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STABLE LÉVY PROCESSES IN A CONE

By Andreas E. Kyprianou†, Victor Rivero∗ and Weerapat Satitkanitkul‡

University of Bath, CIMAT, Université d’Angers

Abstract Bañuelos and Bogdan [6] and Bogdan et al. [21]
analyse the asymptotic tail distribution of the first time a sta-
ble (Lévy) process in dimension d ≥ 2 exits a cone. We use these
results to develop the notion of a stable process conditioned to
remain in a cone as well as the the notion of a stable process
conditioned to absorb continuously at the apex of a cone (with-
out leaving the cone). As self-similar Markov processes we ex-
amine some of their fundamental properties through the lens of
its Lamperti–Kiu decomposition. In particular we are interested
to understand the underlying structure of the Markov additive
process that drives such processes. As a consequence of our in-
terrogation of the underlying MAP, we are able to provide an
answer by example to the open question: If the modulator of a
MAP has a stationary distribution, under what conditions does
its ascending ladder MAP have a stationary distribution?

With the help of an analogue of the Riesz–Bogdan–Żak trans-
form (cf. Bogdan and Żak [22], Kyprianou [43], Alili et al. [1])
as well as Hunt-Nagasawa duality theory, we show how the
two forms of conditioning are dual to one another. Moreover,
in the sense of Rivero [56, 57] and Fitzsimmons [36], we con-
struct the null-recurrent extension of the stable process killed
on exiting a cone, showing that it again remains in the class
of self-similar Markov processes. Aside from the Riesz–Bogdan–
Żak transform and Hunt-Nagasawa duality, an unusual combi-
nation of the Markov additive renewal theory of e.g. Alsmeyer
[2] as well as the boundary Harnack principle (see e.g. [21]) play
a central role to the analysis.

In the spirit of several very recent works (see [48, 43, 46, 47,
44, 33]), the results presented here show that many previously
unknown results of stable processes, which have long since been
understood for Brownian motion, or are easily proved for Brow-
nian motion, become accessible by appealing to the notion of
the stable process as a self-similar Markov process, in addition
to its special status as a Lévy processes with a semi-tractable
potential analysis.

1. Introduction. For d ≥ 2, let X := (Xt : t ≥ 0), with probabilities P = (Px, x ∈ Rd),
be a d-dimensional isotropic stable process of index α ∈ (0, 2). That is to say, (X,P) is a
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Rd-valued Lévy process having characteristic triplet (0, 0,Π), where

(1.1) Π(B) =
2αΓ((d+ α)/2)

πd/2|Γ(−α/2)|

∫

B

1

|y|α+d
dy, B ∈ B(R).

Equivalently, this means (X,P) is a d-dimensional Lévy process with characteristic exponent
Ψ(θ) = − logE0(e

i<θ,X1>) which satisfies

Ψ(θ) = |θ|α, θ ∈ R
d.

Stable processes are also self-similar in the sense that they satisfy a scaling property. More
precisely, for c > 0 and x ∈ Rd \ {0},

(1.2) under Px, the law of (cXc−αt, t ≥ 0) is equal to Pcx.

As such, stable processes are useful prototypes for the study of the class of Lévy processes
and, more recently, for the study of the class of self-similar Markov processes. The latter class
of processes are regular strong Markov processes which respect the scaling relation (1.2), and
accordingly are identified as having self-similarity (Hurst) index 1/α.

In this article, we are interested in understanding the notion of conditioning such stable
processes to remain in a Lipschitz cone,

(1.3) Γ = {x ∈ R
d : x 6= 0, arg(x) ∈ Ω},

where Ω is open on Sd−1 := {x ∈ Rd : |x| = 1}. Note that Γ is an open set which does not
include its apex {0}, moreover, Ω need not be a connected domain. See [21] for the notion
of Lipschitz cone and some related facts.

Our motivation comes principally from the desire to show how the rapidly evolving theory
of self-similar Markov processes presents a number of new opportunities to contextualise
existing theory and methodology in a completely new way to attack problems, which may
have otherwise been seen as beyond reach. We note in this respect that the key tool, the
Lamperti–Kiu transform for self-similar Markov processes, was formalised only recently in
[26, 42, 1]. It identifies self-similar Markov processes as in one-to-one correspondence with
Markov additive processes through a generalised polar decomposition with additional time
change, and is the principal tool which, in the last five years or so, has unlocked a number of
ways forward for classical problems such as the one we consider here; see [26, 48, 45, 49, 43,
46, 47, 32, 33, 34]. Moreover, this new perspective opens up an entire new set of challenges
both in the setting of the underlying class of Markov additive processes (which have seldom
received attention in the general setting since the foundational work of e.g. Çinlar [27, 28, 29]
and Kaspi [39]) as well as the general class of self-similar Markov processes. Many of these
challenges also emerge naturally in the setting of other stochastic processes and random
structures where self-similarity plays an inherently fundamental role; see for example [61] in
the setting of multi-type fragmentation processes, [12] in the setting of growth fragmentation
processes and [8, 10] in the setting of planar maps. In this respect interrogating fundamental
questions in the stable setting lays the foundations to springboard to problems of significantly
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greater generality. We mention in this respect, an outstanding problem in the setting of stable
Lévy processes, which relates to the extremely deep work of e.g. [14, 35, 15] which showed how
to condition a Brownian motion to stay in a Weyl Chamber and the important relationship
this has to random matrix theory. This also inspired similar conditionings of other processes,
such as those that appear in queueing theory; see [55].

Our journey towards conditioning stable processes to remain in the cone Γ will take us
through a number of striking relations between stable processes killed on exiting Γ and
stable processes conditioned either enter or to to absorb continuously at the apex of Γ,
which are captured by space-time transformations. Our analysis will necessitate examining
new families of Markov additive processes that underly the conditioned stable processes
through the Lamperti–Kiu transform. As an example we will exhibit a rare and difficult result
which identifies semi-explicitly the existence of a stationary distribution for the at radially
extreme points of the conditioned process (showing how the harmonic functions that drive
our conditionings influence the strong mixing of the angular process). Moreover, our work will
complement a number of other works which have examined the notion entrance laws of self-
similar Markov processes, as well as the subsequent notion of recurrent extension. Specifically,
in the setting of Brownian motion and stable processes in a Lipschitz cone, this pertains to
[7, 21], and more generally for self-similar Markov processes, see [13, 23, 56, 57, 36, 32]. Our
approach will consist of an unusual mixture of techniques, coming from potential analysis
and Harnack inequalities, Markov additive renewal theory, last exit decompositions à la
Maisonneuve and Itô synthesis.

2. Harmonic functions in a cone. For simplicity, we denote κΓ be the exit time from
the cone i.e.

κΓ = inf{s > 0 : Xs /∈ Γ}.

Bañuelos and Bogdan [6] and Bogdan et al. [21] analyse the tail behaviour of the stopping
time κΓ. Let us spend a moment reviewing their findings.

Suppose that we write

UΓ(x, dy) =
∫ ∞

0

Px(Xt ∈ dy, t < κΓ)dt, x, y ∈ Γ

for the potential of the stable process killed on exiting Γ.

Then it is known e.g. from Section 2 of [21] that UΓ(x, dy) has a density, denoted by uΓ(x, y)
and that

M(y) := lim
|x|→∞

uΓ(x, y)

uΓ(x, y0)
, y ∈ Γ,

exists and depends on y0 ∈ Γ only through a normalising constant. Note that it is a conse-
quence of this definition that M(x) = 0 for all x 6∈ Γ. Moreover, M is locally bounded on R

d

and homogeneous of degree β = β(Γ, α) ∈ (0, α), meaning,

(2.1) M(x) = |x|βM(x/|x|) = |x|βM(arg(x)), x 6= 0.

3



It is also known that, up to a multiplicative constant, M is the unique function which is
harmonic in the sense that

(2.2) M(x) = Ex[M(XτB )1(τB<κΓ)], x ∈ R
d,

where B is any open bounded domain and τB = inf{t > 0 : Xt 6∈ B}.

The function M plays a prominent role in the following asymptotic result in Corollary 3.2
of Bogdan et al. [21], which strengthens e.g. Lemma 4.2 of Bañuelos and Bogdan [6].

Proposition 2.1 (Bogdan et al. [21]). We have

lim
a→0

sup
x∈Γ, |t−1/αx|≤a

Px(κΓ > t)

M(x)t−β/α
= C,

where C > 0 is a constant.

Before moving to the next section we also mention the earlier works of DeBlaissie [30] and
Méndez-Hernández [53], who considered moment properties of the exit time from the cone.

3. Results for stable processes conditioned to stay in a cone. The above summary
of the results in [6, 21] will allow us to introduce the notion of stable process conditioned to
stay in Γ. Before doing that we make a slight digression to introduce some notation.
Let D be the space of càdlàg paths defined on [0,∞), with values in Rd ∪∆, where ∆ is a
cemetery state. Each path ω ∈ D is such that ωt = ∆, for any t ≥ inf{s ≥ 0 : ωs = ∆} =:
ζ(ω). As usual we extend any function f : Rd → R to Rd∪∆ by taking f(∆) = 0. The space
D is endowed with the Skohorod topology and its Borel σ-field. Here after we will denote by
X the canonical process of the coordinates, and by (Ft, t ≥ 0) the right-continuous filtration
generated by X. We will also denote by PΓ the law of the stable process (X,P) killed when
it leaves the cone Γ. Note, in particular, that (X,PΓ) is also a self-similar Markov process.

Theorem 3.1.

(i) For any t > 0, and x ∈ Γ,

P
⊳
x(A) := lim

s→∞
Px (A |κΓ > t + s) , A ∈ Ft,

defines a family of conservative probabilities on the space of càdlàg paths which respect
the Doob h-transform

(3.1)
dP⊳

x

dPx

∣

∣

∣

∣

Ft

:= 1(t<κΓ)
M(Xt)

M(x)
, t ≥ 0, and x ∈ Γ.

In particular, the right-hand side of (3.1) is a martingale.
(ii) Let P⊳ := (P⊳

x, x ∈ Γ) . The process (X,P⊳), is a self-similar Markov process.
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Next, we want to extend the definition of the process (X,P⊳), to include the apex of the cone
Γ as a point of issue in a similar spirit to the inclusion of the origin as a point of issue for
positive and real-valued self-similar Markov processes (cf. Bertoin and Yor [13], Bertoin and
Caballero [9], Caballero and Chaumont [24], Bertoin and Savov [11], Chaumont et al. [25],
Dereich et al. [32]). Said another way, we want to show the consistent inclusion of the state
0 to the state space Γ in the definition of (X,P⊳) as both a self-similar and a Feller process.

Before stating our theorem in this respect, we must first provide a candidate law for P⊳
0, which

is consistent with the family P
⊳. To this end, we need to recall the following theorem which

is a copy of Theorem 3.3 in Bogdan et al. [21] (see also [7, 30] for earlier work pertaining
to distributional identities concerning the entrance law from the apex of Brownian motion
in a cone). In order to state it, we need to introduce the notation pΓt (x, y), x, y ∈ Γ, t ≥ 0,
which will denote the transition density of (X,PΓ). Note the reason why this density exists
is because of the existence of a transition density for X, say pt(x, y), x, y ∈ Rd, t ≥ 0 and
the relation

pΓt (x, y) := pt(x, y)− Ex[κΓ < t; pt−κΓ
(XκΓ

, y)], x, y ∈ Γ, t > 0.

Theorem 3.2 (Bogdan et al. [21]). The following limit exits,

(3.2) nt(y) := lim
Γ∋x→0

pΓt (x, y)

Px(κΓ > t)tβ/α
, x, y ∈ Γ, t > 0,

and (nt(y)dy, t > 0), serves as an entrance law to (X,PΓ), in the sense that

nt+s(y) =

∫

Γ

nt(x)p
Γ
s (x, y)dx, y ∈ Γ, s, t ≥ 0.

The latter is a finite strictly positive jointly continuous function with the properties

(3.3) nt(y) = t−(d+β)/αn1(t
−1/αy) and n1(y) ≈

Py(κΓ > 1)

(1 + |y|)d+α
, y ∈ Γ, t > 0,

and

(3.4)
∫

Γ

nt(y)dy = t−β/α, t > 0,

where f ≈ g means the ratio of the functions f and g are bounded from above and below by
two positive constants, uniformly in their domains.

The existence of the entrance law (nt(y)dy, t > 0), is sufficient to build a candidate for a
probability measure, say P⊳

0, on D carried by the paths of X that start continuously from 0
and remain in Γ forever. To that end, note from (3.2) and Proposition 2.1, that for any t > 0
we have the following weak convergence,

lim
Γ∋x→0

M(y)

M(x)
Px(Xt ∈ dy, t < κΓ) = lim

Γ∋x→0
C

M(y)

Px(t < κΓ)tβ/α
pΓt (x, y)dy

= CM(y)nt(y)dy, y ∈ Γ,(3.5)
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where C is the constant in Proposition 2.1, and it is independent of t. With a pre-emptive
choice of notation, let us denote by P⊳

0(Xt ∈ dy) the measure that is obtained as a limit in
the above relation, that is

P
⊳
0(Xt ∈ dy) := CM(y)nt(y)dy, y ∈ Γ, t > 0.

Recalling from (3.1) that M forms a martingale for the process killed at its first exit from
Γ, we have that necessarily

∫

Γ
P⊳
0(Xt ∈ dy) = 1. Furthermore, denote by P⊳

0 the probability
measure on D whose finite dimensional distributions are given by,

P
⊳
0(Xti ∈ Ai, i = 1, · · · , n) := C

∫

A1

M(y)nt1(y)P
⊳
y(Xti−t1 ∈ Ai, i = 2, · · · , n) dy,

for n ∈ N, 0 < t1 ≤ · · · tn < ∞ and Borel subsets of Γ, A1, · · · , An. The weak convergence in

(3.5) extends in a straightforward way to the finite dimensional convergence P⊳
x

f.d.
−−−−→
Γ∋x→0

P⊳
0.

Our main result in this respect establishes that the convergence holds in the stronger sense
of Skorohod’s topology.

Theorem 3.3. The limit P⊳
0 := limΓ∋x→0 P

⊳
x is well defined on the Skorokhod space, so that,

(X, (P⊳
x, x ∈ Γ∪ {0})) is both Feller and self-similar which enters continuously at the origin,

after which it never returns and subsequently remains in Γ.

The proof of Theorem 3.3 leads us to a stronger understanding how stable processes enter
into the wedge Γ from its apex, specifically showing that there is functional continuity on the
Skorokhod space, complementing the existing works of [21] in the stable setting and [7, 30] in
the Brownian setting, which deal with specific functionals of the respective processes killed
on exiting a cone.

Recalling Williams’ classical decomposition of Brownian excursions from the origin, which
shows that their entrance law can be constructed from the Brownian motion conditioned to
stay positive (also identifiable as a Bessel-3 process), one may wonder, in light of Theorem
3.3, if it there is a self-similar process that behaves like (X,PΓ), but once it exits Γ it is
not absorbed but returns 0 in a sensible way. In the specialised literature, a process bearing
those characteristics would be called a self-similar recurrent extension of the stable process
killed on exiting the cone Γ, (X,PΓ), i.e. a Γ∪ {0}–valued process that behaves like (X,PΓ)
up to the first hitting time of ∂Γ, for which 0 is a recurrent and regular state, and that has
the scaling property (1.2). If such a process exists, say (

❀

X t, t ≥ 0), the fact that 0 is regular
for it, implies that there exists a local time at 0, say L, and an excursion measure from
0, say N

Γ. We will see in Section 13 that either N
Γ(X0+ 6= 0) = 0 or N

Γ(X0+ = 0) = 0.
In the former case, we say that the recurrent extension leaves 0 continuously, and in the
latter that it leaves 0 by a jump. General results from excursion theory (see e.g. [37, 17]),
ensure that both objects together (L,NΓ) characterize

❀

X. Furthermore, the measure N
Γ is

a self-similar excursion measure compatible with the transition semi-group of (X,PΓ), that
is, it is a measure on (D,F) such that

6



(i) it is carried by the set of Γ-valued paths that are sent to the cemetery state 0 at their
death with lifetime ζ,

{χ ∈ D | ζ > 0, χs ∈ Γ, s < ζ, and χt = 0, for all t ≥ ζ},

i.e. where, tautologically, ζ = inf{t > 0 : χt = 0};
(ii) the Markov property under N

Γ, is satisfied, that is, for every bounded F -measurable
variable Y and A ∈ Ft, t > 0,

N
Γ(Y ◦ θt, A ∩ {t < ζ}) = N

Γ
(

E
Γ
Xt
[Y ], A ∩ {t < ζ}

)

;

(iii) the quantity N
Γ(1− e−ζ) is finite;

(iv) there exists a γ ∈ (0, 1) such that for any q, c > 0,

(3.6) N
Γ

(
∫ ζ

0

e−qsf(Xs)ds

)

= c(1−γ)α
N

Γ

(
∫ ζ

0

e−qcαsf(cXs)ds

)

.

The condition (iv) above is equivalent to require that

(iv’) there exists γ ∈ (0, 1) such that, for any c > 0 and f : Γ → R+ measurable,

N
Γ(f(Xs), s < ζ) = cαγNΓ(f(c−1Xcαs), c

αs < ζ), for s > 0

The fact that NΓ necessarily satisfies the above conditions is a consequence of a straightfor-
ward extension of the arguments in Section 2.2 in [56].

Conversely, Itô’s synthesis theorem ensures that, given an excursion measure satisfying the
conditions (i)-(iv) above, and a local time at zero, there is a self-similar recurrent extension
of (X,PΓ). Using this fact, and that the entrance law (nt(y)dy, t > 0) is intimately related
to an excursion measure, we establish in the next result the existence of unique self-similar
recurrent extension of (X,PΓ) that leaves 0 (the apex of the cone) continuously. Furthermore,
we will give a complete description of recurrent extensions that leave zero by a jump.

Theorem 3.4. Let N
Γ be a self-similar excursion measure compatible with (X,PΓ). We

have that there exists a γ ∈ (0, β/α), a constant a ≥ 0, and a measure πΓ on Ω such that
aπΓ ≡ 0,

∫

Ω
πΓ(dθ)M(θ) < ∞, and N

Γ can be represented by, for any t > 0, and any A ∈ Ft

N
Γ(A , t < ζ) = aE⊳

0

[

1

M(Xt)
1A

]

+

∫ ∞

0

dr
r1+αγ

∫

Ω

πΓ(dθ)Erθ[A , t < κΓ].(3.7)

If a > 0, the process (X,PΓ) has unique recurrent extension that leaves 0 continuously, and
γ = β/α.

Conversely, for each γ ∈ (0, β/α), and πΓ a non-trivial measure satisfying the above condi-
tions, there is a unique recurrent extension that leaves zero by a jump and such that

N
Γ (|X0+| ∈ dr, arg(X0+) ∈ dθ) =

dr
r1+αγ

πΓ(dθ), r > 0, θ ∈ Ω.
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Finally, any self-similar recurrent extension with excursion measure N
Γ has an invariant

measure

❀

π Γ(dx) := N
Γ

(
∫ ζ

0

1(Xt∈dx)dt

)

= a|x|α−d−βM(arg(x))dx+

∫ ∞

0

dr
r1+αγ

∫

Ω

πΓ(dθ)Erθ

[
∫ κΓ

0

1(Xt∈dx)dt

]

,

which is unique up to a multiplicative constant, and this measure is sigma-finite but not
finite.

As a final remark, we note that, whilst we have provided a recurrent extension from the apex
of the cone, one might also consider the possibility of a recurrent extension from the entire
boundary of the cone. We know of no specific work in which there is a recurrent extension
from a set rather than a point. That said, one may consider the work on censored stable
processes as meeting this notion in some sense; see e.g. [20, 45]

4. Auxiliary results for associated MAPs. By an R × Sd−1-valued Markov additive
process (MAP), we mean here that (ξ,Θ) = ((ξt,Θt), t ≥ 0) is a regular Strong Markov
Process on R×Sd−1 (possibly with a cemetery state), with probabilities P := (Px,θ, x ∈ R, θ ∈
Sd−1), such that, for any t ≥ 0, the conditional law of the process ((ξs+t − ξt,Θs+t) : s ≥ 0),
given {(ξu,Θu), u ≤ t}, is that of (ξ,Θ) under P0,θ, with θ = Θt. For a MAP pair (ξ,Θ), we
call ξ the ordinate and Θ the modulator.

A very useful fact in the theory of self-similar Markov process is the so called Lamperti-Kiu
transform, which is one of the main results in [1], extending the seminal work of Lamperti in
[51], and establishes that there is a bijection between self-similar Markov processes (ssMp)
in Rd, and R× Sd−1-valued MAPs. Indeed, for any ssMp in Rd, say Z, there exists a unique
R× Sd−1-valued MAP (ξ,Θ) such that Z can be represented as

(4.1) Zt =

{

exp{ξϕ(t)}Θϕ(t), t < I∞,

∆, t ≥ I∞,

where It :=
∫ t

0
eαξtdt, t ≥ 0 (so that I∞ is the almost sure monotone limit = limt→∞ It) and

(4.2) ϕ(t) = inf{s > 0 :

∫ s

0

eαξudu > t}, t ≥ 0.

Reciprocally, given a R×Sd−1-valued MAP (ξ,Θ) the process defined in (4.1) is an Rd-valued
ssMp. This is known as the Lamperti-Kiu representation of the ssMp Z. When the lifetime of
Z is infinite a.s. we say that law is conservative, which is equivalent to require that I∞ = ∞
almost surely.

In Theorem 3.13 of [44], it was shown that the MAP underlying the stable process, for whom
we will henceforth reserve the notation P = (Px,θ, x ∈ R, θ ∈ Sd−1) for its probabilities, is
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a pure jump process, such that ξ and Θ jump simultaneously. Moreover, the instantaneous
jump rate with respect to Lebesgue time dt when (ξt,Θt) = (x, ϑ) is given by

(4.3) c(α)
eyd

|eyφ− ϑ|α+d
dyσ1(dφ), t ≥ 0,

where σ1(φ) is the surface measure on Sd−1 normalised to have unit mass and

c(α) = 2α−1π−dΓ((d+ α)/2)Γ(d/2)
∣

∣Γ(−α/2)
∣

∣

.

More precisely, suppose that f is a bounded measurable function on (0,∞)×R
2×S

d−1×S
d−1

such that f(·, ·, 0, ·, ·) = 0, then, for all θ ∈ Sd−1,

E0,θ

(

∑

s>0

f(s, ξs−,∆ξs,Θs−,Θs)

)

=

∫

(0,∞)×R×Sd−1

Vθ(ds, dz, dϑ)
∫

Sd−1

∫

R

σ1(dφ)dy
c(α)eyd

|eyφ− ϑ|α+d
f(s, z, y, ϑ, φ),

(4.4)

where ∆ξs = ξs − ξs−,

Vθ(dt, dz, dϑ) = P0,θ(ξt ∈ dz,Θt ∈ dϑ)dt, z ∈ R, ϑ ∈ S
d−1, t > 0,

σ1(dφ) is the surface measure on Sd−1 normalised to have unit mass and

c(α) = 2α−1π−dΓ((d+ α)/2)Γ(d/2)
∣

∣Γ(−α/2)
∣

∣

.

Similar calculations as those used in [44] show that the Lévy system (H,L) of the MAP
(ξ,Θ), associated to the stable process (X,P), see [28] for background, is given by the additive
functional Ht := t, t ≥ 0 and the kernel

(4.5) Lϑ(dφ, dy) := c(α)
eyd

|eyφ− ϑ|α+d
σ1(dφ)dy.

So, for any positive predictable process (Gt, t ≥ 0), and any function f as above, one has

E0,θ

(

∑

s>0

Gsf(s, ξs−,∆ξs,Θs−,Θs)

)

= E0,θ

(
∫ ∞

0

dsGs

∫

Sd−1

∫

R

LΘs(dφ, dy)f(s, ξs, y,Θs, φ)

)

.

(4.6)

We are interested in the characterisation of the Lévy system of the MAP associated to (X,P⊳),
via the Lamperti-Kiu transform. To this end, suppose now we write P

⊳ := (P⊳
x,θ, (x, θ) ∈

R× Ω) for the probabilities of the MAP that underly (X,P⊳).
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Proposition 4.1. For any positive predictable process (Gt, t ≥ 0), and any function f :
(0,∞)×R2×Sd−1×Sd−1 → [0,∞), bounded and measurable, such that f(·, ·, 0, ·, ·) = 0, one
has

E
⊳
0,θ

(

∑

s>0

Gsf(s, ξs−,∆ξs,Θs−,Θs)

)

= E
⊳
0,θ

(
∫ ∞

0

dsGs

∫

Sd−1

∫

R

L⊳
Θs
(dφ, dy)f(s, ξs, y,Θs, φ)

)

, ∀θ ∈ Ω,

(4.7)

where

L⊳
θ(dφ, dy) := eβy

M(φ)

M(θ)
Lθ(dφ, dy), φ ∈ S

d−1, y ∈ R.

That is to say that, under P
⊳, the instantaneous jump rate when (ξt,Θt) = (x, ϑ) is

c(α)
ey(β+d)

|eyφ− θ|α+d

M(φ)

M(ϑ)
dyσ1(dφ)dt, t ≥ 0, θ, φ ∈ Ω

A better understanding of the MAP that underlies (X,P⊳), allows us to deduce e.g. the
following result. For a > 0, define by

τ⊖a = inf{t > 0 : |Xt| > a}

and m(τ⊖a −) = sup{t < τ⊖a : |Xt| = sups<t |Xs|} the last radial maximum before exiting the
ball of radius a.

Theorem 4.2. There exists a probability measure, υ∗ on Ω, which is invariant in the sense
that

P
⊳
υ∗

(

arg(Xτ⊖e
) ∈ dθ

)

:=

∫

Ω

υ∗(dφ)P⊳
φ

(

arg(Xτ⊖e
) ∈ dθ

)

= υ∗(dθ), θ ∈ Ω,

such that, for all x ∈ Γ, under P⊳
rθ, the triple

(

Xm(τ⊖a −)

a
,
Xτ⊖a −

a
,
Xτ⊖a

a

)

converges in distribution as a → ∞ to a limit which is independent of r and θ and non-
degenerate. Equivalently, by scaling, the triple

(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))

converges in distribution under Px, as Γ ∋ x → 0, to the same limit. More precisely, for any
continuous and bounded f : Γ3 → [0,∞),

lim
Γ∋x→0

E
⊳
x

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))

]

=
1

E⊳
υ∗ [log |Xτ⊖e

|]

∫

Ω

∫ ∞

0

υ∗(dφ)dr G(r, φ),

where
G(r, φ) = E

⊳
e−rφ

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))1(τ⊖1 ≤τ⊖

e1−r )

]

.
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The above theorem, although seemingly innocent and intuitively clear, offers us access to a
very important result. In order to understand why, we must take a small diversion into radial
excursion theory, as described in Kyprianou et al. [47].

Theorem 3.1 shows that (X,P⊳), is a self-similar Markov process. As mentioned above, it
follows that it has a Lamperti-Kiu representation of the form (4.1), with an underlying MAP,
say (ξ,Θ), with probabilities P

⊳
x,θ, x ∈ R, θ ∈ Sd−1. For each t > 0, let ξt = supu≤t ξu and

define
gt = sup{s < t : ξs = ξt} and dt = inf{s > t : ξs = ξt},

which code the left and right end points of excursions of ξ from its maximum, respectively.
Then, for all t > 0, with dt > gt, we define the excursion process

(ǫgt(s),Θ
ǫ
gt
(s)) := (ξgt+s − ξgt ,Θgt+s), s ≤ ζgt := dt − gt;

it codes the excursion of (ξ − ξ,Θ) from the set (0, Sd−1) which straddles time t. Such
excursions live in the space U(R×Sd−1), the space of càdlàg paths with lifetime ζ = inf{s >
0 : ǫ(s) < 0} > 0 such that (ǫ(0),Θǫ(0)) ∈ {0} × Sd−1, (ǫ(s),Θǫ(s)) ∈ (0,∞) × Sd−1, for
0 < s < ζ , and ǫ(ζ) ∈ (−∞, 0].

For t > 0, let Rt = dt − t, and define the set G = {t > 0 : Rt− = 0, Rt > 0} = {gs : s ≥ 0}
of the left extrema of excursions from 0 for ξ − ξ. The classical theory of exit systems in
Maisonneuve [52] now implies that there exist an additive functional (ℓt, t ≥ 0) carried by
the set of times {t ≥ 0 : (ξt− ξt,Θt) ∈ {0}×Sd−1}, with a bounded 1-potential, and a family
of excursion measures, (N⊳

θ, θ ∈ Sd−1), such that

(i) (N⊳
θ, θ ∈ S

d−1) is a kernel from S
d−1 to R× S

d−1, such that N⊳
θ(1− e−ζ) < ∞ and N

⊳
θ is

carried by the set {(ǫ(0),Θǫ(0) = (0, θ)} and {ζ > 0} for all θ ∈ Sd−1;
(ii) we have the exit formula

E
⊳
x,θ





∑

g∈G

F ((ξs,Θs) : s < g)H((ǫg,Θ
ǫ
g))





= E
⊳
x,θ

[
∫ ∞

0

F ((ξs,Θs) : s < t)N⊳
Θt
(H(ǫ,Θǫ))dℓt

]

,(4.8)

for x 6= 0, where F is continuous on the space of càdlàg paths D(R × Sd−1) and H is
measurable on the space of càdlàg paths U(R× Sd−1);

(iii) for any θ ∈ Sd−1, under the measure N⊳
θ, the process ((ǫ(s),Θǫ(s)), s < ζ) is Markovian

with the same semigroup as (ξ,Θ) killed at its first hitting time of (−∞, 0]× S
d−1.

The couple (ℓ, (N⊳
θ, θ ∈ Sd−1)) is called an exit system. In Maisonneuve’s original formulation,

the pair ℓ and the kernel (N⊳
θ, θ ∈ Sd−1) is not unique, but once ℓ is chosen, the (N⊳

θ, θ ∈ Sd−1)
is determined but for a ℓ-neglectable set, i.e. a set A such that

E
⊳
x,θ

[
∫

t≥0

1((ξs−ξs,Θs)∈A)dℓs

]

= 0.

11



Let (ℓ−1
t , t ≥ 0) denote the right continuous inverse of ℓ, H+

t := ξℓ−1
t

and Θ+
t = Θℓ−1

t
, t ≥ 0.

The strong Markov property tells us that (ℓ−1
t , H+

t ,Θ
+
t ), t ≥ 0, defines a Markov additive

process, whose first two elements are ordinates that are non-decreasing. Rotational invariance
of X implies that ξ, alone, is also a Lévy process, then the pair (ℓ−1, H+), without reference
to the associated modulator Θ+, are Markovian and play the role of the ascending ladder
time and height subordinators of ξ. But here, we are more concerned with their dependency
on Θ+.

Taking account of the Lamperti–Kiu transform (4.1), it is natural to consider how the ex-
cursion of (ξ− ξ,Θ) from {0}×Sd−1 translates into a radial excursion theory for the process

Yt := eξtΘt, t ≥ 0.

Ignoring the time change in (4.1), we see that the radial maxima of the process Y agree with
the radial maxima of the stable process X. Indeed, an excursion of (ξ−ξ,Θ) from {0}×Sd−1

constitutes an excursion of (Yt/ sups≤t |Ys|, t ≥ 0), from S
d−1, or equivalently an excursion of

Y from its running radial supremum. Moreover, we see that, for all t > 0 such that dt > gt,

Ygt+s = eξgt eǫgt (s)Θǫ
gt
(s) = |Ygt

|eǫgt (s)Θǫ
gt
(s) =: |Ygt

|Egt(s), s ≤ ζgt .

Whilst a cluster of papers on the general theory of Markov additive processes exists in the
literature from the 1970s and 1980s, see e.g. Çinlar [27, 29, 28] and Kaspi [39], as well as in
the setting that Θ is a discrete process, see Asmussen [4] and Albrecher and Asmussen [5],
as well as some recent advances, see the Appendix in Dereich at al. [32], relatively little is
known about the fluctuations of MAPs in comparison to e.g. Lévy processes. Note the latter
are a degenerate class of MAPs, in the sense that a Lévy process can be seen as MAP with
constant driving process.

A good example of an open problem pertaining to the fluctuation theory of MAPs is touched
upon in Theorem 4.2: Suppose that Θ has a stationary distribution, under what conditions
does Θ+ have a stationary distribution? This is a question that has been raised in general
in Section 4 of the paper [40]. Below we give a complete answer in the present setting.

Theorem 4.3. Under P
⊳, the modulator process Θ+ has a stationary distribution, that is

π⊳,+(dθ) := lim
t→∞

P
⊳
x,θ(Θ

+
t ∈ dθ), θ ∈ Ω, x ∈ R,

exists as a non-degenerate distributional weak limit.

Remark 4.1. The reader will also note that, thanks to the change of measure (7.2) com-
bined with the fact that ℓ−1

t is an almost surely finite stopping time and Theorem III.3.4 of
[38] , the ascending ladder MAP process (H+,Θ+), under P

⊳, has the property

(4.9)
dP⊳

0,θ

dP0,θ

∣

∣

∣

∣

σ((H+
s ,Θ+

s ),s≤t)

= eβH
+
t
M(Θ+

t )

M(θ)
1(t<kΩ,+), t ≥ 0,

12



where kΩ,+ = inf{t > 0 : Θ+
t 6∈ Ω} As a consequence of the existence of π⊳,+, we note that

πΓ,+(dθ) :=
1

M(θ)
π⊳,+(dθ), θ ∈ Ω,

is an invariant distribution for (Θ+
t 1(t<kΩ,+), t ≥ 0) under P.

5. Auxiliary results for dual processes in the cone. In order to prove some of the
results listed above, we will need to understand another type of conditioned process, namely
the stable process conditioned to continuously absorb at the origin.

Theorem 5.1. For A ∈ Ft, on the space of càdlàg paths in Γ with a cemetery state at the
apex of Γ,

P
⊲
x(A, t < κ{0}) := lim

a→0
P
⊳
x(A, t < τ⊕a |τ⊕a < ∞),

is well defined as a stochastic process which is continuously absorbed at the apex of Γ, where
κ{0} = inf{t > 0 : |Xt| = 0} and τ⊕a = inf{s > 0 : |Xs| < a}. Moreover, for A ∈ Ft,

(5.1) P
⊲
x(A, t < κ{0}) = Ex

[

1(A, t<κΓ)
H(Xt)

H(x)

]

, t ≥ 0,

where
H(x) = |x|α−β−dM(arg(x)).

Next, we write P
⊲ := (P⊲

x,θ, x ∈ R, θ ∈ Ω) for the probability law of the MAP that underlies
(X,P⊲). For any positive predictable process (Gt, t ≥ 0), and any function f : (0,∞)×R2 ×
Sd−1 × Sd−1 → R, bounded and measurable, such that f(·, ·, 0, ·, ·) = 0, one has

E
⊲
0,θ

(

∑

s>0

Gsf(s, ξs−,∆ξs,Θs−,Θs)

)

= E
⊲
0,θ

(
∫ ∞

0

dsGs

∫

Sd−1

∫

R

L⊲
Θs
(dφ, dy)f(s, ξs, y,Θs, φ)

)

, ∀θ ∈ S
d−1,

(5.2)

where

L⊲
θ(dφ, dy) := eβy

H(φ)

H(θ)
Lθ(dφ, dy), φ ∈ S

d−1, y ∈ R.

That is to say, that under P
⊲, the instantaneous jump rate when (ξt,Θt) = (x, ϑ) is

c(α)
e(β+d)y

|eyφ− θ|α+d

H(φ)

H(ϑ)
dyσ1(dφ)dt, t > 0, θ, φ ∈ Ω

As alluded to, the process (X,P⊲), is intimately related to the process (X,P⊳). This is made
clear in our final main result which has the flavour of the Riesz–Bogdan–Żak transform; cf.
Bogdan and Żak [22]. For the sake of reflection it is worth stating the Riesz–Bogdan–Żak
transform immediately below first, recalling the definition of L-time and then our first main
result in this section.
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Theorem 5.2 (Riesz–Bogdan–Żak transform). Suppose we write Kx = x/|x|2, x ∈ Rd for
the classical inversion of space through the sphere Sd−1. Then, in dimension d ≥ 2, for x 6= 0,
(KXη(t), t ≥ 0) under PKx is equal in law to (Xt, t ≥ 0) under P◦

x, where

(5.3)
dP◦

x

dPx

∣

∣

∣

∣

σ(Xs:s≤t)

=
|Xt|

α−d

|x|α−d
, t ≥ 0

and η(t) = inf{s > 0 :
∫ s

0
|Xu|

−2αdu > t}.

Hereafter, by an L-time we mean the following. Suppose that G is the sigma-algebra generated
by X and write G(P⊳

ν) for its completion by the null sets of P⊳
ν , where ν is a randomised

initial distribution. Moreover, write G =
⋂

ν G(P
⊳
ν), where the intersection is taken over all

probability measures on the state space of X. A finite random time k is called an L-time
(generalized last exit time) if {s < k(ω) − t} = {s < k(ωt)} for all t, s ≥ 0. (Normally, we
must include in the definition of an L-time that k ≤ ζ , where ζ is the first entry of the process
to a cemetery state. However, this is not applicable for (X,P⊳).) The two most important
examples of L-times are killing times and last exit times.

Theorem 5.3. Consider again the transformation of space via the sphere inversion Kx =
x/|x|2, x ∈ Rd.

(i) The process (KXη(t), t ≥ 0) under P⊳
x, x ∈ Γ, is equal in law to (Xt, t < κ{0}) under

P⊲
x, x ∈ Γ, where

(5.4) η(t) = inf{s > 0 :

∫ s

0

|Xu|
−2αdu > t}, t ≥ 0.

and κ{0} = inf{t > 0 : Xt = 0}.
(ii) Under P⊳

0, the time reversed process

←

Xt := X(k−t)−, t ≤ k,

is a homogenous strong Markov process whose transitions agree with those of (X,P⊲
x),

x ∈ Γ, where k is an L-time of (X,P⊳
x), x ∈ Γ ∪ {0}.

Our third main theorem considers the possibility of a recurrent extension from the origin of
of (X,P⊲), similar in spirit to Theorem 3.4.

Theorem 5.4. Let N
⊲ be a self-similar excursion measure compatible with (X,P⊲). We

have that there exists a γ ∈ (0, α−1(d+ 2β −α)∧ 1), a constant a ≥ 0, and a measure π⊲ on
Ω such that aπ⊲ ≡ 0,

∫

Ω
π⊲(dθ)H(θ) < ∞, and N

⊲ can be represented by, for any t > 0, and
any A ∈ Ft

N
⊲(A , t < ζ) = aE⊳

0

[

H(Xt)

M(Xt)
1A

]

+

∫ ∞

0

dr
r1+αγ

∫

Ω

π⊲(dθ)E⊲
rθ[A , t < κΓ].(5.5)
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If 0 < β < (2α − d)/2, and a > 0, the process (X,P⊲) has unique recurrent extension that
leaves 0 continuously. If β ≥ (2α−d)/2, then a = 0, and there is no recurrent extension that
leaves 0 continuously.

Conversely, for each γ ∈ (0, α−1(d+2β−α)∧1), and π⊲ a non-trivial measure satisfying the
above conditions, there is a unique recurrent extension that leaves zero by a jump and such
that

N
⊲ (|X0+| ∈ dr, arg(X0+) ∈ dθ) =

dr
r1+αγ

π⊲(dθ), r > 0, θ ∈ Ω.

Finally, any self-similar recurrent extension of (X,P⊲) with excursion measure N
⊲, has an

invariant measure

❀

π ⊲(dx) := N
⊲

(
∫ ζ

0

1(Xt∈dx)dt

)

= a|x|2(α−d−β)M(x)2dx+

∫ ∞

0

dr
r1+αγ

∫

Ω

π⊲(dθ)E⊲
rθ

[
∫ κΓ

0

1(Xt∈dx)dt

]

,

which is unique up to a multiplicative constant, and this measure is sigma-finite but not
finite.

It is interesting to remark here that if the cone is such that β ≥ (2α− d)/2, or equivalently
(d+2β−α)/α ≥ 1, there is no recurrent extension that leaves zero continuously. This is due
to the fact that the closer β is to α the smaller the cone is. Because the process is conditioned
to hit zero continuously, a process starting from zero should return too quickly to zero, forcing
there to be many small excursions, whose lengths become increasingly difficult to glue end
to end in any finite interval of time. We could understand this phenomena with heuristic
language by saying that ‘the conditioned stable process is unable to escape the gravitational
attraction to the origin because of the lack of space needed to do so’.

The rest of this paper is organised as follows. In the next section we give the proof of
Theorem 3.1. Thereafter, we prove the above stated results in an order which differs from
their presentation. We prove Proposition 4.1 in Section 7 and then turn to the proof of
Theorem 4.2 and Corollary 4.3 in Sections 8 and 9, respectively. This gives us what we need
to construct the process conditioned to continuously absorb at the apex of Γ, i.e. Theorem
5.1, in Section 10. With all these tools in hand, we can establish the duality properties of
Theorem 5.3 in Section 11. Duality in hand, in Section 12, we can return to the Skorokhod
convergence of the conditioned process (X,P⊳

x), x ∈ Γ, to the candidate for (X,P⊳
0), described

in (3.5), and prove Theorem 3.3. Finally, in Sections 13 and 14, we complete the paper by
looking at the recurrent extension of the conditioned processes in Theorem 3.4 and 5.4
respectively.

6. Proof of Theorem 3.1. We break the proof into the constituent parts of the statement
of the theorem.
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6.1. Proof of part (i). For A ∈ Ft and 0 6= x ∈ Γ,

(6.1) P
⊳
x(A, t < ζ) = lim

s→∞
Ex

[

1(A∩{t<κΓ})
PXt(κΓ > s)

Px(κΓ > t + s)

]

.

From Lemma 4.2 of [6], for t−1/α|x| < 1, we have the bound

Px(κΓ > t)

M(x)t−β/α
∈ [C−1, C],

for some C > 1. Otherwise, if t−1/α|x| > 1 then, Px(κΓ > t) ≤ 1 < |x|βt−β/α. Hence, noting
that M is uniformly bounded from above, we have that, for all x ∈ Γ and s > 0, there is
a constant C ′ such that Px(κΓ > s) ≤ C ′|x|βs−β/α. Hence, for s sufficiently large, there is
another constant C ′′ (which depends on x) such that

PXt(κΓ > s)

Px(κΓ > t + s)
≤

C ′|Xt|
βs−β/α

C−1M(x)(t + s)−β/α
< C ′′|Xt|

β.

It is well known that Xt has all absolute moments of any order in (0, α); cf. Section 25 of Sato
[60]. The identity (3.1) now follows from Proposition 2.1 and the Dominated Convergence
Theorem. Furthermore, by construction, for any x ∈ Γ,

P
⊳
x(t < k) = 1, ∀t ≥ 0.

It thus follows that under P⊳, X has an infinite lifetime.

6.2. Proof of part (ii). That (X,P⊳) is a ssMp is a consequence of (X,P) having the scaling
property and the strong Markov property. Indeed, (X,P⊳) is a strong Markov process, since
it is obtained via an h-transform of (X,P). To verify that it has the scaling property, let
c > 0 and define X̃t := cXc−αt, t ≥ 0. We have that

(6.2) κ̃Γ := inf{t > 0 : X̃t /∈ Γ} = cακΓ,

and by the scaling property

(6.3) (X̃,Px)
Law
= (X,Pcx), x ∈ Γ.

Considering the transition probabilities of (X,P⊳), we note with the help of (6.3) and (1.2)
that, for bounded and measurable f ,

E
⊳
x[f(X̃t)] = Ex

[

1(c−αt<κΓ)f(cXc−αt)
M(Xc−αt)

M(x)

]

= Ex

[

1(t<κ̃Γ)f(X̃t)
|X̃t|

βM(X̃t/|X̃t|)

|cx|βM(cx/|cx|)

]

= Ecx

[

1(t<κΓ)f(Xt)
|Xt|

βM(Xt/|Xt|)

|cx|βM(cx/|cx|)

]

= E
⊳
cx[f(Xt)], x ∈ Γ.

This last observation together with the Markov property ensures the required self-similarity
of (X,P⊳). �
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7. Proof of Proposition 4.1. We use a method taken from Theorem I.3.14 of [44]. From
the Lamperti–Kiu transformation (4.1), we have

(7.1) ξt = log(|XA(t)|/|X0|), Θt =
XA(t)

|XA(t)|
, t ≥ 0,

where A(t) = inf{s > 0 :
∫ s

0
|Xu|

−αdu > t}.

To show that (4.7) holds, we first note that, on account of the fact that A(t) in (7.1) is an
almost surely finite stopping time and the simple relation A(kΩ) = κΓ, where kΩ = inf{t >
0 : Θt 6∈ Ω}, from the martingale property in (3.1), we have by Theorem III.3.4 of [38] that

(7.2)
dP⊳

x,θ

dPx,θ

∣

∣

∣

∣

Gt

= eβ(ξt−x)M(Θt)

M(θ)
1(t<kΩ), t ≥ 0,

where Gt = σ((ξs,Θs), s ≤ t), t ≥ 0.

Now write

E
⊳
0,θ

(

∑

s>0

Gsf(s, ξs−,∆ξs,Θs−,Θs)

)

= lim
t→∞

E0,θ

(

Mt

∑

0<s≤t

Gsf(s, ξs−,∆ξs,Θs−,Θs)

)

where Mt = 1(t<kΩ)e
βξtM(Θt)/M(θ), t ≥ 0 is the martingale density from the change of

measure (3.1). Suppose we write Σt for the sum term in the final expectation above. The
semi-martingale change of variable formula tells us that

MtΣt = M0(θ)Σ0 +

∫ t

0

Σs−dMs +

∫ t

0

Ms−dΣs + [M,Σ]t, t ≥ 0,

where [M,Σ]t is the quadratic co-variation term. On account of the fact that (Σt, t ≥ 0),
has bounded variation, the latter term takes the form [M,Σ]t =

∑

s≤t∆Mt∆Σt. As a con-
sequence

(7.3) MtΣt = M0(θ)Σ0 +

∫ t

0

Σs−dMs +

∫ t

0

MsdΣs, t ≥ 0,

Moreover, after taking expectations, as the first in integral in (7.3) is a martingale and
Σ0 = 0, the only surviving terms give us

E
⊳
0,θ

(

∑

s>0

Gsf(s, ξs−,∆ξs,Θs−,Θs)

)

= E0,θ

(

∑

s>0

1(t<kΓ)e
βξs

M(Θs)

M(θ)
Gsf(s, ξs−,∆ξs,Θs−,Θs)

)

= E0,θ

[
∫ ∞

0

dsGs1(s<kΓ)e
βξs

M(Θs)

M(θ)

∫

Ω

σ1(dφ)
∫

R

dy
c(α)ey(β+d)

|eyφ−Θs|α+d

M(φ)

M(Θs)
f(s, ξs, y,Θs, φ)

]

= E
⊳
0,θ

[
∫ ∞

0

dsGs

∫

Ω

σ1(dφ)
∫

R

dy
c(α)ey(β+d)

|eyφ−Θs|α+d

M(φ)

M(Θs)
f(s, ξs, y,Θs, φ)

]
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where in the second equality we have used the jump rate (4.6) and in the third Fubini’s
theorem together with (7.2). �

8. Proof of Theorem 4.2. At the root of our proof of Theorem 4.2, we will appeal to
Markov additive renewal theory in the spirit of Alsmeyer [2, 3], Kesten [41] and Lalley [50].
The radial excursion theory we have outlined in Section 4 is a natural mathematical pre-
cursor to Markov additive renewal theory, however, one of the problems we have at this
point in our reasoning, as it will be seen later, is that it is not yet clear whether there is a
stationary behaviour for the process (Θ+,P⊳), of the radial ascending ladder MAP. Indeed,
as already discussed, we will deduce from our calculations here that a stationary distribution
does indeed exist in Corollary 4.3.

We build instead an alternative Markov additive renewal theory around a naturally chosen
discrete subset set ladder points which behave well into the hands of the scaling property of
(X,P⊳). As the proof is quite long, we break the remainder of this section into a number of
steps, marked by subsections. The proof of Theorem 4.2 will thus be our.

8.1. A discrete ladder MAP. Under P⊳, define the following sequence of stopping times,

Tn := inf{t > Tn−1 : |Xt| > e|XTn−1 |}, n ≥ 1,

with T0 = 0, and

Sn =
n
∑

k=1

Ak An = log
|XTn|

|XTn−1 |
and Ξn = arg(XTn), n ≥ 1.

Note in particular that
XTn = |x|eSnΞn, n ≥ 1.

Then, we claim that ((Sn,Ξn), n ≥ 0), is a Markov additive renewal process. To verify this
claim, we appeal principally to the strong Markov and scaling property of (X,P⊳). Indeed,
for any x ∈ Γ, we have that for any finite stopping time T , under P⊳

x, the conditional law of
(XT+s, s > 0) given (Xu, u ≤ T ) equals that of (|y|Xs/|y|α, s > 0) under P⊳

arg(y), with y = XT .

Hence, for any n ≥ 0, by construction, conditionally on (Xu, u ≤ Tn) we have that

Tn+1 = inf{t > Tn : |Xt| > e|XTn|}

= Tn + inf{s > 0 : |Xs+Tn| > e|XTn |}

Law
= Tn + inf{s > 0 : |XTn||X̃s/|XTn |

α| > e|XTn|}

= Tn + |XTn|
αT̃1,

where X̃ depends on (Xu, u ≤ Tn) only through arg(XTn), has the same law as (X,P⊳
arg(XTn )

),

and T̃1 = inf{t > 0 : |X̃t| > e}. From these facts, it follows that for any bounded and
measurable f on R× Ω,

E
⊳
x [f(Sn+1 − Sn,Ξn+1)|(Si,Ξi) : i ≤ n]

= E
⊳
x

[

f

(

log
|XTn+1|

|XTn |
, arg(XTn+1)

)

|XTi
: i ≤ n

]

= E
⊳
y [f(log |XT1|, arg(XT1))] |y=Ξn.
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These calculations ensure that ((Sn,Ξn), n ≥ 0), is a Markov additive renewal process. Note,
this computation also shows that, under P⊳, the modulator Ξ := (Ξn, n ≥ 0) is also a Markov
process.

8.2. Application of Markov additive renewal theory. Let us introduce the MAP renewal
function associated to (S,Ξ), for Ω,

(8.1) Vθ(dr, dφ) :=

∞
∑

n=0

P
⊳
θ(Sn ∈ dr,Ξn ∈ dφ), r ∈ R, φ ∈ Ω.

We will next show that the joint law in Theorem 4.2 can be expressed in term of a renewal
like equation involving Vθ.

Lemma 8.1. For measurable f : Γ3 → [0,∞), we have, for x ∈ Γ ∩B1,

(8.2) E
⊳
x

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))

]

=

∫ − log |x|

0

∫

Ω

Varg(x)(dr, dφ)G(− log |x| − r, φ),

where, for φ ∈ Ω and y ≥ 0,

G(y, φ) := E
⊳
e−yφ

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))1(τ⊖1 ≤τ⊖

e1−y )

]

(8.3)

Proof. Noting that |XTn| = |x|eSn and arg(XTn) = Ξn. Appealing to the strong Markov
property we get

E
⊳
x

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))1(τ⊖1 <∞)

]

= E
⊳
x

[

∑

n≥0

1(Tn<τ⊖1 ≤Tn+1)
f(Xτ⊖1

, Xτ⊖1 −, Xm(τ⊖1 −))

]

= E
⊳
x

[

∑

n≥0

1(Tn<τ⊖1 )Ey

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))1(τ⊖1 ≤T1)

]

y=XTn

]

= E
⊳
x

[

∞
∑

n=0

1(|x|eSn<1)Ey

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))1(τ⊖1 ≤T1)

]

y=|x|eSnΞn

]

,

where in the first equality the indicator implies Tn ≤ m(τ⊖1 −). We can thus write

E
⊳
x

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))

]

=

∫ − log |x|

0

∫

Ω

Varg(x)(dr, dφ)E
⊳
|x|erφ

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))1(τ⊖1 ≤τ⊖

|x|er+1)

]

,

which agrees with the statement of the lemma.

We now have all the elements to explain the strategy we will follow to prove Theorem 4.2. In
light of the conclusion of Lemma 8.1, we will apply the Markov Additive Renewal Theorem,
see for example Theorem 2.1 of Alsmeyer [2]. We state the result below for completion in a
form that is more appropriate for our purposes.
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Theorem 8.1 (Alsmeyer [2]). Suppose we have the following conditions:

(I) The process Ξ is an aperiodic Harris recurrent Markov chain, in the sense that there
exists a probability measure, ρ(·) on B(Ω) (Borel sets in Ω) such that, for some λ > 0,

(8.4) P
⊳
θ(Ξ1 ∈ E) ≥ λρ(E), for all Ω, E ∈ B(Ω).

(II) Under P
⊳, (Ξn, n ≥ 0), has a stationary distribution, that is

υ∗(dθ) := lim
n→∞

P
⊳
0,φ(Ξn ∈ dθ), θ ∈ Ω, φ ∈ Ω,

exists as a non-degenerate distributional weak limit.
(III) With υ∗ as above

(8.5) E
⊳
υ∗ [S1] :=

∫

Ω

υ∗(dθ)E⊳
θ[S1] < ∞.

(IV) For any continuous f : Γ3 → [0,∞), such that f is uniformly bounded, the mapping
r 7→ G(r, φ) is a.e. continuous, for any φ fixed, and

(8.6)
∫

Ω

∫ ∞

0

υ∗(dφ)
∑

n≥0

sup
nh<r≤(n+1)h

G(r, φ) < ∞,

for some h > 0.

Then for υ∗-a.e. Ω,

(8.7) lim
a→0

E
⊳
aθ

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))

]

=
1

E⊳
υ∗ [S1]

∫

Ω

∫ ∞

0

υ∗(dφ)dr G(r, φ),

where G is as defined in (8.3).

Before showing the conditions (I)-(IV) above hold, let us show that, a slightly enhanced
version of Theorem 8.1 holds. More precisely we will show first the following corollary.

Corollary 8.2. Under the assumption that (8.7) and (I)-(II) are satisfied, we can remove
the requirement that the limit is taken along the sequence of points aθ, for a → 0 and υ∗-a.e.
θ in (8.7) and replace it by taking limits along Γ ∋ x → 0.

We note that this corollary, once proved, also ends the proof of Theorem 4.2. In order to
prove Corollary 8.2, we must first recall the following lemma and deduce a relevant corollary
which deals with the Boundary Harnack Principle. This will also be useful later on.

In the current setting, the Boundary Harnack Principle can be formulated as follows (see
e.g. Bogdan et al. (BHP) in [21] and Bogdan [19]).

Lemma 8.2. Write Bc := {x ∈ Rd : |x| < c} for the ball of radius c > 0. Suppose that
u, v : Γ → [0,∞) are functions satisfying u(x) = v(x) = 0 whenever x ∈ Γc ∩ B1, and are
regular harmonic on Γ ∩B1, meaning that, for each x ∈ Γ ∩ B1,

Ex

[

u(Xτ⊖1 ∧κΓ
)
]

= u(x) and Ex

[

v(Xτ⊖1 ∧κΓ
)
]

= v(x).
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Suppose, moreover, that u(x0) = v(x0) for some x0 ∈ Γ∩B1/2. Then, there exists a constant
C1 = C1(Γ, α) (which does not depend on the choice of u or v) such that,

(8.8) C−1
1 v(x) ≤ u(x) ≤ C1v(x), x ∈ Γ ∩ B1/2.

It is worth noting immediately that M is a regular harmonic function on Γ ∩ B1 according
to the above definition. Indeed, from (3.1), the Optional Sampling Theorem and dominated
convergence, using e.g. Theorem A in Blumenthal et al. [18] which ensures Ex[|Xτ⊖1

|β] < ∞,
we know that

M(x) = lim
t→∞

Ex

[

|Xt∧τ⊖1
|βM(arg(Xt∧τ⊖1

)1(t∧τ⊖1 <κΓ)

]

= Ex

[

M(Xτ⊖1
)1(τ⊖1 <κΓ)

]

= Ex

[

M(Xτ⊖1 ∧κΓ
)
]

As M can only be defined up to a multiplicative constant, without loss of generality, we
henceforth assume there is a x0 ∈ Γ ∩B1/2, such that M(x0) = 1.

Corollary 8.3. Let x0 be as above. For each f ≥ 0 on Rd such that

0 < Ex0

[

f(Xτ⊖1
)1(τ⊖1 <κΓ)

]

< ∞,

there is a constant C1 = C1(Γ, α) (which does not depend on the choice of f) such that, for
all x ∈ Γ ∩B1/2,

C−1
1 M(x) ≤

Ex

[

f(Xτ⊖1
)1(τ⊖1 <κΓ)

]

Ex0

[

f(Xτ⊖1
)1(τ⊖1 <κΓ)

] ≤ C1M(x).

Proof. The result follows from Lemma 8.2, in particular from the inequalities (8.8), as soon
as we can verify that

g(x) :=
Ex

[

f(Xτ⊖1
)1(τ⊖1 <κΓ)

]

Ex0

[

f(Xτ⊖1
)1(τ⊖1 <κΓ)

] , x ∈ R
d,

is regular harmonic on Γ ∩ B1.

To this end, note that the function g clearly vanishes on ΓC ∩B1 and is equal to a constant
multiple of f on Γ ∩Bc

1 by construction and (recalling that M has been normalized so that
M(x0) = 1) we have g(x0) = M(x0) = 1 for some x0 ∈ Γ ∩ B1/2. Finally, note g(XκΓ

) = 0
and

g(Xτ⊖1
)1(τ⊖1 <κΓ)

=
f(Xτ⊖1

)1(τ⊖1 <κΓ)

Ex0

[

f(Xτ⊖1
)1(τ⊖1 <κΓ)

]

21



almost surely and hence, for x ∈ Γ ∩B1,

g(x) =
Ex

[

f(Xτ⊖1
)1(τ⊖1 <κΓ)

]

Ex0

[

f(Xτ⊖1
)1(τ⊖1 <κΓ)

] = Ex

[

g(Xτ⊖1
)1(τ⊖1 <κΓ)

]

= Ex

[

g(Xτ⊖1 ∧κΓ
)
]

,

as required.

Let us now return to the promised proof of Corollary 8.2 which states that we can take the
limits to the apex of Γ in (8.7) in a more natural way.

Proof of Corollary 8.2. For Borel sets D ⊆ (0,∞) and E ∈ Ω, we have, with the help
of scaling,

P
⊳
θ(S1 − 1 ∈ D,Ξ1 ∈ E) = P

⊳
θ/e(log |Xτ⊖1

| ∈ D, arg(Xτ⊖1
) ∈ E)

=
1

M(θ/e)
Eθ/e

[

M(Xτ⊖1
)1(log |X

τ⊖
1
|∈D, arg(X

τ⊖
1
)∈E, τ⊖1 <κΓ)

]

.(8.9)

Note that, for x ∈ Γ ∩ B1, D ∈ B(0,∞), E ∈ B(Ω),

g(x;D,E) := Ex

[

M(Xτ⊖1
)1(log |X

τ⊖1
|∈D,arg(X

τ⊖1
)∈E, τ⊖1 <κΓ)

]

is a regular harmonic function in Γ ∩ B1 (according to the definition in Lemma 8.2), which
can be seen by applying the Strong Markov Property. Normalising M so that M(θ0/e) = 1,
for some θ0 ∈ Ω, also tells us that

(8.10) ρ̃(D,E) = Eθ0/e

[

M(Xτ⊖1
)1(log |X

τ⊖1
|∈D,arg(X

τ⊖1
)∈E, τ⊖1 <κΓ)

]

= g(θ0/e;D,E)

is a probability distribution on (0,∞)× Ω. For convenience, we shall shortly write ρ(E) in
place of ρ̃((0,∞), E) on Ω.

Corollary 8.3 now tells us that, for all x ∈ Γ ∩B1/2,

(8.11) C−1
1 M(x) ≤

g(x;D,E)

g(x0;D,E)
≤ C1M(x),

where the constant C1 ∈ (0,∞) is universal and does not depend on the construction of g,
nor x0. Said another way, we have, for θ ∈ Ω (which corresponds to x = θ/e in (8.11)),

(8.12) C−1
1 ρ̃(D,E) ≤ P

⊳
θ(S1 − 1 ∈ D,Ξ1 ∈ E) ≤ ρ̃(D,E)C1.

Let us now assume that A is a null set of υ∗. From (II), we know that Pυ∗(Ξ1 ∈ A) = υ∗(A) =
0. On the one hand, from (8.12) and (8.9), we note that 0 = Pυ∗(Ξ1 ∈ A) ≥ C−1

1 ρ(A), and
hence that ρ(A) = 0. On the other hand, we know from (8.12) again together with the latter
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fact, that, Pθ(Ξ1 ∈ A) ≤ C1ρ(A) = 0, for all θ ∈ Ω. We have thus shown that the very
first step of the process Ξ positions it randomly so that it is in the concentration set of the
support of υ∗.

From (8.2) and (8.1), writing I for the right-hand side of (8.7), we have, for x ∈ Γ such that
∣

∣

∣
E
⊳
x

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))

]

− I
∣

∣

∣

=

∣

∣

∣

∣

∣

E
⊳
arg(x)

[

∑

n≥0

1(Sn≤− log |x|)G(− log |x| − Sn,Ξn)

]

− I

∣

∣

∣

∣

∣

≤ G(− log |x|, arg(x)) +

∣

∣

∣

∣

∣

E
⊳
arg(x)

[

∑

n≥1

1(Sn≤− log |x|)G(− log |x| − Sn,Ξn)

]

− I

∣

∣

∣

∣

∣

≤ G(− log |x|, arg(x)) + P
⊳
arg(x)(S1 > − log |x|)I

+ E
⊳
arg(x)

[

1(S1≤− log |x|)

∣

∣

∣

∣

∣

E
⊳
Ξ1eS1

[

∑

n≥0

1(Sn≤− log |x|)G(− log |x| − Sn,Ξn)

]

− I

∣

∣

∣

∣

∣

]

(8.13)

Taking care to note that

1(τ⊖1 ≤τ⊖
e|x|

) =

{

1(τ⊖1 =τ⊖
e|x|

) = 1(|X
τ⊖
e|x|

|>1) if e|x| < 1

1 if e|x| ≥ 1,

we have for e|x| < 1 that

G(− log |x|, arg(x)) = E
⊳
x

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))1(τ⊖1 ≤τ⊖

e|x|
)

]

≤ ||f ||∞P
⊳
x(Xτ⊖

e|x|
> 1)

= ||f ||∞P
⊳
arg(x)(Xτ⊖e

> 1/|x|)

= ||f ||∞P
⊳
arg(x)(S1 > − log |x|).

Hence, back in (8.13) we obtain
∣

∣

∣
E
⊳
x

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))

]

− I
∣

∣

∣

≤ (||f ||∞ + I)P⊳
arg(x)(S1 > − log |x|)

+ E
⊳
arg(x)

[

1(S1≤− log |x|)

∣

∣

∣

∣

∣

E
⊳
Ξ1eS1

[

∑

n≥0

1(Sn≤− log |x|)G(− log |x| − Sn,Ξn)

]

− I

∣

∣

∣

∣

∣

]

(8.14)

Appealing to (8.12) we can develop the right-hand side of (8.14) to get
∣

∣

∣
E
⊳
x

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))

]

− I
∣

∣

∣

≤ C1(||f ||∞ + I)ρ((− log |x|,∞))

+ C1

∫ ∞

0

∫

Ω

ρ̃(dr, dφ)1(r≤− log |x|)

∣

∣

∣
E
⊳
|x|erφ

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))

]

− I
∣

∣

∣
,
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Using that ρ̃ is a proper distribution, dominated convergence, the fact that Pθ(Ξ1 ∈ ·) ≪ υ∗(·)
and (8.7) gives us that

lim
Γ∋x→0

E
⊳
x

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))

]

=
1

E⊳
υ∗ [S1]

∫

Ω

∫ ∞

0

υ∗(dφ)dr G(r, φ),

without restriction on arg(x) in relation to υ∗, as Γ ∋ x → 0.

8.3. Verification of conditions (I) and (II). We have already verified in (8.12) that

(8.15) P
⊳
θ(Ξ1 ∈ E) ≥ C−1

1 ρ(E),

which implies that (8.4) holds, i.e. condition (I) is holds.

The following lemma follows directly from (8.15) and is a rewording of e.g. Theorems VII.3.2
and VII.3.6 of Asmussen [4], and it addresses precisely condition (II).

Lemma 8.3. Under P
⊳, (Ξn, n ≥ 0), has a stationary distribution, that is

υ∗(dθ) := lim
n→∞

P
⊳
0,φ(Ξn ∈ dθ), θ ∈ Ω, φ ∈ Ω,

exists as a non-degenerate distributional weak limit. Hence, the condition (II) is satisfied.

Remark 8.1. Note that
∫

Ω

υ∗(dθ)Pθ(Ξn ∈ dφ, Tn < κΓ)
M(φ)

M(θ)
= υ∗(dφ),

which makes υΓ(dφ) = υ∗(dφ)/M(φ), φ ∈ Ω, an invariant measure for the killed semigroup
Pθ(Ξn ∈ dφ, Tn < κΓ), n ≥ 0.

Note that, under the assumptions (I) and (II), the limiting distribution (8.7) is proper, which
can be seen by taking f = 1, in which case

∫

Ω

∫ ∞

0

υ∗(dφ)dr G(r, φ) =

∫

Ω

∫ ∞

0

υ∗(dφ)drP⊳
e−rφ(τ

⊖
1 ≤ τ⊖e1−r)

=

∫

Ω

∫ 1

0

υ∗(dφ)dr +
∫

Ω

∫ ∞

1

υ∗(dφ)drP⊳
e−rφ(τ

⊖
1 = τ⊖e1−r)

= 1 +

∫

Ω

∫ ∞

1

υ∗(dφ)dr P⊳
e−rφ(log |Xτ⊖

e1−r
| > 0)

= 1 +

∫

Ω

∫ ∞

1

υ∗(dφ)dr P⊳
φ(log |e

−rXτ⊖e
| > 0)

= 1 +

∫

Ω

∫ ∞

1

υ∗(dφ)dr P⊳
φ(S1 > r)

= 1 + E
⊳
υ∗ [S1 − 1]

= E
⊳
υ∗ [S1]

(8.16)

and hence the limit on the right-hand side of (8.7) is equal to unity (for f = 1).
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8.4. Verification of conditions (III) and (IV). We do this with two individual lemmas.

Lemma 8.4. Condition (III) holds, i.e. E⊳
υ∗ [S1] < ∞.

Proof. We can appeal to the law of first exit from a sphere given in Theorem A of Blumen-
thal et al. [18] to deduce that, up to constant C, which is irrelevant for our computations,
and may take different values in each line of the below computation, we have the following
inequalities

sup
|x|<1/2

Ex

[

M(Xτ⊖1
)(1 + log |Xτ⊖1

|)1(τ⊖1 <κΓ)

]

≤ sup
|x|<1/2

Ex[M(Xτ⊖1
)(1 + log |Xτ⊖1

|)]

= C sup
|x|<1/2

∫

|y|>1

dy(|1− |x|2)α/2(|y|2 − 1)−α/2M(y)
1 + log |y|

|y − x|d

≤ C sup
|x|<1/2

∫

Ω

dθM(θ)

∫ ∞

1

dr(r2 − 1)−α/2rd−1+β 1 + log r

|rθ − x|d

= C sup
|x|<1/2

∫

Ω

dθM(θ)

∫ 2

1

dr(r2 − 1)−α/2rd−1+β 1 + log r

|rθ − x|d

+ C sup
|x|<1/2

∫

Ω

dθM(θ)

∫ ∞

2

dr(r2 − 1)−α/2rd−1+β 1 + log r

|rθ − x|d

=: B1 +B2.(8.17)

Using that |rθ − x| ≥ r − |x| ≥ 1/2 we can bound the first term as follows:

B1 ≤ 22d−1+β(1 + log 2)C

∫

Ω

dθM(θ)

∫ 2

1

dr(r2 − 1)−α/2 < ∞.

To verify that the second term in (8.17) is finite also, we use that |rθ − x| ≥ 3r/4, by the
triangle inequality, and that necessarily β < α, to obtain that

B2 ≤

(

4

3

)d+α
2

C

∫

Ω

dθM(θ)

∫ ∞

2

dr rβ−α−1(1 + log r) < ∞,

We can now apply the Boundary Harnack Principle in Corollary 8.3 and the scaling property
to deduce that

∫

Ω

υ∗(dθ)E⊳
θ[S1] =

∫

Ω

υ∗(dθ)E⊳
θ[log |Xτ⊖e

|]

=

∫

Ω

υ∗(dθ)E⊳
θ/e[log |Xτ⊖1

|+ 1]

=

∫

Ω

υ∗(dθ)
Eθ/e

[

1(τ⊖1 <κΓ)
M(Xτ⊖1

)(log |Xτ⊖1
|+ 1)

]

M(θ/e)

<

∫

Ω

υ∗(dθ)C1 sup
|x|<1/2

Ex

[

1(τ⊖1 <κΓ)
M(Xτ⊖1

)(1 + log |Xτ⊖1
|)
]

< ∞,
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where finiteness follows from (8.17).

Lemma 8.5. The conditions in (IV) holds.

Proof. Let f : Γ3 → [0,∞) be a continuous and bounded function. On account of continuity
of M and standard Skorokhod continuity properties of the stable process with killing at first
passage times, together with the dominated convergence theorem, imply that for any φ ∈ Γ
fixed, the function

y 7→ G(y, φ) := E
⊳
e−yφ

[

f(Xτ⊖1
, Xτ⊖1 −, Xm(τ⊖1 −))1(τ⊖1 ≤τ⊖

e1−y )

]

, y > 0,

is continuous and bounded. Since f is assumed to be bounded it is enough to check that (8.6)
holds with f ≡ 1. But this follows from a straightforward modification of the computation
in (8.16), using that for any θ ∈ Γ fixed, the function r 7→ P

⊳
φ(S1 > r) is non-increasing,

together with the conclusion of Lemma 8.4.

9. Proof of Theorem 4.3. Let us define a new family of stopping times with respect to
the filtration generated by ((H+

t , θ
+
t ), t ≥ 0). Set χ0 = 0 and

χn+1 = inf{s > χn : H+
s −H+

χn
> 1}, n ≥ 0.

We should also note that these stopping times have the property that the sequence of pairs
((Sn,Ξn), n ≥ 0), agrees precisely with ((Hχn,Θ

+
χn
), n ≥ 0). Moreover, it is easy to show

that ((χn,Ξn), n ≥ 0), is a Markov additive process, and we known (Ξn, n ≥ 0) is Harris
recurrent, in the sense of (I) above.
Let,

U
⊳
θ (ds, dφ) :=

∑

n≥0

P
⊳
θ(χn ∈ ds,Ξn ∈ dφ), s ≥ 0,Ω.

Appealing to the Markov property, we have, for Ω and bounded measurable f on Ω,

E
⊳
0,θ[f(Θ

+
t )] = E

⊳
0,θ

[

∑

n≥0

1(χn≤t<χn+1)f(Θ
+
t )

]

= E
⊳
0,θ

[

∑

n≥0

1(χn≤t)E
⊳
0,φ

[

1(u<χ1)f(Θ
+
u )
]

φ=Θ+
χn ,u=t−χn

]

=

∫ t

0

∫

Ω

U
⊳
θ (ds, dφ)F (t− s, φ),

with F (s, φ) = E
⊳
0,φ[1(s≤χ1)f(Θ

+
s )] which is bounded and continuous in both its arguments.

Note, moreover, that
∫ ∞

0

∫

Ω

υ∗(dφ)ds F (s, φ) =

∫ ∞

0

∫

Ω

υ∗(dφ)dsE⊳
0,φ[1(s≤χ1)f(Θ

+
s )]

=

∫ ∞

0

∫

Ω

υ∗(dφ)dsE⊳
0,φ[1(H+

s <1)f(Θ
+
s )]ds

=

∫

Ω

∫

Ω

υ∗(dφ)U⊳
φ([0, 1), dθ)f(θ),
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where U⊳
φ(dx, dθ), x ≥ 0, Ω, is the ascending ladder MAP potential

U⊳
φ(dx, dθ) =

∫ ∞

0

P
⊳
0,φ(H

+
s ∈ dx,Θ+

s ∈ dθ)ds.

As such, whenever f is bounded, we have that
∫∞

0

∫

Ω
υ∗(dφ)ds F (s, φ) < ∞.

We also note that

E
⊳
0,υ∗ [χ1] :=

∫

Ω

υ∗(dφ)E⊳
0,φ[χ1]

=

∫

Ω

υ∗(dφ)
∫ ∞

0

P
⊳
0,φ(χ1 > t)dt

=

∫

Ω

υ∗(dφ)
∫ ∞

0

P
⊳
0,φ(H

+
t < 1)dt

=

∫

Ω

υ∗(dφ)U⊳
φ([0, 1),Ω) < ∞.

Arguing as in the proof of Lemma 8.5, it follows that whenever f is continuous and bounded,
the mapping (s, φ) 7→ F (s, φ), satisfies the conditions in Theorem 2.1 in [2].

As such, and on account of the fact that (Ξn, n ≥ 0) has been proved to have a stationary
distribution, υ∗, we can again invoke the Markov additive renewal theorem [2] and conclude
that, for υ∗-almost every Ω,

lim
t→∞

E
⊳
0,θ[f(Θ

+
t )] =

1

E⊳
0,υ∗ [χ1]

∫

Ω

∫

Ω

υ∗(dφ)U⊳
φ([0, 1), dθ)f(θ).

We can upgrade the previous statement to allow for all Ω by appealing to reasoning similar
in fashion to the proof of Corollary 8.2. For the sake of brevity, we thus leave this as an
exercise for the reader.

In conclusion, (Θ+
t , t ≥ 0) has a non-degenerate stationary distribution, which is given by

π⊳,+(dθ) =

∫

Ω

∫

Ω
υ∗(dφ)U⊳

φ([0, 1), dθ)
∫

Ω
υ∗(dφ)U⊳

φ([0, 1),Ω)
, θ ∈ Ω.

as required. �

10. Proof of Theorem 5.1. We first need a technical Lemma. Recall that τ⊕a := inf{t >
0 : |Xt| < a}, a > 0.

Lemma 10.1. We have the following convergence,

lim
Γ∋aKx→0

P⊳
x(τ

⊕
a < ∞)

(|x|/a)α−2β−d
=

1

E⊳
υ∗ [log |Xτ⊖e

|]

∫

Ω

∫ ∞

0

υ∗(dφ)dr E⊳
e−rφ

[

|Xτ⊖1
|α−2β−d

]

< ∞.
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Proof. We first use properties from the Riesz–Bogdan–Żak transform in Theorem 5.2 and
the scaling properties (1.2) and (6.2) (employed similarly for τ⊖1/a) to deduce that

P
⊳
x(τ

⊕
a < ∞) = Ex

[

M(Xτ⊕a
)

M(x)
; τ⊕a < κΓ

]

= E
◦
Kx

[

M(KXτ⊖
1/a

)

M(arg(x))|x|β
; τ⊖1/a < κΓ

]

= EKx

[

|Xτ⊖
1/a

|α−β−dM(arg(Xτ⊖
1/a

))

|x|−(α−β−d)M(arg(x))
; τ⊖1/a < κΓ

]

= EaKx

[

|Xτ⊖1
/a|α−β−dM(arg(Xτ⊖1

))

|x|−(α−β−d)M(arg(x))
; τ⊖1 < κΓ

]

=
|x|α−2β−d

aα−2β−d
E
⊳
aKx

[

|Xτ⊖1
|α−2β−d

]

.

Using Theorem 4.2 with f(x) = |x|α−2β−d
1(|x|≥1), we thus have that

lim
Γ∋aKx→0

P⊳
x(τ

⊕
a < ∞)

(|x|/a)α−2β−d

= lim
Γ∋aKx→0

E
⊳
aKx

[

|Xτ⊖1
|α−2β−d

]

=
1

E⊳
υ∗ [log |Xτ⊖e

|]

∫

Ω

∫ ∞

0

υ∗(dφ)drE⊳
e−rφ

[

|Xτ⊖1
|α−2β−d

1(τ⊖1 ≤τ⊖
e1−r )

]

< ∞(10.1)

where we have used that α − 2β − d < 0, |Xτ⊖1
| ≥ 1 and Theorem 4.2 with f(x) =

|x|α−2β−d
1(|x|≥1), for x ∈ Γ. The result now follows.

Returning now to the proof of Theorem 5.1, the usual application of the strong Markov
property means we need to evaluate, for x ∈ Γ,

(10.2) P
⊲
x(A, t < κ{0}) = lim

a→0
E
⊳
x

[

1(A, t<τ⊕a )

P
⊳
Xt
(τ⊕a < ∞)

P⊳
x(τ

⊕
a < ∞)

]

,

where A ∈ Ft. In order to do so, we first note from Lemma 10.1 that,

lim
a→0

P⊳
Xt
(τ⊕a < κΓ)

P⊳
x(τ

⊕
a < κΓ)

=
|Xt|

α−2β−d

|x|α−2β−d
.

Moreover, from (10.1), we also see that, for each ε > 0, there exists a constant ∆ > 0 such
that, when |aKx| = (a/|x|) < ∆,

(1− ε)C1 ≤
P⊳
x(τ

⊕
a < ∞)

(|x|/a)α−2β−d
≤ (1 + ε)C1.

With C1 as in the previous Lemma. On the other hand, if (a/|x|) ≥ ∆, then

P
⊳
x(τ

⊕
a < ∞) ≤ 1 ≤ (a/|x|)2β+d−α∆α−2β−d.
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From this we conclude that there is an appropriate choice of constant C such that for a ≪ 1,

(10.3)
P⊳
Xt
(τ⊕a < ∞)

P⊳
x(τ

⊕
a < ∞)

≤ C|Xt|
α−2β−d.

We want to show that

E
⊳
x[|Xt|

α−2β−d] = Ex

[

M(arg(Xt))

M(x)
|Xt|

α−β−d
1(t<κΓ)

]

≤
C

M(x)
Ex

[

|Xt|
α−β−d

1(t<κΓ)

]

< ∞.(10.4)

To this end, we note that, since α− β − d < 0, Ex[|Xt|
α−β−d

1(|Xt|≥1, t<κΓ)] ≤ 1. The problem
thus lies in showing that Ex[|Xt|

α−β−d
1(|Xt|<1, t<κΓ)] < ∞. To this end, let us recall from

Bogdan et al. [21] that (XΓ
t , t ≥ 0), the stable process killed on exiting Γ, has a semigroup

density, say pΓt (x, y), x, y ∈ Γ. Moreover, in equation (10) and (53) of the aforesaid reference,
they showed that

pΓt (x, t) ≈ P
Γ
x(κΓ > t)PΓ

y (κΓ > t)

(

t1/α ∧
t

|y|α+d

)

, x, y ∈ Γ,

where pΓt (x, y) is the transition density of (X,PΓ) and f(x, t) ≈ g(x, t) means that, uniformly
in the domains of f and g, there exists a constant c > 0 such that c−1 ≤ f/g ≤ c. It thus
follows that

Ex[|Xt|
α−β−d

1(|Xt|<1, t<κΓ)]

≤ CP
Γ
x(κΓ > t)

∫

|y|≤1

P
Γ
y (κΓ > t)

(

t1/α ∧
t

|y|α+d

)

|y|α−β−ddy

≤ Ct1/αPΓ
x(κΓ > t)

∫ 1

0

rα−β−1dr < ∞,

using α > β, where the constant C has a different value in each line of the calculation above,
but otherwise is unimportant.

The bound (10.3) and the finite moment (10.4) can now be used in conjunction with the
Dominated Convergence Theorem (for the inner limit) followed by the Monotone Conver-
gence Theorem (for the outer limit) in (10.2) to deduce

P
⊲
x(A, t < κ{0}) = E

⊳
x

[

1A
|Xt|

α−2β−d

|x|α−2β−d

]

= Ex

[

1(A, t<κΓ)
H(Xt)

H(x)

]

, t ≥ 0,(10.5)

with H(x) = |x|α−β−dM(arg(x)) as required.

We must also show that this process is continuously absorbed at 0. Noting that H(x) =
|x|α−dM(Kx), applying the Riesz–Bogdan–Żak transform (cf. Theorem 5.2), for continuous
and bounded f : Rd × Rd → [0,∞) and 0 < a < |x|,
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E
⊲
x[f(Xm(τ⊕a −), Xτ⊕a

)] = E
◦
x

[

f(Xm(τ⊕a −), Xτ⊕a
)1(τ⊕a <κΓ)

M(KXτ⊕a
)

M(Kx)

]

= EKx

[

f(KXm(τ⊖
1/a

−), KXτ⊖
1/a

)1(τ⊖
1/a

<κΓ)

M(Xτ⊖
1/a

)

M(Kx)

]

= E
⊳
Kx

[

f(KXm(τ⊖
1/a

−), KXτ⊖
1/a

)
]

,

where, for a > 0, m(τ⊕a −) = sup{t < τ⊕a : |Xt| = infs<t |Xs|} and m(τ⊖a −) = sup{t < τ⊖a :
|Xt| = infs<t |Xs|}. From Theorem 4.2 it follows that the limit on the right-hand side above
is equal to f(0, 0). This shows (X,P⊲

x), x ∈ Γ is almost surely absorbed continuously at 0.

Finally, reconsidering the proof of Proposition 4.1, the remaining statement is straightforward
to prove in the same way. This concludes the proof of Theorem 5.1. �

11. Proof of Theorem 5.3. It turns out more convenient to prove Theorems 5.3 before
we deal with Theorem 3.3. Indeed, it will play a crucial role in its proof.

11.1. Proof of Theorem 5.3 (i). We can verify the statement of this part of the theorem
by first noting that the transformation (KXη(t), t ≥ 0) maps (X,P⊳), to a new self-similar
process. Then we verify it has the transitions of (X,P⊲).

For the first of the aforesaid, we refer back to the Lamperti–Kiu transform. As already
observed in Alili et al. [1] and Kyprianou [44], from the Lamperti–Kiu representation of
(X,P⊳),

KXη(t) = e−ξϕ◦η(t)Θϕ◦η(t) t ≥ 0.

Note however that
∫ ϕ(t)

0

eαξsds = t and
∫ η(t)

0

e−2αξϕ(u)du = t, t ≥ 0.

A straightforward differentiation of the last two integrals shows that, respectively,

dϕ(t)

dt
= e−αξϕ(t) and

dη(t)

dt
= e2αξϕ◦η(t) , t ≥ 0,

and so the chain rule now tells us

(11.1)
d(ϕ ◦ η)(t)

dt
=

dϕ(s)

ds

∣

∣

∣

∣

s=η(t)

dη(t)

dt
= eαξϕ◦η(t) ,

and hence, ϕ ◦ η(t) = inf
{

s > 0 :
∫ s

0
e−αξudu > t

}

. It is thus clear that (KXη(t), t ≥ 0) is a
self-similar Markov process with underlying MAP equal to (−ξ,Θ).
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To verify it has the same transitions as (X,P⊲), we note that (η(t), t ≥ 0), is a sequence of
stopping times

E
⊳
Kx[f(KXη(t))]

= EKx

[

M(Xη(t))

M(Kx)
f(KXη(t)); η(t) < κΓ

]

= EKx

[

|KXη(t)|
−βM(arg(KXη(t)))

|x|−βM(arg(x))
f(KXη(t)); η(t) < κΓ

]

= Ex

[

|Xt|
α−d

|x|α−d

|Xt|
−βM(arg(Xt))

|x|−βM(arg(x))
f(Xt); t < κΓ

]

= Ex

[

|Xt|
α−d−βM(arg(Xt))

|x|α−d−βM(arg(x))
f(Xt); t < κΓ

]

= E
⊲
x [f(Xt)]

where in the third equality we have applied the regular Riesz–Bogdan–Żak transform (cf.
Theorem 5.2) and in the final equality we have used Theorem 5.1. �

11.2. Proof of Theorem 5.3 (ii). The proof of this part appeals to Theorem 3.5 of Nagasawa
[54]. The aforesaid classical result gives directly the conclusion of part (ii) as soon as a number
of conditions are satisfied. Most of the conditions are trivially satisfied thanks to the fact
that (X,P⊳), is a regular Markov process (see for example the use of this Theorem in Bertoin
and Savov [11] or Döring and Kyprianou [33]). However the two most important conditions
stand out as non-trivial and require verification here.

In the current context, the first condition requires the existence of a sigma-finite measure µ
such that the duality relation is satisfied, for any f, g : Γ → R measurable and bounded, one
has

(11.2)
∫

Γ

µ(dx)f(x)
∫

Γ

dy p⊳t (x, y)g(y) =
∫

Γ

µ(dx)g(x)
∫

Γ

dy p⊲t (x, y)f(y), ∀t ≥ 0,

and the second requires that

(11.3) µ(dx) = G⊳(0, dx) :=
∫ ∞

0

P
⊳
0(Xt ∈ dx)dt, x ∈ Γ.

Our immediate job is thus to understand the analytical shape of the measure µ. To this end,
we prove the following intermediary result, the conclusion of which automatically deals with
(11.3).

Lemma 11.1. We have for bounded and measurable f : Γ → [0,∞), which is compactly
supported in Γ, up to a multiplicative constant,

∫

Γ

f(x)G⊳(0, dx) =
∫

Γ

f(x)M(x)H(x)dx.
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Proof. Referring to some of the facts displayed in Theorem 3.2, we have with the help of
Fubini’s Theorem, the scaling properties of the transition density pΓ, and (3.5) that

∫

Γ

f(y)

∫ ∞

0

P
⊳
0(Xt ∈ dy)dt

=

∫ ∞

0

dt
∫

Γ

f(y)M(y)nt(y)dy

=

∫ ∞

0

dt

∫

Γ

f(y)M(y) lim
x→0

pΓt (x, y)

Px(κΓ > 1)
dy

=

∫ 1

0

dt

∫

Γ

f(y)M(y) lim
x→0

pΓt (x, y)

Px(κΓ > 1)
dy +

∫ ∞

1

dt

∫

Γ

f(y)M(y) lim
x→0

pΓt (x, y)

Px(κΓ > 1)
dy

=

∫ 1

0

dt

∫

Γ

f(y)M(y) lim
x→0

pΓt (x, y)

Px(κΓ > 1)
dy

+

∫ ∞

1

dt

∫

Γ

f(y)M(y) lim
x→0

t−d/αpΓ1 (t
−1/αx, t−1/αy)

Px(κΓ > 1)
dy(11.4)

We wish to use Dominated Convergence theorem to pull the limit out of each of the integrals.
Referring again to Theorem 3.2, and recalling the compactness of the support of f , the
integrand in the first term on the righthand side of (11.4) is uniformly bounded.

For the second term on the right-hand side of (11.4), we can assume without loss of generality
that the support of f lies in Γ ∩ {x ∈ Rd : |x| < 1}. Recall again from the bound in Lemma
4.2 of [6], which states that, for t > 1 and |x| < 1, there exists a constant C > 0 such that

C−1t−β/αM(x) < Pt−1/αx(κΓ > 1) < Ct−β/αM(x).

Using the above, and appealing in particular to equation (4.16) of Bogdan et al. [21], for
t, |x| > 1 and y ∈ Γ,

t−d/αpΓ1 (t
−1/αx, t−1/αy)

Px(κΓ > 1)
<

t−d/αpΓ1 (t
−1/αx, t−1/αy)

M(x)

< t−(d+β)/αC
Pt−1/αy(κΓ > 1)

(1 + t−1/α|y|)d+α

< t−(d+2β)/α.

The right-hand side above can now be used as part of a dominated convergence argument
for the second term in (11.4), noting in particular that f is compactly supported.
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In conclusion, we have
∫

Γ

f(y)

∫ ∞

0

P
⊳
0(Xt ∈ dy)dt

= lim
x→0

∫

Γ

f(y)M(y)

∫ 1

0

dt
pΓt (x, y)

Px(κΓ > 1)
dy

+ lim
x→0

∫

Γ

f(y)M(y)

∫ ∞

1

dt
pΓt (x, y)

Px(κΓ > 1)
dy

= lim
x→0

∫

Γ
f(y)M(y)GΓ(x, y)

M(x)
.(11.5)

The above limit has already been computed in Lemma 3.5 of Bogdan et al. [21] and agrees
with the conclusion of this Lemma.

To complete the proof of part (ii) of Theorem 5.3, we must show (11.2). To this end, let us
start by recalling Hunt’s switching identity for X as a symmetric process and κΓ as a hitting
time of an open domain. It ensures that for any f, g : Γ → R measurable and bounded one
has

∫

Γ

dxf(x)
∫

Γ

dy pΓt (x, y)g(y) =
∫

Γ

dxg(x)
∫

Γ

dy pΓt (x, y)f(y), ∀t ≥ 0.

With this in hand, it is easy to check that
∫

Γ

µ(dx)f(x)
∫

Γ

dy p⊳t (x, y)g(y) =
∫

Γ

dxf(x)M(x)H(x)

∫

Γ

pΓt (x, y)g(y)
M(y)

M(x)

=

∫

Γ

dxg(x)M(x)H(x)

∫

Γ

pΓt (x, y)f(y)
H(y)

H(x)

=

∫

Γ

µ(dx)g(x)
∫

Γ

dy p⊲t (x, y)f(y), t ≥ 0,

as required. �

12. Proof of Theorem 3.3. To prove the weak convergence on the Skorokhod space of
Px, as x → 0, to P0, we appeal to the following proposition, lifted from Dereich et al. [32]
and written in the language of the present context.

Proposition 12.1. Recall τ⊖ε = inf{t : |Xt| ≥ ε}, ε > 0. Suppose that the following
conditions hold:

(a) limε→0 lim supΓ∋z→0E
⊳
z[τ

⊖
ε ] = 0

(b) limΓ∋z→0 P
⊳
z(Xτ⊖ε

∈ ·) =: µε(·) exists for all ε > 0
(c) P⊳

0-almost surely, X0 = 0 and Xt 6= 0 for all t > 0
(d) P⊳

0((Xτ⊖ε +t)t≥0 ∈ ·) =
∫

Γ
µε(dy)P⊳

y(·) for every ε > 0

Then the mapping
Γ ∋ z 7→ P

⊳
z

is continuous in the weak topology on the Skorokhod space.
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Verification of Condition (a). Define G⊳(x, y) via the relation
∫

Γ

f(y)G⊳(x, y)dy = E
⊳
x

[
∫ ∞

0

f(Xt)dt

]

,

and note that G⊳(x, y) = M(y)GΓ(x, y)/M(x), x, y ∈ Γ. Then, for f positive, bounded,
measurable and compactly supported and x ∈ Γ ∪ {0}, then (11.5) and Lemma 11.1 tells us
that

lim
Γ∋z→0

∫

Γ

f(y)G⊳(z, y)dy =

∫

Γ

f(y)G⊳(0, y)dy.

Now note that

lim
ε→0

lim sup
Γ∋z→0

E
⊳
z[τ

⊖
ε ] = lim

ε→0
lim sup
Γ∋z→0

E
⊳
z

[

∫ τ⊖ε

0

1(|Xt|<ε)dt

]

≤ lim
ε→0

lim sup
Γ∋z→0

E
⊳
z

[
∫ ∞

0

1(|Xt|<ε)dt

]

≤ lim
ε→0

lim sup
Γ∋z→0

∫

|y|<ε

G⊳(z, y)dy

≤ C lim
ε→0

∫

|y|<ε

H(y)M(y)dy

≤ C lim
ε→0

∫

Ω

σ1(dθ)M(θ)2
∫ ε

0

rα−β−1dr

≤ C lim
ε→0

εα−β

= 0,

where C ∈ (0,∞) is an unimportant constant which changes its value in each line and σ1(dθ)
is the surface measure on Sd−1 normalised to have unit mass.

Verification of Condition (b). This condition is covered by Theorem 4.2. Note, moreover,
that µε does not depend on ε.

Verification of Condition (c). This condition is covered by Theorem 5.3.

Verification of Condition (d). We have that, for |x| < η < ε, from the Strong Markov
Property,

(12.1) E
⊳
x[f((Xτ⊖ε +t : t ≥ 0)] = E

⊳
x

[

EX
τ⊖ε
[f(Xt : t ≥ 0)]

]

= E
⊳
x

[

g(Xτ⊖η
)
]

for bounded, measurable f , where

g(y) = E
⊳
y

[

E
⊳
X

τ⊖ε

[f(Xt : t ≥ 0)].
]

is bounded and measurable. From Theorem 4.2 and the Skorokhod continuity of X,P⊳, which
follows from the Lamperti–Kiu representation (4.1), we can take limits in (12.1) to get

(12.2) E
⊳
0[f((Xτ⊖ε +t : t ≥ 0)] = E

⊳
0

[

EX
τ⊖ε
[f(Xt : t ≥ 0)]

]

= E
⊳
0

[

g(Xτ⊖η
)
]
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Now appealing to Theorem 5.3 (ii), thanks to càdlàg paths, we know that Xτ⊖η
→ 0 almost

surely under P⊳
0. As a consequence, we can appeal to the Dominated Convergence Theorem

in (12.2), together with condition (a) and, again, the Skorokhod continuity of X under P⊳
y,

y ∈ Γ, and deduce the statement in condition (d).

13. Itô synthesis and proof of Theorem 3.4. The basis of Theorem 3.4 is the classical
method of Itô synthesis of Markov processes and an extension of the main ideas in [56].
That is to say, the technique of piecing together excursions end to end under appropriate
conditions, whilst ensuring that the strong Markov property holds. In our case, we are also
charged with ensuring that self-similarity is preserved as well. We split the proof of Theorem
3.4 into the construction of the recurrent extension and the existence and characterisation
of a stationary distribution.

13.1. Some general facts on self-similar recurrent extensions. As described before the state-
ment of Theorem 3.4, according to Itô’s synthesis theory a self-similar recurrent extension
of (X,PΓ) can be build from a self-similar excursion measure, i.e. a measure on D satisfying
the conditions (i)-(iv) stated just before Theorem 3.4.

Suppose that N
Γ is a self-similar excursion measure compatible with the semigroup of

(X,PΓ). Define a Poisson point process ((s, χs), s > 0) on (0,∞) × D with intensity dt ×
N

Γ(dχ) and let each excursion length be denoted by

ζs := inf{t > 0 : χs(t) = 0} > 0.

Then, via the subordinator
ςt =

∑

s≤t

ζs, t ≥ 0,

we can define a local time process at 0 by

Lt = inf{r > 0 : ςr > t}, t ≥ 0

Note, for each t ≥ 0, by considering the Laplace transform of ςt, Campbell’s formula and the
assumption that N

Γ(1− e−ζ) < ∞ ensures that (ςt, t ≥ 0) is well defined as a subordinator
with jump measure given by ν(ds) = N

Γ(ζ ∈ ds), s > 0.

Now, we define (
❀

X t, t ≥ 0) with the following pathwise construction. For t ≥ 0, let Lt = s,
then ςs− ≤ t ≤ ςs− and define

❀

X t :=

{

∆s(t− ςs−), if ςs− < ςs,

0, if ςs− = ςs or s = 0.

Salisbury [58, 59] demonstrates how the process constructed above preserves the Markov
property. In fact, one can easily adapt the arguments provided by Blumenthal [17], who
considers only [0,∞) valued processes, to show that, under some regularity hypotheses on
the semigroup of the minimal process (X,PΓ), the process constructed above is a Feller
process. This is due to the fact that, here we are considering an extension from Γ to Γ∪{0},
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for (X,PΓ), which, by decomposing this process into polar coordinates, is equivalent to extend
the radial part from (0,∞) to [0,∞).

To thus verify the Feller property, suppose that C0(Γ) is the space of continuous functions
on Γ vanishing at 0 and ∞, and we write (PΓ

t , t ≥ 0) for the semigroup of (X,PΓ). The
aforesaid regularity hypothesis needed to adapt the argument given by Blumenthal [17] are:

(i) If f ∈ C0(Γ), then PΓ
t f ∈ C0(Γ) and PΓ

t f 7→ f uniformly as t → 0;
(ii) For each q > 0, the mapping x 7→ EΓ

x [e
−qζ ] is continuous in Γ;

(iii) The following limits hold;

lim
Γ∋x→0

E
Γ
x [e

−ζ ] = 1 and lim
x∈Γ, |x|→∞

E
Γ
x [e

−ζ ] = 0.

All of these are easily verified using the Lamperti–Kiu representation of (X,PΓ) .

Now that we know that the process (
❀

X t, t ≥ 0) defined above is a strong Markov process, in
fact a Feller process, we should verify that such a process has the scaling property. But this
is a consequence of the condition (iv) above, as can be easily verified using the arguments in
the proof of Lemma 2 in [56].

We will next describe all the excursion measures N
Γ, compatible with (X,PΓ). To that end,

we recall that the entrance law (NΓ
t (dy), t > 0) of an excursion measure N

Γ, is defined by

N
Γ
t (dy) := N

Γ(Xt ∈ dy, t < ζ), t > 0.

Lemma 13.1. Let N
Γ be a self-similar excursion measure compatible with (X,PΓ), and γ

the index appearing in (iv). Then, its entrance law admits the following representation: there
is a constant a ≥ 0, such that for all t > 0 and any f : Γ 7→ R+ continuous and bounded

N
Γ(f(Xt), t < ζ) = a lim

|x|→0

Ex[f(Xt), t < κΓ]

M(x)

+

∫

|y|>0

N
Γ(X0+ ∈ dy)Ey[f(Xt), t < κΓ].

(13.1)

Furthermore, there is a measure πΓ on Ω such that

(13.2) N
Γ(|X0+| ∈ dr, arg(X0+) ∈ dθ) =

dr

r1+αγ
πΓ(dθ),

and
∫

Ω
πΓ(dθ)M(θ) < ∞. Finally, necessarily γ ∈ (0, 1), and γ ≤ β/α; if γ = β/α then the

measure πΓ ≡ 0, whilst if γ < β/α, then a ≡ 0.

Proof. In order to prove the decomposition (13.1) we start by noticing that for all s, t > 0,
we have

N
Γ(f(Xt), t < ζ) = N

Γ(lim
s→0

f(Xs+t), s+ t < ζ),

which is a consequence of the dominated convergence theorem, since

N
Γ(f(Xs+t), s+ t < ζ) ≤ ||f ||NΓ(s+ t < ζ) ≤ ||f ||NΓ(t < ζ) < ∞,

36



since N
Γ(t < ζ) is always finite for any t > 0 because

∞ > N
Γ(1− e−ζ) > N

Γ(1− e−ζ , t < ζ) > (1− e−t)NΓ(t < ζ).

The former, together with the Markov property under N
Γ, implies that

N
Γ(f(Xt), t < ζ) = N

Γ(lim
s→0

f(Xs+t), s+ t < ζ)

= lim
s→0

N
Γ(f(Xs+t), s+ t < ζ)

= lim
s→0

N
Γ(EXs [f(Xt), t < κΓ], s < ζ)

= lim
ǫ→0

lim
s→0

N
Γ(EXs [f(Xt), t < κΓ], |Xs| < ǫ, s < ζ)

+ lim
ǫ→0

lim
s→0

N
Γ(EXs [f(Xt), t < κΓ], |Xs| > ǫ, s < ζ)

= lim
ǫ→0

lim
s→0

N
Γ

(

M(Xs)
EXs [f(Xt), t < κΓ]

M(Xs)
, |Xs| < ǫ, s < ζ

)

+

∫

y∈Γ,|y|>0

N
Γ(X0+ ∈ dy)Ey[f(Xt), t < κΓ];

where in the final equality we used the continuity of the mapping y 7→ Ey[f(Xt), t < κΓ],
y ∈ Γ. Corollary 3.2 and Theorem 3.3 in [21] implies that the limit lim|x|→0Ex[f(Xt), t <
κΓ]/M(x) exists. This implies from the right hand side above that

N
Γ(f(Xt), t < ζ) = a lim

|x|→0

Ex[f(Xt), t < κΓ]

M(x)
+

∫

y∈Γ,|y|>0

N
Γ(X0+ ∈ dy)Ey[f(Xt), t < κΓ],

where

a = lim
ǫ→0

lim
s→0

N
Γ(M(Xs), |Xs| < ǫ, s < ζ)

= lim
ǫ→0

lim
s→0

N
Γ

(

M(Xs)

PXs(κΓ > 1)
PXs(κΓ > 1), |Xs| < ǫ, s < ζ

)

=

(

lim
|x|→0

M(x)

Px(κΓ > 1)

)

lim
ǫ→0

lim
s→0

N
Γ(|Xs| < ǫ, 1 + s < ζ) < ∞.

This finishes the proof of the identity (13.1). We will next prove the identity (13.2). The latter
decomposition together with the convergence (3.5), applied to f(x) = M(x)g(arg(x))1(|x|∈(0,1))

with g any continuous and bounded function on Γ, implies that

N
Γ
(

M(Xt)g(arg(Xt))1(|Xt|∈(0,1), t < ζ
)

= aC

∫

|y|<1

g(arg(y))nt(y)dy

+

∫

y∈Γ,|y|>0

N
Γ(X0+ ∈ dy)Ey[M(Xt)g(arg(Xt))1(|Xt|∈(0,1)), t < κΓ]

By the scaling property (iv’) applied to f(x) = M(x)g(arg(x))1(|x|∈(0,1)).

N
Γ(M(X0+)g(arg(X0+)), |X0+| ∈ (0, 1))) = cαγNΓ(M(c−1X0+)g(arg(X0+)), |X0+| ∈ (0, c))

= cαγ−β
N

Γ(M(X0+)g(arg(X0+)), |X0+| ∈ (0, c)).
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Notice that this is always finite because for |x| < 1, M(x) < KPx(κΓ > 1), for some K > 0.
So, by the Markov property, the latter is bounded by cαγ−βK||g||NΓ(ζ > 1). Differentiating
in c > 0, one gets

(β − αγ)rβ−αγ−1drNΓ(M(X0+)g(arg(X0+)), |X0+| ∈ (0, 1))

= N
Γ(M(X0+)g(arg(X0+)), |X0+| ∈ dr).

Observe that since the right hand side is positive as soon as g is positive, we get as a side
consequence that β − αγ ≥ 0. Using again that M(x) = |x|βM(arg(x)), one gets

(β − αγ)r−αγ−1drNΓ(|X0+|
βM(arg(X0+))g(arg(X0+)), |X0+| ∈ (0, 1))

= N
Γ(M(arg(X0+))g(arg(X0+)), |X0+| ∈ dr).

Since this identity holds for any g continuous and bounded, we derive that, when β > αγ,
the equality of measures

N
Γ(|X0+| ∈ dr, arg(X0+) ∈ dθ)) =

dr

rαγ+1
πΓ(dθ),

holds, where,

πΓ(dθ) =
N

Γ(|X0+|
β, |X0+| ∈ (0, 1), arg(X0+) ∈ dθ))

β − αγ
.

Whilst if β = αγ, NΓ(|X0+| > 0) ≡ 0, and thus πΓ ≡ 0. We are just left to prove that when
β > αγ, then πΓM < ∞ and a ≡ 0. Indeed, that πΓM < ∞ follows from the following
estimates

∞ > n(1 − eζ , X0+ 6= 0)

=

∫ ∞

0

ds n(s < ζ,X0+ 6= 0)e−s

=

∫ ∞

0

ds e−s

∫

Ω

πΓ(dθ)

∫ ∞

0

dr

r1+αγ
Prθ(κΓ > s)

≥

∫

Ω

πΓ(dθ)

∫ 1

0

dr

r1+αγ

∫ ∞

rα
dse−sM(rθ)s−β/α

≥

∫

Ω

πΓ(dθ)M(θ)

∫ 1

0

dr

r1+αγ−β

∫ ∞

1

dse−ss−β/α,

where we used the estimate in Proposition 2.1. As claimed we derive that
∫

Ω
πΓ(dθ)M(θ) <

∞. To finish, we observe that the identity (13.1) together with the scaling property (iv’)
implies that for any t > 0

t−γ
N

Γ(ζ > 1) = N
Γ(ζ > t) ≥ a lim

|x|→0

Px(t < κΓ)

M(x)
= at−β/αC,

with C > 0 the constant appearing in Proposition 2.1. Since by assumption β > αγ, we
obtain by making t ↓ 0, that a ≡ 0. We have thus finished the proof of Lemma 13.1.
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To finish the proof of Theorem 3.4 one should notice that, from the equation (3.5), for every
f : Γ → R+ continuous with compact support, one has the convergence

lim
|x|→0

Ex[f(Xt), t < κΓ]

M(x)
= C

∫

Γ

f(y)nt(y)dy, t > 0.

This together with the decomposition in Lemma 13.1 implies that we necessarily have the
following representation for the entrance law of any self-similiar excursion measure NΓ. There
is a measure πΓ on Ω, such that

∫

Ω
πΓ(dθ)M(θ) < ∞, and a constant a ≥ 0 such that

N
Γ(Xt ∈ dy, t < ζ) = ant(y)dy +

∫ ∞

0

dr
r1+αγ

∫

Ω

πΓ(dθ)Erθ[Xt ∈ dy, t < κΓ],(13.3)

aπΓ ≡ 0, if a > 0 then γ = β/α, and if πΓ 6= 0 then γ < β/α, and πΓM < ∞.
Furthermore, via cylinder sets, one can check that for t > 0 and A ∈ Ft

N
Γ(A , t < ζ) = aE⊳

0

[

1

M(Xt)
1A

]

+

∫ ∞

0

dr
r1+αγ

∫

Ω

πΓ(dθ)Erθ[A , t < κΓ].(13.4)

with a and πΓ as above. As a side consequence, we have that the measure Ñ
Γ on D, defined

by the relation

(13.5) Ñ
Γ(A , t < ζ) := E

⊳
0

[

1

M(Xt)
1A

]

, for A ∈ Ft, t > 0,

is a self-similar excursion measure, whose entrance law is (nt, t > 0), and such that ÑΓ(X0+ 6=
0) = 0. Finally this is the unique self-similar excursion measure bearing this property, and
hence the self-similar recurrent extension associated to it leaves zero continuously, and it is
the unique self-similar recurrent extension having this property.

13.2. Invariant measure. We start by computing the invariant measure according to Chap-
ter XIX.46 of Dellacherie and Meyer [31]. There it is shown that the invariant measure
❀

π Γ(dy), y ∈ Γ, defined up to a multiplicative constant, is given by the excursion occupation
measure so that

∫

Γ

f(y)
❀

π Γ(dy) = N
Γ

(
∫ ζ

0

f(χt)dt

)

,

for all bounded measurable f on Γ. Note, however, the computations in Lemma 11.1 can be
used to show that

Ñ
Γ

(
∫ ζ

0

f(χt)dt

)

=

∫ ∞

0

∫

Γ

f(z)nt(z)dz dt =
∫

Γ

f(z)

M(z)
G⊳(0, dz) =

∫

Γ

f(z)H(z)dz.

It is then straight forward to prove the final identity in the statement of Theorem 3.4.

Finally, to see that
❀

π is not a finite measure, we can compute its total mass, after converting
to generalised polar coordinates (see e.g. Blumenson [16]), by

(13.6)
∫

Γ

H(x)dx = C

∫

Ω

σ1(dθ)M(θ)

∫ ∞

0

rα−β−1dr = ∞,
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where C > 0 is an unimportant constant attached to the Jacobian in the change of variables
to generalised polar coordinates, and σ1(dθ) is the surface measure on Sd−1 normalised to
have unit total mass. Moreover, we also have that if πΓ is not trivial then

∫ ∞

0

dr
r1+αγ

∫

Ω

πΓ(dθ)Erθ [κΓ] = ∞,

because by Proposition 2.1, Erθ [κΓ] = ∞, for any r > 0, and Ω.

The failure of this measure to normalise to have unit mass means that a stationary distri-
bution cannot exist, cf. Chapter XIX.46 of Dellacherie and Meyer [31] and hence

❀

X is a
null-recurrent process. �

14. Proof of Theorem 5.4. The proof of this result follows verbatim that of Theorem
3.4, albeit for some of the estimates that are used. Indeed, to establish Theorem 3.4, we used
that for (X,PΓ) we have

(a) for t > |x|α,
Px(κΓ > t) ≈ M(x)t−β/α;

(b) for any t > 0 and f : Γ → R+ continuous and bounded

lim
|x|→0

Ex(f(Xt), t < κΓ)

M(x)
exists.

These conditions are replaced by the following conditions on (X,P⊲)

(a’) for t > |x|α,
P
⊲
x(κΓ > t) ≈ H(x)t(α−d−2β)/α,

(b’) for any t > 0 and f : Γ → R
+ continuous and bounded

lim
|x|→0

E⊲
x(f(Xt), t < κΓ)

H(x)
exists.

Moreover, in proving Theorem 5.4, where one reads β in the proof of Theorem 3.4, one should
use β ′ := 2β + d − α. From here we have the restriction 0 < β ′ = d + 2β − α < α, which
restricts β to the interval ((α− d) /2) ∨ 0 < β < (2α− d)/2.

Let us finish by noticing that the finiteness of N⊲(1− e−ζ) is equivalent to d < 2(α− β). To
this end, we can appeal to Lemma 4.3 of [6] to see that, there exists a constant C > 0, such
that, for x ∈ Γ,

(14.1) C−1s(α−2β−d)/α < lim
x→0

|x|α−2β−d
P
⊲
x(s < κ{0}) < Cs(α−2β−d)/α,

where κ{0} = inf{t > 0 : |Xt| = 0}. Recall from (10.5) that, for x ∈ Γ, and A ∈ Ft, t ≥ 0,

(14.2) E
⊳
x

[

1A
|Xt|

α−2β−d

|x|α−2β−d

]

= Ex

[

H(Xt)

H(x)
1(A∩{t<κΓ})

]

= P
⊲
x(A, t < κ{0}).
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Hence, using (14.2), we have

N
⊲(1− e−ζ) =

∫ ∞

0

e−s
N

⊲(ζ > s)ds

=

∫ ∞

0

ds e−s
E
⊳
0[J(Xs)]

=

∫ ∞

0

ds e−s lim
x→0

|x|α−2β−d
P
⊲
x(s < κ{0}),

and, thanks to (14.1), the right hand side either converges or explodes depending on whether
d < 2(α− β). So, remember that by Campbell’s theorem, the sum of the lengths

∑

s≤t ζs is
finite a.s. for any t > 0, if and only if N⊲(1− e−ζ) < ∞, which is equivalent to d < 2(α− β).
This justifies our comment following the statement of Theorem 5.4.
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