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8 The universal Euler characteristic of

V -manifolds
∗

S.M. Gusein-Zade † I. Luengo ‡ A. Melle-Hernández §

Abstract

The Euler characteristic is the only additive topological invariant
for spaces of certain sort, in particular, for manifolds with some finite-
ness properties. A generalization of the notion of a manifold is the
notion of a V -manifold. Here we discuss a universal additive topolog-
ical invariant of V -manifolds: the universal Euler characterictic. It
takes values in the ring generated (as a Z-module) by isomorphism
classes of finite groups. We also consider the universal Euler char-
acteristic on the class of locally closed equivariant unions of cells in
equivariant CW-complexes. We show that it is a universal additive in-
variant satisfying a certain “induction relation”. We give Macdonald
type equations for the universal Euler characteristic for V -manifolds
and for cell complexes of the described type.
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1 Introduction

The Euler characteristic χ(·) (defined as the alternating sum of the ranks of
the cohomology groups with compact support) is the only additive topolog-
ical invariant for spaces of certain sort: see. e. g., [20], see also [8, Proposi-
tion 2]. In particular, the Euler characteristic is the only additive invariant
of manifolds with some finiteness properties: see below. This property has
some generalizations. For example, the equivariant Euler characteristic with
values in the Burnside ring A(G) of a finite group G is the only additive
topological invariant of spaces with G-actions (see, e. g., [8]).

A generalization of the notion of a manifold is the notion of a V -manifold
(that is of a (real) orbifold: locally defined as the quotient of a manifold
by a finite group action) introduced initially in [16]. There are a number of
additive invariants defined for V -manifolds, e. g., the Euler–Satake character-
istic: [17], the orbifold Euler characteristic: [4], [5], [1], [13], the higher order
(orbifold) Euler characteristics: [2], [18], the Γ–Euler–Satake characteristic:
[7].

Here we discuss the universal additive topological invariant χun of V -
manifolds: a sort of a universal (topological) Euler characteristic for them.
It takes values in the ring R generated (as a Z-module) by isomorphism
classes of finite groups.

We also consider the universal Euler characteristic χun on the Grothendieck
ring K fGr

0 (VarC) of quasi-projective varieties with finite groups actions ([12])
and on the class of equivariant cell complexes: locally closed unions of cells
in equivariant CW-complexes in the sense of [19]. In the latter case we show
that χun is a universal additive invariant satisfying a certain “induction re-
lation”.

The classical Euler characteristic satisfies the Macdonald equation for the
generating series of the Euler characteristics of the symmetric powers of a
topological space:

1 +

∞∑

n=1

χ(SnX) · tn = (1− t)−χ(X).

Also one has a Macdonald type equation for the Euler characterictics
of the configuration spaces of points on X . Let MnX = (Xn \ ∆)/Sn be
the configuration space of (unorderd) n-tuples of points in X (∆ is the big
diagonal in the Cartesian power in Xn consisting of points x̄ = (x1, . . . xn) ∈
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Xn with at least two coinciding components). One has

1 +

∞∑

n=1

χ(MnX) · tn = (1 + t)χ(X).

Analogues of these equations for other (additive) invariants with values
in rings different from the ring of integers (say, for the equivariant Euler
characteristic or for the generalized (motivic) Euler characteristic of complex
quasi-projective varieties) are formulated in terms of power structures over
the rings of values: [11, Lemma 1], [10]. A power structure over a ring is
closely related with (and defined by) a λ-ring structure on it. Analogues of
these equations for the universal Euler characterictic are formulated in terms
of different λ-ring structures on R. We discuss these λ-ring structures on R
and the corresponding power structures. We give Macdonald type equations
for the universal Euler characteristic χun for V -manifolds and for equivariant
cell complexes.

2 Euler characteristic of manifolds

The Euler characteristic is defined for manifolds with some finiteness proper-
ties. To fix a class of such manifolds, let us consider (C∞-) manifolds which
are interiors of compact manifolds with boundaries. A submanifold of such a
manifold is the interior of a (closed) submanifold in a manifold with bound-
ary, that is of a submanifold transversal to the boundary. (We permit a
submanifold to be of the same dimension as the manifold itself. In this case
the submanifold is a connected component of the manifold.) In what follows
we consider only manifolds from this class. Let M be a manifold and let N
be a (closed) submanifold of M . One has the following additivity property
of the Euler characteristic:

χ(M) = χ(N) + χ(M \N) .

(Pay attention that M \N is also a manifold from the described class.) One
has the inverse statement.

Proposition 1 Let I be a topological invariant of manifolds which possesses
the additivity property:

I(M) = I(N) + I(M \N)

for a submanifold N ⊂M . Then I(M) = χ(M)a, where a = I(pt).
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Proof . First let us reduce the statement to the corresponding statement for
cells, i. e., for manifolds diffeomorphic to open balls. For that we will cut a
given n-dimensional manifold Mn by submanifolds into pieces diffeomorphic
to cells. A one-dimensional manifold is a (finite) union of open segments and
circles and there is no problem to decompose it into cells. Assume that this
is possible for manifolds of dimension less than n. Let M be the interior of
a manifold M̂ with boundary and let f : M̂ → R be a Morse function on M̂
equal to zero on the boundary ∂M̂ and positive on M . Let 0 < c1 < c2 <
. . . < cr be the critical values of f (and let c0 = 0). Let Ui be small open balls
around the corresponding critical points Pi. The manifold M is the union
of the manifolds Mi = f−1((ci−1 + ε, ci − ε)), M ′

i = f−1((ci − ε, ci + ε)) and
Ni± = f−1(ci ± ε) (we take ε small enough). We have to cut these manifolds
into cells (using submanifolds). For the manifolds Ni± this is possible because
of the assumption. The manifold Mi is (diffeomorphic to) the cylinder over
the manifold Ni− and a method to cut Ni− into cells (by submanifolds) can be
extended to Mi in an obvious way. The intersection M ′

i ∩Ui is diffeomorphic
to a cell. The complement M ′

i \ Ui is (diffeomorphic to) the cylinder over
Ni− \ Ui. A method to cut Ni− \ Ui gives a method to cut M ′

i ∩ Ui. (Here
we apply an obvious version of the procedure to Ni− \Ui which is a manifold
with boundary.)

The additivity property permits to prove the statement for cells (open
balls):

I(σk) = (−1)kI(pt) . (1)

Assume that (1) is proved for cells of dimension less than k, in particular,
I(σk−1) = (−1)k−1I(pt). The ball σk can be cut by a submanifold diffeomor-
phic to σk−1 into two manifolds diffeomorphic to σk. Therefore

I(σk) = 2I(σk) + I(σk−1) ,

what gives (1). �

3 V -manifolds (real orbifolds)

Let us give some definitions in a form appropriate for a discussion below.
For a G-space X , that is a topological space X with a (left) G-action,

and for an embedding G ⊂ H (G and H are finite groups), let the induction
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indH
GX be the H-space defined as the quotient

indH
GX = H ×X/ ∼ ,

where (h1, x1) ∼ (h2, x2) if (and only if) there exists g ∈ G such that x1 =
gx2, h1 = h2g

−1 (with an obvious H-action). As a topological space indH
GX

is the union of several ( |H|
|G|

) copies of X . If X is, say, a (C∞-) manifold or a

complex quasi-projective variety, the space indH
GX is of the same type.

Definition 1 An (n-dimensional) uniformizing system on a topological space

X is a quadriple (U, Ũ, G, ϕ), where U is an open subset of X, G is a finite

group, Ũ is a smooth (C∞-) n-dimensional manifold with a G-action, and ϕ

is a map Ũ → U such that ϕ(gx) = ϕ(x) (that is ϕ factorizes through a map

pϕ : Ũ/G→ U) and the corresponding map pϕ is a homeomorphism.

Remark. In some cases one adds the condition that the fixed point set of
each element of G has codimension at least two in Ũ . This restriction is not
necessary in this paper and it is more convenient not to require it.

Definition 2 Two uniformizing systems (U ′, Ũ ′, G′, ϕ′) and (U ′′, Ũ ′′, G′′, ϕ′′)
on X are equivalent if for any point x ∈ U ′∩U ′′ there exists a neighbourhood
U of x in U ′ ∩ U ′′, a group G contained both in G′ and in G′′ (that is with

embeddings into G′ and into G′′) and a uniformizing system (U, Ũ, G, ϕ) such

that the G′-manifolds indG′

G Ũ and (ϕ′)−1(U) are isomorphic over U (that is by
an isomorphism commuting with the projections to U) and the G′′-manifolds

indG′′

G Ũ and (ϕ′′)−1(U) are isomorphic over U as well.

Definition 3 A (V -manifold) atlas on a topological space X is a collection

of n-dimensional uniformizing systems {(Uα, Ũα, Gα, ϕα)} on X such that⋃
α Uα = X and any two uniformizing systems from the collection are equiv-

alent.

Definition 4 Two atlases on X are equivalent if their union is an atlas on
X as well.

Definition 5 (see [16], [3]) An n-dimensional V -manifold Q is a separable
Hausdorff space X = XQ with an equivalence class of n-dimensional atlases
on it.
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One can define in a natural way the notion of a V -manifold with bound-
ary: see [17], [3, Appendix]. In order to ensure that the topological char-
acteristics discussed below are defined, one has to empose certain finiteness
conditions on V -manifolds under consideration. We will assume that in what
follows all V -manifolds are interiors of compact V -manifolds with boundaries.
(For short we will call them tame.)

The universal Euler characteristic as well as other invariants discussed
below can also be regarded as homomorphisms from the Grothendieck ring
K fGr

0 (VarC) of finite group actions defined in [12]. The Grothendieck ring
K fGr

0 (VarC) is the Abelian group generated by the classes [(X,G)] of quasi-
projective G-varieties for all finite groups G modulo the relations

1) if (X,G) ∼= (X ′, G′) (that is if there exist a group isomorphism α : G→
G′ and an (algebraic) isomorphism ψ : X → X ′ such that ψ(gx) =
α(g)ψ(x)), then [(X,G)] = [(X ′, G′)];

2) if Y is a Zariski closed G-subset of X , then [(X,G)] = [(Y,G)] + [(X \
Y,G)];

3) if G is a subgroup of a finite group H and X is a G-variety, then
[(X,G)] = [(indH

GX,H)].

The multiplication in K fGr
0 (VarC) is defined by the Cartesian product of the

varieties and of the groups acting on them.
It is convenient to discuss some properties of the universal Euler charac-

teristic in a purely topological setting. For that we will consider a sort of
nice topological spaces with finite group actions. The notion of an equivari-
ant CW -complex was introduced in [19]. An equivariant CW -complex with
a finite group G action is a CW -complex possessing, in particular, the fol-
lowing property: if gσ = σ for a cell σ of the complex, then g|σ is the identity
transformation.

Definition 6 An equivariant cell complex is an invariant locally closed union
of cells in a finite equivariant (with respect to a finite group) CW -complex.

A quasi-projective G-variety or a (real) semialgebraic G-set (G is a finite
group) can be represented as an equivariant cell complex. For an equivariant
cell complex its Euler characteristic, equivariant Euler characteristic, orbifold
Euler characteristic, . . . are well defined: see below.
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4 Additive invariants of V -manifolds

There are a number of additive invariants defined for V -manifolds.
For a G-space X (G is a finite group) and for a point x ∈ X , let Gx =

{g ∈ G : gx = x} be the isotropy subgroup of x. For a subgroup H ⊂ G, let
XH = {x ∈ X : hx = x for all h ∈ H} be the fixed point set of the subgroup
H and let X(H) = {x ∈ X : Gx = H} be the subspace of points with the
isotropy subgroup H (X(H) ⊂ XH). For a conjugacy class [H ] of subgroups
of G, let X([H]) = {x ∈ X : Gx ∈ [H ]}. Let G be the set of the isomorphism
classes of finite groups.

Let Q be a (tame) V -manifold. For each point x ∈ Q one associates the
isotropy (sub)group Gx. For a finite group G, let Q(G) = {x ∈ Q : Gx

∼= G}.
One can see that the V -manifold Q(G) is a global quotient (under an action
of the group G). Moreover, its reduction is the usual (C∞-) manifold (with
the action of the trivial group).

The Euler-Satake characteristic of Q ([17]) is defined by

χES(Q) =
∑

{G}∈G

1

|G|
χ(Q(G)). (2)

The orbifold Euler characteristic (defined in, e. g., [1], [13]) can be defined
for a V -manifold by

χorb(Q) =
∑

{G}∈G

χorb(G/G,G) · χ(Q(G)) ,

where χorb(G/G,G) is the orbifold Euler characteristic of the one-point G-set
G/G (in the sense of [1], [13]). If all the isotropy groups of points of Q are
Abelian, one has

χorb(Q) =
∑

{G}∈G

|G| · χ(Q(G)) .

The higher order orbifold Euler characteristics χ(k)(X,G) of a G-space
(X,G) were defined in [2], [18]. For k = 0, 1, one has χ(0)(X,G) = χ(X/G),
χ(1)(X,G) = χorb(X,G). (We follow the numbering used in [18].) For a
V -manifold they can be defined by

χ(k)(Q) =
∑

{G}∈G

χ(k)(G/G,G) · χ(Q(G)) .
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If all the isotropy groups of points of Q are Abelian, one has

χ(k)(Q) =
∑

{G}∈G

|G|k · χ(Q(G)) .

One can see that the Euler-Satake characteristic (2) can be regarded as
the Euler characteristic of order (−1). This fits to the definition of the Γ-
Euler-Satake characteristic χES

Γ (Q) of a V -manifold for a group Γ in [7]: for
Γ = Zk+1 one gets the Euler characteristic of order k; for Γ = {1} (i. e.,
Γ = Z0), one gets the Euler–Satake characteristic.

All these characteristics possess the additivity and the multiplicativity
properties: if Q′ is a (closed) V -submanifold of a V -manifold Q, one has
χ•(Q) = χ•(Q′)+χ•(Q\Q′); if Q1 and Q2 are V -manifolds, one has χ•(Q1×
Q2) = χ•(Q1) · χ

•(Q2). (Here χ
• means χES, χorb, . . . )

All these invariants can be defined on the Grothendieck ring K fGr
0 (VarC)

of quasi-projective varieties with finite groups actions so that they are ring
homomorphism from K fGr

0 (VarC) to the ring Z of integers. Moreover, all of
them can be defined for equivariant cell complexes. For example, if X is an
equivariant cell complex with an action of a finite group G, then its orbifold
Euler characteristic can be defined by the equation

χorb(X,G) =
1

|G|

∑

(g,h)∈G×G:
gh=hg

χ(X〈g,h〉) ,

where 〈g, h〉 is the subgroup of G generated by g and h, or by the equation

χorb(X,G) =
∑

[H]∈conjsubG

χ(X([H])/G)χorb(G/H,G) ,

where conjsubG is the set of conjugacy classes of subgroups of G.

5 The universal Euler characteristic

Let G be the set of al isomorphisms classes of finite groups and let R be be
the free Abelian group generated by the elements TG correspondig to the
classes {G} ∈ R. We will write an element of R as a finite sum of the
form

∑
{G}∈G aGT

G, where aG ∈ Z. One has a natural multiplication on R

defined by TG′

· TG′′

= TG′×G′′

. Thus R is a ring. Acording to the Krull-
Schmidt theorem each finite group has a unique representation as the product
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of indecomposable finite groups. Let Gind be the set of the isomorphisms
classes of indecomposable finite groups. The Krull-Schmidt theorem implies
that R is the polynomial ring Z[TG] in the variables TG corresponding to (the
isomorphisms classes of) the indecomposable finite groups. (If a finite group
G has the decomposition G ∼=

∏r
i=1G(i) with indecomposable G(i), one has

TG =
∏r

i=1 TG(i).)

Definition 7 The universal Euler characteristic of (tame) V -manifold Q is
defined by

χun(Q) =
∑

{G}∈G

χ(Q(G))TG ∈ R. (3)

One can see that χun is an additive and multiplicative invariant of V -
manifolds.

Another interpretation of the ring R is the following one: it is the subring
of the Grothendieck ring K fGr

0 (VarC) of quasi-projective varieties with finite
groups actions generated by the finite sets, i. e., by zero-dimensional varieties.
In terms of the descrption/definition of the Grothendieck ring K fGr

0 (VarC) in
[12], an element a =

∑
{G}∈G aGT

G ∈ R can be represented by the (virtual)

set consisting of
∑

G∈G aG points so that on aG of them (aG may be negative)
one has the trivial action of the group G. In terms of the description given
above, an element a can be represented by a pair (X,G∗), where G∗ is a
group containing all the groups G with aG 6= 0 and X is the union over
{G} ∈ G of the (finite) sets which consists of aG copies of G∗/G with the
natural G∗-action.

The universal Euler characteristic χun(•) can be defined for elements of
the Grothendieck ring K fGr

0 (VarC) of quasi-projective varieties with finite
groups actions. Moreover it can be defined for equivariant cell complexes. For
an equivariant cell complex X with an action of a finite group G, χun(X,G)
can be defined by the equation

χun(X,G) =
∑

[H]∈conjsubG

χ(X([H])/G)TH .

In orther terms it can be defined in the following way. The set Σk of cells of
dimesion k in X is a finite set with a G-action. Then

χun(X,G) =
∑

k

(−1)k[(Σk, G)] ∈ R.
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One can see that the universal Euler characteristic of equivariant cell
complexes possesses the following properties:

1) additivity: if (Y ;G) is a closed G-invariant subcomplex of (X,G), then

χun(X,G) = χun(Y,G) + χun(X \ Y,G) ;

2) multiplicativity: if (X ′, G′) and (X ′′, G′′) are two equivariant cell com-
plexes, then

χun(X ′ ×X ′′, G′ ×G′′) = χun(X ′, G′) · χun(X ′′, G′′) ;

3) the induction relation: if G is a subgroup of H , then

χun(indH
GX,H) = χun(X,G).

The relations 1) and 3) permit to define the universal Euler characteristic
χun as a function on the Grothendieck ring K fGr

0 (VarC) (with values in R).
The relations 1) and 2) mean that it is a ring homomorphis to R.

Let us give a statement which explains the word universal in the name of
χun.

Theorem 1 If I is an additive invariant of (tame) V -manifolds with values
in an Abelian group R, then there exists a unique homomorphism of Abelian
groups r : R → R such that I(•) = r(χun(•)). If R is a ring and I multi-
plicative, then r is a ring homomorphism.

Proof . Let Q be a tame V -manifold. For a finite group (or rather for an
isomorphism class of finite groups) G, let Q(G) be the set of points x ∈ XQ

with isotropy group isomorphic to G. The fact that Q is assumed to be tame
implies that there are finitely many classes G such that Q(G) 6= ∅. (Q(G) is a
non-closed V -submanifold of Q whose reduction is a usual C∞-manifold.)

The set G of isomorphism classes of finite groups is a partially order
set. Let G be a minimal element from G with Q(G) 6= ∅. By additivity one
has I(Q) = I(Q(G)) + I(Q \ Q(G)). Itereting this equation one gets I(Q) =∑

G∈G I(Q
(G)). Since Q(G) is the usual C∞-manifold, due to Proposition 1

one has I(Q(G)) = χ(Q(G))τG, with τG = I(TG) ∈ R. One can see that the
group homomorphis r : R → R which sends the universal Euler characteristic
χun(•) to I(•) is defined by r(TG) = τG.

The multiplicativity of r, for I being multiplicative, is obious. �

One also has the following universality properties of χun(•) for equivariant
cell complexes.
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Theorem 2 Let I be an additive invariant of equivariant cell complexes with
values in an Abelian group R posseing the induction property: I(indH

GX,H) =
I(X,G) for finite groups G ⊂ H. Then there exists a unique homomorphism
of Abelian groups r : R → R such that I(·, ·)) = r(χun(·, ·)). If R is a ring
and I multiplicative, then r is a ring homomorphism.

Proof . Let Σ be the (finite set) of cells in an equivariant cell complexes
(X,G) (Σ is a G-set). The additivity property of I imply that: I(X,G) =∑

[σ]∈Σ/G I(Gσ,G) where σ = σk is an open cell (of certain dimension k) in

X : a representative of the orbit [σ], Gσ is the union ∪g∈Ggσ of the G-shifts
of σ.

Let Gσk be the isotropy group of the cell σk.(Let us recall that Gσ acts
trivialy on σ.) One has Gσk = (G/Gσk)× σk, where G/Gσk is a finite G-set.
Just as in the proof of Proposition 1 one has

I(Gσk, G) = (−1)kI((G/Gσk)× {pt}, G).

The induction property implies that I((G/Gσk)× {pt}, G) = I(Gσk/Gσk)×
{pt}, Gσk). Let us denote I(G/G × {pt}, G) by τG. One can see that group
homomorphism r : R → R which sends χun(·, ·) to I(·, ·) is defined by
r(TG) = τG. The multiplicativity of r in the case when I is multiplicative is
obvious. �

6 λ-ring structures onR and the correspondig

power structures

A way to formulate an analogue of Macdonald type equations for an (additive
and multiplicative) invariant with values in a ring R is through the so called
power structure over the ring R: [9]. A power structure over a ring R is a
method to give sense to an expression of the form (1+a1t+a2t

2+ . . .)m with
ai, m ∈ R as a power series form 1+ tR[[t]] so that all properties of the usual
exponential function hold. The notion of a power structure over a ring R is
related with the notion of a λ-ring (some times called a pre-λ-ring) structure
on R: [14].

We will describe two λ-ring structures on the ring R appropriate for
the formulation of Macdonald type equations for the symmetric products
and for the configuration spaces. As it was explained, R is the ring of

11



polynomials in the variables TG corresponding to the isomorphism classes
G of indecomposable finite groups. The standard λ-ring structure on the
polynomial ring Z[x1, x2, x3, . . .] (see, e. g., [14]) is defined in the following
way: for

p(x) =
∑

k

pkx
k ∈ Z[x1, x2, x3, . . .],

one has

λp(x)(t) =
∏

k

(
1− xkt

)−p
k

. (4)

Equation (4) follows directly from the equation for the λ-series corresponding
to a monomial:

λ
xk
(t) =

(
1− xkt

)−1

.

Natural λ-rings structures on R are different ones. To define a λ-ring
structure on R, one can define the λ-series, say, νTG(t) for a monomial TG

from R. Namely, if the series νTG(t) is defined for all {G} ∈ G (so that
νTG(t) = 1 + TGt + . . .), then one defines the λ-series for an element A =∑

{G}∈G aGT
G ∈ R (aG ∈ Z) by

νA(t) =
∏

{G}∈G

(νTG(t))aG .

Let us first describe the λ-rings structure on R corresponding to the
symmetric products of spaces. We will call it the power product λ-structure.
This structure will be defined defined by a λ-series ζ•(t). For a finite group
G, let Gn = G ≀ Sn = Gn ⋊ Sn be the corresponding wrearth product. Let us
define ζTG(t) for the monomial TG by the equation

ζTG(t) = 1 +
∞∑

n=1

TGntn. (5)

In particular,

ζ1(t) = 1 +

∞∑

n=1

T Sntn.

Remark. Pay attention that the coefficients of the λ-series for a monomial
are monomials as well.
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Let us (partially) describe the series (5) in terms of the variables TG for the
polynomial ringR (G runs through isomorphism classes of indecomposable fi-
nite groups). For such a description the variables coresponding to the Abelian
groups play a special role. Let Ap,k

∼= Zpk(p is prime, k ≥ 1) be the indecom-
posable finite Abelian groups. For a group G =

∏
p,k(Ap,k)

lp,k
∏
G(i)ki with

non-Abelian indecomposable finite groups G(i), for n > 1, one has

(
∏

p,k

A
lp,k
p,k

∏
G(i)ki)n ∼=


 ∏

p,k:p6 |n

A
lp,k
p,k


× Ĝ(n),

where Ĝ(n) is a indecomposable non-Abelian group (depending on the group
G of course) (see [15] and also [6] for more precise statements) and therefore

ζ∏
p,k T

lp,k
Ap,k

∏
i T

ki
G(i)

(t) = 1+

(∏

p,k

T
lp,k
Ap,k

∏

i

T ki
G(i)

)
t+

∞∑

n=2


TĜ(n)

∏

p,k:p6 |n

T
lp,k
Ap,k


 tn .

(6)
The described λ-ring structure on R defines (in the usual way: see [9],

[10]) a power structure over R. We will call it the symmetric product power
structure. Let us recall that according to the construction of the power
structure one has

(ζ1(t))
TG

= ζTG(t) .

The other λ-ring structure on R corresponds to the configuration space of
spaces. We will call it the configuration space λ-ring structure. This structure
will be defined by a λ -series λ•(t). As above it is suffient to define this series
for monomials. Let

λTG(t) = 1 + TGt . (7)

In particular, λ1(t) = 1 + t.
This λ-ring structure on R defines the corresponding configuration space

power structure overR. The described power structures (the symmetric prod-
uct and the configuration space ones) over R are different: see computations
in [12, page 17].

From [12] and the interpretation of R given above it follows that the
configuration space power structure over R is effective in the following sense.
Let R+ be the subsemiring of R consisting of polynomials in TG with non-
negatives coefficients. The effectiveness of the power structure means that if
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ai and m are from R+, then all the coefficientes of the series (1+a1t+a2t
2+

. . .)m belong to R+ as well.

Remark. The fact that this power structure is effective is not a direct
consequence of the equation (7) for the λ-series. The effectiveness of the
configuration space power structure is a consequence of an explicit equation
for it: see [12, Equation 10]. The symmetric product power structure over
R is not effective: see again [12, page 17].

7 Macdonald type equations for the universal

Euler characteristics for symmetric prod-

ucts

Let Q be a (tame) V -manifold. The n-th symmetric power SnQ of Q is the
V -manifold defined in the following way. The underline space of SnQ is the
n-th symmetric power SnXQ of the underline space XQ of the V-manifold Q.
Let

x = (x1, . . . , x1, . . . , xs, . . . , xs)

where xi, i = 1, . . . , s, is a point ofXQ with the multiplicity ki in x,
∑s

i=1 ki =
n, xi 6= xj for i 6= j, be a point of SnXQ and let (Ui, Ũi, G(i), ϕi) be local
uniformizing systems for neighbourhoods Ui of the points xi such that Ui ∩
Uj = ∅ for i 6= j. Then the orbifold structure on SnQ in a neighbourhood
of x is defined by the local uniformizing system (Sk1U1 × . . .× SksUs, Ũ

k1
1 ×

. . .× Ũks
s , (G(1))k1 × . . .× (G(s))ks, ϕ̄), where (G(i))ki is the wreath product

G(i) ≀Ski acting on the Cartesian power Uki
i in the usual way, ϕ̄ = (ϕ1× . . .×

ϕ1 × . . .× ϕs × . . .× ϕs).

Theorem 3 For a V -manifold Q one has

1 +

∞∑

n=1

χun(SnQ)tn = ζχun(Q)(t) = (ζ1(t))
χun(Q), (8)

where the right hand side is written in terms of the symmetric product power
structure over R.

Let us recall that, if χun(Q) =
∑

{G}∈G aGT
G, then

ζχun(Q)(t) =
∏

{G}∈G

(
1 + TGt + TG2t2 + TG3t3 + . . .

)aG .
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Proof . Let us denote the left hand side of Equation (8) by ξQ(t). If Q
′ is a

closed V -submanifold of Q, one has ξQ(t) = ξQ′(t)ξQ\Q′(t). (This follows from
the fact that SnQ is the disjoint union of SkQ′×Sn−k(Q\Q′) for 0 ≤ k ≤ n.)
The representation of Q as the disjoint union of the sub-V -manifolds Q(G)

for G ∈ G permits to prove the statement for Q = MTG for a C∞-manifold
M (with the action of the trivial group). A representation of M as a cell
complex permits to prove the statement for Q = σkTG, where σk is an open
cell of dimension k. The fact that a k-dimensional cell can be represented as
the union of two k-dimensional cells and one (k− 1)-dimensional cell implies
that

ξσkTG(t) = (ξσ0TG(t))(−1)k .

Therefore it is sufficient to show (8) for Q = σ0TG. In this case we have

ξσ0TG(t) = 1+TGt+TG2t2+TG3t3+. . . = ζTG(t) = (ζ1(t))
TG

= (ζ1(t))
χun(σ0TG) .

�

One has a Macdonald type equation for equivariant cell complexes (and
therefore for representatives (X,G) of elements of the Grothendieck ring
K fGr

0 (VarC)). For a cell complex (X,G), let (Xn, Gn) be the Cartesian power
of the complex X with the standard action of the wreath product Gn.

Theorem 4 For an equivariant cell complex (X,G), one has

1 +

∞∑

n=1

χun(Xn, Gn)t
n = ζχun(X,G)(t) = (ζ1(t))

χun(X,G).

(the right hand side is in terms of the symmetric product power structure).

The proof is essentially the same as the one of Theorem 3 with the only
difference that the general case is reduced not to σkTG, but to σk× (G/Gσk).

8 Macdonald type equations for the univer-

sal Euler characteristics for configuration

spaces

For a V -manifold Q, its n-th configuration space MnQ is the V -manifold
defined in the following way. Its underline space is MnXQ = (Xn

Q \∆)/Sn ⊂
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SnXQ; the V -manifold structure on it comes from the one in SnXQ. (Pay
attention that one has to define local uniformizing systems only for points
x = (x1, . . . , xn) with xi 6= xj if i 6= j.)

Theorem 5 For a V -manifold Q, one has

1 +
∞∑

n=1

χun(MnQ)t
n = λχun(Q)(t) = (1 + t)χ

un(Q). (9)

where the right hand side is written in terms of the configuration space power
structure over R.

Let us recall that λ1(t) = 1 + t, if χun(Q) =
∑

{G}∈G aGT
G, then

λχun(Q)(t) =
∏

{G}∈G

(
1 + TGt

)aG .

An analogue of this equation for equivariant cell complex is given in the
following statement. For equivariant cell complex (X,G) and for n ≥ 1,
let ∆G ⊂ Xn be the big G-diagonal in Xn consisting of (ordered) n-tuples
(x1, . . . , xn) ∈ Xn with at least two of the components xi from the same
G-orbit.

Theorem 6 For an equivariant cell complex (X,G), one has

1 +

∞∑

n=1

χun(Xn \∆G, Gn)t
n = λχun(X,G)(t) = (1 + t)χ

un(X,G).

(the right hand side is in the terms of the configuration space power struc-
ture).

Proofs of Theorems 5 and 6 are minor modifications of those of Theo-
rems 3 and 4.
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