, any Lipschitz continuous b satisfies Osgood’s condition. For a
general reference on the uniqueness and non-uniqueness of ODEs, see [1].

If b is merely measurable, say, b ∈ L∞(R) then the interpretation of (1) is more subtle,
and choosing a different representative in the equivalence class of b can lead to very different
solutions. For instance, redefining the constant velocity field b(x) ≡ 1 at a single point,
b(x0) = 0, yields both the solutions X(t) ≡ x0 and X(t) = x0+ t. Several authors have ana-
lyzed possible modifications of b on negligible sets in order to ensure existence of a classical
solution, see e.g. [6]. The concept of Filippov flows or Filippov solutions of (1) provides an
alternative solution to this issue by choosing a canonical representation of the velocity field.
More precisely, the differential equation (1) is replaced by a differential inclusion where the
right-hand side contains information on the behavior of b in an infinitesimal neighborhood
of X(t). Filippov [5] showed that there exists a Filippov solution of (1) under very mild
conditions on b, for instance if b ∈ L∞(R) or, for local existence, b ∈ L∞

loc(R).
The main theorem of this paper, stated in Section 1.3, gives necessary and sufficient

conditions for the uniqueness of Filippov solutions of (1). As a corollary we define a class
of functions b̃ : R → R for which the corresponding ODE all have the same unique, classical
solution.
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In Section 1.1 we provide the definition of Filippov solutions and in Section 1.2 we
describe the essential Osgood criterion. Section 2 contains the proof of the Theorem and its
Corollary, while Section 3 lists some examples.

1.1 Set-valued functions and Filippov solutions

We say that an absolutely continuous function X : [0, T ) → R is a Filippov solution of (1)
if X(0) = x0 and

dX

dt
(t) ∈ K[b](X(t)) for a.e. t ∈ (0, T )

(see [5]). Here, the set-valued function K[b] is defined as

K[b](x) :=
⋂

δ>0

⋂

N⊂R

|N |=0

conv
(

b
(

Bδ(x) \N
))

where Bδ(x) is the open ball around x with radius δ, and conv(A) is the smallest closed,
convex set containing A. In a similar vein we define the essential upper and lower bounds
of b at x as

m[b](x) := min
(

K[b](x)
)

= lim
δ→0

ess inf
x′∈Bδ(x)

b(x′),

M [b](x) := max
(

K[b](x)
)

= lim
δ→0

ess sup
x′∈Bδ(x)

b(x′).
(2)

We will say that b is continuous at a point x if the set K[b](x) contains a single point,
otherwise we say that b is discontinuous at x. It is evident that this coincides with the usual
definition of continuity at a point, possibly after redefining b on a negligible set.

We list below some properties that are straightforward to check (see also [2, 4]):

(i) K[b] is upper hemicontinuous.

(ii) If 0 /∈ K[b](x) for some x ∈ R then there is a neighborhood U of x such that 0 /∈ K[b](y)
for every y ∈ U .

(iii) m[b] and M [b] are lower and upper semi-continuous, respectively.

(iv) The set of discontinuities of b coincides with the measurable set {x : m[b](x) <
M [b](x)}.

1.2 The Osgood condition

The classical uniqueness result for ODEs requires Lipschitz continuity of the velocity field
b. In 1898 Osgood relaxed this condition to mere continuity of b along with an integrability
condition on its reciprocal [7]. We recall the main idea of Osgood’s condition here. We
will call a function g : (−δ0, δ0) → [0,∞) an Osgood function if it is nonnegative, Borel
measurable and satisfies

∫ 0

−δ

g(z)−1dz = +∞,

∫ δ

0

g(z)−1dz = +∞ ∀ δ ∈ (0, δ0). (3)

Lemma 1 (Osgood lemma). Let g : (−δ0, δ0) → [0,∞) be an Osgood function and let
u : [0, T ) → (−δ0, δ0) be an absolutely continuous function satisfying u(0) = 0 and

d

dt
|u(t)| 6 g(u(t)) for a.e. t ∈ (0, T ). (4)

Then u ≡ 0.
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Proof. Assume conversely that, say, u(t1) > 0 for some t1 > 0, and let t0 ∈ [0, t1) be
such that u(t0) = 0 but u(t) > 0 for all t ∈ (t0, t1]. From (4) it follows in particular that
du
dt
(t) 6 g(u(t)) + ε for every ε > 0 and a.e. t ∈ (t0, t1). Dividing this inequality by the

right-hand side and integrating over t ∈ (t0, t1) yields

t1 − t0 >

∫ t1

t0

du
dt
(t)

g(u(t)) + ε
dt =

∫ u(t1)

0

1

g(z) + ε
dz.

But the right-hand side goes to +∞ as ε → 0, a contradiction.

1.3 The main theorem

In Section 2 we prove the following uniqueness result. We recall from [5] that if b ∈ L∞
loc(R)

then there exists at least one local-in-time Filippov solution of (1).

Theorem. Assume that b ∈ L∞
loc(R) satisfies the following two conditions:

(A) the set
{

x ∈ R : 0 /∈ K[b](x) and b is discontinuous at x
}

(5)

has zero Lebesgue measure

(B) for every x ∈ R where 0 ∈ K[b](x), the function

g(z) := M
[

b+x
]

(z), where b+x (z) :=
(

b(x+ z) sgn(z)
)+

(6)

is an Osgood function. (Here, u+ = max(0, u).)

Then the Filippov solution of (1) is unique. Conversely, if one of the conditions (A) or
(B) does not hold then there is some x0 ∈ R for which there are uncountably many Filippov
solutions.

If b is continuous then the Theorem reduces to [3, Theorem 5.3]. Indeed, if b is continuous
then the set (5) is empty, and condition (B) is equivalent to saying that b+x is an Osgood
function whenever b(x) = 0.

Condition (A) addresses a deficiency in the concept of Filippov solutions: Roughly speak-
ing, if discontinuities in b are too densely packed then the set-valued function K[b] is unable
to “see” the (almost everywhere defined) function b. An example where (A) is violated is
given in Section 3. The following corollary shows that when (A) is violated, the additional
requirement of being a classical solution can act as a selection criterion among the infinitely
many solutions.

Corollary. Assume that b ∈ L∞
loc(R) satisfies condition (B). Define

Lb :=
{

b̃ : R → R : b = b̃ a.e., b̃(x) ∈ K[b](x) ∀ x ∈ R,

0 ∈ K[b](x) ⇒ b̃(x) = 0
}

.

Then for every x0 ∈ R and b̃ ∈ Lb there is a unique classical solution of the ODE

dX

dt
(t) = b̃(X(t)) for t > 0

X(0) = x0

(7)

and this solution is independent of the choice of b̃ ∈ Lb.
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As mentioned above, a classical solution is an absolutely continuous function X : [0, T ) →
R satisfying the equation (7) for a.e. t ∈ (0, T ). The proof of the Corollary is given in Section
2.

Remark. Let Xx0

t denote the (classical or Filippov) solution of (1). Using the fact that (1)
is time-reversible one can show that if the solution Xx0

t is unique (as in the Theorem and
in the Corollary), then the map x 7→ Xx

t is continuous and surjective for any t > 0.

2 Proof of the main theorem

Proof of sufficiency of (A), (B). It is sufficient to show that the solution remains unique up
to some time T > 0. For any given x0 ∈ R there are two cases to consider.
Case 1: First, assume that 0 ∈ K[b](x0) and let X = X(t) be a solution of (1). We wish to
show that X(t) ≡ x0, so assume conversely that X(t) 6= x0 for some t > 0; by translating in
time we may assume that X(t) > x0 for all t in some interval (0, T ). (The case X(t) < x0

is completely symmetric.) By definition, the function g in (6) is nonnegative and upper
semi-continuous. By the definition of K[b](x) we have for every δ > 0

dX

dt
(t) 6 ess sup

x′∈Bδ(X(t))

b(x′),

and for every ε > 0 there is a subset of points x∗ ∈ Bδ(x(t)) of positive measure such that

ess sup
x′∈Bδ(X(t))

b(x′) 6 b(x∗) + ε.

It follows that for almost every t ∈ (0, T ) and for sufficiently small δ,

d

dt
|X(t)− x0| =

dX

dt
(t) 6 b(x∗) + ε

= sgn(x∗ − x0)b(x
∗) + ε

6 g(x∗ − x0) + ε (by (6)).

Passing δ, ε → 0 and using the upper semi-continuity of g we arrive at d
dt
|X(t) − x0| 6

g(X(t)− x0). Applying Lemma 1 yields X(t) = x0 for every t ∈ [0, T ). Thus, the constant
solution is unique.
Case 2: Assume now that 0 /∈ K[b](x0); since K[b](x0) is closed and convex we may assume
that, say, K[b](x0) ⊂ (0,∞). Then there is a δ > 0 such that K[b](x) ⊂ [c,∞) for some
c > 0 for every x ∈ Bδ(x0). Write d = ‖b‖L∞(Bδ(x0)). Let now X,Y be two solutions of (6),
and fix T > 0 such that X(t), Y (t) ∈ Bδ(x0) for all t ∈ [0, T ). Let AX , AY ⊂ [0, T ) the the
sets of differentiability of X,Y , respectively, both of which have full measure.

Since dX
dt

(t), dY
dt

(t) ∈ [c, d] we have X(t), Y (t) ∈ [x0 + ct, x0 + dt] for all t ∈ [0, T ) and
hence—possibly after decreasing T—there is a map τ : [0, T ) → [0, T ) such that τ(0) = 0
and X(τ(t)) = Y (t) for all t ∈ [0, T ). Since X,Y are absolutely continuous, so is τ , and
moreover τ ′(t) > d

c
> 0. It follows that the set A = AY ∩τ−1(AX) ⊂ [0, T ) has full measure.

Finally, define
E = A ∩

{

t ∈ [0, T ) : K[b](Y (t)) is a singleton
}

.

By assumption 1 and the fact that Y is monotone, the set E also has full measure. For
every t ∈ E we have now

dX

dt
(τ(t)) = b(X(τ(t))) = b(Y (t)) =

dY

dt
(t).
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But at the same time X(τ(t)) = Y (t), so that dX
dt

(τ(t))τ ′(t) = dY
dt

(t) for a.e. t. It follows
that τ ′(t) ≡ 1, whence X(t) = Y (t) for all t.

Next, we claim that condition (A) is necessary. To this end we need the following
elementary result.

Lemma 2. Let U ⊂ R be an open set and let K ⊂ U be a measurable set with |K| > 0.
Then there exists a point x0 ∈ U such that |[x0, x0 + δ) ∩K| > 0 for every δ > 0.

Proof. Select an interval [a, b) ⊂ U such that |[a, b) ∩K| > 0. Define

x0 = sup
{

x ∈ [a, b) : |[a, x) ∩K| = 0
}

.

Then a 6 x0 < b so x0 ∈ U , and |[x0, x0 + δ) ∩K| > 0 for every δ > 0.

Proof of necessity of (A). Assume that (A) is not satisfied, and define

D :=
{

x ∈ R : b is discontinuous at x
}

,

U− :=
{

x ∈ R : K[b](x) ⊂ (−∞, 0)
}

, U+ :=
{

x ∈ R : K[b](x) ⊂ (0,∞)
}

.

By assumption, at least one of the sets D− := U− ∩ D and D+ := U+ ∩ D has positive
measure, so we assume that, say, |D+| > 0. Let x0 ∈ U+ be a point where

∣

∣[x0, x0 + δ) ∩

D+
∣

∣ > 0 for every δ > 0 (cf. Lemma 2). Since K[b](x0) ⊂ (0,∞) there is a c > 0 and a δ0 > 0
such that K[b](x) ⊂ [c,∞) for every |x− x0| < δ0. In particular, c 6 m[b](x) < M [b](x) for
every x ∈ [x0, x0 + δ0)∩D+. Select measurable functions b1, b2 such that m[b](x) 6 b1(x) 6
b2(x) 6 M [b](x) and such that b1(x) < b2(x) for every x ∈ [x0, x0 + δ0) ∩ D+. Note that
there are uncountably many such pairs of functions. Then the functions X1, X2 defined by

Xi(t) = G−1
i (t), Gi(x) :=

∫ x

x0

1

bi(y)
dy

are distinct Filippov solutions of (1).

Proof of necessity of (B). Let g be as in (6). If condition (B) is not satisfied then necessarily

either
∫ 0

−δ
g(z)−1 dz < ∞ or

∫ δ

0 g(z)−1 dz < ∞ for every 0 < δ 6 δ0 for a sufficiently small
δ0 > 0. Assume the latter case; the former is completely analogous. Necessarily, g(δ) > 0
for almost every δ ∈ (0, δ0), so in particular g(z) = M

[

b+x0

]

(z) = M [b](x0 + z). Let

G(x) :=

∫ x−x0

0

1

g(z)
dz, x ∈ [x0, x0 + δ0).

Then G is absolutely continuous with G′(x) = 1
g(x−x0)

>
1

‖b‖L∞
> 0, so G is invertible and

its inverse X := G−1 : [0, T ) → [x0, x0 + δ0) (for some T > 0) is also absolutely continuous.

Differentiating the relation
∫ X(t)−x0

0
1

g(z)dz = t and reorganizing, we find that

dX

dt
(t) = g

(

X(t)− x0

)

= M [b]
(

X(t)
)

∈ K[b]
(

X(t)
)

,

whence X solves (1). Clearly, the trivial solution X0(t) ≡ x0 is also a solution of (1); hence,
any c > 0 yields a new solution

Xc(t) =

{

x0 for 0 6 t 6 c

X(t− c) for c 6 t < c+ T.

We conclude that there exists a continuum of solutions of (1).
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We conclude this section with the proof of the Corollary.

Proof of the Corollary. From the definition of Lb it is clear that any classical solution of (7)
is also a Filippov solution of (1). Hence, the fact that b satisfies condition (B) implies that
if 0 ∈ K[b](x0) then any classical solution must satisfy X(t) ≡ x0. If 0 /∈ K[b](x0), say, if
K[b](x) ⊂ [c,∞) for |x− x0| < δ for some c > 0, then define X(t) = G−1(t), where

G(x) :=

∫ x

x0

1

b(z)
dz =

∫ x

x0

1

b̃(z)
dz.

Then X satisfies (7) in the classical sense for a.e. t, and is necessarily the only classical
solution since any other Y (t) such that d

dt
Y (t) = b̃(Y (t)) for a.e. t also satisfies G(Y (t)) = t,

whence X = Y .

3 Examples

Example (Velocity fields not satisfying (B)). Counterexamples to uniqueness of (1) when
b does not satisfy the Osgood condition are well-known, the most popular ones being b(x) =
|x|α for some α ∈ (0, 1) and the Heaviside function b(x) = 1(0,∞)(x). Note that, say,
b(x) = 1 + |x|α, does satisfy conditions (A) and (B), even though it is not (one-sided)
Lipschitz bounded. The function b(x) = −x log |x| is an example of a non-Lipschitz function
which does satisfy condition (B).

Example (An everywhere discontinuous velocity field). Let A ⊂ R be a Borel set with the
following property: For every x ∈ R and δ > 0, both |A ∩ Bδ(x)| > 0 and |Bδ(x) \ A| > 0
(see Rudin [8]). Define

b(x) =

{

1 x ∈ A

2 x /∈ A.

It is easy to check that K[b](x) ≡ [1, 2], and hence b is nowhere continuous. Clearly, x(t) =
x0 + at is a Filippov solution of (1) for any a ∈ [1, 2]. Note that, by the Corollary, there is
a unique classical solution for the above velocity field.
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