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The fractional Schrödinger equation with general nonnegative

potentials. The weighted space approach

J.I. Díaz∗ D. Gómez-Castro† J.L. Vázquez‡

Dedicated to Professor Carlo Sbordone on the occasion of his 70th birthday

Abstract

We study the Dirichlet problem for the stationary Schrödinger fractional Laplacian equation
(−∆)su + V u = f posed in bounded domain Ω ⊂ R

n with zero outside conditions. We consider
general nonnegative potentials V ∈ L1

loc(Ω) and prove well-posedness of very weak solutions when
the data are chosen in an optimal class of weighted integrable functions f . Important properties of
the solutions, such as its boundary behaviour, are derived. The case of super singular potentials that
blow up near the boundary is given special consideration since it leads to so-called flat solutions. We
comment on related literature.
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1 Introduction

Over the last decades there has been a strong research effort devoted to extend the theory of elliptic and
parabolic equations to models in which the Laplacian operator or its elliptic equivalents are replaced by
different types of nonlocal integro-differential operators, most notably those called fractional Laplacian
operators, given by the formula

(−∆)su(x) = cn,sP.V.

∫

Rn

u(x) − u(y)

|x− y|n+2s
dy , (1.1)

with parameter s ∈ (0, 1) and a precise constant cn,s > 0 that we do not need to make explicit. In
this formula the domain of definition is assumed to be Rn. The operator can also be defined via the
Fourier transform on R

n, see the classical references [54, 70]. With an appropriate value of the constant
cn,s, the limit s → 1 produces the classical Laplace operator −∆, while the limit s → 0 is the identity
operator. An equivalent definition of this fractional Laplacian uses the so-called extension method, that
was well-known for s = 1

2 and has been extended to all s ∈ (0, 1) by Caffarelli and Silvestre [15]. In view
of its interest in different applications, many authors have taken part in such an effort from different
points of view: probability, potential theory, and PDEs. We are interested in the PDE point of view and
its connection with questions of Functional Analysis.

In this paper we study the fractional elliptic equation of Schrödinger type

{
(−∆)su+ V u = f Ω,

u = 0 R
n \ Ω.

(P)

Here, Ω is a bounded subdomain of the space Rn, n ≥ 2, with C2 boundary, and the fractional Laplacian
operator (−∆)s is the so-called restricted or natural version given by the formula (1.1), where now x ∈ Ω
while y extends to the whole space. The potential V ≥ 0 is a measurable function satisfying mild
integrability assumptions. The aim is to treat general classes of data f and potentials V , in particular
very singular potentials that blow up near the boundary and appear in important applications.

We will start from the Dirichlet problem for the fractional Laplacian equation

{
(−∆)su = f Ω,

u = 0 R
n \ Ω ,

(P0)

i.e., the case of zero potential. This problem and variants thereof have been well studied by many authors,
we refer to the excellent survey [66], which contains many basic references, see also [6, 19, 21, 67]. Here,
it will serve to introduce concepts and results and pose the theory for optimal classes of data f . We
abandon the usual weak solutions of the energy theory and consider locally integrable functions f . This
leads to the theory of very weak and dual solutions. The optimal class of data turns out to be the class
of weighted integrable functions

L1(Ω; δs) = {f measurable in Ω : fδs ∈ L1(Ω)}, (1.2)

where δ(x) = dist (x,Ωc). The problem of well-posedness with weighted integrable data has been consid-
ered in the case s = 1, which we will call classical case hereafter, by Brezis in [10, 12] in the framework of
very weak solutions in weighted spaces, and has been treated recently by several authors, [35, 36, 61, 64].
Extending that work to the fractional case is an important issue that we address. We recall the existence
and uniqueness of very weak solutions, and establish the main properties in the case where f ∈ L1(Ω; δs),
like comparison, accretivity, boundary behavior, Hopf principle, and optimality of data. We devote spe-
cial attention to the question of clarifying the existence of traces of the very weak solutions: we find the
condition on f for the trace to exist in an integral sense.

We then address a key issue of this paper, i. e., the study of the stationary Schrödinger equation. We
want to solve Problem (P) with general V ≥ 0 and f . Here the concept of very weak solution plays an
important role. The theory is simple in the class of bounded or integrable potentials. Besides, if the
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potential is moderately singular, in a sense to be specified later, Hardy’s inequality and Lax-Milgram
implies uniqueness of weak solutions. However, we are interested precisely in a type of potentials that
diverges at the boundary, and this leads to a delicate analysis. Theorems 4.5 and 4.11 settle the well-
posedness of the Dirichlet problem in the class of very weak solutions for general data and count among
the main results of this paper. See the whole Section 4 for further results. By the way, our results also
improve what was known for s = 1.

Here is a main motivation for the interest in general potentials. For the classical Laplacian (s = 1),
it was first shown by Sir Nevill Francis Mott in his 1930 book [59], inspired in the pioneering paper by
Gamow [45] on the tunneling effect, that for certain families of potentials the Schrödinger equation, which
is naturally posed in Rn, can be localized to a bounded domain of Rn, which is given by the nature of V .
On the other hand, the quasi-relativistic approach to bounded states of the Schrödinger equation, leads
to the fractional operator corresponding to s = 1/2,

√
(−∆) +m2u (which is also known as Klein-Gordon

square root operator, see,e.g. [43, 47], see also [40, 49] and references). In the case of massless particles
we obtain (−∆)

1
2 u, also called in this context ultra-relativistic operator. Some illustrative examples of

the class of singular potentials to which we want to apply our results are the ones given, for instance, by
the attractive Coulomb case for a charge distributed over ∂Ω: V (x) = C/δ(x) with C > 0, or even by
more singular functions as it is the case of the Pösch-Teller potential (see [62])

V (x) = V (|x|) =
1

2
V0

(
k(k − 1)

sin2 α |x|
+
µ(µ− 1)

cos2 α |x|

)
(1.3)

for some V0, α > 0, k, µ ≥ 0 , intensively studied since 1933. Notice that this potential blows up in
a sequence of spheres. Some other singular potentials, in the class of the so called super-symmetric
potentials can be found, e.g. in [23]. We refer to [3] as a classical paper on the mathematical study of the
time independent Schrödinger equation for the standard Laplacian. See also [63] for a recent reference.

Actually, another key point of this paper is studying the sense in which the solutions of (P) satisfy the
boundary condition u = 0 on ∂Ω, see Section 5 where so-called flat solutions are discussed, and also its
interplay with the way in which the extended function (defined in the whole space Rn) satisfies (or not)
the same partial differential equation. This plays an important role in many applications as for instance
Quantum Mechanics, as already mentioned. Furthermore, since in bounded domains there are several
different choices of (−∆)s present in the literature (see, e.g., [6, 74]), it is relevant to study which choice
represents the correct localization of a global problem (see Section 6).

Our data f belong to an optimal class of locally integrable functions. There is a simple extension of
the theory to cover the case where integrable functions f are replaced by measures µ. The precise space
is M(Ω, δs) consisting of locally bounded signed Radon measures µ such that

∫
Ω δ

s(x)d|µ|(x) < +∞.
Actually, the results of [21] that cover the zero-potential case are written in that generality. Our existence
and uniqueness theory, contained in Theorems 4.5 and Theorem 4.11, is valid in that context. We have
refrained from that generality in our presentation because using functions makes most of our calculations
and consequences easier to formulate.

Regarding potentials, we have considered general nonnegative potentials V ∈ L1
loc(Ω). This class allows

for extensions in two directions: considering signed potentials, and considering locally bounded measures
as potentials. Both are present in the literature, but both lead to problems that we did not want to
consider here.

Comment. The paper surveys topics that are treated, at least in part, in the recent literature, but
it is also a research paper and many results are new, specially in Sections 3, 4, 5 and 6. We have
tried to mention suitable references to relevant and related known results. Since the literature on elliptic
problems with fractional Laplacians is so numerous, we refer to specialized monographs for more complete
bibliographical information and beg excuse for possible undue omissions.
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2 Preliminaries

We introduce the fractional seminorm

[v]2Hs(Rn) =

∫

Rn

∫

Rn

|f(x) − f(y)|2

|x− y|n+2s
dydx, (2.1)

and then the fractional Hilbert spaces Hs defined by

Hs(Rn) = {v ∈ L2(Rn) : [v]Hs(Rn) < +∞}, (2.2)

with the norm

‖v‖2
Hs(Rn) = ‖v‖2

L2(Rn) + [v]2Hs(Rn). (2.3)

We point out that
‖v‖Hs(Rn) ≍ ‖v‖L2(Rn) + ‖(−∆)

s
2 v‖L2(Rn). (2.4)

where the symbol a ≍ b means that there are constants c1, c2 > 0 such that c1a ≤ b ≤ c2a.

When working in a bounded domain Ω, and in order to take into account the boundary and exterior
conditions, we define the Hilbert spaces

Hs
0(Ω) = C∞

c (Ω)
‖·‖Hs(Rn)

. (2.5)

Classical texts on Sobolev spaces to be consulted are [2, 11, 55, 56, 72]. For a concise introduction to
Hs(Rn) we refer the reader to [7, 28].

By analogy to the classical case s = 1, a “formula of integration by parts” (or “Green’s formula”) holds

Proposition 2.1. Let u, v ∈ C∞
c (Rn) and 0 < s ≤ 1. Then

∫

Rn

v(−∆)su =

∫

Rn

(−∆)
s
2u(−∆)

s
2 v. (2.6)

Proof. Since the operator (−∆)
s
2 is self-adjoint (see, e.g., [21]) and (−∆)s+t = (−∆)s(−∆)t for 0 <

s, t, s+ t ≤ 1 we have

∫

Rn

v(−∆)su = 〈v, (−∆)
s
2 (−∆)

s
2 u〉 = 〈(−∆)

s
2 v, (−∆)

s
2u〉 =

∫

Rn

(−∆)
s
2u(−∆)

s
2 v. (2.7)

This proves the result.

More general integration by parts results can be found in [1], that treats a general integration by parts
formula that includes terms accounting for a non-zero value of u in Ωc and a precise limit on the boundary.

Remark 2.2. By density, the formula is true for any u ∈ H2s(Ω)∩Hs
0 (Ω) and v ∈ Hs

0 (Ω). Particularising
for s = 1 and making u = v we deduce the classic formula

‖∇v‖L2(Ω)n = ‖(−∆)
1
2 v‖L2(Rn). (2.8)

Remark 2.3. Some authors prefer the following presentation:

∫

Rn

v(−∆)su = cn,sP.V.

∫

Rn

∫

Rn

(v(x) − v(y))(u(x) − u(y))

|x− y|n+2s
dydx. (2.9)

This operator also has a Kato inequality. In [19], is presented simply as: (−∆)s|u| ≤ signu (−∆)su holds
in the distributional sense. A precise expression can be found in Lemma 3.8. In Section 9 we provide for
the reader’s benefit a simple proof which is useful for our presentation.
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3 Dirichlet problem without potentials and general data

3.1 Weak solutions. A survey on existence, uniqueness and properties

A weak solution of the Dirichlet problem (P0) (with zero potential V = 0) can be obtained by an energy
minimization method using the appropriate fractional Sobolev spaces, as introduced in the previous
section. Applying (2.6) we introduce the concept of weak solution as:

Definition 3.1. f ∈ L2(Ω). A weak solution of (P0) is a function u ∈ Hs
0 such that

∫

Rn

(−∆)
s
2 u(−∆)

s
2ϕdx =

∫

Ω

fϕ dx, ϕ ∈ Hs
0(Ω). (P0

w)

Existence and uniqueness of weak solutions is easy for f ∈ L2(Ω), by the Lax-Milgram theorem. This is
a basic result on which the extended theory is based. Actually, f can be taken in the dual space (Hs

0 (Ω))′.

Another option is pursued in [16, 17, 18] where the authors proved existence and regularity of viscosity
solutions. Both classes of solutions coincide in the common class of data. We will not deal with viscosity
solutions in this paper. See also [14].

In [22, 52], the authors prove that the solution operator is given by an integral representation in terms
of a Green kernel

[(−∆)s]−1f =

∫

Ω

Gs(x, y)f(y)dy (3.1)

where

Gs(x, y) ≍
1

|x− y|n−2s

(
δ(x)

|x− y|
∧ 1

)s (
δ(y)

|x− y|
∧ 1

)s

. (3.2)

Using these bounds, many estimates of integrability and regularity can be given by suitably applying
Hölder’s inequality.

The following regularity results are proved by Ros-Oton and Serra in [67] and will be essential in what
follows.

Proposition 3.2. Let Ω be a bounded C1,1, f ∈ L∞(Ω), and let u be a weak solution of (P0). Then, the
following holds:

1. We have u ∈ Cs(Rn) and
‖u‖Cs(Rn) ≤ C‖f‖L∞(Ω) , (3.3)

where C is a constant depending only on Ω and s.

2. Moreover, if δ(x) = dist (x,Ωc), then for all x ∈ Ω

|u(x)| ≤ C1‖f‖L∞(Ω)δ(x)s , (3.4)

where C1 is a constant depending only on Ω and s. Besides. u/δs|Ω can be continuously extended
to Ω, we have u/δs ∈ Cα(Ω) and

∥∥∥ u
δs

∥∥∥
Cα(Ω)

≤ C2‖f‖L∞(Ω) (3.5)

for some α > 0 satisfying α < min{s, 1 − s}. The constants α and C1, C2 depend only on Ω and s.

Remarks 3.3. 1) Existence and uniqueness of weak solutions in the classical case s = 1 is standard.
There are also many results about the regularity of the weak solutions with data in Lebesgue spaces. For
instance, for p = 1 and n = 2, we have the very sharp results of [42].

2) There are many references to the variational treatment of equations with nonlocal operators, both
linear and nonlinear, see [58].
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3.2 Very weak solutions. A survey on existence, uniqueness and properties

However, our purpose is to deal with a larger class of data f , which are locally integrable functions,
otherwise as general as possible. A more general definition of solution is necessary. We take an old idea
by Brezis (see [10]).

Definition 3.4. Let f ∈ L1(Ω, δs). We say that u is a very weak solution of (P0) if





u ∈ L1(Ω),

u = 0 a.e. R
n \ Ω and

∫

Ω

u(−∆)sϕdx =

∫

Ω

fϕ dx, ∀ϕ ∈ Xs
Ω,

(P0
vw)

where
Xs

Ω = {ϕ ∈ Cs(Rn) : ϕ = 0 in R
n \ Ω and (−∆)sϕ ∈ L∞(Ω)}. (3.6)

This type of solution is also known as very weak solution in the sense of Brezis.

Remarks 3.5. 1) Applying identity (2.6) again we can prove that any weak solution in the sense of
Definition 3.1 satisfies our definition of very weak solution.

2) This definition allows us to take f to be outside L1, but rather with a weighted integrability condition,
f ∈ L1(Ω; δs), which will turn out to be the correct class. About the weight, Ros-Oton and Serra proved
in [67, Lemma 3.9] that δs ∈ Cα(Ω ∩ {δ < ρ0}) for α = min{s, 1 − s} and

|(−∆)sδs| ≤ CΩ in Ω ∩ {δ < ρ0}. (3.7)

In order to simply the calculations, it is convenient to replace δs by the first eigenfunction of the fractional
Laplacian ϕ1, which is positive and smooth everywhere inside Ω and satisfies exactly the same boundary
behaviour (ϕ1 ≍ δs).

3) In Xs
Ω we can only ask for Cs(Ω) smoothness, because, when Ω = BR, we will want to approximate

{
(−∆)sϕ = 1 BR

ϕ = 0 R
n \BR

which is
ϕ(x) = C

(
R2 − |x|2

)s

only of class Cs. Nonetheless, ϕ/δs can be shown to be smoother. In this case, it is infinitely differentiable,
whereas ϕ is not.

4) Definition 3.4 corresponds to the notion of weak dual solution proposed and used in [7]:

∫

Ω

uψ =

∫

Ω

f [(−∆)s]−1ψ (3.8)

where [(−∆)s]−1 is the solution operator. We will make a detailed comment about the interpretation of
this kind of solution in Section 7.1.

5) By the formula of integration by parts, it is clear that any very weak solution with f ∈ L2(Ω) that is
also in Hs

0(Ω) is a weak solution.

Chen and Véron [21] seem to have been the first to apply this approach to the fractional case. They
proved the following results:

Theorem 3.6 ([21]). Let fδs ∈ L1(Ω). Then, there exists exactly one very weak solution u ∈ L1(Ω) of
Problem (P0

vw). If f ≥ 0, then u ≥ 0. Hence, the Maximum Principle holds.
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Remarks 3.7. 1) We point out that the authors also treat semilinear problems of the form (−∆)su +
g(u) = f , and that their work does not apply Green function estimates. The authors work with the more
general class of measure data M(Ω, δs).

2) The Maximum Principle allows for the definition of super- and subsolutions that can be useful in
getting estimates.

3) A reference to optimal regularity for the fractional case is [53] which also includes nonlinear fractional
elliptic problems with p-Laplacian type growth. The right-hand side data are locally bounded measures.
When f has further regularity the solutions are smooth to different degrees by the representation via the
Green kernel Equation (3.1).

4) More properties of the solutions will be examined below and in the study of the Schrödinger equation.

With the formulation (P0
vw) we can precisely state the Kato inequality in a general way. The proof for

the fractional operator is also due to Chen and Véron [21]

Lemma 3.8 (Kato’s inequality [21]). Let f ∈ L1(Ω, δs) and u ∈ L1(Ω) be a solution of (P0
vw). Then

∫

Ω

|u|(−∆)sϕ ≤

∫

Ω

sign(u)fϕ, (3.9)

∫

Ω

u+(−∆)sϕ ≤

∫

Ω

sign+(u)fϕ (3.10)

hold for all ϕ ∈ Xs
Ω, ϕ ≥ 0.

3.3 A quantitative lower Hopf principle for data in L1(Ω, δs)

By uniqueness and approximation we easily see that the preceding solutions admit a representation via
the Green kernel (3.1), and estimates (3.2) we can prove an adapted lower Hopf inequality. The classical
case s = 1 was first stated in this form in [34].

Proposition 3.9. Let 0 ≤ f ∈ L1(Ω, δs) and let u ∈ L1(Ω) be the unique very weak solution of (P0
vw).

Then

u(x) ≥ cδ(x)s

∫

Ω

f(y)δ(y)s (3.11)

a.e. x ∈ Ω, where c > 0 depends only on Ω.

Proof. We first show that
Gs(x, y) ≥ c(x)δ(y)s (3.12)

for all x, y ∈ Ω, and c > 0 in Ω. Let x ∈ Ω. Applying (3.2), it is clear that

c(x) = inf
y∈Ω̄

1

δ(y)s|x− y|n−2s

(
δ(x)

|x− y|
∧ 1

)s(
δ(y)

|x− y|
∧ 1

)s

(3.13)

is reached at some point y∗. It is easy to see that c(x) ≥ cδ(x)s where c > 0. Therefore

u(x) =

∫

Ω

Gs(x, y)f(y)dy ≥ cδ(x)s

∫

Ω

f(y)δs(y)dy. (3.14)

This completes the proof.

The strict positivity of solutions with nonnegative data, in particular the behaviour near the boundary,
has been studied in [6]. There exists also a wide literature for parabolic equations, both linear and
nonlinear.
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3.4 L1(Ω; δs) as an optimal class of data

Through the Hopf inequality it is easy to show that this is largest space to look for solutions if we want
to keep the class of weak solutions for bounded data and the maximum principle. The nonexistence of
solution for such data is a consequence of the following blow-up result.

Proposition 3.10. Let f be a nonnegative function such that f /∈ L1(Ω, δs), and let fk be a sequence of
approximations by bounded functions, fk ≤ f , fk → f a.e. in Ω. Then, uk = (−∆)−sfk → ∞ in Ω.

Proof. Applying Proposition 3.9 we have that

uk(x) ≥ cδ(x)s

∫

Ω

fk(y)δs(y)dy. (3.15)

Passing to the limit k → ∞ we would arrive at u(x) ≥ limk uk(x) = +∞.

Remark 3.11. In the limit this optimality can be extended to measure data in the class M(Ω, δs).

3.5 Traces of very weak solutions and boundary weighted integrability

The definition of weak solution includes a very clear sense of zero boundary trace since u ∈ Hs
0 (Ω).

However, the definition of very weak solution merely requires u ∈ L1(Ω). Clearly, since the space L1(Ω)
does not have a boundary trace operator there is a question about the sense in which the solution u
takes null boundary data on ∂Ω. In the classical case s = 1 some authors have proposed to study local
solutions of the Laplace equation inside Ω that satisfy a generalized 0 boundary condition of the form
u/δ ∈ L1(Ω). Always for s = 1, Kufner [51] was amongst the first to notice that this kind of singular
weights give significant boundary information. We recall that, for p > 1, the classical Hardy inequality
implies that

u ∈ W 1,p
0 (Ω) ⇐⇒




u ∈ W 1,p(Ω) and
u

δ
∈ Lp(Ω).

(3.16)

For p = 1 this result is no longer true.

The convenience of using the integral condition u/δ ∈ L1(Ω) as a kind of generalized boundary condition
instead of a standard trace condition has been observed recently (see [32]). Moreover, Rakotoson showed
in [64] the following equivalence:

u

δ
∈ L1(Ω) ⇐⇒ fδ(1 + | log δ|) ∈ L1(Ω). (3.17)

When considering the fractional Dirichlet problem we have found that the appropriate weight is δs. To
begin with, there is a Hardy inequality for these operators

Proposition 3.12 ([48]). Let 1 < p < ∞ and 0 < s < 1 be such that sp < n. Let Ω ⊂ Rn be an open
set, n ≥ 2, with regular boundary. Then, for, every u ∈ C∞

0 (Ω),
∫

Ω

|u(x)|p

δ(x)sp
≤ c0

∫

Rn

∫

Rn

|u(x) − u(y)|p

|x− y|n+sp
dydx, (3.18)

where u is extended by 0 outside Ω.

Note that for p = 2 then n
p ≥ 1, so the condition 0 < s < n

p is trivial. Hence, for u ∈ Hs
0(Ω), we know

that u/δs ∈ L2.

In order to present our results we need to introduce a new test function:




(−∆)sϕδ =
1

δs
Ω

ϕδ = 0 Ωc.
(3.19)

We prove the following theorem:
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Proposition 3.13. Let fδs ∈ L1(Ω) and let u ∈ L1(Ω) be the solution of (P0
vw). Then, u/δs ∈ L1(Ω) if

and only if fϕδ ∈ L1(Ω).

Remark. The difficulty with this function is that, since 1/δs /∈ L∞, we know ϕδ /∈ Xs
Ω.

Proof. Let us consider the auxiliary functions





(−∆)sϕδ,k = min

{
1

δs
, k

}
Ω

ϕδ,k = 0 Ωc.

(3.20)

Then ∫

Ω

umin

{
1

δs
, k

}
=

∫

Ω

u(−∆)sϕδ,k =

∫

Ω

fϕδ,k. (3.21)

We will prove the case f ≥ 0, and the sign changing case follows directly. Since f ≥ 0 then u ≥ 0. It is
clear that ϕδ,k is a nondecreasing sequence, the limit of which is ϕδ. Since f, u ≥ 0, by the Monotone
Convergence Theorem

∫

Ω

|u|

δs
=

∫

Ω

u

δs
= lim

k→∞

∫

Ω

umin

{
1

δs
, k

}
= lim

k→∞

∫

Ω

fϕδ,k =

∫

Ω

fϕδ =

∫

Ω

|f |ϕδ. (3.22)

One integral is finite if and only the other integral is finite.

We can characterize the behaviour of ϕδ near the boundary:

Lemma 3.14. There exist constants, c, C > 0 such that

cδs| log δ| ≤ ϕδ ≤ Cδs(1 + | log δ|). (3.23)

This result is technical but simple, we give the proof in Section 8. For s = 1 the result is due to Rakotoson
[65].

Through this estimate, we provide an extension of (3.17) to the fractional case:

Proposition 3.15 (Necessary and sufficient condition for u/δs ∈ L1(Ω)). Let fδs ∈ L1(Ω) and u ∈ L1(Ω)
be the very weak solution of (P0

vw). Then,

u

δs
∈ L1(Ω) ⇐⇒ fδs(1 + | log δ|) ∈ L1(Ω). (3.24)

Proof. We will only give the proof for f ≥ 0. Then u ≥ 0.

∫

Ω

u

δs
=

∫

Ω

fϕδ. (3.25)

Thus

c1

∫

Ω

fδs| log δ| ≤

∫

Ω

u

δs
≤ c2

∫

Ω

fδs(1 + | log δ|). (3.26)

The ⇐= part is then proved.

On the other hand, if u/δs ∈ L1(Ω), then fδs| log δ| ∈ L1(Ω). For the first eigenfunction of (−∆)s it is
well known that c1δ

s ≤ ϕ1 ≤ c2δ
s. Hence,

c1

∫

Ω

fδs ≤

∫

Ω

fϕ1 =

∫

Ω

u(−∆)sϕ1 = λ1

∫

Ω

uϕ1 ≤
∥∥∥ u
δs

∥∥∥
L1

‖ϕ1δ
s‖L∞ (3.27)

Adding both computations, the =⇒ part of the theorem is proved.
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3.6 A note on local very weak solutions

In this theory, it is natural to define local solutions, if we are not concerned with the boundary information:

Definition 3.16. We say that u is a very weak local solution if




u ∈ L1(Ω),

u = 0 a.e. R
n \ Ω and

∫

Ω

u(−∆)sϕdx =

∫

Ω

fϕ dx, ∀ϕ ∈ Xs
Ω ∩ Cc(Ω).

(P0
loc)

Notice that the difference with (P0
vw) lies in space where the test functions are taken. It is clear that,

even with the extra requirement u ∈ Hs(Ω), there is no uniqueness of solutions. The reason why (Pvw)
has uniqueness of solutions is the fact, in the very weak formulation, that the test function “sees” the
boundary information. This is due to the integration by parts formula.

Due to the integration by parts formula and density, any solution (P0
loc) such that u ∈ Hs

0(Ω) is a solution
of (P0

vw). This raises the question: how much extra information does one need to show uniqueness of
(P0

loc). In this section, we will show that
u

δs
∈ L1(Ω) (3.28)

is sufficient information (i.e., there is, at most, one solution of (P0
loc) such that (3.28) holds). Proposi-

tion 3.13 shows that this (3.28) is only possible if fϕδ ∈ L1(Ω), and in this case it is always true. This
produces and equivalent formulation of (Pvw) when fϕδ ∈ L1(Ω).

3.6.1 A lemma of approximation of test functions

Since the only difference between (P0
vw) and (P0

loc) is the space of test functions, let us study further
these spaces. It is clear that one way to pass from (P0

loc) to (P0
vw) will be to select, for each ϕ ∈ Xs

Ω a
sequence ϕk ∈ Xs

Ω ∩ C∞
c (Ω) such that ϕk → ϕ. This convergence must be good enough to preserve the

equation. In this direction we introduce the following cut-offs.

Let η be a C2(R) function such that 0 ≤ η ≤ 1 and

η(t) =

{
0 t ≤ 0,

1 t ≥ 2.
(3.29)

We define the functions

ηε(x) = η

(
ϕ1(x) − εs

εs

)
. (3.30)

where ϕ1 is the first eigenfunction of (−∆)s. Notice that ϕ1 ≍ δs. We prove the following approximation
result:

Lemma 3.17. For ϕ ∈ Xs
Ω we have that ηεϕ ∈ Xs

Ω ∩Cc(Ω) and

δs(−∆)s(ϕηε) ⇀ δs(−∆)sϕ (3.31)
ϕηε

δs
⇀

ϕ

δs
(3.32)

in L∞-weak-⋆ as ε → 0.

To prove Lemma 3.17 we can use the following decomposition:

Theorem 3.18 (Eilertsen formula (see [37])). Let u, v ∈ C∞
0 (Rn) and 0 < s < 1. Then

(−∆)s(uv)(x) = u(x)(−∆)sv(x) + v(x)(−∆)su(x) −As

∫

Rn

(u(x) − u(y))(v(x) − v(y))

|x− y|n+2s
dy, (3.33)

where As ≍ s(1 − s).
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The difficult term will be the first one.

Lemma 3.19. There exists a constant C independent of ε such that

|δ2s(x)(−∆)sηε(x)| ≤ C. (3.34)

Proof. In order to use [21, Lemma 2.3] we write ηε(x) = γε(ϕ1(x)), where

γε(t) = η

(
t− εs

εs

)
. (3.35)

Due to (3.7), we have that ηε ∈ Xs
Ω and, and for every x ∈ Ω, there exists zx ∈ Ω

(−∆)sηε(x) = (−∆)s(γε ◦ ϕ1)(x) (3.36)

= γ′
ε(ϕ1(x))(−∆)sϕ1(x) +

γ′′(ϕ1(zx))

2s

∫

Ω

|ϕ1(x) − ϕ1(y)|2

|x− y|n+2s
dy (3.37)

=
1

εs
η′

(
ϕ1(x) − εs

εs

)
λ1ϕ1(x) (3.38)

+
η′′
(

ϕ1(zx)−εs

εs

)

2sε2s

∫

Ω

|ϕ1(x) − ϕ1(y)|2

|x− y|n+2s
dy. (3.39)

From this, applying the regularity of ϕ1

|(−∆)sηε(x)| ≤ ε−2s, ∀x ∈ Ω. (3.40)

Consider, in particular, that δ(x) ≥ 3ε. Let d = d(x, {ε < δ < 2ε}) > 0, so ηε(y) = 1 = ηε(x) if
|x− y| ≤ d. We have that

|(−∆)sηε(x)| =

∣∣∣∣
∫

Rn

ηε(x) − ηε(y)

|x− y|n+2s
dy

∣∣∣∣ (3.41)

=

∣∣∣∣∣

∫

|x−y|>d

ηε(x) − ηε(y)

|x− y|n+2s
dy

∣∣∣∣∣ (3.42)

≤

∫

|x−y|>d

2

|x− y|n+2s
dy (3.43)

= C

∫ +∞

d

1

rn+2s
rn−1dr (3.44)

=
1

d2s
. (3.45)

Since d ≥ δ(x) − 2ε ≥ δ(x)/3. We have that

|(−∆)sηε(x)| ≤
C

δ(x)2s
, ∀x such that δ(x) ≥ 3ε. (3.46)

On the other hand,

|δ2s(x)(−∆)sηε(x)| ≤ 32sε2sCε−2s = C ∀x such that δ(x) ≤ 3ε. (3.47)

This proves the result.

Lemma 3.20. For all ϕ ∈ Xs
Ω

∣∣∣∣δ
s(x)

∫

Rn

(ϕ(x) − ϕ(y))(ηε(x) − ηε(y))

|x− y|n+2s
dy

∣∣∣∣ ≤ C, (3.48)

where C does not depend on ε.
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Proof. For any x ∈ Ω

∣∣∣∣
∫

Rn

(ϕ(x) − ϕ(y))(ηε(x) − ηε(y))

|x− y|n+2s
dy

∣∣∣∣ =

∣∣∣∣∣∣

∫

Rn

(ϕ(x) − ϕ(y))η′
(

ϕ1(zy)−εs

εs

)
ϕ1(x)−ϕ1(y)

εs

|x− y|n+2s
dy

∣∣∣∣∣∣

≤ Cε−s

∣∣∣∣
∫

Rn

(ϕ(x) − ϕ(y))(ϕ1(x) − ϕ1(y))

|x− y|n+2s
dy

∣∣∣∣
≤ Cε−s. (3.49)

We compute, for δ(x) ≥ 3ε

∣∣∣∣
∫

Rn

(ϕ(x) − ϕ(y))(ηε(x) − ηε(y))

|x− y|n+2s

∣∣∣∣ ≤

(∫

Rn

|ϕ(x) − ϕ(y)|2

|x− y|n+2s

) 1
2
(∫

Rn

|ηε(x) − ηε(y)|2

|x− y|n+2s

) 1
2

(3.50)

≤ C‖ϕ‖Hs(Rn)

(∫

|x−y|≥d

1

|x− y|n+2s

) 1
2

(3.51)

≤
C‖ϕ‖Hs(Rn)

ds
. (3.52)

From this estimate and (3.49) we conclude, as before, the result.

Proof of Lemma 3.17. We write Eilertsen’s formula in our case

(−∆)s(ϕηε)(x) = ηε(x)(−∆)sϕ(x) + ϕ(x)(−∆)sηε(x) −As

∫

Rn

(ϕ(x) − ϕ(y))(ηε(x) − ηε(y))

|x− y|n+2s
dy. (3.53)

We have proven that the second and third term are bound when multiplied by δ2s(x) and δs(x), respec-
tively. They converge pointwise to 0. Hence, up to a subnet,

δ2s(x)(−∆)sηε ⇀ 0, (3.54)

δs(x)

∫

Rn

(ϕ(x) − ϕ(y))(ηε(x) − ηε(y))

|x− y|n+2s
dy ⇀ 0 in L∞-weak- ⋆ . (3.55)

Since ϕ ∈ Xs
Ω we know that ϕ

δs ∈ L∞. Hence, up to a subnet,

δsϕ(−∆)sηε =
ϕ

δs
δ2s(−∆)sηε ⇀ 0 in L∞-weak- ⋆ . (3.56)

On the other hand ηε is bounded, and converges pointwise to 1. Hence, up to a subnet,

ηε ⇀ 1 in L∞-weak- ⋆ . (3.57)

Thus, up to a subnet,
δsηε ⇀ δs in L∞-weak- ⋆ . (3.58)

All the above are bounded net, such that every subnet have the same limit. All nets converge. This
proves (3.31).

On the other hand
ϕηε

δs
=
ϕ

δs
ηε ⇀

ϕ

δs
in L∞-weak-⋆, (3.59)

proving (3.32). This concludes the proof.
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3.6.2 A local solution which is integrable with a suitable boundary weight is a v.w.s.

Proposition 3.21. Any solution of (P0
loc) such that u

δs ∈ L1(Ω) is a solution of (P0
vw).

Proof. Let ϕ ∈ Xs
Ω. Consider an approximation η 1

k
ϕ ∈ Xs

Ω ∩ Cc(Ω). Since u/δs ∈ L1(Ω) then

∫

Ω

u(−∆)s(η 1
k
ϕ) =

∫

Ω

fϕη 1
k
, (3.60)

∫

Ω

u

δs
δs(−∆)s(η 1

k
ϕ) =

∫

Ω

fδs
ϕη 1

k

δs
. (3.61)

By passing to the limit applying Lemma 3.17

∫

Ω

u(−∆)sϕ =

∫

Ω

fϕ. (3.62)

This proves the result.

As a corollary of the uniqueness of (P0
vw) we have the following

Proposition 3.22. There is, at most, one solution of (P0
loc) such that u/δs ∈ L1(Ω).

Summary It is obvious that (P0
vw) =⇒ (P0

loc). Proposition 3.13 states that

{
(P0

vw) and

fϕδ ∈ L1(Ω)
=⇒





(P0
vw) and

u

δs
∈ L1(Ω)

(3.63)

Proposition 3.21 states:

(P0
vw) ⇐=





(P0
loc) and

u

δs
∈ L1(Ω)

(3.64)

Combining both facts:

{
(P0

vw) and

fϕδ ∈ L1(Ω)
⇐⇒





(P0
loc) and

u

δs
∈ L1(Ω).

(3.65)

Finally, let us state the following comparison result.

Proposition 3.23 (Comparison principle). Assume that





∫

Ω

u(−∆)sϕ ≤ 0 ∀0 ≤ ϕ ∈ Xs
Ω ∩ Cc(Ω),

u

δs
∈ L1(Ω).

(3.66)

Then u ≤ 0.

Proof of Proposition 3.23. Let ϕ ∈ Xs
Ω. Take ϕk = ϕη 1

k
∈ Xs

Ω ∩Cc(Ω). Then, by Lemma 3.17,

0 ≥

∫

Ω

u(−∆)sϕk =

∫

Ω

u

δs
δs(−∆)sϕk →

∫

Ω

u

δs
δs(−∆)sϕ =

∫

Ω

u(−∆)sϕ. (3.67)
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Hence, taking the test function solution of

{
(−∆)sϕ = sign+ u Ω,

ϕ = 0 Ωc,
(3.68)

we deduce that ∫

Ω

u+ ≤ 0. (3.69)

Hence u+ = 0. This completes the proof.

Remark 3.24. We notice that for 0 < s < 1 we have δ−s ∈ L1(Ω), unlike for s = 1. This makes
u/δs ∈ L1 not entirely a “boundary condition”. For s = 1, (3.66) was shown in [32]. On the other hand,
in the limit s = 0 it says 



u = (−∆)0u ≤ 0 Ω

u =
u

δ0
∈ L1(Ω)

(3.70)

The second item gives no information, but still the result is trivially true for s = 0, and all the information
comes from the operator. For s = 1 most of the information came from the integral condition. For the
interpolation 0 < s < 1, the responsibility needs to be shared.

To give an intuition on how much more information the fractional Laplacian s < 1 has with respect to
the classical Laplacian (s = 1) we provide the following example:

Example 3.25. Let uc = cχΩ (where χ is the characteristic function). Then:

(i) if c < 0 then (−∆)suc(x) < 0 in Ω,

(ii) if c > 0 then (−∆)suc(x) > 0 in Ω.

For the proof note that for every x ∈ Ω we have

(−∆)suc(x) = c

∫

Ωc

dy

|x− y|n+2s
.

Both signs are reversed for x ∈ Ωc. This property is obviously false for s = 1.

3.7 Accretivity

In the study of evolution equations associated to elliptic operators the property of accretivity plays an
important role since it can be used as a basic tool in the solution of associated parabolic problems and
the generation of the corresponding semigroups, [11]. We say that a (possibly unbounded or nonlinear)
operator A acting in a Banach space X is accretive if for every u1, u2 ∈ D(A), the domain of the operator
D(A) ⊂ X , and every λ > 0 we have

‖u1 − u2‖X ≤ ‖f1 − f2‖X , (3.71)

where fi = ui +λLui, i = 1, 2. This is a contractivity property. Moreover, an accretive operator is called
m-accretive if the problem f = u + λLu an be solved for every f ∈ X and every λ > 0 and the solution
u lies in D(A). The Crandall-Liggett Theorem [25] implies that, when L is an m-accretive operator in a
Banach space X , we can solve the evolution problem

∂tu(t) + Lu(t) = f(t)

for every initial data u(0) ∈ X for every f ∈ L1(0,∞;X), and find a unique generalized solution u ∈
C([0,∞);X) that solves this initial-value problem in the so-called mild sense.
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A further concept is T -accretivity, that incorporates the maximum principle and applies to ordered
Banach spaces, like spaces of real functions. It reads

‖(u1 − u2)+‖X ≤ ‖(f1 − f2)+‖X . (3.72)

under the same assumptions as in (3.71).

The results of the preceding subsections allow to prove the first part of the following statement.

Proposition 3.26. The fractional Laplacian operator L = (−∆)s is m-T -accretive in the space L1(Ω)
and also in the spaces L1(Ω;φ) for all positive weights φ ∈ Xs, such that (−∆)sφ ≥ 0. The restricted
Laplacian operator is also m-T -accretive in the spaces Lp(Ω) with 1 < p ≤ ∞.

For the accretivity in L1(Ω;φ) we have to check that

∫

Ω

Lu sign(u)φdx =

∫

Ω

L|u|φdx =

∫

Ω

|u|Lφdx ≥ 0,

where we use Kato’s inequality, see Lemma 3.8, and the symmetry implied by (2.9).

The last statement for finite p > 1 admits an easy proof that uses the Stroock-Varopoulos inequality for
weak solutions that we quote from [27], Lemma 5.1:

Lemma 3.27 (Stroock-Varopoulos’ inequality). Let 0 < s < 1, p > 1. Then

∫

RN

(|v|p−2v)(−∆)sv ≥
4(p− 1)

p2

∫

RN

∣∣∣(−∆)s/2|v|p/2
∣∣∣
2

(3.73)

for all v ∈ Lp(Rn) such that (−∆)sv ∈ Lp(Rn).

This is done for functions defined in Rn, when working in a bounded domain we recall that v = 0 outside
of Ω. The inequality not only shows that the operator is accretive but it measures its amount in terms
of a square norm of the fractional operator of half order.

The application for very weak solutions is obtained by passage to the limit. For p = ∞ pass to the limit
in the result for finite p.

3.8 Comparison with the class of large solutions

The theory we have described asks for zero boundary conditions, but only in some generalized sense. An
immediate extension of our class of solutions is the class of large solutions that has been studied by [1].
These solutions blow-up at the boundary, which is explained by the presence of some singular boundary
measure in the weak formulation. See also [41]. The typical example is

u1−s(x) =
c(n, s)

(1 − |x|2)1−s
in BR(0)

with u1−s(x) = 0 outside. This function is found in [4], where it is proved that u1−s satisfies

(−∆)su1−s = 0 pointwise in B.

Since u1−s(x)/δ(x)s ≍ c/δ(x), which is not integrable near the boundary, we are sure that this is a large
solution and not a very weak solution of the Dirichlet Problem as in the preceding theory. The divergence
δ(x)−1 is just borderline for our class of very weak solutions, and this is another proof of optimality for
our theory.
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4 Schrödinger problem with positive potentials

Here we extend previous results by authors in [33, 32] dealing with the classical stationary Schrödinger
equation to fractional operators, i.e. to problem (P). As a preliminary, we start by the easier case of
bounded potentials and functions.

By analogy to Definitions 3.1 and 3.4 we introduce

Definition 4.1. Let f ∈ L2(Ω). A weak solution of (P) if a function u ∈ Hs
0 (Ω), V u ∈ L2(Ω), and such

that ∫

Rn

(−∆)
s
2u(−∆)

s
2ϕ+

∫

Ω

V uϕ =

∫

Ω

fϕ (Pw)

for all ϕ ∈ Hs
0(Ω). This definition can be extended by asking that f, V u ∈ (Hs

0(Ω))′.

Definition 4.2. We assume that f ∈ L1(Ω, δs). We say that u is a very weak solution of (P) if





u ∈ L1(Ω),

u = 0 a.e. R
n \ Ω and

V uδs ∈ L1(Ω),
∫

Ω

u(−∆)sϕ+

∫

Ω

V uϕ =

∫

Ω

fϕ, ∀ϕ ∈ Xs
Ω,

(Pvw)

where Xs
Ω is given by (3.6).

As seen in the previous section, the concept of weak solution will not be sufficient to solve the Dirichlet
Problem with general data. Moreover, through Proposition 2.1 it is trivial to show that

Lemma 4.3. If u ∈ Hs
0(Ω) is a weak solution of (P) with f ∈ L2(Ω) in the sense of (Pw), then it is a

very weak solution of (P) in the sense of (Pvw).

Remark 4.4. The converse implication, which we indicated as true for (P0) in Remarks 3.5.3), escapes
the interest of this paper. However, since u ∈ Hs

0 (Ω) and f ∈ L2(Ω) then, it seems natural, although it
requires a rigorous proof, that V u = f − (−∆)su ∈ (Hs

0 (Ω))′. Even if we do not prove that V u ∈ L2(Ω),
this would be enough to say that u is a weak solution (in a natural sense).

The following result confirms that the class of very weak solutions is not too general

Theorem 4.5. Let f ∈ L1(Ω, δs). There is, at most, one solution of (Pvw).

Proof. Let u1, u2 be two solutions. Let u = u1 − u2. Therefore,
∫

Ω

u(−∆)sϕ = −

∫

Ω

V uϕ, ∀ϕ ∈ Xs
Ω, (4.1)

Therefore, through Lemma 3.8 and Kato’s inequality Proposition 9.1 we have that
∫

Ω

|u|(−∆)sϕ ≤ 0, ∀ 0 ≤ ϕ ∈ Xs
Ω, (4.2)

In particular, |u| ≤ 0. This completes the proof.

4.1 The case V ∈ L∞(Ω)

We now address the question of existence. The simplest case concerns bounded potentials. When V ∈
L∞(Ω), (−∆)s + V is a self-adjoint operator in L2(Ω), as (−∆)s, which has a positive first eigenvalue
λ1 > 0. It is easy to see, through the Lax-Milgram theorem, that there exists a unique weak solution.

When V, f ∈ L∞(Ω) we can apply the regularity estimates in Proposition 3.2 by bootstrapping. For a
fixed solution, we define g = f − V u ∈ L∞(Ω), and we know that u ∈ Cs(Ω̄).
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Lemma 4.6. Let V, f ∈ L∞(Ω). There exists a unique solution u of (Pw). It satisfies

‖u‖L1 ≤ C‖fδs‖L1 (4.3a)

‖V uδs‖L1 ≤ C‖fδs‖L1 , (4.3b)

where C does not depend on u. Furthermore,
∥∥∥ u
δs

∥∥∥
L1

≤ ‖fϕδ‖L1 , (4.4a)

‖V uϕδ‖L1 ≤ ‖fϕδ‖L1 . (4.4b)

Moreover,

‖u‖L2(Ω) ≤ C‖f‖L2(Ω) (4.5a)

‖(−∆)
s
2u‖L2(Rn) ≤ C‖f‖L2(Ω). (4.5b)

If f ≥ 0, then u ≥ 0.

Notice that (4.4a) and (4.4b) hold with constant 1. In order for (4.3a) and (4.3b) to also hold with
constant 1 we can choose the first eigenfunction of (−∆)s, ϕ1, as a weight.

Proof of Lemma 4.6. The existence of a weak solution u ∈ Hs
0(Ω) follows from the Lax-Milgram theorem.

It is a very weak solution. The fact that, if f ≥ 0, then u ≥ 0 follows as for the (−∆)s operator.

To compute the estimates, we start by considering f ≥ 0. Then u ≥ 0. By considering as test function
the unique solution of problem {

(−∆)sϕ0 = 1 Ω

ϕ0 = 0 Ωc.
(4.6)

From the representation formula (3.1) and (3.2) we know that ϕ0 ≥ cδs and, from the results in [67],
that ϕ0 ∈ Xs

Ω. Therefore
∫

Ω

u+

∫

Ω

V uδs ≤

∫

Ω

u+
1

c

∫

Ω

V uϕ0 ≤ C

∫

Ω

(u+ V uϕ0) ≤ C

∫

Ω

fδsϕ0

δs
≤ C

∥∥∥ϕ0

δs

∥∥∥
L∞

‖fδs‖L1 (4.7)

so (4.3a) and (4.3b) hold. Using ϕδ as a test function in the very weak formulation

0 ≤

∫

Ω

u

δs
+ V uϕδ ≤

∫

Ω

u(−∆)sϕδ + V uϕδ =

∫

Ω

fϕδ. (4.8)

Hence,
∥∥∥ u
δs

∥∥∥
L1

≤ ‖fϕδ‖L1 . (4.9)

To obtain (4.5a) we can take as a test function in the very weak formulation the solution of
{

(−∆)sϕ = u Ω,

ϕ = 0 ∂Ω.
(4.10)

It is clear that ϕ ≥ 0 and, due to Green kernel estimates, ‖ϕ‖L2 ≤ C‖u‖L2. Thus
∫

Ω

u2 ≤

∫

Ω

u2 +

∫

Ω

V uϕ =

∫

Ω

fϕ ≤ ‖f‖L2‖ϕ‖L2 ≤ C‖f‖L2‖u‖L2. (4.11)

This concludes (4.5a). Since u is a weak solution, (4.5b) can be obtained by using u as a test function
∫

Rn

|(−∆)
s
2u|2 ≤

∫

Rn

|(−∆)
s
2u|2 +

∫

Ω

V u2 =

∫

Ω

fu ≤ ‖f‖L2‖u‖L2 ≤ C‖f‖2
L2. (4.12)

Finally, if f changes sign, we can decompose it as f = f+ − f−, and apply twice the previous result to
complete the proof.
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Remark 4.7. Due to Proposition 3.12 applied to the case p = 2, we know that u ∈ Hs
0 (Ω) 7→ u/δs ∈

L2(Ω) is well-defined and continuous. Hence, for 0 ≤ V ≤ Cδ−2s the following bilinear map is continuous

Hs
0(Ω) ×Hs

0(Ω) −→ R (4.13)

(u, ϕ) 7−→

∫

Ω

V uϕ (4.14)

because
∣∣∣∣
∫

Ω

V uϕ

∣∣∣∣ =

∣∣∣∣
∫

Ω

V δ−2s u

δs

ϕ

δs

∣∣∣∣ ≤ C
∥∥∥ u
δs

∥∥∥
L2(Ω)

∥∥∥ ϕ
δs

∥∥∥
L2(Ω)

≤ C‖u‖Hs(Rn)‖ϕ‖Hs(Rn). (4.15)

Thus, when 0 ≤ V ≤ Cδ−2s and f ∈ L2(Ω), we can also use the Lax-Milgram Theorem to show existence
and uniqueness of weak solutions.

Remark 4.8. About regularity for weak solutions of nonlocal Schrödinger equations in an open set of
Rn subject to exterior Dirichlet, recently Fall [39] proves Hölder regularity estimates for general nonlocal
operators defined via Dirichlet forms, by symmetric kernels K(x, y) bounded from above and below by
|x− y|−(N+2s), 0 < s < 1. See also [44].

4.2 General potentials V ∈ L1
loc

(Ω)

We now consider the problem for 0 ≤ V ∈ L1
loc(Ω). For solutions of (Pvw), V uδs could, in principle, not

be in L1(Ω). We introduce the following definition

Definition 4.9. We say that u is a very weak local solution of (P) if




u ∈ L1(Ω), u = 0 a.e. R
n \ Ω,

V u ∈ L1
loc(Ω) and

∫

Ω

u[(−∆)sϕ+ V ϕ] =

∫

Ω

fϕ, ∀ϕ ∈ Xs
Ω ∩ Cc(Ω).

(Ploc)

Note that for a local solution, V uδs ∈ L1(Ω) does not seem like a natural part of the definition. It is
clear that (Ploc) is a weaker concept than (Pvw) because it lacks the information on the boundary, so it
cannot produce uniqueness. But it is a very convenient step into existence.

In spaces with traces, solutions of (Ploc) with trace 0 are solutions of (Pvw). The following theorem
shows what a local solution is missing to become a very weak solution

Theorem 4.10. Let V ∈ L1
loc(Ω) and fδs ∈ L1(Ω). Any solution u ∈ L1(Ω) of (Ploc) such that

V uδs ∈ L1(Ω) and u/δs ∈ L1(Ω) is a solution of (Pvw).

Proof. If V uδs ∈ L1(Ω), then g = f − V u ∈ L1(Ω, δs). Hence, we can apply Proposition 3.21.

We are ready to state one of the main results of the paper.

Theorem 4.11 (Existence theorem). Let V ∈ L1
loc(Ω) and fδs ∈ L1(Ω). Then

(i) There exists a very weak solution of (Pvw). It satisfies (4.3a) and (4.3b).

(ii) If f ≥ 0, then u ≥ 0.

(iii) Furthermore, if fϕδ ∈ L1(Ω) then (4.4a) and (4.4b) hold and, hence, u/δs ∈ L1(Ω).

(iv) Moreover, if f ∈ L2(Ω), then u is in Hs
0 (Ω).

Remark 4.12. This result extends previous results by the two first authors for the classical case (s = 1)
(see [33, 32]) to the fractional case. Furthermore, the argument we provide allows us to improve the
results for the classical case. In the present text, we have proved that the definition of very weak solution
in the weighted sense used in previous papers is not necessary as a concept of solution, but rather as a
intermediate step.
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Proof of Theorem 4.11. We proceed in several steps.

(1) We start by assuming f ≥ 0 and bounded. Let Vk = min{V, k}. Let uk be the solution of
{

(−∆)suk + Vkuk = f Ω,

u = 0 Ωc.
(4.16)

We know that

‖uk‖L1(Ω) ≤ ‖fδs‖L1(Ω) (4.17)

‖Vkukδ
s‖L1(Ω) ≤ ‖fδs‖L1(Ω). (4.18)

It is easy to prove that for k1 < k2 we have

0 ≤ uk2 ≤ uk1 . (4.19)

Hence, by the Monotone Convergence Theorem we know that there exists u ∈ L1(Ω) such that

uk → u a.e. and in L1(Ω). (4.20)

Furthermore,
‖uk‖L∞ ≤ c‖f‖L∞. (4.21)

Hence,
uk ⇀ u L∞-weak- ⋆ . (4.22)

Let K ⋐ Ω be a compact set. We have that

‖Vkuk‖L1(K) ≤ c‖V ‖L1(K)‖f‖L∞. (4.23)

Notice that this is not true if K is replaced by Ω. Also

0 ≤ Vkukδ
s ≤ V ukδ

s ≤ V u0δ
s. (4.24)

By the Dominated Convergence Theorem

Vkukδ
s → V uδs L1(K). (4.25)

We have proved, therefore, that
∫

Ω

u(−∆)sϕ+

∫

Ω

V uϕ =

∫

Ω

fϕ, ∀ϕ ∈ C∞
c (Ω). (4.26)

This completes the proof of existence of a solution u of (Ploc) for f ≥ 0 and bounded.

(2) We improve the result, still keeping f bounded. Since 0 ≤ fϕδ ∈ L1(Ω), then (4.4a) and (4.4b) hold
for uk and Vkuk. It is easy to check, applying Fatou’s lemma, that the estimates hold for u and V u. In
particular, u/δs ∈ L1(Ω) and V uδs ∈ L1(Ω). Applying Theorem 4.10 we deduce that it is a solution of
(Pvw). Hence, ∫

Ω

u(−∆)sϕ+

∫

Ω

V uϕ =

∫

Ω

fϕ, ∀ϕ ∈ Xs
Ω. (4.27)

(3) Assume now that 0 ≤ f ∈ L1(Ω, δs). Let fm = min{f,m} and let um be the solution of
{

(−∆)sum + V um = fm Ω,

u = 0 Ωc.
(4.28)

Since fm is a pointwise nondecreasing sequence, then um, V um and V umδ
s are pointwise nondecreasing

sequences. If m1 < m2 then

um1 ≤ um2 . (4.29)
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The sequence of functions um converges in L1(Ω) due to the Monotone Convergence Theorem since it is
uniformly bounded above in L1. We have

‖u‖L1(Ω) = lim
m→∞

‖um‖L1(Ω) ≤ c lim
m→∞

‖fmδ
s‖L1(Ω) = ‖fδs‖L1(Ω). (4.30)

Likewise
‖V uδs‖L1(Ω) = lim

m→∞
‖V umδ

s‖L1(Ω) ≤ c lim
m→∞

‖fmδ
s‖L1(Ω) = ‖fδs‖L1(Ω). (4.31)

and V um → V u in L1(Ω; δs) by monotone convergence. We can now pass to the limit in the very weak
formulations to show that

∫

Ω

u(−∆)sϕ+

∫

Ω

V uϕ =

∫

Ω

fϕ, ∀ϕ ∈ C∞
c (Ω). (4.32)

This proves existence of a very weak solution when f ≥ 0 and also positivity (ii).

(4) To prove item (iii) when f ≥ 0, we assume that 0 ≤ fϕδ ∈ L1(Ω). Then (4.4a) and (4.4b) hold
for the sequences uk, um and Vkuk, V um that appear in steps (1)–(3) of the previous proof. It is easy to
check that, in each of the limits, the estimates hold.

(5) In all the limits, applying (4.5a) and (4.5b) we know that ‖um‖Hs(Rn), ‖uk‖Hs(Rn) ≤ C‖f‖L2, and
so it converges weakly in Hs(Rn). In particular, the limit u ∈ Hs

0 (Ω) and (4.5a) and (4.5b) hold.

(6) In order to prove items (i), (ii) and (iii) when f changes sign, we can split f = f1 − f2 where fi ≥ 0.
We apply the previous part of the proof for fi to construct u1 and u2. We define u = u1 − u2. This
concludes the proof.

Remark 4.13. An analogous way to complete step (2) is to realize that Vkukϕδ ∈ L1(Ω) with uniform
bounds. By splitting the integrals near and far from the boundary, and using the sharp estimates for ϕδ,
we can check that Vkukδ

s converges in L1(Ω).

This result can be extended to measures as data, in the space M(Ω, δs) by taking limits. See comments
on Section 11.

4.3 Accretivity and counterexample

The results of the preceding subsections allow to prove the following extension of the results for the
operator without potential.

Corollary 4.14. The fractional operator LV = (−∆)s + V with V ≥ 0, V ∈ L1
loc(Ω) is m-T -accretive in

the space L1(Ω) and also in the spaces L1(Ω;φ) for all positive weights φ ∈ Xs, such that (−∆)sφ ≥ 0.
Moreover, LV is accretive in all the spaces Lp(Ω), 1 ≤ p ≤ ∞.

As a negative result for operators with potentials, we want to show that for unbounded potentials V ≥ 0
the requirement that f ∈ L∞(Ω) does not imply, in general, that V u ∈ L∞(Ω), where u is the solution
of (−∆)su+ V u = f .

Construction of a counterexample. (i) We consider a nice bounded, positive and smooth function
f ≥ 0 defined in Ω, we may also assume that f has compact support in Ω; we also take a nice bounded
potential V1 ≥ 0, and consider the solutions of the Dirichlet problem in Ω

(−∆)su0 = f, (−∆)su1 + V1(x)u1 = f. (4.33)

By the theory of preceding sections, both solutions are bounded and nonnegative in Ω and 0 ≤ u1 ≤ u0.
Since V1u1 is bounded the theory says that the solution u1 is also Cs in Ω.

Take any point x0 ∈ Ω where u1 is strictly positive u1(x0) = c0 > 0. By continuity we can take a small
ball Br0(x0) ⊂ Ω where u1(x) = c0/2 > 0.
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(ii) We now take a perturbation g(x) = G(|x − x0|) ≥ 0 which is radially symmetric and decreasing
around x0 and is supported maybe in Br0(x0). Consider now the solution u2 ≥ 0 of the Dirichlet problem
in Ω

(−∆)su2 + V2(x)u2 = f V2(x) = V1(x) + g(x). (4.34)

We have 0 ≤ u2(x) ≤ u1(x) in Ω.

(iii) Let us prove that u2(x) is uniformly positive if g ∈ Lp(Ω) with a small bound. In fact if u = u1 −u2

we have
(−∆)su+ V1(x)u = g(x)u2 ≤ Cg(x). (4.35)

By the known embedding theorems or using the bounds for the Green function, we conclude that when
p is large enough, p > p(s, n) we have u ∈ C(Ω) and

0 ≤ u(x) ≤ c1(p, s, n)‖g‖p .

Therefore, if ‖g‖p is small enough we have u(x) ≤ c0/4. Note that c0 was defined before and does not
depend on the perturbation g. It follows that

u2(x) = u1(x) − u(x) ≥ c0/4 in Br(x0).

(iv) We now impose the last requirement, g(x0) = +∞. Then we have

V2(x0)u2(x0) = +∞.

Moreover, we can easily find functions g 6∈ Lq(Br(x0)) with q > p > p(s, n). Therefore, in that case

‖V2u2‖q = +∞.

Remark 4.15. The construction can be generalized to cases with blow-up of V u at many points; and
maybe the requirement q > p(n, s) can be eliminated, so that bound of V u by means of f in Lp is false
for p > 1.

4.4 Solutions with measure data

As we pointed out in the introduction, there is a simple extension of our existence and uniqueness theory
as reflected in Theorems 4.5 and 4.11 to right-hand side of the equation is a measure µ ∈ M(Ω, δs). We
leave it to the reader to prove that both mentioned theorems hold in that generality.

For (P0), a nice theory can be done, as well, through the Green kernel. Many of the results and techniques
in [57] still hold in this setting.

5 Super-singular potentials

In this section we discuss the influence on the theory of potentials V ∈ L1(Ω) that blow up near the
boundary. We are in particular interested in potentials V ≥ C/δ2s that we call super-singular potentials.
This kind of potentials is very relevant in Physics (see, e.g., [23, 62]). Surprisingly, potentials with large
blow-up on ∂Ω are very good for the theory we have described above, as we will show next.

5.1 Definitions and first results

We want to address the question of how super-singular potentials regularize the solutions. A problem
with the regularity of solutions of problems involving the fractional Laplacian operator (−∆)s is that,
according to Proposition 3.2 and Proposition 3.9, the solutions are typically u ≍ δs, which is not of
class C1 in a neighbourhood in Ω of ∂Ω. However, for super-singular potentials, solutions such that
u/δs+ε ∈ L∞(Ω) may be found (see Theorem 5.6. Hence, we have a higher Hölder exponent at ∂Ω.
In this sense, super-singular potentials force the solution u to be more regular in the proximity of the
boundary. A natural definition of the concept of flat solution for s < 1 is the following
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Definition 5.1. We say that u ∈ L1(Ω) is an s-flat solution if, for every y ∈ ∂Ω

lim
x→y

u(x)

δ(x)s
= 0. (5.1)

Clearly, a sufficient condition for s-flatness is that u/δ(x)s+ε ∈ L∞(Ω) for some ε > 0.

We first obtain a result on existence of flat solutions in a weaker integral sense that follows directly from
our results in previous sections:

Proposition 5.2. If V ≥ C/δ2s+ε for some C > 0, ε ≥ 0, then for every f ∈ L1(Ω; δs) we have
u/δs+ε ∈ L1(Ω), even if fϕδ /∈ L1(Ω).

Indeed, we have proved that V uδs ∈ L1(Ω), so that the lower bound for V implies the conclusion.

Remarks 5.3. 1) When V ≥ cδ−2s , the equivalence (3.24) no longer holds. The sufficiency part still
holds, but this result here shows that the extra condition on f is no longer necessary.

2) The integral sense is not a very strong concept of flat solution, but it is nevertheless credited in the
literature for s = 1. In that case (s = 1) super-singular potentials have been shown to “flatten” the
solution, in the sense that ∂u/∂n = 0 on ∂Ω. For large powers, higher order derivatives vanish. For
further reference, see [29, 30, 31, 61].

5.2 Pointwise flatness estimates of solutions through barrier functions

We give next conditions for s-flatness in the everywhere sense. In order to prove this fact we will construct
some clever barrier function (as in [31]). We first need a technical result.

Lemma 5.4. Let νβ(x) = |x|β with β > 0. Then

(−∆)sνβ = γβ|x|−2sνβ , in R
n, (5.2)

where

γβ = 22s
Γ
(

n+β
2

)
Γ
(
s− β

2

)

Γ
(

− β
2

)
Γ
(

−s+ β+n
2

) (5.3)

is a constant.

The computation of the result above can be found in [73, p.798] and [38]. It can be obtained by applying
the Fourier transform formula of a radial function given in [71, Theorem 4.1]. Note that γs+ε < 0 for
0 < ε < s, while γ2s diverges.

Lemma 5.5. Let 0 < ε < s, 0 ≤ f ∈ L∞, V ≥ CV |x − x0|−2s with CV > −γs+ε > 0, and let x0 ∈ ∂Ω.
Then,

u(x)

|x− x0|s+ε
≤

‖f‖L∞

(γs+ε + CV )
R(x0)s−ε, (5.4)

a.e. in Ω, where R(x0) = maxx∈Ω̄ d(x, x0) (i.e. such that Ω ⊂ BR(x0)).

Proof. Since 0 ≤ f ∈ L∞ we have that 0 ≤ u ∈ L∞.

Let us consider U(x) = CUνs+ε(x− x0) where

CU =
‖f‖L∞

(γs+ε + CV )
Rs−ε > 0. (5.5)
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We compute

(−∆)sU + V U = γs+ε|x− x0|−2sU + V U (5.6)

≥ (γs+ε + CV )|x− x0|−2sU (5.7)

= CU (γs+ε + CV )|x− x0|−s+ε (5.8)

≥ CU (γs+ε + CV )R−s+ε (5.9)

= ‖f‖L∞ (5.10)

a.e. in Ω, since −s+ ε < 0. Since also U ≥ 0 = u on Ωc we have that U ≥ u a.e. in Ω. Therefore,

u

|x− x0|s+ε
≤

U

|x− x0|s+ε
= CU . (5.11)

a.e. in Ω. This completes the proof.

Theorem 5.6. Let 0 < ε < s, 0 ≤ f ∈ L∞, V (x) ≥ CV δ(x)−2s ≥ 0 with CV > −γs+ε. Then,

u

δs+ε
∈ L∞(Ω). (5.12)

Proof. Since δ(x) = minx0∈∂Ω |x− x0| we have that

u(x)

δ(x)s+ε
= max

x0∈∂Ω

u(x)

|x− x0|s+ε
≤

‖f‖L∞

(γs+ε + CV )
max
x0∈Ω̄

R(x0)s−ε. (5.13)

This last maximum if finite because Ω is a bounded set. This completes the proof.

Remarks 5.7. 1) We have that
u(x)

δs(x)
≤ Cδε(x) → 0 (5.14)

uniformly as x → ∂Ω. These functions are uniformly s-flat.

Notice that this implies the unique continuation property (see, e.g., [40]) fails for super-singular negative
potentials.

2) Notice that the Pösch-Teller potential (1.3) is L1
loc(Ω) and behaves like V ≥ cd(x, ∂Ω)−2 in any

annulus of the form
Ωk =

{
x ∈ R

n : kπ < α|x| ≤ kπ +
π

2

}
. (5.15)

or
Ωk =

{
x ∈ R

n : kπ +
π

2
< α|x| ≤ (k + 1)π

}
. (5.16)

3) The results presented here are part of an ongoing research and must be improved.

5.3 Pointwise flatness estimates for radially symmetric data

There is still the question of getting solutions as flat as desired if V is singular enough near the border.
We do not have a general result in that direction, since it needs more tools and space, but we do have a
convincing example. It is as follows:

Theorem 5.8. Let Ω = BR(0) be a ball, f ∈ L1(Ω) positive, radially symmetric and decreasing, and let
the potential V be positive, radially symmetric and increasing. Then the solution is nonnegative, radially
symmetric and non-increasing. If moreover V (x) ≥ CV δ(x)−p for some CV > 0 and p > 1, then we have

u(x) ≤
C1

CV
‖f‖1δ(x)p−1, (5.17)

when R
2 < |x| ≤ R, where C1 > 0 depends on n, s. The same conclusion holds if f ≥ 0 is not radially

symmetric but f ≤ g where g is positive, integrable, radially symmetric and decreasing. Then formula
(5.17) holds if we replace ‖f‖1 with ‖g‖1.
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Proof. (i) We assume first that f is positive, radial and decreasing, hence f = g. In that case we already
know that u ≥ 0. The fact that u is radially symmetric follows from uniqueness and the invariance of
the problem under rotations. The fact that u(r) is nonincreasing can be proved by a modification of the
Aleksandrov reflection principle proved in [73], Section 15.

To get the estimate we first integrate in Ω we get
∫

Ω

(−∆)su(x) dx +

∫

Ω

V (x)u(x) dx =

∫

Ω

f(x) dx

It is easy to prove that for u ≥ 0 there is the inequality
∫

Ω
(−∆)su(x) dx ≥ 0. We recall that such an

inequality is quite standard in the classical Laplacian case. In order to prove it we may use the formula
for the operator and get

∫

Ω

(−∆)su(x) dx =

∫

x∈Ω

∫

y 6∈Ω

u(x)

|x− y|n+2s
dxdy ≥ 0,

since the remaining integral cancels by symmetry:
∫

x∈Ω

∫

y∈Ω

u(x) − u(y)

|x− y|n+2s
dxdy = 0.

We may use all this to conclude that

CV

∫

B

u(x)

(R − |x|)p
≤

∫

B

V (x)u(x)dx ≤ ‖f‖1. (5.18)

Note that, in this case, δ(x) = R − |x| for x ∈ Ω = BR(0). Take now a fixed point x0 ∈ Ω such that
R
2 < |x0| ≤ R (i.e., near the border) and consider the annulus A with outer radius r2 = |x0| and inner
radius r1 = r2 − δ(x0)= 2|x0| −R > 0. Then, by monotonicity and radial symmetry

∫

A

u(x)

(R− |x|)p
dx ≥

u(x0)

(R− r1)p
|A| =

u(x0)

(2δ(x0))p
|A| = cu(x0)δ(x0)

1−p
. (5.19)

Since A ⊂ Ω, combining (5.18) and (5.19) we have

u(x0) ≤
C1

CV
(R − |x0|)p−1‖f‖1 . (5.20)

This completes the proof under the stated assumptions.

(ii) In the case where f is not necessarily radially symmetric but it is bounded above by g, we can solve
the problem with right-hand side g, obtain a solution v that satisfies the desired estimate and then we
can use the comparison theorem, u ≤ v.

We may also take a nonradial V that has a supersingular radial lower bound V1 like in the Theorem, and
apply again the maximum principle to conclude the same type of bound; we leave the easy detail to the
reader. We also note that the argument can be extended to other equations and more general domains,
but since other techniques are needed this extension will not be discussed here.

Though this example does not give optimal rates, it shows the existence of solutions that are as flat as
we like near the boundary, always depending on the divergence of the potential. In that sense, we have
the following interesting consequence.

Corollary 5.9. Under the assumptions of Theorem 5.8, if moreover V satisfies

lim
δ(x)→0

V (x)δ(x)p = +∞ for every p > 1,

then the solution u(x) vanishes at the boundary to infinite order in the sense that

lim
δ(x)→0

u(x)

δ(x)p
= 0 for every p > 1. (5.21)
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6 The restricted fractional Laplacian as the natural limit of the

Schrödinger equation in Rn for the super-singular potential

Let us consider the singular infinite well potential (see the exposition in [29, 30] for s = 1 and [31] for
0 < s < 1)

V (x) =

{
d(x, ∂Ω)−2s Ω,

+∞ Ωc.
(6.1)

To avoid the ambiguity of the definition of V u in Ωc, the solutions of the associated Schrödinger problem
can be understood as the limit of the solutions of the corresponding finite-well potentials

Vk(x) = k ∧ V (x). (6.2)

The stationary Schrödinger equation over its natural domain, the whole space, corresponds to finding
uk ∈ Hs(Rn) such that {

(−∆)suk + Vk(x)uk = f R
n,

uk → 0 |x| → +∞,
(6.3)

for some function 0 ≤ f ∈ L∞(Ω), f = 0 in Ωc. Here, all the usual formulations are equivalent. Hence
uk ≥ 0. Furthermore, 0 ≤ uk is a decreasing sequence, and hence has limit in L1(Ω), 0 ≤ u ∈ L1(Rn)
which is also an a.e. pointwise limit, due to the Monotone Convergence Theorem.

Theorem 6.1. Assume (6.1). As k → ∞ the solutions of the approximate problems in Rn converge to
the solution of Problem (P). In particular u = 0 in Ωc.

Proof. Using the solution of {
(−∆)sϕ0 = 1 R

n,

ϕ → 0 |x| → ∞
(6.4)

we deduce that

(1 + kmin
Ωc

ϕ0)

∫

Ωc

uk ≤

∫

Ω

fϕ0 (6.5)

Hence u = 0 in Ωc.

On the other hand, ∫

Rn

uk(−∆)sϕ+

∫

Rn

Vkukϕ =

∫

Ω

fϕ. (6.6)

As before, for K ⊂ Ω compact Vkuk → V u in L1(K) by the Dominated Convergence Theorem.
Finally, for any ϕ ∈ C∞

c (Ω) such that (−∆)sϕ ∈ L∞(Rn), we pass to the limit to obtain

∫

Rn

u(−∆)sϕ+

∫

Rn

V uϕ =

∫

Ω

fϕ. (6.7)

For ϕ the restricted fractional Laplacian and the fractional Laplacian in Rn coincide.

Since u = 0 in Ωc and ϕ is supported in Ω, this is precisely

∫

Ω

u(−∆)sϕ+

∫

Ω

V uϕ =

∫

Ω

fϕ. (6.8)

By density, we have the previous formulation for all ϕ ∈ Xs
Ω ∩ Cc(Ω).

This shows that the natural fractional Laplacian to deal with the Schrödinger equation with the singular
infinite-well potential problem is the restricted fractional Laplacian over Ω. We point out that, physically,
the Schrödinger equation a priori must be defined over the whole space, Rn, and that any other constraint
(as, for instance, to assume a localization to a subset Ω) must be justified.
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7 Another perspective on the results

7.1 The Green operator’s viewpoint

Let us start for the case V = 0. As mentioned, for regular f we know that the unique solution of
{

(−∆)su = f Ω,

u = 0 Ωc,
(7.1)

is written in the form

u(x) =

∫

Ω

Gs(x, y)f(y)dy (7.2)

where Gs satisfies (3.2). In Section 3.4 we have shown that the optimal set of data functions for the
Green kernel is given by:

Gs : Dom(Gs) = L1(Ω, δs) −→ L1
0(Ω) (7.3a)

f 7−→ χΩ(·)

∫

Ω

Gs(·, y)f(y)dy, (7.3b)

where χΩ is the characteristic function of Ω, and

L1
0(Ω) = {u ∈ L1(Rn) : u = 0 in Ωc}. (7.4)

In this sense we can characterize
Xs

Ω = Gs(L∞(Ω)). (7.5)

For this, let us read the very weak formulation of (P0) in terms of Gs. The very weak formulation (Pvw)
reduces to ∫

Ω

u(−∆)sϕ =

∫

Ω

fϕ, ∀ϕ ∈ Xs
Ω. (7.6)

First, for f ∈ L∞(Ω), we point out that, as the unique solution is u = Gs(f), we can write
∫

Ω

Gs(f)(−∆)sϕ =

∫

Ω

fϕ, ∀ϕ ∈ Xs
Ω. (7.7)

Since, Xs
Ω = Gs(L∞), we can write ϕ = Gs(ψ) for some ψ ∈ L∞(Ω), and so (−∆)sϕ = ψ. Therefore,

(7.6) is equivalent to ∫

Ω

Gs(f)ψ =

∫

Ω

fGs(ψ), ∀ψ ∈ L∞(Ω). (7.8)

Thus, the very weak formulation for f ∈ L∞ is equivalent the fact that Gs is self-adjoint.

The following result gives a direct answer:

Proposition 7.1. Let L∞(Ω) ⊂ Y ⊂ Dom(Gs) be such that

Gs : Y → L1(Ω) is continuous (7.9)

and assume that L∞(Ω) is dense Y . Then Gs(f) is a very weak solution of (P0).

Proof. Let f ∈ Y and fk ∈ L∞(Ω) be a sequence converging to f in Y . Then Gs(fk) → Gs(f) in L1(Ω).
On the other hand Gs(fk) is a very weak solution of (P0). By passing to the limit in (7.8), we deduce
that Gs(f) also satisfies (7.8), and so it is a very weak solution.

It was shown in [67] Gs : L∞(Ω) → Cs(Ω) is continuous. In [21] the authors showed that Gs : L1(Ω, δs) →
L1(Ω) is also continuous. We have shown here that Gs : L1(Ω, ϕδ) → L1(Ω, δ−s) is also continuous.
Furthermore,

G−1
s

(
L1(Ω, δ−s) ∩ Im(Gs)

)
= L1(Ω, ϕδ). (7.10)
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Problem (P) with V 6= 0 is also linear, and could allow for another Green kernel. However, we can write
(P) as a fixed point problem for the Green operator of (−∆)s as:

u = Gs(f − V u). (7.11)

Let u be a solution, and let g = f − V u. In Lemma 4.6 we show that, if V, f ∈ L∞, then

‖gδs‖L1 ≤ C‖fδs‖L1 (7.12a)

‖gϕδ‖L1 ≤ 2‖fϕδ‖L1 . (7.12b)

The results in Section 4 of this paper lead to corresponding properties of the Green operator for (P)

Gs,V : f 7→ u. (7.13)

So far, we have proved that:

1. If V ∈ L1
loc then Gs,V : L1(Ω, δs) → L1(Ω) and Gs,V : L1(Ω, ϕδ) → L1(Ω, δ−s).

2. If V ≥ δ−2s then Gs,V : L1(Ω, δs) → L1(Ω, δ−s).

It is easy to show that
Gs,V (x, y) ≤ Gs(x, y) ∀x, y ∈ Ω. (7.14)

For V ∈ L∞ it is likely that
Gs,V (x, y) ≍ Gs(x, y). (7.15)

However, the additional integrability for the case V ≥ cδ−2s guaranties that

Gs,V (x, y) 6≍ Gs(x, y). (7.16)

7.2 What is (−∆)s of a very weak solutions?

Let us think about (−∆)s as a functional operator. It is natural to define

Ls : Dom(Ls) ⊂ L0
0(Ω) −→ L0(Ω) (7.17a)

u 7−→ cn,sP.V.

∫

Rn

u(·) − u(y)

| · −y|n+2s
dy, (7.17b)

where L0(Ω) is the set of measurable functions in Ω and

L0
0(Ω) = {u ∈ L0(Rn) : u = 0 in Ωc}. (7.18)

It is easy to show that
Ls : C2s

0 (Ω) −→ Cs(Ω̄) (7.19)

where
C2s

0 (Ω) = {u ∈ C2s(Rn) : u = 0 in Ωc}. (7.20)

However, working with integrable rather than smooth functions f , we do not expect u ∈ C2s
0 (Ω). Nonethe-

less, our aim is to solve the problem (P), so we are interested in the definition of (−∆)su.

By the regularization results obtained through Hörmander theory in [46, 68], we have that

Gs : Cγ(Ω̄) → Cγ+s(Ω̄, δ−s), (7.21)

if γ + s /∈ N. We point that Cγ+s(Ω̄, δ−s) ⊂ Cγ+s(Ω) ∩ C0(Ω̄). By uniqueness of solutions (P0) it is clear
that

u = GsLsu u ∈ C2s(Ω̄, δ−s), (7.22)

f = LsGsf f ∈ Cs(Ω̄). (7.23)

We can extend this result to an abstract setting. In this direction we have:
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Proposition 7.2. Let X ⊂ Dom(Ls) and Cs(Ω̄) ⊂ Y ⊂ Dom(Gs). Assume that Gs : Y → X and
Ls : Gs(Y ) → Y are continuous and that Cs(Ω̄) is dense in Y . Then

f = LsGsf in Y. (7.24)

Proof. Let fk ∈ Cs(Ω̄) be a sequence such that fk → f in Y . Then Gsfk → Gsf in X . On the other
hand, from (7.23) we know that fk = LsGsfk. Therefore f = LsGs.

If we get inspiration in the case of usual Laplacian we soon see that this pointwise construction, although
natural, is not optimal working grounds. By looking again at the case of the usual Laplacian, we would
like to study a distributional formulation. By Proposition 2.1 we have that Ls|C2s(Ω̄) is self-adjoint. We
can define a self-adjoint extension as a distributional operator

L̃s : L1(Ω) → D′(Ω) (7.25)

through the notion of very weak solution, i.e.

L̃su : C∞
c (Ω) −→ R (7.26a)

ϕ 7→

∫

Ω

u(Lsϕ). (7.26b)

Through Proposition 2.1 we know that, for u ∈ C2s
0 (Ω),

〈L̃su, ϕ〉 =

∫

Ω

(Lsu)ϕ (7.27)

for all ϕ ∈ C∞
c (Ω), i.e. L̃su has a Riesz representation as a pointwise function (see, e.g., [70, 71]). In this

sense, we can ensure that any very weak solution of (P0) satisfies

L̃su = f in D′(Ω). (7.28)

In fact, this distributional extension is precisely the one that comes naturally from the very weak solutions
used in this paper.

8 Auxiliary result. Boundary behaviour of ϕδ

Proof of Lemma 3.14. We know that

ϕδ(x) =

∫

Ω

Gs(x, y)

δs(y)
dy. (8.1)

Due to (3.2)

Gs(x, y) ≤
c

|x− y|n−2s
min

(
δs(x)

|x− y|s
, 1

)
. (8.2)

To estimate the behaviour of ϕδ near the boundary we take a point x near ∂Ω and consider the integral

in a small ball B with center x and radius δ(x)
2 . We split ϕδ(x) = I1 + I2 by splitting the integral (8.1)

into integrals in B and Ω \B. We have

I1 =̇

∫

B

Gs(x, y)

δs(y)
dy ≤

∫

B

c

|x− y|n−2sδs(y)
dy. (8.3)

On the other hand, in B, δ(y) ≥ δ − δ(x)
2 ≥ cδ(x) and hence

I1 ≤
c

δs(x)

∫

B

1

|x− y|n−2s
dy. (8.4)
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Integrating in spherical coordinates

I1 ≤
c

δs(x)

∫ δ(x)
2

0

1

rn−2s
rn−1dr =

c

δs(x)
r2s
∣∣∣

δ(x)
2

0
≤ cδs(x). (8.5)

On the other hand we have that

I2 =̇

∫

Ω\B

Gs(x, y)

δ(y)s
dy (8.6)

≤ c

∫

|x−y|≥
δ(x)

2

1

|x− y|n−2sδ(y)s

δ(x)s

|x− y|s
dy (8.7)

= cδs(x)

∫

|x−y|≥
δ(x)

2

1

|x− y|n−sδ(y)s
dy (8.8)

≤ cδs(x)

∫

|x−y|≥
δ(x)

2

1

|x− y|n
dy. (8.9)

Let R = maxy∈Ω |x− y|. We can integrate radially to compute

∫

|x−y|≥
δ(x)

2

1

|x− y|n
dy ≤ c

∫ R

δ(x)
2

1

rn
rn−1dr (8.10)

= c

(
logR− log

δ(x)

2

)
(8.11)

≤ c(1 + | log δ(x)|). (8.12)

Thus
I2 ≤ cδs(x)(1 + | log δ(x)|). (8.13)

This concludes the upper bound for ϕδ.

On the other hand I1, I2 ≥ 0. For the lower bound we look only at I1. Due to (3.2) we also have that

Gs(x, y) ≥
c

|x− y|n−2s
min

(
δ(x)s

|x− y|s
, 1

)
min

(
δ(y)s

|x− y|s
, 1

)
. (8.14)

Here we have to be a bit more careful with the minimum. In B, δ(x)s

|x−y|s ≥ 2s ≥ 1. Also, δ(y) ≥ δ(x)
2 and

so δ(y)s

|x−y|s ≥ 1 in B. Hence

Gs(x, y) ≥
c

|x− y|n−2s
, if |x− y| ≤

δ(x)

2
. (8.15)

Therefore

I1 ≥

∫

B

c

|x− y|n−2sδs(y)
dy ≥

c

δs(x)

∫ δ(x)
2

0

1

rn−2s
rn−1dr =

c

δs(x)
r2s
∣∣∣

δ(x)
2

0
≥ cδs(x). (8.16)

This concludes the proof.

9 An alternative proof of Kato’s inequality for the fractional

Laplacian with weight

Proposition 9.1 (Kato’s inequality). Let u ∈ C2s(Rn), then, for every x ∈ Rn

(−∆)su+ ≤ sign+ u (−∆)su (9.1)

(−∆)s|u| ≤ signu (−∆)su. (9.2)

30



Moreover, if u ∈ L1(Ω), fδs ∈ L1(Ω) and assuming that
∫

Ω

u(−∆)sϕ =

∫

Ω

fϕ ∀0 ≤ ϕ ∈ Xs
Ω ∩ Cc(Ω), (9.3)

then, there exist ξ+ ∈ s̃ign+(u) and ξ ∈ s̃ign(u) such that

∫

Ω

u+(−∆)sϕ ≤

∫

Ω

ξ+f ϕ (9.4)

∫

Ω

|u|(−∆)sϕ ≤

∫

Ω

ξf ϕ, (9.5)

for all 0 ≤ ϕ ∈ Xs
Ω ∩ Cc(Ω), where s̃ign+ and s̃ign are the maximal monotone graphs given by

s̃ign+(s) =





0 s < 0,

[0, 1] s = 0,

1 s ≥ 0.

s̃ign(s) =





−1 s < 0,

[−1, 1] s = 0,

1 s ≥ 0.

(9.6)

Proof. First assume u ∈ C2s(Rn). Let s+(x) = sign+ u(x). We have that

u+(y) ≥ s+(x)u(y), (9.7)

u+(x) = s+(x)u(x), (9.8)

u+(x) − u+(y)

|x− y|n+2s
≤ s+(x)

u(x) − u(y)

|x− y|n+2s
(9.9)

∫

Ω

u+(x) − u+(y)

|x− y|n+2s
dy ≤ s+(x)

∫

ω

u(x) − u(y)

|x− y|n+2s
dy (9.10)

(−∆)su+(x) ≤ s+(x)(−∆)su(x). (9.11)

Applying this result to −u:

(−∆)s(−u)+(x) ≤ sign+(−u)(−∆)s(−u) (9.12)

(−∆)su−(x) ≤ sign−(u)(−∆)su. (9.13)

Therefore,
(−∆)s|u| ≤ sign(u) (−∆)su. (9.14)

If 0 ≤ ϕ ∈ Xs
Ω ∩ Cc(Ω) we have
∫

Ω

u+(x)(−∆)sϕ(x)dx =

∫

Ω

(−∆)su+(x)ϕ(x)dx ≤

∫

Ω

s+(x)f(x)ϕ(x)dx. (9.15)

Assume now that u ∈ L1(Ω), u = 0 in Ωc and (9.3) holds. Let fk = Tk(f) we have that fkδ
s → fδs in

L1(Ω). Let uk be the unique solutions of
{

(−∆)suk = fk Ω,

uk = 0 Ωc.
(9.16)

Then, by the results in [21], we know that uk → u in L1(Ω), hence (uk)+ → u+ in L1(Ω). On the other
hand, by the previous part of the proof

∫

Ω

(uk)+(x)(−∆)sϕ(x)dx ≤

∫

Ω

sign+(uk(x))fk(x)ϕ(x)dx, ∀0 ≤ ϕ ∈ Xs
Ω ∩Cc(Ω). (9.17)

Let 0 ≤ γ
ε
(s) ≤ sign+(s) ≤ γε(s) ≤ 1 be smooth functions

γε(s) =

{
0 s < −ε,

1 s > 0.
, γ

ε
(s) =

{
0 s < 0,

1 s > ε.
(9.18)
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Since f(x) > 0 if and only fk(x) > 0, we have that

∫

Ω

(uk)+(x)(−∆)sϕ(x)dx ≤

∫

{f≥0}

γε(uk(x))fk(x)ϕ(x)dx +

∫

{f<0}

γ
ε
(uk(x))fk(x)ϕ(x)dx, (9.19)

for all 0 ≤ ϕ ∈ Xs
Ω ∩ Cc(Ω). As k → ∞ we have that

∫

Ω

u+(x)(−∆)sϕ(x)dx ≤

∫

{f≥0}

γε(u(x))f(x)ϕ(x)dx +

∫

{f<0}

γ
ε
(u(x))f(x)ϕ(x)dx. (9.20)

Up to a subsequence, there exists ξ+ ∈ L∞(Ω) such that

γε(u(x))χ{f≥0} + γ
ε
(u(x))χ{f<0} → ξ+(x) in L∞-weak- ⋆ . (9.21)

By the pointwise limits ξ+(x) = sign+(u(x)) when u(x) 6= 0 and 0 ≤ ξ+ ≤ 1. Thus ξ+(x) ∈ s̃ign(u(x)).

Hence ∫

Ω

u+(x)(−∆)sϕ(x)dx ≤

∫

Ω

ξ+(x)f(x)ϕ(x)dx, ∀0 ≤ ϕ ∈ Xs
Ω ∩Cc(Ω). (9.22)

As for the pointwise estimate, we can proceed analogously for u− (where u = u+ − u−) to deduce that

∫

Ω

u−(x)(−∆)sϕ(x)dx ≤

∫

Ω

ξ−f(x)ϕ(x)dx, ∀0 ≤ ϕ ∈ Xs
Ω ∩Cc(Ω), (9.23)

with ξ−(x) ∈ s̃ign−(u(x)). We then have

∫

Ω

|u(x)|(−∆)sϕ(x)dx ≤

∫

Ω

ξ(x)f(x)ϕ(x)dx, ∀0 ≤ ϕ ∈ Xs
Ω ∩ Cc(Ω), (9.24)

where ξ(x) = ξ+(x) + ξ−(x) ∈ s̃ign(u(x)). This concludes the proof.

10 The weighted approach for related parabolic problems

The combination of our well-posedness results and a priori estimates allow us to immediately solve a
number of related evolution problems, according to a general procedure of the evolution theory.

1. The initial-value parabolic problem




∂tu+ (−∆)su+ V (x)u = f(x, t) Ω × (0, T )

u = 0 Ωc × [0, T ),

u = u0 Ω × {0},

(10.1)

can be solved for every u0 ∈ L1(Ω;φ), f ∈ L1(0, T ;L1(Ω;φ) under the conditions 0 < s < 1, V ∈ L1
loc(Ω),

V ≤ 0 and φ is a positive weight in Xs such that (−∆)sφ ≥ 0.

Using Corollary 4.14 and the Crandall-Liggett generation theorem [25] a contraction semigroup in all
such spaces is generated and it satisfies the Maximum Principle.

Note that the fractional heat equation (case V = 0) has been studied in the whole space Rn in an
optimal class of weighted integrable data in [8]. The optimal weighted space in which solutions of the
Cauchy problem for ∂tu+ (−∆)su = 0 are well-posed is

∫
|u0(x)|

(1 + |x|2)(n+2s)/2
, dx < ∞.

The reader will notice that the weight decays at infinity in a precise way, to be compared with the
behaviour δs of the bounded case.
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The considerations made in [31] for the associated complex relativistic Schrödinger problem with poten-
tials V = δ−2s can be extended to the case of supersingular potentials V ≥ cδ−2s, thanks to the results
of Section 4 of this paper.

2. Fractional-PME The same project can be applied to the fractional porous medium equation

∂tu+ (−∆)sum = f,

with m > 0, m 6= 1, that has been studied in many works, mainly when f = 0. Thus, the non-weighted
theory is done in [26, 27, 73, 7, 5]. The basic result of generation of a semigroup in L1 goes back to [24]
and was used in [9]. The weighted theory is to be done.

Much work remains to be done on these issues.

11 Comments, extensions, and open problems

Here are some issues motivated by the previous presentation.

11.1 More general potentials

In this paper we have considered nonnegative potentials V ∈ L1
loc(Ω). This allows for extensions in two

directions: considering signed potentials, and considering locally bounded measures as potentials. Both
are present in the literature, but both lead to problems that we do not want to consider here.

11.2 Other fractionary and nonlocal operators

When working in bounded domains, there are several different choices of (−∆)s present in the literature
(see, e.g., [7, 6, 74, 60, 69]. The main choices apart from the restricted Laplacian treated here are the
spectral Laplacian and censored Laplacian, ... Many of our results can be extended to them and this
is contents of future work. Note that regularity for the equation Lu = f in the case of the spectral
Laplacian was studied in [20].

Another issue is the Klein-Gordon fractional operator considered in Quantum Mechanics
√

(−∆) +m2 u,
and mentioned in the Introduction. The theory for this operator is quite similar to what we have exhibited
above for (−∆)1/2, see [31].

The theory of this paper can be developed for more related integro-differential operators that are being
investigated like the integro-differential operators with irregular or rough kernels, as in [50].

The behaviour of the typical solutions of these operators near the boundary makes a difference. Thus,
solutions of equations involving the spectral Laplacian they satisfy the linear behaviour of the classical
Hopf principle, i.e., linear growth near the boundary.

11.3 Associated eigenvalue problem

A main question for the Schrödinger equation is the eigenvalue problem, which comes from separation
of variables. The eigenvalue theory works well in the sense of weak solutions in L2(Ω). For the classical
Schrödinger problem with s = 1, it is known that the eigenvalues of L1(Ω) and L2(Ω) are not the same.
See [13]. It would be interesting to know if such difference remains being true for s < 1.

11.4 Open Problem on further integrability of the solutions

For problem (P0), via the estimates on the Green kernel (3.1), the natural space for integrability will be
of the form W s′,p(Ω, δs) for s′ < s and p small. These estimates can then be extended to problem (P)

33



using maybe the methods of [35, 36].
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