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Convexity of Balls in Gromov–Hausdorff Space

Daria P. Klibus

Abstract

In this paper we study the space M of all nonempty compact metric spaces considered up

to isometry, equipped with the Gromov–Hausdorff distance. We show that each ball in M

with center at the one-point space is convex in the weak sense, i.e., every two points of such

a ball can be joined by a shortest curve that belongs to this ball; however, such a ball is not

convex in the strong sense: it is not true that every shortest curve joining the points of the

ball belongs to this ball. We also show that a ball of sufficiently small radius with center at a

space of general position is convex in the weak sense.

Introduction

The Gromov–Hausdorff distance was defined in 1975 by D. Edwards in article ”The Structure of
Superspace” [1], then in 1981 it was rediscovered by M. Gromov [2].

We will investigate the geometry of the space M of all nonempty compact metric spaces (con-
sidered up to isometry) with the Gromov–Hausdorff distance. It is well-known that the Gromov–
Hausdorff distance is a metric on M [3]. The Gromov–Hausdorff space is Polish (complete sepa-
rable) and path-connected. Also A.O. Ivanov, N.K. Nikolaeva and A.A. Tuzhilin showed that the
Gromov–Hausdorff metric is strictly intrinsic [4].

The present paper is devoted to the following question: are balls in the Gromov–Hausdorff
space convex. There are two concepts: convexity in the weak sense (every two points of such a ball
can be joined by a shortest curve that belongs to this ball) and strong sense (each shortest curve
connecting any pair of points of the set, belongs to this set). We show that a ball of nonzero radius
with center at the one-point space is convex in the weak sense, but not convex in the strong one.
We also show that a ball of sufficiently small radius with center at a generic position space is convex
in the weak sense.

I am grateful to my scientific adviser professor Alexey A. Tuzhilin and to professor Alexander
O. Ivanov for stating the problem and regular attention to my work.

The work was supported by the Russian Foundation for Basic Research (grant No. 16-01-00378-
a) and the program “Leading Scienti c Schools” (grant no. NSh-6399.2018.1).

1 Preliminaries

Let X be an arbitrary metric space. By |xy| we denote the distance between it is two points x
and y. For any point x ∈ X and a real number r > 0 we denote by Uε(x) = {y ∈ X : |xy| < ε}
the open ball of radius ε centered at x; for each nonempty A ⊂ X and a real number r > 0 we
put Uε(A) = ∪a∈AUε(a) an call it open r-neighborhood of the set A. The closed ball of radius
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ε centered at x is Bε(x) = {y ∈ X : |xy| ≤ ε}. For x ∈ X and nonempty A ⊂ X we put
|xA| = inf{|xa| : a ∈ A}. For nonempty A ⊂ X and non-negative r (possibly equal ∞), the closed

r-neighborhood of the set A is Br(A) = {x ∈ X : |xA| ≤ r}.

Definition 1.1. Let X and Y be two nonempty subsets of a metric space. The Hausdorff distance

between X and Y is dH(X,Y ) = inf {ε > 0 | (Uε(X) ⊃ Y ) & (Uε(Y ) ⊃ X)} .

By H(X) we denote the family of all nonempty closed bounded subsets of a metric space X .

Proposition 1.2 ([3]). The function dH is a metric on H(X).

Proposition 1.3 ([5]). For any metric space X, any A ∈ H(X), and any nonnegative r we have

Br(A) ∈ H(X).

Definition 1.4 ([5]). Let W be any metric space, a, b ∈ W , |ab| = r, s ∈ [0, r]. A point c ∈ W is
in s-position between a and b, if |ac| = s and |cb| = r − s.

Proposition 1.5 ([5]). Let X be any metric space and A,B ∈ H(X), r = dH(A,B), s ∈ [0, r]. If

a set C ∈ H(X) is in s-position between A and B, then C ⊂ Bs(A) ∩Br−s(B).

Designation 1.6 ([5]). In what follows, we denote the set Bs(A) ∩Br−s(B) by Cs(A,B).

Definition 1.7. Let X and Y be metric spaces. A triple (X ′, Y ′, Z) that consists of a metric space
Z and it is subsets X ′ and Y ′ isometric to X and Y , respectively, is called a realization of the

pair (X,Y ). The Gromov–Hausdorff distance dGH(X,Y ) between X and Y is the infimum of real
numbers ρ such that there exists a realization (X ′, Y ′, Z) of the pair (X,Y ) with dH(X ′, Y ′) ≤ ρ.

By M we denote the set of all compact metric spaces, considered up to an isometry, with the
Gromov–Hausdorff distance. The restriction of dGH(X,Y ) onto M is a metric [3].

A metric on a set X is stricly intrinsic, if any two points x, y ∈ X are joined by a curve whose
length is equal to the distance between x and y (this curve is called shortest).

Theorem 1 ([5]). Let X be a complete locally compact space with intrinsic metric. Then for any

A,B ∈ H(X), r = dH(A,B), s ∈ [0, r], the set Cs(A,B) belongs H(X) and is in s-position between

A and B.

Corollary 1.8 ([3]). Let X be a complete locally compact space with intrinsic metric (X is boundedly

compact with stricly intrinsic metric [1]). Then H(X) is boundedly compact, and Hausdorff metric

is stricly intrinsic.

Corollary 1.9 ([5]). Let X be a complete locally compact space with intrinsic metric, A,B ∈ H(X),
and r = dH(A,B). Then γ(s) = Cs(A,B), s ∈ [a, b] is a shortest curve connecting A and B, where

the length of curve γ is equal to dH(A,B), and the parameter s is natural.

Definition 1.10. A nonempty subset M of a metric space X with stricly intrinsic metric is convex
in the weak sense, if for any two points from M , some shortest curve connecting them belongs to
M .

Definition 1.11. A nonempty subset M of a metric space X with stricly intrinsic metric is convex
in the strong sense, if for any two points from M , any shortest curve connecting them belongs to
M .



1. Preliminaries 3

Let X and Y be arbitrary nonempty sets. Recall that a relation between the sets X and Y is
a subset of the Cartesian product X × Y . By P(X,Y ) we denote the set of all nonempty relations
between X and Y . Let πX : (X,Y ) → X and πY : (X,Y ) → Y be the canonical projections, i.e.,
πX (x, y) = x and πY (x, y) = y. In the same way we denote the restrictions of the canonical
projections to each relation σ ∈ P(X,Y ).

Let us consider each relation σ ∈ P(X,Y ) as a multivalued mapping whose domain may be less
than X . Then, similarly with the case of mappings, for any x ∈ X and any A ⊂ X their images
σ(x) and σ(A) are defined, and for any y ∈ Y and any B ⊂ Y their preimages σ−1(y) and σ−1(B)
are also defined.

Definition 1.12. A relation R ⊂ X × Y between X and Y is called a correspondence, if the
restrictions of the canonical projections πX and πY onto R are surjective. By R(X,Y ) we denote
the set of all correspondences between X and Y .

Definition 1.13. Let X and Y be arbitrary metric spaces. The distortion dis σ of a relation

σ ∈ P(X,Y ) is the value

dis σ = sup
{

∣

∣|xx′| − |yy′|
∣

∣ : (x, y), (x′, y′) ∈ σ
}

.

Proposition 1.14 ([3]). For any metric spaces X and Y we have

dGH(X,Y ) =
1

2
inf {disR : R ∈ R(X,Y )} .

Definition 1.15. A relation R ∈ R(X,Y ) is called optimal, if dGH(X,Y ) = 1
2 dis R. The set of

all optimal correspondences between X and Y is denoted by Ropt(X,Y ).

Proposition 1.16 ([6]). For any X,Y ∈ M we have Ropt(X,Y ) 6= ∅.

Proposition 1.17 ([6]). For any X, Y ∈ M and each R ∈ Ropt(X,Y ) the family Rt, t ∈ [0, 1],
of compact metric spaces such that R0 = X, R1 = Y , and for t ∈ (0, 1) the space Rt is equal to

(R, ρt), where ρt
(

(x, y), (x′, y′)
)

= (1− t)
∣

∣xx′
∣

∣+ t
∣

∣yy′
∣

∣, is a shortest curve in M connecting X and

Y .

For a metric space X by diam(X) we denote its diameter :

diam(X) = sup
x,x′∈X

|xx′|.

Let ∆1 be a single-point space.

Assertion 1.18 ([3]). For any metric space X we have dGH(X,∆1) = diam(X)/2.

Definition 1.19. We say that a finite metric space M is in general position, or is a space of general

position, if all its nonzero distances are distinct, and all triangle inequalities are strict.

For a metric space X we define the following values:

s(X) = inf{|xy| : x 6= y}, e(X) = inf
{∣

∣

∣
|xy| − |zw|

∣

∣

∣
: x 6= y, z 6= w, {x, y} 6= {z, w}

}

.
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Proposition 1.20 ([7]). Let M = {1, . . . , n} be a metric space. Then for any 0 < ε ≤ s(M)/2
and each X ∈ M such that 2dGH(M,X) < ε, there exists a partition X = ⊔n

i=1Xi unique up to

numeration by points of M , possessing the following properties :

(1) diamXi < ε;

(2) for any i, j ∈ M and any x ∈ Xi and x′ ∈ Xj (here the indices i and j may be equal to each

other) it holds
∣

∣

∣
|xx′| − |ij|

∣

∣

∣
< ε.

Proposition 1.21 ([7]). Let M = {1, . . . , n} be a metric space. Then for any 0 < ε ≤ s(M)/2,
any X ∈ M, 2dGH(M,X) < ε, and each R ∈ Ropt(M,X) the family {R(i)}ni=1 is a partition of

the set X, satisfying the following properties :

(1) diamXi < ε;

(2) for any i, j ∈ M , x ∈ R(i), x′ ∈ R(j) it holds
∣

∣

∣
|xx′| − |ij|

∣

∣

∣
< ε.

Moreover, if R′is another optimal correspondence between M and X, then the partitions {R(i)}ni=1

and {R′(i)}ni=1 may differ from each other only by numerations generated by the correspondences

i 7→ R(i) and i 7→ R′(i).

Definition 1.22 ([7]). The family {Xi} from Proposition 1.20 we call the canonical partition of
the space X with respect to M .

Proposition 1.23 ([7]). Let M = {1, . . . , n} be a metric space, n ≥ 3, e(M) > 0. Choose an

arbitrary 0 < ε ≤ 1
4min{s(M), e(M)}, any X,Y ∈ M, 2dGH(M,X) < ε, 2dGH(M,Y ) < ε, and let

{Xi} and {Yi} denote the canonical partitions of X and Y , respectively, w.r.t. M . Then for each

R ∈ Ropt(X,Y ) there exist Ri ∈ R(Xi, Yi) such that R = ⊔n
i=1Ri.

2 The main results

Theorem 2. A ball with center at the one-point metric space is convex in the weak sense.

Proof. Let B = Br(∆1) be a closed ball with center at ∆1, where r > 0, and X, Y ∈ B. By
Proposition 1.18,

dGH(∆1, X) = diam(X)/2 ≤ r, dGH(∆1, Y ) = diam(Y )/2 ≤ r.

We choose some correspondence R ∈ Ropt(X,Y ) which exists by Proposition 1.16. We construct
the space Rt = (R, ρt) with metric ρt

(

(x, y), (x′, y′)
)

= (1 − t)
∣

∣xx′
∣

∣ + t
∣

∣yy′
∣

∣, where t ∈ (0, 1), and
put R0 = X , R1 = Y . Then, by Proposition 1.17, the curve Rt, t ∈ [0, 1], connecting X and Y is
shortest.
We show that the curve Rt lies in the ball B. To do that, we estimate the Gromov–Hausdorff
distance between the center ∆1 and the space Rt. We have

dGH(∆1, Rt) = diam(Rt)/2.

For any x, x′ ∈ X and y, y′ ∈ Y it holds

|xx′| ≤ diamX ≤ max(diamX, diamY ); |yy′| ≤ diamY ≤ max(diamX, diamY ).
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Therefore,
diam(Rt) = max |(x, y)(x′, y′)|ρt

= max
(

(1− t)|xx′|+ t|yy′|
)

≤

≤ (1 − t)max(diamX, diamY ) + tmax(diamX, diamY ) = max(diamX, diamY ),

thus, dGH(∆1, Rt) ≤
1
2 max(diamX, diamY ) = max

(

dGH(∆1, X), dGH(∆1, Y )
)

≤ r.

Theorem 3. A ball with center at the one-point metric space is not convex in the strong sense.

Proof. To prove that, we construct a shortest curve connecting some spaces A,B ∈ Br(∆1) ⊂ M,
but not containig in Br(∆1). Let A = [0, 2r] ⊂ R and B = {0, 2r} ⊂ R. We choose some
correspondence R ∈ Ropt(B,A) (it exists by Proposition 1.16) and estimate it:

disR = sup
{

|aa′| : a, a′ ∈ R(0); |aa′| : a, a′ ∈ R(2r);
∣

∣2r − |aa′|
∣

∣ : a ∈ R(0), a′ ∈ R(2r)
}

=

= sup
{

diamR(0), diamR(2r),
∣

∣2r − |aa′|
∣

∣ : a ∈ R(0), a′ ∈ R(2r)
}

≤ 2r.

1) If R(0) ∩R(2r) 6= ∅, then choosing a = a′ ∈ R(0) ∩R(2r), we have disR = 2r.
2) If R(0) ∩ R(2r) = ∅, then for any ε > 0 there exist a ∈ R(0), a′ ∈ R(2r), such that |aa′| < ε,
thus disR = 2r.
Then, by Proposition 1.14, we have dGH(A,B) = r. Since dH(A,B) = r, it holds dGH(A,B) =
dH(A,B). For t ∈ [0, r] we put γ(t) = Ct(A,B) = Bt(A) ∩ Br−t(B). Applying the corollary 1.9,
we see, that γ(t) is a shortest curve in H(R).
For any partition t0 = 0 < t1 < · · · < tn = r of the segment [0, r] we have

dGH(A,B) ≤
n
∑

i=1

dGH

(

γ(ti−1), γ(ti)
)

≤
n
∑

i=1

dH
(

γ(ti−1), γ(ti)
)

= dH(A,B) = dGH(A,B),

so

dGH(A,B) =
n
∑

i=1

dGH

(

γ(ti−1), γ(ti)
)

.

Since the length of the curve γ is equal to the supremum of the sums
∑n

i=1 dGH

(

γ(ti−1), γ(ti)
)

over
all possible partitions of the segment [0, r], and all these sums are the same and equal dGH(A,B),
then the length of the curve γ is equal to dGH(A,B), therefore γ is a shortest curve.
We show that this curve does not lie entirely in the ball Br(∆1). To do that we calculate

dGH

(

Ct(A,B),∆1

)

. By Assertion 1.18, dGH

(

Ct(A,B),∆1

)

=
diam

(

Ct(A,B)
)

2 . Notice that for t = r
2

we have diam
(

C r

2
(A,B)

)

= 3r, so dGH

(

Cr/2(A,B),∆1

)

= 3r/2 > r, thus γ(r/2) 6∈ Br(∆1).

Theorem 4. For any space M ∈ M in general position and any 0 < r ≤ 1
4min{s(M), e(M)} the

ball with center at M and radius r is convex in the weak sense.

Proof. Let ε = 2r, M = {1, . . . , n}, and X, Y ∈ Bε/2(M). By Proposition 1.20, there exist unique
(up to a numeration of points of M) partitions X = ⊔n

i=1Xi and Y = ⊔n
i=1Yi, possessing the

following properties: for any xi ∈ Xi, xj ∈ Xj , yi ∈ Yi, yj ∈ Yj it holds
∣

∣

∣
|xixj | − |ij|

∣

∣

∣
< ε and
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∣

∣

∣
|yiyj | − |ij|

∣

∣

∣
< ε. By Proposition 1.23, for any R ∈ Ropt(X,Y ) there are Ri ∈ R(Xi, Yi), where

R = ⊔n
i=1Ri. We choose some correspondence R ∈ Ropt(X,Y ) (it exists by Proposition 1.16, it

exists).
We construct a shortest curve Rt, as in Proposition 1.17. To prove convexity in the weak sense,
we show that dGH(M,Rt) ≤ ε/2. Let us introduce a the correspondence R′ ∈ R(M,Rt) us
R′ = ⊔n

i=1{i} ×Ri. We have

dGH(M,Rt) ≤
1

2
disR′ =

1

2
sup

{

∣

∣|ij| − |pipj |t
∣

∣ : i, j ∈ M, (i, pi), (j, pj) ∈ R′

}

=

=
1

2
sup

{

∣

∣|ij| − (1− t)|xixj | − t|yiyj |
∣

∣ : i, j ∈ M, (xi, yi) = pi ∈ Ri, (xj , yj) = pj ∈ Rj

}

=

=
1

2
sup

{

∣

∣(1− t)|ij|+ t|ij| − (1− t)|xixj | − t|yiyj|
∣

∣

}

=

=
1

2
sup

{

∣

∣(1− t)(|ij| − |xixj |) + t(|ij| − |yiyj |)
∣

∣

}

≤

≤
1

2
(1− t) sup

{

∣

∣|ij| − |xixj |
∣

∣

}

+
1

2
t sup

{

∣

∣|ij| − |yiyj |
∣

∣

}

≤
1

2
(1− t)ε+

1

2
tε =

ε

2
.
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