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Fractional Newton-Raphson Method
Accelerated with Aitken’s Method
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Abstract

In the following document, we present a way to obtain the order of convergence of the Fractional Newton-
Raphson (F N-R) method, which seems to have an order of convergence at least linearly for the case in which the
order « of the derivative is different from one. A simplified way of constructing the Riemann-Liouville (R-L) frac-
tional operators, fractional integral and fractional derivative, is presented along with examples of its application
on different functions. Furthermore, an introduction to the Aitken’s method is made and it is explained why it has
the ability to accelerate the convergence of the iterative methods, to finally present the results that were obtained
when implementing the Aitken’s method in the F N-R method.
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1. Fixep PoinT METHOD

A classic problem in mathematics, which is of common interest in physics and engineering, is finding the set of
zeros of a function f : ) C R” — R", that is,

{£eQ - If(EN=0}, (1)

where || - || : R” — IR denotes any vector norm. Although finding the zeros of a function may seem like a simple
problem, in general it involves solving an algebraic equation system as follows

[f]1 (x)=0

=0
[f]z(?c) ’ 2)
[fl,(x)=0

where [f]; : R"” — R denotes the k-th component of the function f. It should be noted that the system of
equations (2) may represent a linear system or a nonlinear system, and in general, it is necessary to use numerical
methods of the iterative type to solve it. Let @ : R” — IR" be a function, it is possible to build a sequence {x;};2, by
defining the following iterative method

Xi1 = D(x;), (3)

if it is fulfills that x; — & € R", and if the function @ is continuous around &, we obtain that
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£ = lim %1,y = lim @(x;) = lim x; ) = (&), ()

—00 1—00

the above result is the reason by which the method (3] is known as the fixed point method. Furthermore, the
function @ is called an iteration function. To understand the nature of the convergence of the iteration function
D, the following definition is necessary [1]):

Definition 1.1. Let @ : R" — R" be an iteration function. The method (3) for determining & € R" is called (locally)
convergent, if there exists 6 > 0 such that for every initial value

xo € B(&;8):={y e R" : [[y-&]| <o},

it is fulfills that

lim|jx; - &|| >0 = limx; =¢&. (5)

If we have a function f : O ¢ R" — R", for which we want to determine the set (1), in general it is possible to
write an iteration function @ as follows [2]

D(x) =x—-A(x)f (x),

where A(x) is a matrix, which is given as follows

[Al11(x) [Alia(x) - [Alia(x)

[Alr1(x)  [Alpa(x) -+ [Al2a(x)
A):= ([Alp) =) R

[A]nl(x) [A]nz(x) [A]nn(x)

with [A]jx(x) : R" — R ¥j, k < n. It is necessary to mention that the matrix A(x) is determined according to the
order of convergence desired.

1.1. ORDER OF CONVERGENCE
Before continuing, it is necessary to define the order of convergence of an iteration function @ [1:

Definition 1.2. Let @ : O C R" — R" be an iteration function with a fixed point & € Q). Then the method (3) is called
(locally) convergent of (at least) order p (p > 1), if there are exists 6 > 0 and C a non-negative constant, with C <1 if
p =1, such that for any initial value xo € B(&;0) it is fulfills that

||Xk+1—£||SC||Xk—é”p, k:()lllz}! (6)
where C is called convergence factor.

The order of convergence is usually related to the speed at which the sequence generated by (3] converges. For
the particular case p = 1 it is said that the method (3) has an order of convergence (at least) linear, and for the case
p = 2itis said that the method (3)) has an order of convergence (at least) quadratic. The following theorem, allows
characterizing the order of convergence of an iteration function @ with its derivatives [1H4]. Before continuing,
we need to consider the following multi-index notation. Let INj be the set IN U {0}, if y € IN{}, then



yli= ]_[[V]k!
k=1

ly| = Z[)/]k
i1

o= [ [l
k=1
Pl ol

oxV a[x][ly]l a[x][ZV]Z . a[X]Lﬂ"

Theorem 1.3. Let @ : () C R" — R” be an iteration function with a fixed point £ € Q). Assuming that @ is p-times
differentiable in & for some p € IN, and furthermore

7 [Pk(&)

S =0, Yk>1andV|y|<p, ifp>2

, (8)
||CD(1)(E)H<1, ifp=1

where @) denotes the Jacobian matrix of the function @, then @ is (locally) convergent of (at least) order p.
Proof. Let @ : R” — R" be an iteration function, and let {é};_, be the canonical basis of R". Considering the

following index notation (Einstein notation)

n

O(x) = ) [Pl(x)éx := [Pe(x)é = &[PLe(x),

k=1

and using the Taylor series expansion of a vector-valued function in multi-index notation, we obtain two cases:

i) Casep>2:
"L, PRL(E) A
@(x,>—c1><cz)+|y|z:1 T g (ki) +ek[o]k[ma>;{<xi—a)y}]
; LN A
=<1><5)+m; Méﬁ o (xi =) +ek[oJk[|r;13>;{<xi—a)V}],
then

p
oe-o@i< ) | Y a2 5 g

7|, = ! oxV " ék[o}k[mg{(Xi_é)y})
|y|=m
p
<y % PEOUED s - e+ o1 - 1),
m=1\|y|=m
I [P]x(E)

assuming that & is a fixed point of @ and that =0Vk>1andV .y( < p is fulfilled, the previous

ox?

expression implies that

o(llxi - £1IP)
llx; = NP

[P(xi) =P _ llxivs =&l _ Z iHaV[CD]k(E)é

N L




ii)

therefore

i el 3 1|00,
i—00 ||Xl 6”p - oxV

|V|

as a consequence, if the sequence {x;};-, generated by (3) converges to &, there exists a value k > 0 such that

’

llxi 1 —cSII< lIx; = &IP, Yixk,

H I [P](&
ax?

then @ is (locally) convergent of (at least) order p.

Casep=1:
_ V[P (& \
D(x;) =D (&) + |y|Zl o kT(xi = &) +éclolk (lfillff{(xi —é)y}]
=D (&) + @ (x;)(x; - &) +ek[olk[|m|ax{(x &7},
=
then

D (x;) — ()| < @)l — &N+ 0 (llx; — ),

assuming that ¢ is a fixed point of @, the previous expression implies that

[P(xi) =P _ lxiva =&l _ 1) o(llxi = &ll) 5||)
= <||P
e R T I e
therefore
xier =<l _ i)
<[P
i—00 ||x —(EH ”

as a consequence, if the sequence {x;};-, generated by (3) converges to &, there exists a value k > 0 such that

i1 = &< | @D E)|llxi - &Il Vi k,

considering m > 1, from the previous inequality we obtain that

i = &N <O I mt = £ < [OOEN xims = &ll < < @D llxi - &1L
and assuming that |[@(1)(&)|| <1 is fulfilled

lim |lx;, — &l < Lim @O )" |lx; - &Il -0,
M—00 m—>co

then @ is (locally) convergent of order (at least) linear.

The following corollary follows from the previous theorem

Corollary 1.4. Let @ : R" — R" be an iteration function. If @ defines a sequence {x;};2 such that x; — &, and if the
following condition is true

lim ||©M (x)|| = 0, (9)

x—&

then @ has an order of convergence (at least) linear in B(&;0).



2. NewtoN-RapHSON METHOD

We begin this section by considering the following proposition [4}[5] :

Proposition 2.1. Let f : 3 C R" — R" be a function with a value & € Q such that ||f(&)|| = 0, and let © : R" — R" be
an iteration function as follows

P(x) = x - A(x)f (x), (10)

with A(x) a matrix. If the following condition it is fulfills

lim A(x) = (fV(€)), (11)

x—&

where 1) denotes the Jacobian matrix of the function f, which is defined as follows [6]

= (1) = (1), (12)

where

[F15) () = AWl () 2= QL

[x]k[f]j(x)’ 1§j,k$1’l,

then the iteration function @, fulfills a necessary (but not sufficient) condition to be (locally) convergent of order (at
least) quadratic in B(&;0).

Proof. From the Theorem [1.3] we have that an iteration function has an order of convergence (at least) quadratic
if it fulfills the following condition

llmMZO, Vj,kSVl,
x—&  d[x];
which may be written equivalently as follows
lim [|@™")(x)[| = 0. (13)

x—&

Then, we may assume that we have a function f(x): Q C R” — R" with a zero £ € (), such that all of its first
partial derivatives are defined in &, and taking the iteration function @ given by (10), the k-th component of the
iteration function may be written as

[Pli(x) = [x]e = ) [AlG(R)fF(x),
j=1

then

n

I[P (x) =05 - Z([A]kj(x)al[f]j(x) + (91[A]kj(x)) [f]j(x))
=

=ou=)_ ([ ) + (1AL (0) 1),

=1

where 0y, is the Kronecker delta, which is defined as



] 1, sil=k
ékl:élk:{o sil=k -

Assuming that condition it is fulfills

9i[P(&) = 5kl‘Z[A]kj(é)[f]g)( =0 = Z[A]k] (&) =0x, YLk <n,

=1

then the above expression may be written in matrix form as follows

-1

AGFDEO =1, = A& =(fM©&)

where I,, denotes the identity matrix of n x n. Then any matrix A(x) that fulfills the following condition

lim A(x) = (M ,
lim A(x) = (f1(9))
guarantees that exists 6 > 0, such that iteration function @ given by (10), fulfills a necessary (but not sufficient)
condition to be (locally) convergent of order (at least) quadratic in B(&;0).
O

The following fixed point method may be obtained from the previous proposition

Xip1 = D) =x; = (fVx) flx), i=0,1,2,, (14)

which is known as Newton-Raphson method, also known as Newton’s method [7]]. Given the condition (11,
it could be wrongly considered that the Newton-Raphson method always has an order of convergence (at least)
quadratic, but as mentioned in the Proposition the form of the iteration function is not sufficient to
guarantee this order of convergence. This occurs because even if the condition it is fulfills, the order of
convergence becomes conditioned by the way in which the function f is constituted, for example for the one
variable case, if the function f has a root &, with a certain algebraic multiplicity m > 2, that is,

flx)=(x=-&)"g(x), g(&)=0,

the Newton-Raphson method presents an order of convergence at least linear [1]], the aforementioned may be
seen in the following proposition:

Proposition 2.2. Let f : Q C IR — R be a function with a zero & € Q). Then the iteration function @ of the Newton-
Raphson method, given by (14), fulfills the following condition:

P
|xi+1—a|sﬂ| £fp (15)
p!
where
L if f(x) = (x—&)"g(x)
2, if (€)= 0, ond ()2 (<=2 (x)
p= 1 m , (16)
3, if f(E) %0, fO(E)=0, and f(x) # (x—&)"g(x)
4, 1ff(1)(6 ¢0f (&)= O,f (&) = Oandfx):t -&)"g(x)

with g(&) =0 and m > 2.



Proof. Considering that the form of the function f is not explicitly determined, it is possible to consider two
possibilities:

i)

ii)

Assuming the function may be written as f(x) = (x — &) g(x) with g(&) # 0 and m > 2, then

FO) = (x= &) [(x - )8 (x) + mg(x)],

as a consequence, the iteration function of N-R method takes the following form

@(x) = x - (x = &)h(x)g(x),

with
hx) =[x - £)g W (x) + mg(x)]
then
@M (x) = 1= h(x) [(x - €)M (x) + g(x)| - (x = hD (x)g(x),
where
() = ~[(x - )¢V (@) + mgx)] (14 m) gV )+ (x - £)gP ()],
therefore

. 1
lim 0000 =1 - h(e)gle) = [1- 2 | <1, (17)

and from the Theorem the Newton-Raphson method has an order of convergence at least linear, that is,
fulfills the equation with p=1.

Assuming that f(x) = (x — &)™ g(x) with g(&) # 0 and m > 2, the first derivative of the iteration function of
Newton-Raphson method takes the following form

W) = F(0)|(F V) O],
and if it is fulfills that f(1)(&) = 0, then
lim |[@)(x)| =0, (18)

and from the Theorem the Newton-Raphson method has an order of convergence at least quadratic,
that is, fulfills the equation with p = 2. On other hand, the second derivative of the iteration function of
Newton-Raphson method takes the following form

-2

D) = (F0) " FP0+ F)|(F0) O -2(F V) ()],

and if it is fulfills that f(1)(&) = 0 and f?(&) = 0, then

lim |®)(x)| = lim |©®)(x)| = 0, (19)

x—& x—&



and from the Theorem the Newton-Raphson method has an order of convergence at least cubic, that is,
fulfills the equation (15) with p = 3. Finally, the third derivative of the iteration function of the Newton-
Raphson method takes the following form

+6£ (0| (FV60) 7 (F) = (F0)” R,

and if it is fulfills that f1)(&) 2 0, f(&) = 0and (&) =0, then

im |00 (x)| = lim [©@) (x)| = lim |®®) (x)| =
)1(5%|q> (x)|_)1g%|q> (x)|-i:n%|® (x)|=0, (20)

and from the Theorem the Newton-Raphson method has an order of convergence at least tetrahedral,
that is, fulfills the equation with p = 4.

O

The previous proposition, illustrates two important points that are worth mentioning when using the N-R
method to find the zeros of a function f:

i) When it is not evident, unless it is explicitly specified that the function f has no roots of algebraic multiplic-
ity m > 2, technically there exists the possibility that the N-R method has an order of convergence at least
linear, that is, the N-R method may fulfill the equation with p > 1.

ii) Due that the N-R method is a local iterative method, even if it proves that for a root £ € () the method has
an order of convergence at least linear, this does not rule out that for the same function f it may present
a higher order of convergence over the same region (). As an example of the above, we may consider the
following function

fx)=(x—-n)x-&)"g(x), gln)=g(&) =0,

with #,£ € (), 17—5|<e,andm22.

The previous points are important, because when the N-R method is implemented in a function f, the zeros
of the function are assumed to be unknown, and their algebraic multiplicities m > 2, in case they exist, are also
unknown. With the above in mind, the following corollary is obtained, which is derived from Proposition

Proposition[2.2]and Corollary

Corollary 2.3. Let f : QQ CR" — R" be a function with a zero & € Q). If there exists at least a value k > 0, and a function
gk : R" > R, such that,

[, (0) = [(x = O)IF&k(x), gk(&) =0,

for some value ji., with

1<ju,k<n and m>=2,

then the Jacobian matrix of the iteration function ® of the N-R method, given by (14), fulfills that all entries in its
k-th column are nonzero at the value &, that is,

[cp]}}j(g) £0, ¥j>0,

as consequence, the N-R method has an order of convergence (at least) linear.



3. FractionaL CaLcuLrus

The fractional calculus is a mathematical analysis branch whose applications have been increasing since the end
of the XX century and beginnings of the XXI century [8-10], the fractional calculus arises around 1695 due to
Leibniz’s notation for the derivatives of integer order

0 (x) = %f(x), neN,

thanks to this notation L’Hopital could ask in a letter to Leibniz about the interpretation of taking n=1/21in a
derivative, since at that moment Leibniz could not give a physical or geometrical interpretation to this question, he
simply answered L'Hopital in a letter, “... is an apparent paradox of which, one day, useful consequences will be
drawn” [[11]. The name of fractional calculus comes from a historical question since in this branch of mathematical
analysis it is studied the derivatives and integrals of a certain order a, with @ € R or C.

Currently, the fractional calculus does not have a unified definition of what is considered a fractional deriva-
tive, because one of the conditions required to consider an expression as a fractional derivative is to recover the
results of conventional calculus when the order a — n, with n € IN [12], among the most common definitions
of fractional derivatives are the Riemann-Liouville (R-L) fractional derivative and the Caputo fractional deriva-
tive [13}/14], the latter is usually the most studied since the Caputo fractional derivative allows us a physical
interpretation to problems with initial conditions, this derivative fulfills the property of the classical calculus that
the derivative of a constant is null regardless of the order « of the derivative, however this does not occur with the
R-L fractional derivative, and this characteristic can be used to solve nonlinear systems [4,/15,/16].

Unlike the Caputo fractional derivative, the R-L fractional derivative does not allow for a physical interpreta-
tion to the problems with initial condition because its use induces fractional initial conditions, however the fact
that this derivative does not cancel the constants for a, with @ ¢ IN, allows to obtain a “spectrum” of the behavior
of the constants for different orders of the derivative, which is not possible with conventional calculus.

3.1. INTRODUCTION TO THE RIEMANN-L1OUVILLE FRACTIONAL DERIVATIVE
One of the key pieces in the study of fractional calculus is the iterated integral, which is defined as follows [13]):

Definition 3.1. Let L!

loc

feLl (a,00), then the n-th iterated integral of the function f is given by

loc

(a,b), the space of locally integrable functions in the interval (a,b). If f is a function such that

EF() = oL (! (x))z(n_l—l)!j (x=1)"" f(r)dt, (21)

where

)= | for

Considerate that (n—1)! =I'(n) , a generalization of may be obtained for an arbitrary order a >0

JOF(x) = ﬁf (x— e F(t)at, (22)

similarly, if f € L] (—co,b), we may define

1 b
IFf(x)= —— -x)* L f(ndt, 2
) = i [ (=0 (23)
the equations and (23), correspond to the definitions of right and left Riemann-Liouville fractional
integral, respectively. The fractional integrals fulfill the semigroup property, which is given in the following
proposition [[13]:



Proposition 3.2. Let f be a function. If f € L (a,0), then the fractional integrals of f fulfill that

loc

JEIEf ) = 1P (0, ap>o0. (24)

From the previous result, and considering that the operator d/dx is the inverse operator to the left of the

operator ,I,, any integral a-th of a function f € Llloc(a,oo) may be written as

dan dan
al)?f(x) = W (algalgf(x)) = dx

([T f(x)). (25)

Considering and , we can build the (right) Riemann-Liouville fractional derivative as follows |13}
14]:

A5 (%), ifa<0
n

(L f(x), ifaz0’ (26)

DEf(x) ::{ d
dx"

where n =[a].

3.1.1. CONSTRUCTION OF THE RIEMANN-L1OoUVILLE FRACTIONAL DERIVATIVE

The R-L fractional derivative is constructed in a simplified way, taking into account that the integral operator is
defined for a locally integrable function f, that is, f € L! (a,00), then

loc

L) =f f(ydt,

applying two times the integral operator

2= [ ([ o) = [t o),

doing an integration by parts, taking u = ,I, f(x;) and dv = dx;, as a consequence

X

J2F () =310, (1) —j %1 f (1),
:xale(x) - aIx (xf(x))
:fx(x— t)f (t)dt, (27)

repeating the previous process, applying three times the integral operator

2270 = [ 12 f)am,

doing an integration by parts, taking u = ulflf(xl) and dv = dx;, then

270 =x1,82 Fon)| = [ (el fOn)
:xulgf(x) —aly (xale(x))

:jx(x—t)altf(t)dt, (28)

10



doing again an integration by parts, taking u = ,I,f(t) and dv = (x — t)dt, as a consequence

) == 5020 +5 [ temnPrioar

:%J (x=1)f(1)dt. (29)

Repeating the previous process, applying n times the integral operator and doing n—1 integrations by parts, it
is possible to obtain the following expression of the n-th iterated integral [13]]

algf(x): ( !

wa (x— 1)L f (1),

to make a generalization of the previous expression, it is enough to take into account the relationship between
the gamma function and the factorial function, I'(n) = (n—1)!, and doing n — a € R, the expression for the (right)
R-L fractional integral is obtained [13]]

20 = s [ e

taking into account that the differential operator (D, = d/dx) is the inverse operator to the left of the integral
operator (,1,), thatis,

DI I f () = 2 (I () = ()

T dxn

we may consider extending the previous result analogously to the fractional calculus using the expression

uD)Ccyf(x) = aI;af(x)’

unfortunately, this would cause convergence problems because the gamma function is not defined for a € Z,
to solve this problem, the above expression is rewritten as

oD f(x) =% f (%)
=%(alﬁ?(a1;af(x)))

d" n-a
:W (aIx f(x)):

for the above expression to make sense, it is necessary to consider n—a > 0, there are infinite ways that n may
be taken to fulfills the above condition, but the most convenient way is to consider
n=n(a),
considering the above, we can define the (right) R-L fractional derivative as follows

1 d"

aDg (x) = F(H—Q)W

r(x— Hy"e L f(Hdt, n=Tla),

in such a way that the previous expression fulfills that

11



. a Y
lg D 0) = lim 7
d 0
:dx (ale(x))

d
:% (x)

(I f(x))

Finally, it is possible to unify the R-L fractional operators, fractional integral and fractional derivative, and
define the (right) Riemann-Liouville fractional derivative as follows [13}/14]:

A (%), ifa<0
n

(I f(x), ifa>0 "

uD;(Xf(x) = {
dx"

where n =[a].

3.1.2. ExampLES OF THE RIEMANN-L10UVILLE FRACTIONAL DERIVATIVE

Before continuing, it is necessary to define the Beta function and the incomplete Beta function 17, which are
defined as follows

1 r
B(p,q) ::L tP~1(1-1)7'dt, B,(p,q) ;:JO tP=1(1 —1)171dt, (30)

where p and g are positive values. Considering the following proposition:

Proposition 3.3. Let f be a function, with

fx)=(x—c)¥, u>-1, ceR,

then for all « € R\ Z, the Riemann-Liouville fractional derivative of the above function may be written as

I'(p+1) a (a—c ) .
Faz ™ Galrrt) ifa <0
Dif(x)=4q n | -
a n I‘(”l‘f‘l) [4+1’lf017k (Vl—k)(a—C »
k_O(k)r(//‘+”—a—k+l)(x ) Gi—a m,wl), ifa>0
where
a-c Bac(p+1,a)
Ga(x—C’l/l-i-l)'_l_W‘ (32)

Proof. The Riemann-Liouville fractional derivative of the function f(x), through the equation (26), presents two
cases:

i) If @ <0, then :

1

WDy f(x) = m

Jx(x— £~ (¢ - c)dt,

taking the change of variable t = ¢+ (x — c)u in the previous expression

12



ii)

—a 1
Dfn = U [ et

X—Cc

the above result may be rewritten in terms of the Beta function and the incomplete Beta function as follows

(x—o)

I'(-a)

=B(u+1,-a)

DY f(x) = (B(u+1,-a)~Bo<(u+1,-a))

(- [ Boe(p+1,-a)
T(-a) ( ~ Bp+1l,-a) )

and considering (32)), we obtain that

I'(p+1) _ a-c )
Ay W= T a 2-°
DY (x—c) F(y—a+1)(x c) G_a(x_c,y+1. (33)
If a > 0, then:
1 an e
(D)= iy g, =00 e

taking the change of variable t = ¢ + (x — c)u in the previous expression

n 1
D¢ (x)=ﬁ%[<x—cw-“f (1—u>"-“-1uﬂdu],

the above result may be rewritten in terms of the Beta function and the incomplete Beta function as follows

1 ar _
8~ A -1
_B(p+1,n-a) d" (a1 Bax(pu+1,n-a)
T T(n-a) dx" xoe B(p+1l,n-a) ||
and considering (32), we obtain that
r 1 n -
D f) = )G (22 )

T(p+n—a+1)dx"
n

I'(p+1) n\( d~ - (n_k)(a—c )
S il et . —(x- " 1),
F(y+n—a+1)k_o(k)( (=) Cri-a oMt

taking into account that in the classical calculus

d* !

— (y -\ = _ }l—k_ _ \u—k
dxk(x ) (y—k)l(x ) r(],t—k+1)( Yo
therefore
= (n F(p+1) kyfa—c
A M — _\pn—a—k ~(n k)( )
an (X C) k_O(k)r(’l‘i‘n—a—k"rl)(X C) ana ’ 1 (34)



From the previous proposition, we can note that the Riemann-Liouville fractional derivative presents an ex-
plicit dependence of the value n = [a]. However, there exists a particular case in which this dependence disap-
pears, as shown in the following proposition:

Proposition 3.4. Let f be a function, with

f(x)=(x—a)¥, u>-1, a€lR,

then for all « € R\ Z, the Riemann-Liouville fractional derivative of the above function may be written in general
form as

I'(p+1)

Yx—gp=—"_""7
oD (x=a) T(p—a+x)

(x—a)ke. (35)

Proof. To prove the validity of the previous equation for all @ € R\ Z, it is necessary to note that from the Propo-
sition[3.3], the following limits may be obtained

DY (x—a) =1im ,DZ (x )",

a—c
li _ 1): , 1)=1,
CILI;GD((X—C m+ Go(0,u+1)
then consider two cases:

i) If @ <0, from the equation (33), we obtain that

Tl ( i (a_c ))
Ay _ g\t = _ \pa
Dy (x—a) I“(y—a—i—l)%l—rg (x—c)"*G_, x_c,pt+1

_ T(p+1) o
pTErESTIR A
_ I(p+1) —a
Thoarn 9"

i) If @ > 0, from the equation (34), we obtain that

aD;*(x—aV‘:i(Z)( T(p+1) hm((x oypn-a—k G- >(%w1))

p+n—a—k+1)coa

k=0

" (n T(p+1) k)
Z(k) T(ptn—a- k+1)(x_“)”+n_a_kG5f—a (0,p+1)
_|n (p+1) _ p+n—a-n~(0)
_n)l"(y+n—oc—n+l)(x a) G (O, p+ 1)
_ T(p+1) j-a
Tu-arn 0

From the previous proposition, the following corollary is obtained

Corollary 3.5. Let f : Q C R — R be a function, with f € Lloc oo). Assuming furthermore that f € C*(a, o0), such
that f may be written in terms of its Taylor series around the point x = a, that is,
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> r(k)
fo=) 0 ap,

k=0

then for all &« € R\ Z, the Riemann-Liouville fractional derivative of the aforementioned function, may be written as
follows

o _ C f(k)(a) k-a
oDy f(x) = ém(’c—ﬂ) : (36)

Finally, applying the operator (26) with 4 = 0 to the function x*, with y > -1, from the Proposition we
obtain the following result

C(p+1) .,
_—F(y—a+l)xﬂ , a€R\Z (37)

3.2. INTRODUCTION TO THE CAPUTO FRACTIONAL DERIVATIVE

Michele Caputo (1969) published a book and introduced a new definition of fractional derivative, he created this
definition with the objective of modeling anomalous diffusion phenomena. The definition of Caputo had already
been discovered independently by Gerasimov (1948). This fractional derivative is of the utmost importance since it
allows us to give a physical interpretation of the initial value problems, moreover to being used to model fractional
time. In some texts, it is known as the fractional derivative of Gerasimov-Caputo.

Let f be a function, such that f is n-times differentiable with (" e Llloc(a, b), then the (right) fractional
derivative of Caputo is defined as [14]

D212 ) = gy | = 9

dx" n—a)

where n = [a]. It should be mentioned that the Caputo fractional derivative behaves as the inverse operator to
the left of the Riemann-Liouville fractional integral, that is,

SD2 (I8 f(x) = f(x).

On the other hand, the relation between the fractional derivatives of Caputo and Riemann-Liouville is given
by the following expression [14]

n-1 (k)
D2 =08 | -y TP ixat],
k=0

then, if f()(a) = 0 Vk < n, we obtain

CDEf(x) = ,DEf(x),

considering the previous particular case, it is possible to unify the definitions of R-L fractional integral and
Caputo fractional derivative as follows

JIF (%), if @ <0
ngf(x):: aly?_a(%f(x)); 1fa20 . (39)
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4. FractioNAL NEwTON-RAPHSON METHOD

Let IP,(IR) be the space of polynomials of degree less than or equal to n € IN with real coefficients. The N-R method
is characterized by the fact that if it generates divergent sequences of complex numbers, they may lead to the
creation of a fractal [18]. On the other hand, the order of the fractional derivatives seems to be closely related
to the fractal dimension [8]], based on the above, a method was developed that makes use of the N-R method
and the fractional derivatives. The N-R method is useful for finding the roots of a function f € IP,,(IR). However,
this method is limited because it cannot find roots & € C\ R, if the sequence {x;};7, generated by has an
initial condition xy € R. To solve this problem and develop a method that has the ability to find roots, both real
and complex, of a polynomial if the initial condition x is real, we propose a new method, which consists of the
Newton-Raphson method with the implementation of the fractional derivatives. Before continuing, it is necessary
to define the fractional Jacobian matrix of a function f : O C R” — R" as follows

where

F15 = 9 1f )y = a[aTa]g[f]j(x), 1<jk<n

with [f]; : R” — R. The operator d*/d[x]} denotes any fractional derivative, applied only to the variable [x]j,
which fulfills the following condition of continuity respect to the order of the derivative

.07 d .
g{l_)rr% W[f]j(x) = m[f]j(x): 1<jk<n,

then, the matrix fulfills that

lim f@(x) = fD(x), (41)

a—1
where f(1)(x) denotes the Jacobian matrix of the function f. Considering a function @ : (R\ Z)x C" — C”,

then using as a basis the idea of the N-R method (14), and considering any fractional derivative that fulfills the
condition (41), we can define the Fractional Newton-Raphson Method as follows [5}[19]:

xin =@ (@) == (FOx) flx) 101,20, (42)

For the above expression to make sense, due to the part of the integral operator that fractional derivatives usu-
ally have, and that the F N-R method can be used in a wide variety of functions [5]), we consider in the expression
that each fractional derivative is obtained for a real variable [x]i, and if the result allows it, this variable is
subsequently substituted by a complex variable [x;], that is,

, xeR", x;eC". (43)

X—>X;

4.1. CONVERGENCE OF THE FrRacTIONAL NEWTON-RAPHSON METHOD

It should be mentioned that in general, in the F N-R method ”CD(U(a,é)” z0if||f(&)|l =0, and from Corollary
Proposition Proposition and the condition (41), any sequence {x;};2, generated by the iterative method
has an order of convergence at least linear, that is, the F N-R method, considering the Theorem (1.3} may
fulfill an equation analogous to the equation (15) with p > 1, which becomes more evident when considering
a €[1-¢€1+¢€]\{1}. The aforementioned, for the case in one dimension, may be observed in the following
proposition:
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Proposition 4.1. Let f : O C R — R be a function with a zero & € Q. Then any sequence {x;};°, generated by the
iteration function of the F N-R method, such that x; — &, fulfills the following condition:

|q)(p)(a,5)‘

el (44)

[xis1 — &<

where

(1, ifa=land f9(&)=0 (45)
PP\2 ifa=tand FO(&) =0
Proof. Considering the iteration function of the F N-R method

-1

®(a,x)=x— () flx),

and calculating its first and second derivative

-1 -2

(e, x) = 1-(fx))  fD(x)+f(x) [(f(“’(x)) Dxf“”(x)],

@, ) = (x)|(F)) " D2F )= 2(F ) (Duf @) |
#2(FO) 7 FOED, )~ (Fx) " FO),

then, assuming that f(®)(£) =0 Va € (R\ Z)U {1}, and taking into account the condition together with the
fact that ¢ is a zero of f, we obtain that

lim ®(a,x) =&,

x—&

-2 -1

DL DE) = () fFOUE) ifaxl

-1 ’

(@)
lim ®?(a, x) = ) £ ifa=1
,1ta=

x—& (f(a)(é))

as a consequence, from the Theorem the F N-R method has an order of convergence at least linear, that is,
fulfills the equation with p > 1.
O

From the above proposition, together with the Proposition it may be obtained that almost any fractional
iterative method that has a similar structure to the fractional Newton-Raphson method [j5}/20+23], has the ability
to change from an order of convergence (at least) linear to an order of convergence (at least) quadratic, as long as
the method fulfills the condition (41). An alternative to achieve the change in the order of convergence of some
fractional iterative method, analogous to F N-R method, is to replace the constant value a in the order of the
fractional derivatives by some function that guarantees that the condition is fulfilled, that is,

aeR\Z — a(x):C"— (R\Z)U{1)}. (46)
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It is necessary to mention that an example of the aforementioned may be found in the Fractional Newton
Method, which is defined as follows [5]:

Xie1 = Q@) = % = (Noy (1) f(xi), i=0,1,2,-, (47)

where N, (x;) is given the tollowing matrix
h ;(x;) is given by the following i

No (53) 1= ([N Jietx)) = (971100 (48)

with 6 >0, and af([x;]i, x;) a function defined as follows

a, if \/[x]k[x]k 20and ||f(x;)]| =6
L if y[xik[xilk = 0or [[f(x)ll <0

the difference between the methods and (47), is that just for the second method may there exist a value
0 > 0, such that if the sequence {x;};2, generated by converges to a zero & of f, there exists a value k > 0 such
that Vi > k, from Proposition [2.1} Proposition and condition (41), the sequence has an order of convergence
(at least) quadratic in B(&;0).

ag([xilk xi) 12{ (49)

5. THE A1TKEN’Ss METHOD

Due not all fractional iterative methods fulfill the condition , since not all methods have a similar structure
to the F N-R method [4}/5,/15] , an alternative such as that of equation to accelerate its order of convergence
would not be suitable. However, an alternative that may be used in general in any fractional iterative method to
accelerate its convergence, is to combine the method with the Aitken’s method [3}24].

The Aitken’s method or also known as the A2~ method of Aitken [3], is one of the first and simplest methods
to accelerate the convergence of a given convergent sequence {x;};, that is,

lim [|x; - &[[ — 0,
i—oo

this method allows transforming the sequence {x;};> to a sequence {xf}io, which generally converges faster

point £ that the original sequence, Under certain circumstances, the Aitken’s method may accelerate the conver-
gence of a method that has an order of convergence (at least) linear to an order of convergence almost quadratic,
then it is generally used to accelerate the iterative methods used to find the zeros of a function f [[143].

To illustrate the Aitken’s method for the case in one dimension, suppose that the sequence {x;};>, converges to
the point £ as a geometric sequence with factor k such that |k| < 1, that is,

xi+1_é:k(xi_6); i:O;1r2;"'; (50)

where the value of £ may be determined using the following system of equations

xipyp =& =k(x; = &), (51)
Xipo—&=k(xip1 - &), (52)

subtracting the equation from the equation we obtain the value of k

Xiy2 —Xi41
k: 1+ 1+ ,
Xit1 —Xi

placing & on the left side of the equation (51)

18



_kxi—xi

&= k-1
_(k=1+41)x — x4
h k-1
Xl T X
NT TR ST

and substituting the value of k in the previous expression

(xi41 = xi) (Xi1 = ;)
(Xi42 = Xig1) = (Xip1 — X;)
2
’
Xiv2 = 2Xj11 T X;

& =x;—

=x; —

defining the difference operator

Axj =X — X,

then

A(Ax;) =Ax;
=Axjq — Ax;

=Xiy2 = 2Xjp1 +Xj,
therefore, we obtain that the value of £ is given by the following expression

(Ax;)°
Ale- !

E=x;—

(53)

the Aitken s method is considered taking into account the equation (53). The A>~ method of Aitken consists
in generating a new sequence {xl{}io’ where

2
s (i = xi)
Xit2 = 2Xj41 +X;
such that
lim |x;—5| — 0.
1—00
On the other hand, to note that the sequence {x?}io converges more quickly to value £ than the sequence

{xi};2(, consider the following proposition:

Proposition 5.1. Let {x;};2, be a sequence, such that x; — &. Then, the sequence {xl{}io generated by the Aitken’s
method, given by (54), has a speed of convergence greater than the original sequence.

Proof. Suppose for the equation that the k value fulfills the following conditions
k=ky+96;, limé;=0, [k|<1,
1—00
then from equation
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Xiv1 =% =(xXj11 = &) = (x; = &)

=(k=1)(x; - &), (55)
analogously
Xip2 = Xiy1 =(k = 1)(x;j41 = &)
=(k=1)(xj41 =) + (k+ 1)(x; =€)
=[k=17+(k+ )] (xi - ©),
whereby
Xiy2 = 2Xi41 +x; =(k — )( -<&)
[ ko—1) +/41] x; — &), (56)
where
lim p; =0,

finally substituting the equations and in the equation (54), we obtain that

[(ko—1+8;)(x; —&)]°

x—&=(x;—&)- ,
: l [kO_ +f/‘1](z ‘E)
then
xf_é_l_(k0—1+6i)2
xi—& (ko= 1)2+p
therefore
Cx-e
iILIg)X,‘—é_O’

which shows that in general, the speed of convergence of the sequence {x{}(,x’o is greater than that of the original
i=
sequence.
O

From the above proposition it follows that any fractional iterative method, given by the following expression

Xis1 = D(a,x;), i=0,1,2,--, (57)

may accelerate its speed of convergence using the Aitken’s method, giving rise to the Fractional Steffensen’s
Method, which is defined as follows

Xip1 = W(a,x;), i=0,1,2,--, (58)

where

(@(a,x;) - x;)°

W(a,x;):=x; - ‘
(@ x) = x D(a,D(a,x;)) - 20(a, x;) + x;

(59)

It is necessary to mention that the fractional iterative method (58) may be extended to the multimensional case,
since the Aitken’s method is also defined for the case of several variables [24].
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5.1. ResuLts ofF THE FrRacTiIONAL NEWTON-RAPHSON METHOD WITH THE AITKEN’S METHOD

Examples of the implementation of the F N-R method and the Aitken’s method for the multidimensional case may
be found in the references [5] and [24], respectively. However, to maintain an illustrative character, the following
examples are solved for the case in one dimension and using the R-L fractional derivative (26). Instructions for
implementing the F N-R method, along with information to provide values a € [0.7,1.3] \ {1} are found in the
reference [5]]. For rounding reasons, for the examples the following function is defined

Re(x), if [Im(x)| <107
Rnd,, (x) := X, i Jtm(x)|> 10" (60)
Combining the function with the methods and (58), the following iterative methods are defined
Xi+1 := Rnds (D(a,x;)), i=0,1,2---, (61)
Xi41 :=Rnds (WY(a,x;)), i=0,1,2---. (62)

Example 5.2. Let f be a function, with

fx)=-64.23x"% - 72.74x'3 —61.66x'% + 32.26x'!
+32.3x19 - 41.37x% +20.18x% + 4.32x7
—5.67x% +17.41x° - 78.6x* — 48.27x°
~19.31x% +77.92x — 45.03.

Then the initial condition xo = 0.68 is chosen to use the iterative methods given by and (62). Consequently, we

obtain the results of Table([T|and Table[2}

e F N-R method without Aitken’s method

‘ a Xn ”xn_xn—l“Z ”f(xn)”z n
1| 091615 0.89785325-0.29205146i 2.51794E-07 4.71496E-05 33
2 | 0.92801 0.51558282-0.33422358i 3.48673E-06 6.66996E—-05 24
3 | 1.02258 0.51558313+0.33422363i 3.71927E-06 2.40337E-05 39
4 | 1.05068 0.89785316+0.29205147:i 1.90000E—-07 2.09988E—-05 67
5| 1.08961 -0.67766754—-0.6665907i 1.94165E—-07 4.82585E-05 93

Table 1: Results obtained using the iterative method (61).
¢ F N-R method with Aitken’s method

| o« Xn llxn = xn-1ll2 [If Cen)ll n
1 0.75183 -0.07482891 +1.01883531i 5.97858E-05 5.16000E-05 7
2 0.76212 0.5349748 + 0.82703357i 7.87711E-05 9.41344E-05 7
3 0.81497 -0.6673652—-1.16572645i 1.30602E-05 3.96105E-05 9
4 | 0.90872 0.51558331 +0.33422363i 1.87279E-05 6.68077E—-07 6
5 0.91165 —0.6673652+1.16572645i 2.14264E-06 3.96105E-05 7
6 0.91319 -1.09479585-0.25179056i 3.54154E-06 2.03933E-05 8
7 0.91350 0.53497473 -0.82703357i 7.19173E-06 3.77200E-06 8
8 0.91615 0.89785319-0.29205147i 1.12395E-05 2.14471E-06 5
9 0.91722 -0.67766754+0.66659064i 2.18453E—-05 2.08269E-06 6
10 | 0.91735 —-1.09479584+0.25179057i 1.90520E-06 1.86462E-05 6
11 | 0.92801 0.89785318 +0.29205147i 5.94379E-05 6.07221E-06 6
12 | 1.02258 —-0.07482894-1.01883532i 7.24315E-05 5.81437E-06 8
13 | 1.05068 0.51558331 - 0.33422363i 3.10364E-05 6.68077E—-07 6
14 | 1.08961 -0.67766754—-0.66659064i 9.16106E—-06 2.08269E-06 7

Table 2: Results obtained using the iterative method (62).
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Example 5.3. Let f be a function, with

flx

Then the initial condition xy = 0.15 is chosen to use the iterative methods given by and (62). Consequently, we

obtain the results of Table[3|and Table

) =—96.98x'% - 96.82x!% - 3.87x!3 + 25.78x!?
+90.68x'! +48.05x'% +50.54x° —5.16x%
+47.01x7 +90.23x% + 87.09x° + 53.09x*
+15.38x% +97.98x2 — 61.98x + 14.69.

e F N-R method without Aitken’s method

‘ a Xn I = xn-1ll2 Il (xn)llo n

1] 0.89914 0.77399752—-0.547621661 1.34164E - 07 4.92991E-05 25
2 1 0.92053 0.28667106 —0.19437664i 2.73412E-06 2.74793E-05 14
3 | 0.94145 0.77399749 + 0.54762167i 1.64012E-07 4.00860E-05 16
4 | 1.03241 -1.16959783+0.06354746i 3.91152E-07 5.57585E-05 24
51 1.03400 1.16397069 5.00000E-08 3.16258E-05 33
6 | 1.09493 —-0.8252629 +0.649695321 6.40312E-08 4.07721E-05 57

Table 3: Results obtained using the iterative method (61).
e F N-R method with Aitken’s method

‘ a Xn 11 = xn-1ll2 IIf Cxen)ll n

1 0.74272 -1.16959778 —0.06354744i 3.42813E-05 1.46807E-05 5
2 0.74461 0.28667089 +0.19437617i 9.23734E-05 1.47225E-06 6
3 0.81520 0.3039298 - 0.77330878i 1.32087E—-05 1.23726E-06 7
4 0.89914 0.03271741 +1.02608474i 3.12570E-07 5.51104E-06 8
5 0.91170 0.03271742-1.02608474i 5.58523E-05 1.10782E-05 7
6 0.92053 -0.48361537-0.92838297i 1.30801E-06 3.86093E—-06 8
7 0.94145 0.28667089 —0.1943762i 3.82966E—-05 2.79968E—-07 6
8 1.02586 0.7739975+0.5476217i 8.80368E—-05 1.52509E-05 6
9 1.03241 -0.82526289 +0.64969532i 3.99657E-05 2.10803E-05 7
10 | 1.03304 0.30392981 +0.77330879i 5.60892E -07 5.27621E-06 7
11 | 1.03400 -0.82526288-0.64969531i 7.27737E—-05 1.74287E-05 7
12 | 1.03414 0.77399751 - 0.5476217i 9.02351E-05 1.17943E-05 7
13 | 1.03641 -1.16959779+0.06354744i 5.65205E—-05 2.95004E-06 6
14 | 1.04085 -0.48361536+0.92838298; 1.04827E-05 2.73789E-05 7
15 | 1.09493 1.16397069 1.10800E—-05 3.16258E-05 3

Table 4: Results obtained using the iterative method (62).

Example 5.4. Let f be a function, with

f(x) =-57.62x'% - 56.69x'> —37.39x14 ~19.91x!° + 35.83!2

—72.47"1 + 44.41x'0 + 43.53x% + 59.93x8

—42.9x7 —54.24x° +72.12x° - 22.92x*
+56.39x% + 15.8x% + 60.05x + 55.31.

Then the initial condition xo = 0.83 is chosen to use the iterative methods given by and (62). Consequently, we

obtain the results of Table[5|and Table

6
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e F N-R method without Aitken’s method

‘ a Xn I = xn-1ll2 IIf (xn)ll n

1| 1.12775 —0.62435238 1.25000E - 06  6.46233E — 05 4
2 | 1.16720 -0.35983765-1.18135268i 2.00000E -08 8.22921E-05 65
3 ] 1.18548 —1.00133943 7.00000E — 08 6.28497E —-05 9
4 | 1.20948 0.58999226 + 0.8669969i 3.16228E-08 5.80021E-05 49
5| 1.20951 -0.35983763 +1.18135266i 1.41421E-08 8.64337E-05 83
6 | 1.21722 -1.36995269 1.00000E - 08 8.96035E-05 20

Table 5: Results obtained using the iterative method (61).
e F N-R method with Aitken’s method

‘ a Xn llxn = xp-1ll2 IIf (el n

1 0.81015 0.88121184+0.42696222i 6.19967E-05 4.18492E-05 7
2 | 0.81393 0.58999222 -0.8669969i 5.86870E —-05 6.29524E-05 6
3 0.86589 1.03423973 7.51161E—-05 7.69988E—-05 4
4 | 0.86937 —0.70050492 -0.7857711 5.47139E-05 3.06730E-05 6
5 0.86963 —0.28661369—0.80840641i 7.38343E-05 3.63141E-06 5
6 0.87356 0.88121186—-0.426962211 9.58783E-05 6.43810E-05 5
7 0.87663 0.58999225 + 0.866996861 3.71623E-05 1.57334E-05 6
8 0.89759 -0.35983764—1.18135267i 1.70880E—-07 2.53547E-05 6
9 1.12775 -0.62435276 6.99000E-06 6.01978E—-07 2
10 | 1.16720 0.36452488 — 0.8328782i 2.69320E-06 6.90389E—-06 6
11 | 1.16881 0.36452487 + 0.8328782i 5.13697E-05 1.07542E-05 5
12 | 1.18548 —-1.00133952 8.49000E-06 5.58349E-06 2
13 | 1.20862 —0.35983764+1.18135267i 3.14841E—-06 2.53547E-05 7
14 | 1.20948 -0.70050488 + 0.785771i 1.93591E-05 4.44105E-05 5
15 | 1.20951 -0.28661368 +0.80840642i 3.47917E—-05 2.80317E-06 5
16 | 1.21722 -1.36995269 5.70959E -05 8.96035E-05 2

Table 6: Results obtained using the iterative method (62).

Example 5.5. Let f be a function, with

and assuming that

f(x) =sin(x) - 2,

50 k
(@) . Ta D" g X
fox) ~oDx ;F(2k+2)x 50

Then the initial condition xo = 1.27 is chosen to use the iterative methods given by and (62). Consequently, we

obtain the results of Table[7|and Table

e F N-R method without Aitken’s method

‘ a Xn [l = xp-11l2 ||f(xn)||2 n
1| 1.09965 —-9.23893088  7.52000E—-06 4.76229E-07 17
2| 1.16346 —12.8257859  6.95000E—-06 2.72119E-07 14
3| 1.18675 -25.67192826 7.40000E—-07 3.36984E-08 15
4 | 1.18853 -27.6874723 3.19000E-06 1.00228E-06 14
5| 1.19167 -32.11337957 6.80000E —07 1.85548E—-08 19
6 | 1.19267 —-33.81479451 4.92000E-06 1.60616E—-06 13
7 | 1.23050 38.5804861 3.91000E—-06 4.03819E—-06 13

Table 7: Results obtained using the iterative method (61).
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e F N-R method with Aitken s method

‘ a Xn ”xn_xn—l“Z “f(xn)”z n
1 | 0.96084 -3.07995454 4.77000E-06 3.63773E-10 6
2 | 0.96089 3.07995454 4.30000E-07 3.63773E-10 6
3 | 0.96102 6.41177489 8.10000E—-07 4.14786E-10 5
4 | 1.09965 25.6719283 6.25000E-06 1.73317E-10 5
5 | 1.16346 —-12.82578618 1.70000E—-06 7.08794E-09 3
6 | 1.18675 —-25.6719283 1.14000E-06 1.73317E-10 8
7 | 1.18853 —-27.68747348 1.67000E—-06 3.88305E-09 3
8 | 1.19167 -32.1133796  9.68000E—-06 3.83964E-09 9
9 | 1.19267 -33.81479667 8.42000E—-06 2.81606E-08 4
10 | 1.23050  38.58047959 1.70000E —07 2.74212E-08 5

Table 8: Results obtained using the iterative method (62).

6. CoONCLUSIONS

In this document, in summary, the following results are presented: In Corollary[1.4} an alternative way is obtained
to demonstrate when an iterative method has an order of convergence at least linear. Considering Proposition [2.1]
together with Proposition 2.2 it is proved that Newton’s method fulfills a necessary but not sufficient condition
to have an order of convergence at least quadratic. In Proposition [3.3] the radical differences that may there exist
between the results of the conventional calculus and the fractional calculus when obtaining the derivative of a
function are exposed, which is a consequence of dependency of the integer parameter n(«), which generally has the
fractional derivative. In Proposition it is proved that under certain conditions, the results when calculating
the derivative of a function in the fractional calculus are analogous to those obtained in the conventional calculus.
In Proposition it is proved that the F N-R method has an order of convergence at least linear, but it follows
that it has the ability to gradually change to an order of convergence at least quadratic as the value a approaches
the value of one. It also follows that the change in the order of convergence in the F N-R method may be achieved
by implementing a function in the order of the fractional derivatives. In Proposition it is proved that any
succession may accelerate its speed of convergence through the implementation of Aitken’s method, with which it
follows that it is an ideal alternative to accelerate the speed of convergence of any fractional iterative method that
does not have a structure similar to the F N-R method.

Taking into account the results in this document, although there are surely different alternatives to accelerate
the speed of convergence of the fractional iterative methods, take for example the strategy of changing the constant
order a of the fractional derivative by a function and giving rise to the method (47), the Aitken’s method is a simple
and efficient method to accelerate the speed of convergence of any fractional iterative method, in particular for
the F N-R method, due it presents an order of convergence at least linear for the case in which the order of the
derivative is different from one. Then in conjunction with the Aitken method, it is concluded that the F N-R
method becomes an efficient iterative method to calculate the largest possible number of zeros of a function.
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