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Abstract

This paper considers a Massive multiple-input multiple-output (MIMO) network, where the base

station (BS) with a large number of antennas communicates with a smaller number of users. The signals

are transmitted using frequency division duplex (FDD) mode. The problem of user scheduling with

reduced overhead of channel estimation in the uplink of Massive MIMO systems has been investigated.

We consider the COST 2100 channel model. In this paper, we first propose a new user selection algorithm

based on knowledge of the geometry of the service area and of location of clusters, without having

full channel state information (CSI) at the BS. We then show that the correlation in geometry-based

stochastic channel models (GSCMs) arises from the common clusters in the area. In addition, exploiting

the closed-form Cramer-Rao lower bounds (CRLB)s, the analysis for the robustness of the proposed

scheme to cluster position errors is presented. It is shown by analysing the capacity upper-bound that the

capacity strongly depends on the position of clusters in the GSCMs and users in the system. Simulation

results show that although the BS receiver does not require the channel information of all users, by the

proposed geometry-based user scheduling (GUS) algorithm the sum-rate of the system is only slightly

less than the well-known greedy weight clique (GWC) scheme [1], [2]. Finally, the robustness of the

proposed algorithm to cluster localization is verified by the simulation results.

Keywords: Massive MIMO, geometry-based stochastic channel models, COST 2100 channel model,

user scheduling, zero-forcing, cluster localization, Cramer-Rao lower bound.
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Massive multiple-input multiple-output (MIMO) is a promising technique to achieve high data rate [3],

[4]. However, high performance multiuser MIMO (MU-MIMO) uplink techniques rely on the availability

of full channel state information (CSI) of all user terminals at the base station (BS) receiver, which

presents a major challenge to their practical implementation. This paper considers an uplink multiuser

system where the BS is equipped with M antennas and serves Ks decentralized single antenna users

(M ≫ Ks). In the uplink mode, the BS estimates the uplink channel and uses linear receivers to separate

the transmitted data. The BS receiver uses the estimated channel to implement the zero-forcing (ZF)

receiver which is suitable for Massive MIMO systems [5]. To investigate the performance of MIMO

systems, an accurate small scale fading channel model is necessary.

Most standardized MIMO channel models such as IEEE 802.11, the 3GPP spatial model, and the COST

273 model rely on clustering [6]. Geometry-based stochastic channel models (GSCMs) are mathematically

tractable models to investigate the performance of MIMO systems [7]. The concept of clusters has been

introduced in GSCMs to model scatterers in the cell environments [7]. In [8], the authors use clusters to

characterize an accurate statistical spatial channel model (SSCM) in millimeter-wave (mmWave) bands

by grouping multipath components (MPCs) into clusters. MmWave communication suffers from very

large path losses, and hence requires large antenna arrays in compensation. [7]. This paper investigates

the throughput in the uplink for the Massive MIMO with carrier frequency in the order of 2 GHz, but

the principles can also apply to other frequency bands, including mmWave.

Most existing Massive MIMO techniques rely on the availability of the full CSI of all users at the

BS, which presents a major challenge in implementing Massive MIMO. As a result, Massive MIMO

techniques with reduced CSI requirement are of great interest. An important issue in Massive MIMO

systems is investigating user scheduling in which multiuser diversity gain with imperfect CSI is considered

[9]. Recently, a range of user scheduling schemes have been proposed for large MIMO systems. Most of

these, such as that described in [10], require accurate knowledge of the channel from all potential users

to the BS -which in the frequency division duplex (FDD) Massive MIMO case is completely infeasible

to obtain. In [11], the authors proposed a greedy user selection scheme by exploiting the instantaneous

CSI of all users. However, in this paper we focus on a simplified and robust user scheduling algorithm,

by considering Massive MIMO simplifications and the effect of the cell geometry.

A. Contributions of This Work

This work investigates a new user selection algorithm for high frequency stochastic geometry-based

channels with large numbers of antennas at the BS receiver. We investigate user scheduling by considering

the Massive MIMO assumption. The proposed geometry-based user scheduling (GUS) is similar to the
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greedy weight clique (GWC) algorithm but with a different cost function. In the GUS algorithm, the

BS selects users based only on the geometry of the area, while in the GWC, the BS uses the channel

of the users for user scheduling. Given a map of the area of the micro-cell, we perform efficient user

scheduling based only on the position of users and clusters in the cell. In GSCMs, MPCs from common

clusters cause high correlation which reduces the rank of the channel. In this paper, we investigate the

effect of common clusters on the system performance. Moreover, we assume that the space-alternating

generalized expectation (SAGE) algorithm [12], [13] is used (offline) to estimate the direction of arrival

(DoA) and the delay of the path. The performance analysis shows the significant effect of the distinct

clusters on the system throughput. We prove that to maximize the capacity of system, it is required to

select users with visibility of the maximum number of distinct clusters in the area. Next, we show that

the position of clusters in the area can be given by geometrical calculation. Our results and contributions

are summarized as follows:

• Close analytical approximations for Massive MIMO systems are found.

• Using the map of the area and positions of users, a new user scheduling scheme is proposed under

the assumption of no CSI at the BS, other than the location of clusters. Since the position of clusters

in the area are fixed, we assume that cluster localization can be done offline.

• Simulation results show that the proposed scheme significantly reduces the overhead channel esti-

mation in Massive MIMO systems compared to conventional user scheduling algorithms, especially

for indoor and outdoor of micro-cells.

• To investigate the robustness of the proposed algorithm to cluster localization, the performance

degradation is shown for different values of the error in cluster localization and simulation results

show the robustness of the proposed user scheduling algorithm to poor cluster localization.

B. Outline

The rest of the paper is organized as follows. Section II describes the system model. The proposed user

scheduling scheme is presented in Section III. Section IV presents performance analysis of the proposed

user scheduling with no estimated CSI. The robustness of the proposed user scheduling algorithm to

cluster localization errors is investigated in Section V. Numerical results are presented in Section VI.

Finally, Section VII concludes the paper.

C. Notation

Note that in this paper, uppercase and lowercase boldface letters are used for matrices and vectors,

respectively. The notation E{·} denotes expectation. Moreover, | · | stands for absolute value. Conjugate



4

transpose of vector x is xH . Finally xT and X† denote the transpose of vector x and the pseudo-inverse

of matrix X, respectively.

II. SYSTEM MODEL

We consider uplink transmission in a single cell Massive MIMO system with M antennas at the BS

and K > M single antenna users. The M × 1 received signal at the BS when Ks (Ks ≪M) users have

been selected from the pool of K users, is given by

r =
√
pkHx + n, (1)

where x represents the symbol vector of Ks users, pk is the average power of the kth user and H denotes

the aggregate M ×Ks channel of all selected users. The BS is assumed to have CSI only of the selected

users [14], [15]. We are interested in a linear ZF receiver which can be provided by evaluating the

pseudo-inverse of H, the aggregate channel of all selected users according to

W = H† =
(

HHH
)−1

HH . (2)

Then after using the detector, the received signal at the BS is

y =
√
pkWHx + Wn. (3)

Let us consider equal power allocation between users, i.e. p = Pt

k
, in which Pt denotes the total power.

The achievable sum-rate of the system is obtained as [14], [15]

R =

Ks
∑

k=1

log2

(

1 +
p|wkhk|2

1 +
∑K

i=1,i 6=k p|wkhi|2

)

, (4)

where wk and hk are respectively the kth rows of the matrix W = [wT
1 ,wT

2 , · · · ,wT
Ks

]T , and the kth

column of H = [h1,h2, · · · ,hKs
].

A. Geometry-based Stochastic Channel Model

In GSCMs, the double directional channel impulse response is a superposition of MPCs. The channel

is given by [16]

h(t, τ, φ, θ) =

NC
∑

j=1

Np
∑

i=1

ai,jδ(φ − φi,j)δ(θ − θi,j)δ(τ − τi,j), (5)

where Np denotes the number of multipath components, t is time, τ denotes the delay, δ denotes the Dirac

delta function, and φ and θ represent the direction of arrival (DoA) and direction of departure (DoD)

respectively. Similar to [16], [17], we group the multipath components with similar delay and directions

into clusters. Three kinds of clusters are defined; local clusters, single clusters and twin clusters. Local
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Figure 1. The general description of the cluster model. The spatial spreads for cth cluster are given.

clusters are located around users and the BS while single clusters are represented by one cluster and twin

clusters are characterized by two clusters related respectively to the user and BS side as shown in Fig.

1. A local cluster is a single cluster that surrounds a user: single clusters can also occur in a different

position. Twin clusters consist of a linked pair of clusters, one of which defines the angles of departure

of multipaths from the transmitter, while the other defines the angles of arrival at the receiver [16]. There

is a large number of clusters in the area, however just some of them can contribute to the channel. The

circular visibility region (VR) determines whether the cluster is active or not for a given user. The MPC’s

gain scales by a transition function that is given by

AV R(r̄MS) =
1

2
− 1

π
arctan

(

2
√
2 (Lc + dMS,V R −RC)√

λLc

)

, (6)

where r̄MS is the centre of the VR, RC denotes the VR radius, LC represents the size of the transition

region and dMS,V R refers to the distance between the mobile stations (MS)s and the VR centre. For a

constant expected number of clusters NC , the area density of VRs is given by

ρC =
NC − 1

π (RC − LC)
2 . (7)

All clusters are ellipsoids in the environment and can be characterized by the cluster spatial delay spread,

elevation spread and azimuth spread. Once the position of the BS and users are fixed, we need to determine

the positions of the clusters in the area by geometrical calculations. For the local clusters, we consider

a circle around the users and the BS, so that the size of the local cluster can be characterized by the

cluster delay spread (aC ), elevation spread (hC ) and the position of MPCs [16]. For local clusters the



6

cluster delay, azimuth and elevation spreads can be given by

aC =
∆τc0
2

, (8a)

bC = aC , (8b)

hC = dC,BS tan θBS , (8c)

where c0 denotes the speed of light, dC,BS is the distance between the cluster and the BS, ∆τ refers to

the delay spread and θBS is the elevation spread seen by the BS. The delay spread, angular spreads and

shadow fading are correlated random variables and for all kinds of clusters are given by [18]

∆τc = µτ (
d

1000 )
1

2 10στ
Zc
10 , (9a)

βc = τβ10
σβ

Yc
10 , (9b)

Sm = 10σs
Xc

10 , (9c)

where ∆τc refers to the delay spread, βc denotes angular spread, and Sm is the shadow fading of cluster c.

Moreover, Xc, Yc and Zc denote correlated random variables with zero mean and unit variance. Correlated

random process can be computed by Cholesky factorization [18]. Cholesky factorization can be used to

generate a random vector with a desired covariance matrix [19]. The MPCs’ positions can be drawn from

the truncated Gaussian distribution given by [16]

f(r)=



















1
√

2πσ2
r,o

exp

(

−(r−µr,o√
2σr,o

)2

)

|r| ≤ rT ,

0 otherwise,

(10)

where rT denotes the truncation value. For single clusters, the cluster delay, azimuth and elevation spreads

can be given by

aC = ∆τc0/2, (11a)

bC = dC,BS tanφBS , (11b)

hC = dC,BS tan θBS . (11c)

To get the fixed positions of the single clusters, the radial distance of the cluster from the BS drawn

from the exponential distribution [16]

f(r) =











0 r < rmin,

1

σr
exp

(

−(r − rmin

σr
)

)

otherwise.
(12)
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To determine the fixed position of the cluster, the angle of the cluster can be drawn from the Gaussian

distribution with a standard deviation σφ,C . For the twin clusters, for both the BS and user side clusters

we have

aC =
∆τc0
2

, (13a)

bC = dC,BS tan φBS . (13b)

For the BS side cluster, the elevation spread can be given by

hC = dC,BS tan θBS , (14)

while for the MS side cluster, we have

hC = dC,MS tan θMS . (15)

Fig. 1 gives an example of the geometry of the Cth cluster. For twin clusters, the distance between the

cluster and the BS and the distance from the VR center and the MS is given by [16]

dC,BS tanΦC,BS = dC,MS tanΦC,MS. (16)

The delay of a cluster is represented by [16]

τC = (dC,BS + dC,MS + dC)/c0 + τC,link, (17)

where the geometrical distance between twin clusters is represented by dC , dC,MS denotes the geometrical

distance between the user and the center of the visibility region, dC,BS refers to the distance between

the BS and the cluster, and finally τC,link is the cluster link delay between the twin clusters. Hence, the

cluster power attenuation is given by [16]

AC = max (exp [−kτ (τC − τ0)] , exp [−kτ (τB − τ0)]) , (18)

where kτ denotes the decay parameter, and τB is the cut-off delay. We assume Rayleigh fading for the

MPCs within each cluster. Hence, the complex amplitude of the ith MPC in the jth cluster in (5) is given

by

ai,j =
√

LpAV R

√

ACAMPC e−j2πfcτi,j , (19)

where Lp is the channel path loss, AMPC is the power of each MPC which is characterized by the

Rayleigh fading distribution and τi,j is the delay of the ith MPC in cluster j given by [16]

τi,j =

(

dMPCi,j ,BS + dMPCi,j ,MS

)

c0
+ τi,C,link. (20)
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By assuming a fixed OFDM subcarrier, we can drop the variable τi,j from (19). For the non-line-of-sight

(NLoS) case of the micro-cell scenario, the path loss expression can be given by [20]

L = 26 log10 d+ 20 log10

(

4π

λ

)

, (21)

where d and λ denote the distance (in meter) and the wavelength (in meter), respectively.

III. GEOMETRY-BASED USER SCHEDULING

In this section, we consider user scheduling with ZF based on the position of clusters and users in the

area. In order to avoid a huge channel estimation load in the uplink of a Massive MIMO system with

many users and antennas, we propose to estimate only the channels of the selected users. The reduction

in the amount of channel estimation required between each transmit and receive antenna is the important

result of the proposed scheme. The gain achieved by selecting users with the strongest channel is referred

to as multiuser diversity and requires CSI of all users [21]. However, we propose a new user selection

scheme which relies on maximizing the number of distinct clusters seen by the scheduled users. In the

next subsections, we prove that the proposed scheme results in less inter-user interference (IUI) and

increases the users’ SINR and the system’s sum-rate. In the following subsection, we present a scheme

to select users which maximizes the long term sum-rate and as it is based on the position of the users

and does not need the estimated channel of all users in the uplink, and hence can be a practical user

selection scheme for large MIMO systems. For this case, the performance analysis are found in the next

subsection.

A. Proposed Geometry-based User Scheduling (GUS)

In this section, an algorithm is proposed for increasing the system throughput based on the geometry

of the system and without estimating the channels of all users in the area. Once the set of active users has

been determined, the receiver BS estimates the channels of the selected users and the users transmit data.

Next, the performance of the proposed user selection algorithm to maximize the sum-rate is evaluated.

In large MIMO systems with large numbers of users estimating the channels of all users is practically

difficult. So the proposed user scheduling algorithm can be an efficient way to reduce the overhead of
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Algorithm 1 Geometry-based User Scheduling (GUS) Algorithm

Step 1) Initialization: W0 = [1, · · · ,K], S0 = ∅, i = 1,

Step 2) Load position of users, for example by means of GPS,

Step 3) Generate matrix V,

Step 4) Greedy Algorithm:

• 4.1 π(i) = argmax
k∈W0

f1(||vk||) = argmax
k∈W0

||vk||,

S0 ← S0 ∪ {π(i)}, v̂(i) = v(π(i)),

• 4.2 If |S0| < Ks, Wi = {k ∈ Wi−1, k 6= π(i)},

• 4.3 π(i) = argmin
k∈Wi−1

f2(vk, v̂(i)) = argmin
k∈Wi−1

|vk v̂∗(i)|

||vk||||v̂(i)||
}, S0 ← S0 ∪ {k}, v̂(i) = v(π(i)),

• 4.4 i = i+ 1

Step 5) The BS estimates the channels of the selected users.

channel estimation.

First, we generate the matrix V, as the following

V =

















v11 v12 . . . v1NC

v21 v22 . . . v2NC

...
...

. . .
...

vK1 vK2 . . . vKNC

















, (22)

where

vji =
√

Lj
p,iA

j
V R,i

√

Aj
C,i, (23)

where Lj
p denotes the channel path loss for user j, Aj

V R,i is the MPC power attenuation which is a

function of the distance between the user i and the centre of the visibility region related to the jth cluster

and is given by (6), and Aj
C,i denotes the cluster power attenuation given by (18) for the user j and the

ith cluster. So, the matrix V is a function of the distance from the BS to users, the distance of the BS

from clusters and from users to the center of the visibility region.

Note that increasing ǫh allows the users to have a larger number of shared clusters. If the value of ǫh

is too high, Algorithm selects users with a large normalized correlation which can reduce the sum rate

due to the interference in the number of selected users. For a low ǫh, the number of users in set V0 in

step 5 decreases and Algorithm 2 selects a small number of users. Suppose W0 contains user indices

considered in the proposed algorithm. Finally, S0 contains Ks = |S0| indices of the selected users.
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Algorithm 2 Geometry-based User Scheduling (GUS) Algorithm

1. Initialize W0 = [1, · · · ,K], S0 = ∅, i = 1

2. Repeat until |S0| = Ks

3. i = i+ 1

4. π(i) = argmaxk∈Wi−1
f(||vk||) = argmaxk∈Wi−1

||vk||,
S0 ← S0 ∪ {π(i)}, v̂(i) = v(π(i))

5. Wi = {k ∈ Wi−1, k 6= π(i),
|vkv̂T

(i)|

||vk||||v̂(i)||
< ǫh}

6. If |W| = 0, end

Figure 2. As example of users common cluster which causes correlation.

IV. PERFORMANCE ANALYSIS

If perfect CSI is available at the BS, and assuming Gaussian input, the ergodic capacity is given by

C = E

{

log2 det

(

I +
Pt

Ks

HHH

)}

, (24)

where the term Pt

Ks
is due to the equal-power allocation, I is an identity matrix and the channel matrix is

given at the bottom of this page, where C(K) denotes the clusters seen by the kth user and α = −2π d
λ

,

where d denotes the spacing between two antenna elements. In GSCMs, common clusters can reduce the

rank of the channel and the capacity of the system, especially at finite SNR. These common clusters also

affect the multiplexing gain of the system. Fig. 2 illustrates the concept of common and distinct clusters.

When the number of objects is less than the number of BS antennas and all objects are shared between

the users, achieving maximum multiplexing gain is impossible [22], [23].

For ease of mathematical tractability, we analyse the capacity of a correlated three-user uplink using

an upper bound. In the case of a large number of antennas at the BS, the capacity upper bound can be
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achieved in the case of distinct clusters. Note that in the case of a large number of transmit antennas,

the elements of HHH converge to the correlation matrix so that R ≈ HHH . Hence, we have

C = E

{

log2 det

(

I +
Pt

K
HHH

)}

≈ log2 det

(

I +
Pt

K
R

)

, (25)

where R is the channel correlation matrix and is given by

R = E
{

HHH
}

=











1 r12 r13

r∗12 1 r23

r∗13 r∗23 1











, (27)

where

r12 = E
{

hH
1 h2

}

= ζ12e
jβ12 , (28a)

r13 = E
{

hH
1 h3

}

= ζ13e
jβ13 , (28b)

r23 = E
{

hH
2 h3

}

= ζ23e
jβ23 . (28c)

The term r12 can be given by

r12=E
{

hH
1 h2

}

= E

{

∑

j∈C(1)

Np
∑

i=1

ai,j
∑

l∈C(2)

Np
∑

g=1

a∗g,l (29)

+
∑

j∈C(1)

Np
∑

i=1

ai,je
jα sinφi,j

∑

l=1∈C(2)

Np
∑

g=1

a∗g,le
−jα sinφg,l + . . .+

∑

j∈C(1)

Np
∑

i=1

ai,je
jα(M−1) sin φi,j

∑

l∈C(2)

Np
∑

g=1

a∗g,le
−jα(M−1) sinφg,l

}

,

where ai,j , the amplitude of the i MPCs in cluster j, is given by (19), and the terms r13 and r23 can be

derived in the same way. By substituting the terms r12, r13 and r23 into (25), the capacity maximization

H=

















∑

j∈C(1)

∑Np

i=1 ai,j
∑

l∈C(2)

∑Np

i=1 ai,l . . .
∑

m∈C(K)

∑Np

i=1 ai,m
∑

j∈C(1)

∑Np

i=1 ai,je
jα sinφi,j

∑

l∈C(2)

∑Np

i=1 ai,le
jα sinφi,l . . .

∑

m∈C(K)

∑Np

i=1 ai,mejα sinφi,m

...
...

. . .
...

∑

j∈C(1)

∑Np

i=1 ai,je
jα(M−1) sinφi,j

∑

l∈C(2)

∑Np

i=1 ai,le
jα(M−1) sinφi,l . . .

∑

m∈C(K)

∑Np

i=1 ai,mejα(M−1) sinφi,m

















,

(26)
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problem in a three-user scenario can be formulated as

C= max
ζ12,ζ13,ζ23β12,β13,β23

log2

[

(1 + p)3 − p2
(

ζ212+ζ213+ζ223
)

(30)

+p3
(

2ζ12ζ13ζ23 sin(β12−β13 + β23)−ζ212 − ζ213 − ζ223

)]

,

where p = Pt

K
. To maximize (30), the gradient search (GS) method results in ζ12 = ζ13 = ζ23 = 0, for

different values of β12, β13 and β23, which is the case when common clusters do not occur between the

users in the cell. In the case of distinct clusters between user m and user n, we have

ζmn = E







∑

j∈C(n)

Np
∑

i=1

ai,j
∑

l∈C(m)

Np
∑

g=1

a∗g,l







= 0. (31)

The equation (31) yields ζmn = 0, which maximizes the capacity given by (30).

For the case of Massive MIMO systems with a large number of users in the cell, having distinct

clusters for all users is practically difficult. In a real scenario, it is not possible to force the term ζmn

zero. The proposed user scheduling algorithm selects users which do not have common clusters and

consequently forces the variable ζmn to be small. A threshold is set for the power of a cluster to be

considered active. In the COST channel model, each user interacts with several clusters in the area and

the cluster power depends on the distance between the user and the center of visibility region and also

the distance between the cluster and the BS. We define a threshold which can determine the minimum

power that a cluster may have relative to the total powers. As in [24], we set the cluster power threshold

to 0.01× total power for a cluster to be active. A cluster is shared between two users if contributes to

both users, which means the cluster powers seen by the users are more than the threshold. Hence, the

optimum value of ζmn can be achieved only when there is no common cluster in the cell. Moreover,

investigating the effectiveness of the proposed user scheduling scheme in the distributed Massive MIMO

systems [25]–[30] is an interesting topic for future work.

V. ROBUSTNESS OF THE PROPOSED USER SCHEDULING ALGORITHM

A. Cluster Localization

The BS can estimate the direction of arrival [31], and hence the direction of the scattering objects

should be available at the BS. There is a well-known algorithm to estimate the delay, direction of arrival

and the direction of departure of the channel paths; SAGE-based algorithm [12], [13]. As a result, the BS

can identify the direction of the clusters which can be seen by the users in the cell area, and hence build

up a map of the location of the scattering objects. The convenient tool that has overcame the challenge

of making the position of the scatterers available is the use of environment maps [16], which also shows
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how measured angles of arrival can be identified with physical objects in the environment, and hence

can be located on the map. Successive interference cancellation has also been introduced in [32] for

scattering object identification: it uses the channel impulse response peaks in the delay domain to map

scatterers to 2-D coordinates.

B. Robustness

In order to study the robustness of the proposed algorithm to cluster localization error, we use the

well-known SAGE algorithm [12], [13], operating offline, as mentioned above. In cluster localization, we

consider a receiver BS with a antenna array consisting of M sensors located at a reference point [12],

[13]. Moreover, we consider planar wavefronts. The closed-form Cramer-Rao lower bound (CRLB) for

the delay, azimuth (ν) and elevation (θ) of the path are given by [12]

CRLB(τ) =
1

γO

1

8π2BW
(32a)

CRLB(θ) =
1

γO

M

2∆ cos(ν)
(32b)

CRLB(ν) =
1

γO

M

2∆
, (32c)

where BW is the bandwidth, and

∆ = 4π2(
d

λ
)2(

7

3
M3

x − 8M2
x +

29

3
Mx − 4), (33)

and

γO = M × I ×N × |f(ν)|2γI , (34)

where I is the number of periods of the received signal, N denotes the length of the used pseudonoise

(PN) sounding sequence available at the receiver and γI is the SNR at the input of each antenna [12],

[13]. Moreover, the antenna electric field pattern can be given by [12]

f(ν) = 0.67 + 2.67ν − 6.79ν2 + 5.7ν3 − 1.71ν3. (35)

The distance between the BS and cluster (dBS,C ) is given by geometrical calculation:

(cτ − dBS,C)
2 = (hBS − hMS + dBS,C sin(ν))2+ (36)

(dBS,MS − dBS,C cos(ν) cos(θ))2 ,

where c denotes the velocity of light, dBS,MS is the distance between the user and the BS in x−y plane,

and hBS and hMS are the BS and user heights. The distance between the user and cluster is easily given

by

dMS,C + dBS,C = cτ. (37)
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After the offline localization, the BS can build up the matrix Ṽ at the beginning of each time-slot, as the

following

Ṽ =

















ṽ11 ṽ12 . . . ṽ1NC

ṽ21 ṽ22 . . . ṽ2NC

...
...

. . .
...

ṽK1 ṽK2 . . . ṽKNC

















, (38)

where

ṽji =

√

Lj
pÃ

j
V R,i

√

Ãj
C,i, (39)

where Ãj
V R,i and Ãj

C,i can be calculated by the distances obtained in (37). Finally, for the matrix V, the

following equation holds

V = Ṽ + E, (40)

where E is due to the estimation error in cluster localization. Then, we use Ṽ instead of V in the proposed

algorithm. The numerical results verifies the robustness of the proposed algorithm to this error.

VI. NUMERICAL RESULTS AND DISCUSSION

In this section, simulation results have been provided to validate the performance of the proposed

schemes with different parameters.

A. Simulation Parameters for COST 2100 Channel Model

We evaluate the throughput of the system, averaging over 50 iterations. A square cell with a side

length of 2×R has been considered so that we call R the cell size and also assume users are uniformly

distributed in the cell. As in [5], we assume that there is no user closer than Rth = 0.1 ×R to the BS.

We simulate a micro-cell environment for the NLoS case and set the operating frequency fC = 2GHz.

The external parameters and stochastic parameters are extracted from chapter 6 of [18] and chapter 3 of

[16]. The BS and user heights are assumed to be hBS = 5 and hMS = 1.5, respectively. In (7) NC = 3,

RC = 50, and LC = 20. Moreover, we consider NP = 6 paths per cluster.

B. Simulation Results

For this network setup, the average sum-rate is evaluated for the three scenarios. In the GUS scheme,

it has been proposed that the receiver BS selects users that maximize the number of distinct clusters in

the cell. We evaluate the average throughput of the GWC scheme [1], [2] and random selection (RS) of

users. For the case of GWC, similar to [2], we set the optimal channel direction constraint to achieve

the best performance for GWC, so the complexity of GWC is much higher than GUS.
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Figure 3. The average sum-rate vs. the cell size for different values of M = 200, M = 100, Ks = 50, and Ks = 40. We set

the total number of users in the cell K = 400.
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Figure 4. The average sum-rate vs. total number of users for different values of M = 200, M = 100, Ks = 50, Ks = 40,

R = 600m and R = 1000m.

Fig. 3 depicts the average sum-rate with total number of receive antennas at the BS M = 100 and

M = 200, and two values of the number of selected users Ks = 40 and Ks = 50 while adopting

the proposed scheme with ZF receiver. As expected, since GWC exploits perfect CSI, it has the best

throughput. As seen in Fig.3, the performance of the proposed algorithm is slightly lower than the case in

which the BS exploits full CSI and performs GWC. Interestingly, for bigger cells, the superiority of the
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Figure 5. The channel estimation load vs. value of error of antennas at the receiver BS for different values of total number of

users in the cell.
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Figure 6. The average sum-rate vs. the estimation error for different values of total number of selected users in the cell and

the cell size.

proposed scheme is more obvious in terms of achieving performance close to that of the GWC scheme.

In Fig. 4, we have plotted the average sum-rate for the case of GWC and GUS versus total number of

users in the cell (K) with different numbers of receive antennas at the BS, M and of selected users, Ks.

In terms of average sum-rate, Fig. 4 shows that the proposed scheme results in only a small sum-rate

reduction even with a smaller total number of users.
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The amount of channel estimation load required in both GWC and the proposed GUS is presented in

Fig. 5. As the figure shows the channel estimation load of the proposed GUS is far less than that of the

GWC scheme.

To investigate the robustness of the proposed scheme to different values of the error, we set

|e| = Ω×
√

CRLB(ρ), (41)

where |e| denotes the absolute value of the estimation error, Ω is an integer number and CRLB(ρ) is

given by (32a)-(32c), where the parameter ρ can be the delay, azimuth and elevation. Fig. 6 shows the

average sum-rate with total number of receive antennas at the BS M = 400, and two values of the

number of selected users Ks = 10 and Ks = 40 versus the value of the estimation error. We set the

SNR at the input of each antenna γI = 20dB and the bandwidth BW = 20MHz. Moreover, in equations

(32a) to (32c), Mx = 5, N = 127, which are extracted from [12]. The figure shows the robustness of

the proposed algorithm to poor cluster localization.

VII. CONCLUSIONS

We have investigated the user scheduling problem in Massive MIMO systems and proposed a new GUS

scheme which maximizes the uplink throughput of the users, considering the FDD mode. By applying

knowledge of the location of clusters and users and the geometry of the system, we suppose that the

BS does not need to estimate the channels of all users and selects users based only on the location of

users and clusters in the area. Next, exploiting Cramer-Rao lower bound, we have developed a robustness

analysis for the proposed scheme. The results show that while sum-rate slightly decreases along with the

reduced overhead of channel estimation, the proposed algorithm can be an efficient scheme to reduce the

complexity of user scheduling in Massive MIMO systems. In addition, the simulation results demonstrate

good robustness against the estimation error.
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