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SHARP OFF-DIAGONAL WEIGHTED WEAK TYPE ESTIMATES FOR

SPARSE OPERATORS

QIANJUN HE DUNYAN YAN

Abstract. We prove sharp weak type weighted estimates for a class of sparse operators that
includes majorants of standard singular integrals, fractional integral operators, and square functions.
These bounds are knows to be sharp in many cases, and our main new result is the optimal bound

[w]
1

q

Ap,q
[wq ]

1

2
−

1

p

A∞

. [w]
1

2
−

α
d

Ap,q

for proper conditions which satisfy that three index p, q and α ensure weak type norm of fractional
square functions on Lq(wq) with p > 2.

1. Introduction

We study weighted inequalities for sparse operators, which can be defined by

AS
α,ν(f) :=

(

∑

Q∈S

〈f〉να,Q1Q

)
1
ν

, 〈f〉α,Q =
1

|Q|1−
α
d

∫

Q
f, (1.1)

where ν > 0, 0 ≤ α < d and S is a sparse collection of dyadic cubes, i.e. all (dyadic) cubes Q ∈ S,

there exists EQ ⊂ Q which are pairwise disjoint and |EQ| ≥ γ|Q| with 0 < γ < 1. Note that 〈f〉Q

denote 〈f〉α,Q with α = 0. And so far it it know that the operator AS
α,ν dominate large classes of

classical operators T , relying upon the sparse domination formula

|Tf(x)| .

N
∑

i=1

ASi
α,ν(|f |)(x), (1.2)

where the collections Si depend on the function f . For ν = 1 and ν = 2 with α = 0, T becomes

the Calderón-Zygmund singular integrals [13, 20] and Littlewood-Paley square functions [17, 19],

respectively. Thus, the various norm inequalities that we prove for AS
α,ν immediately translate to

corresponding estimates for these classses of classical operators.

A weight w on R
d is a locally integrable function w: Rd → (0,+∞). The class of all A∞ weights

consists of all weights w for which their A∞ characteristic

[w]A∞
:= sup

Q

1

w(Q)

∫

Q
M(1Qw) < ∞,

where M is the Hardy-Littlewood maximal function and the suprema take over cubes of sides are

parallel to the coordinate axes.
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More precisely, we are concerned with quantifying the dependence of various weighted operator

norms on a mixture of the two weight Aα
p,q characteristic

[w, σ]Aα
p,q

:= sup
Q∈S

|Q|q(
α
d
−1)w(Q)σ(Q)

q
p′ < ∞.

The study of such maixed bounds was initiated in [12]. All our estimates will be stated in a dual-

weight formulation, in which the classical one-weight off-diagonal case Ap,q as defined below.

Since we dealing with sparse operators, we also consider the sparse versions of the weight char-

acteristics, where the supremums above are over dyadic cubes only. This is a standing convention

throughout this paper without further notice.

Throughout this paper, 1 < p, p′, q < ∞, p and p′ are conjugate indices, i.e. 1/p + 1/p′ = 1.

Formally, we will also define p = 1 as conjugate to p′ = ∞ and vice versa.

Now, we formulate our main results as follows.

Theorem 1.1. Let 0 < ν < ∞, 0 ≤ α < d and 1 < p ≤ q < ∞. Let w, σ be a pair of weights. Then

‖AS
α,ν(·σ)‖Lp(σ)→Lq,∞(w) . [w, σ]

1
q

Aα
p,q























[w]
1
ν
(1−( ν

p
)2)

A∞
[σ]

1
ν
( ν
p
)2

A∞
, p = q > ν and α > 0,

[σ]
1
q

A∞
, p ≤ ν ≤ q,

[w]
( 1
ν
− 1

p
)+

A∞
, other case.

(1.3)

where x+ := max(x, 0) in the exponent. Here and below, we simplify case analysis by interpreting

[w]0A∞
= 1, whether or not [w]A∞

is finite.

Lacey and Scurry [16] provided a method to proof of the case q < ν of Theorem 1.1, and we

merely repeat their one-weight proof in the two-weight off-diagonal case. For p > ν, we bound

[w, σ]
1
q

Aα
p,q

[wq]
1
ν
− 1

p

A∞
. [w]

1
q

Ap,q
[w]

1
ν
− 1

p

Ap,q
= [w]

1
ν
−α

d
Ap,q

(1.4)

is new even in the one weight case for 1
q + α

d = 1
p . For ν ≤ q ≤ ν

1− να
d
, we also obtain the bounds

[w]
1
q

Ap,q
and it has an additional logarithmic factor, taking the form (1 + log[wq]A∞

)
1
ν . This form

bouds which will be proved in Section 4.

Theorem 1.1 include several known cases, the Sobolev type case 1
q + α

d = 1
p of these results,

together with strong type estimate and multilinear extensions, can also be recovered from Fackler

and Hytönen [5], Zorin-Kranich [24] the recent general framework, respectively.

For ν = 1 and α = 0, (1.2) holds for all Calderón-Zygmund operators. Lerner [20] first prove the

result, and Lacey [13] give the most general version, with a simplified proof in the paper [21]. The

bound (1.3) in this case was obtained in [12] for p = q = 1. In [11], Hänninen and Lorist consider

the sparse domination for the lattice Hardy-Littlewood maximal operator, and their obtained sharp

weighted weak Lp estimates.

For ν = 2 and α = 0, (1.2) holds for several square function operators of Littlewood-Paley type

[6, 16, 17]. For p = q, the mixed bound (1.3), even for general ν > 0, is from [11, 14]. This improves

the pure Ap bound of [6, 16, 17].
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For ν = 1 and 0 < α < d, (1.2) holds for the fractional integral operator [15]

Iαf(x) :=

∫

Rd

f(y)

|x− y|n−α
dy. (1.5)

In the case for p < q, (1.3) are due to [3]. The Sobolev type case with 1
q +

α
d = 1

p was obtained by

the same authors in [4]. Additional complications with p = q, which lead to the weaker version of

our bound (1.3), have been observed and addressed in different ways in [3, 4].

For ν > 0 and α = 0, the bound (1.3) in the case was obtained by Hytönen and Li [11] for

p = q ∈ (1,∞).

Theorem 1.1 with ν = 2 completes the picure of sharp weighted inequalities for fractional square

functions, aside from the remaining case of 2 ≤ q ≤ 2
1− 2α

d

. Namely, [w]
max( 1

q
, 1
2
−α

d
)

Ap,q
is the optimal

bound among all possible bounds of form Φ([w]Ap,q ) with an incrasing function Φ. This was shown

by Hytönen and Li [11], Lacey and Scurry [16] in the category of power type function Φ(t) = tβ; a

variant of their argument proves the general claim, as we show in the last section.

To prove the above results, we need the following characterization, which is essentially due to

Lai [18]; we supply the necessary details to cover the cases that were not explicitly treated in [18].

Theorem 1.2. Let 1 < p ≤ q < ∞, ν > 0, p > ν and 0 ≤ α < d. Let w, σ be a pair of weights.

Then

‖AS
α,ν(·σ)‖

ν
Lp(σ)→Lq,∞(w) ≃ T

∗,

where the testing constants defined by

T
∗ := sup

R∈S
w(R)

− 1
(
q
ν )′
∥

∥

∑

Q∈S
Q⊂R

〈σ〉ν−1
α,Q 〈w〉α,Q1Q

∥

∥

L(
p
ν )′(σ)

.

The case p > ν of Theorem 1.1 is a consequence of Theorem 1.2. The estimation of the testing

T ∗ given by Fackler and Hytönen [5] and their obtained following result.

Proposition 1.3. Let ν > 0, 0 ≤ α < d, p > ν and 1 < p ≤ q < ∞. For T ∗ as in Theorem 1.2,

we have

T
∗ . [w, σ]

ν
q

Aα
p,q







[w]
1−( ν

p
)2

A∞
[σ]

( ν
p
)2

A∞
, p = q and α > 0,

[w]
1− ν

p

A∞
, other case.

The plan of the paper is as follows: We come with the proof of Theorem 1.2, this completes the

proof of Theorem 1.1 in the case of p > ν. The remaining case of Theorem 1.1 for p ≤ ν is then

handled in Section 3. In the final scetion, we discuss the sharpness of our weak type estimates by

modifying the example given by Lacey and Scurry [16].

2. Proof of Theorem 1.2

As mentioned, Theorem 1.2 is essentially duo to Hytönen and Li [11].

First, we give the following lemma.
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Lemma 2.1. Let w, σ be a pair of weights and p > ν > 0.

‖AS
α,ν(·σ)‖Lp(σ)→Lq,∞(w) ≃ sup

‖f‖Lp(σ)=1

∥

∥

∑

Q∈S

〈σ〉να,Q〈f
ν〉σQ1Q

∥

∥

L
q
ν ,∞(w)

Proof . By the definition of AS
α,ν , we have

‖AS
α,ν(·σ)‖Lp(σ)→Lq,∞(w) = sup

‖f‖Lp(σ)=1

∥

∥

∑

Q∈S

〈fσ〉να,Q1Q
∥

∥

L
q
ν ,∞(w)

= sup
‖f‖Lp(σ)=1

∥

∥

∑

Q∈S

〈σ〉να,Q(〈f〉
σ
Q)

ν1Q
∥

∥

L
q
ν ,∞(w)

≤ sup
‖f‖Lp(σ)=1

∥

∥

∑

Q∈S

〈σ〉να,Q〈(Mσ(f))
ν〉σQ1Q

∥

∥

L
q
ν ,∞(w)

= sup
‖f‖Lp(σ)=1

∥

∥

∑

Q∈S

〈σ〉να,Q

〈(

Mσ(f)

‖Mσ(f)‖Lp(σ)

)ν〉σ

Q

1Q
∥

∥

L
q
ν ,∞(w)

‖Mσ(f)‖
ν
Lp(σ)

. sup
‖g‖Lp(σ)=1

∥

∥

∑

Q∈S

〈σ〉να,Q〈g
ν〉σQ1Q

∥

∥

L
q
ν ,∞(w)

,

where in the last step, we used the boundedness of Mσ on Lp(σ), and the bound is independent of

σ. For the other direction, notice that

〈f ν〉σQ ≤ inf
x∈Q

Mσ(f
ν)(x) = ( inf

x∈Q
Mσ,ν(f)(x))

ν ≤ (〈Mσ,ν(f)〉
σ
Q)

ν ,

where Mσ,ν(f) := (Mσ(f
ν))1/ν , with this observation, we have

sup
‖f‖Lp(σ)=1

∥

∥

∑

Q∈S

〈σ〉να,Q〈f
ν〉σQ1Q

∥

∥

L
q
ν ,∞(w)

≤ sup
‖f‖Lp(σ)=1

∥

∥

∑

Q∈S

〈σ〉να,Q(〈Mσ,ν(f)〉
σ
Q)

ν1Q
∥

∥

L
q
ν ,∞(w)

≤ sup
‖f‖Lp(σ)=1

∥

∥Aν
α,S(·σ)

∥

∥

Lp(σ)→Lq,∞(w)
‖Mσ,ν(f)‖

ν
Lp(σ)

.
∥

∥Aν
α,S(·σ)

∥

∥

Lp(σ)→Lq,∞(w)
,

where in the last step, we use the boundedness of Mσ,ν on Lp(σ) since p > ν, and the bound is

independent of σ. This completes the proof of Lemma 2.1. ✷

Now suppose that B is the sharp constant such that

∥

∥

∑

Q∈S

〈σ〉να,Q〈f
ν〉σQ1Q

∥

∥

L
q
ν ,∞(w)

≤ B‖f‖νLp(σ),

that is,
∥

∥

∑

Q∈S

〈σ〉να,Q〈f〉
σ
Q1Q

∥

∥

X
q
ν (w)

≤ B‖f‖
L

p
ν (σ)

, (2.1)

Then

‖Aα,S(·σ)‖Lp(σ)→Xq(w) ≃ B
1
ν .

Hence, we have reduced the problem to study (2.1). We need the following result given by Lacey,

Sawyer and Uriarte-Tuero [22].
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Proposition 2.2. Let τ = {τ : Q ∈ Q} be nonnegative constants, w, σ be weights and define linear

operators by

Tτ :=
∑

Q∈Q

τQ〈f〉Q1Q.

Then for 1 < p ≤ q < ∞, there holds

‖Tτ (·σ)‖Lp(σ)→Lq,∞(w) ≃ sup
R∈Q

w(R)
− 1

q′
∥

∥

∑

Q∈Q
Q⊂R

τQ〈w〉Q1Q
∥

∥

Lp′ (σ)

Observing that for (2.1), we have
∥

∥

∑

Q∈S

〈σ〉να,Q〈f〉
σ
Q1Q

∥

∥

L
q
ν ,∞(w)

= ‖Tτ (fσ)‖L
q
ν ,∞(w)

with τQ = 〈σ〉ν−1
α,Q |Q|

α
d . Theorem 1.2 follows immediately from Proposition 2.2.

The following proposition is weighted weak estimate for fractional maximal operator, which can

found in the paper[8].

Proposition 2.3. Given 1 < p ≤ q < ∞, 0 ≤ α < d and a pair of wights (w, σ). Then for all

measurable functions f ,

‖Mα(fσ)‖Lq,∞(w) . [w, σ]Aα
p,q

‖f‖Lp(σ).

3. Proof of the weak type bound for 1 < p ≤ ν

We are left to prove Theorem 1.1 in the case that 1 < p ≤ ν. Actually, the method stem from

Hytönen and Li [11], they have investigated the two-weight case. Following their method, it is easy

to give the off-diagonal two-weight estimate as well. For completeness, we give the deails.

4.1. The case for 1 < p ≤ q < ν. We want to bound the following inequality,

sup
λ>0

λw({x ∈ R
n : AS

α,ν(fσ) > λ})
1
q . [w, σ]

1
q

Aα
p.q

‖f‖Lp(σ).

By scaling it suffices to give an uniform estimate for

λ0w({x ∈ R
n : AS

α,ν(fσ) > λ0})
1
q ,

where λ0 is some constant to be determined later. It is also free to further sparsify S such that
∣

∣

⋃

Q′(Q

Q′,Q∈S

Q′
∣

∣ ≤
1

41−
α
d

|Q|.

Now set

Sm := {Q ∈ S : 2−m−1 < 〈fσ〉α,Q ≤ 2−m}, m ≥ 0, (3.1)

and

S ′ := {Q ∈ S : 〈fσ〉α,Q > 1}. (3.2)

Then for Q ∈ Sm, m ≥ 0, denote by chSm(Q) the maximal subcubes of Q in Sm and define

EQ := Q\
⋃

Q′∈chSm (Q)

Q′. (3.3)
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Then

〈fσ1EQ
〉α,Q =

1

|Q|1−
α
d

fσdx−
1

|Q|1−
α
d

∑

Q′∈chSm (Q)

∫

Q′

fσdx

=
1

|Q|1−
α
d

fσdx−
∑

Q′∈chSm (Q)

(

Q′

|Q|

)1−α
d 1

|Q′|

∫

Q′

fσdx (3.4)

≥
1

|Q|1−
α
d

fσdx−
1

4
2−l ≥

1

2
〈fσ〉α,Q.

Also, we set ASm
α,ν and AS′

α,ν to be the sparse operators associated with Sm and S ′, respectively

(ASm
α,ν(f))

ν :=
∑

Q∈Sm

〈f〉να,Q1Q and (AS′

α,ν(f))
ν :=

∑

Q∈S′

〈f〉να,Q1Q. (3.5)

Thus, it is easy to know that

AS
α,ν :=

∑

Q∈S

〈f〉να,Q1Q =
∑

m∈N

(ASm
α,ν(f))

ν + (AS′

α,ν(f))
ν . (3.6)

By (3.5) and (3.6), we conclude that

w({x ∈ R
n : AS

α,ν(fσ) > λ0})

≤ w({x ∈ R
n :

∑

m≥0

(ASm
α,ν(f))

ν >
λν
0

2
}) + w({x ∈ R

n : (AS′

α,ν(f))
ν >

λν
0

2
})

= w({x ∈ R
n :

∑

m≥0

∑

Q∈Sm

〈fσ〉να,Q1Q >
λν
0

2
}) + w({x ∈ R

n :
∑

Q∈S′

〈fσ〉να,Q1Q >
λν
0

2
}) := II1 + II2.

The second term estimation is trival. In fact, it follows immediately from Proposition 2.3,

II2 ≤ w
(

⋃

Q∈S′

Q
)

≤ w({x ∈ R
n : Mα(fσ) > 1}) . [w, σ]Aα

p,q
‖f‖qLp(σ).

Now let
λν
0
2 =

∑

m≥0

2−εm, where ε := (ν − q)/2. By (3.4), we can estimate

II1 ≤
∑

m≥0

w({x ∈ R
n :

∑

Q∈Sm

〈fσ〉να,Q1Q > 2−εm})

≤
∑

m≥0

w({x ∈ R
n :

∑

Q∈Sm

〈fσ1Q〉
q
α,Q1Q > 2(ν−q)m2−εm})

≤
∑

m≥0

w({x ∈ R
n :

∑

Q∈Sm

〈fσ1EQ
〉qα,Q1Q > 2−q2(ν−q)m2−εm})

≤
∑

m≥0

2(q−ν+ε)m+q

∫

Rn

∑

Q∈Sm

〈fσ1EQ
〉qα,Q1Qdw . [w, σ]Aα

p,q
‖f‖qLp(σ)
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where in the last inequality we have use the following the fact
∫

Rn

∑

Q∈Sm

〈fσ1EQ
〉qα,Q1Qdw =

∑

Q∈Sm

〈fσ1EQ
〉qα,Qw(Q)

≤
∑

Q∈Sm

(

1

σ(EQ)
1− 1

p
+ 1

q

∫

EQ

fσ

)q

|Q|q(
α
d
−1)w(Q)σ(Q)

q
p′ σ(EQ)

≤ [w, σ]Aα
p,q

‖f‖Lp(σ).

Combining the above II1 and II2, we get

‖AS
α,ν(fσ)‖Lq,∞(w) . [w, σ]

1
q

Aα
p,q

‖f‖Lp(σ).

4.2. The cases for p ≤ q = ν or p ≤ ν < q. We can estimate for the case by [5, Theorem 1.1]

‖AS
α,ν(fσ)‖Lq,∞(w) ≤ ‖AS

α,ν(fσ)‖Lq(w) . [w, σ]
1
q

Aα
p,q

[σ]
1
q

A∞
‖f‖Lp(σ).

✷

4. Sharpness of the weak type bounds for fractional square function

In this section, we will show that the case for ν = 2, which called fractional square function, i.e.

AS
α,2(f) =

(

∑

Q∈S

〈f〉2α,Q1Q
)

1
2 , (4.1)

and p, q, α satisfy condition 1
q +

α
d = 1

p . We only consider one weight theory estimate for Lp(wp) →

Lq,∞(wq) in here. The governing weight class is a generalization of Muckenhoupt Ap weights, and

was introduced by Muckenhoupt and Wheeden [23].

[w]Ap,q := sup
Q

(

1

|Q|

∫

Q
wq

)(

1

|Q|

∫

Q
w−p′

)
q
p′

< ∞.

Its relation to two weight characteristic is [wq, w−p′ ]Aα
p,q

= [w]Ap,q with 1
q +

α
d = 1

p . Moreover, it is

straightforward to show that the following are equivalent:

(a) w ∈ Ap,q; (b) wq ∈ A1+ q
p′

and w−p′ ∈ A
1+ p′

q

. (4.2)

We will show that the norm bound

‖AS
α,2‖Lp(wp)→Lq,∞(wq) ≤ [w]

max( 1
q
, 1
2
−α

d
)

Ap,q

is unimprovable. Actually, a lower bound with the exponent 1
q holds uniformly over all weights,

which is the content of the next Theorem. The optimality of the exponent 1
2 − α

d is slightly more

tricky, and is based on a example of a specific weight Ap,q. Also, by Theorem 1.1 we give the

following mixed Ap,q −A∞ estimate.

Corollary 4.1. Let 0 < α < d and 1 < p ≤ q < ∞ with 1
q +

α
d = 1

p . Then

‖AS
α,2‖Lp(wp)→Lq,∞(wq) . [w, σ]

1
q

Aα
p,q















[w−p′ ]
1
q

A∞
, 2 ≤ q ≤

2

1− 2α
d

,

[wq]
( 1
2
− 1

p
)+

A∞
, other case.
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Notice that (4.2), we easilly know that

[wq]A1+
q
p′

= [w]Ap,q and [w−p′ ]A
1+

p′
q

= [w]
p′

q

Ap,q
. (4.3)

And Lerner [19] show that [w]A∞
. [w]Ap . Hence, using this relation to Corollary 4.1 we obtain

the following pure Ap,q estimate.

Corollary 4.2. Let 0 < α < d and 1 < p ≤ q < ∞ with 1
q +

α
d = 1

p . Then

‖AS
α,2‖Lp(wp)→Lq,∞(wq) .



































[w]
p′

q
(1−α

d
)

Ap,q
, 2 ≤ q ≤

2

1− 2α
d

,

[w]
( 1
2
−α

d
)

Ap,q
,

2

1− 2α
d

< q < ∞,

[w]
1
q

Ap,q
, 1 ≤ q < 2.

However, the exponent p′

q (1 − α
d ) is not optimal of the case for 2 ≤ q ≤ 2

1− 2α
d

. and the best

exponent 1
q will appear following estimate. For generally, we consider case for ν ≥ 1, and we are

concerned with the weak-type bounds, which have cases of ν ≤ q ≤ ν
1− να

d
, which a (log1[w

q]A∞
)
1
ν

appears in the sharp estimate.

Theorem 4.3. Let ν ≥ 1, 0 ≤ α < d and 1 ≤ p ≤ q < ∞ with 1
p + α

d = 1
q , there holds for any

weight w ∈ Ap,q

‖AS
α,ν(f)‖Lq,∞(wq) . [w]

max( 1
q
, 1
ν
−α

d
)

Ap,q
φ([wq]A∞

)‖wf‖Lp ,

where

φ([wq ]A∞
) =







(log1[w
q]A∞

)
1
ν , ν ≤ q ≤

ν

1− να
d

;

1, other case.

and log1(x) = 1 + log+(x).

As a Corollary of Theorem 4.3, the following result of fractional square function is sharp.

Corollary 4.4. Let 0 ≤ α < d and 1 ≤ p ≤ q < ∞ with 1
p + α

d = 1
q , there holds for any weight

w ∈ Ap,q

‖AS
α,2(f)‖Lq,∞(wq) . [w]

max( 1
q
, 1
2
−α

d
)

Ap,q
φ1([w

q]A∞
)‖wf‖Lp ,

where

φ1([w
q]A∞

) =







(log1[w
q]A∞

)
1
2 , 2 ≤ q ≤

2

1− 2α
d

;

1, other case.

A basic tool for us is the following classical reverse Hölder’s inequality with optimal bound,

which can be found in [12].

Proposition 4.5. There is a dimensional constant c > 0 such that for w ∈ A∞, and r(w) =

1 + c[w]A∞
, there holds

〈wr(w)〉
1

r(w)

Q ≤ 2〈w〉Q, Q a cube. (4.4)
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We also need the following off-diagonal extrapolation given by Duoandikoetxra [7].

Proposition 4.6. Let 1 ≤ p0 < ∞ and 0 < q0 < ∞. Assume that that for some family of

nonnegative couples (f, g) and for all w ∈ Ap0,q0 we have

‖wg‖Lq0 ≤ CN([w]Ap0,q0
)‖wf‖Lp0 ,

where N is an increasing function and the constant C does not depend on w. Set γ = 1
q0
+ 1

p′0
. Then

for 1 < p < ∞ and 0 < q < ∞, such that

1

q
−

1

p
=

1

q0
−

1

q0
,

and all w ∈ Ap,q we have

‖wg‖Lp ≤ CK(w)‖wf‖Lp ,

where

K(w) =







N([w]Ap,q (2‖M‖Lγq(wq))
γ(q−q0)), q < q0;

N([w]
γq0−1
γq−1

Ap,q
(2‖M‖Lγp′ (w−p′))

γ(q−q0)
γq−1 ), q > q0.

In particular, K(w) ≤ C1N(C2[w]
max(1,

q0p
′

qp′0
)

Ap,q
) for w ∈ Ap,q.

The following estimate based on Domingo-Salazar, Lacey, and Rey [6].

Theorem 4.7. Let ν ≥ 1, 0 ≤ α < d and 1 ≤ p ≤ q < ∞ with 1
p + α

d = 1
q , there holds for any

weight w ∈ Ap,q

‖AS
α,ν(f)‖Lq,∞(wq) . [w]

max( 1
q
, 1
ν
−α

d
)

Ap,q
φ2([w

q]A∞
)‖wf‖Lp , (4.5)

where

φ2([w
q]A∞

) =

{

1, 1 ≤ q < ν;

(log1[w
q]A∞

)
1
ν , ν ≤ q < ∞.

Theorem 4.3 follows immediately from Theorems 1.1 and 4.7.

In order to prove Theorem 4.7, we need following estimate.

Lemma 4.8. Let ν ≥ 1, q ≥ ν, 0 ≤ α < d and 1 ≤ p ≤ q < ∞ with 1
q +

α
d = 1

p , then

‖ASm
α,ν‖Lq,∞(wq) . [w]

1
ν
−α

d
Ap,q

‖wf‖Lp .

where and given 0 < m < log1[w
q]A∞

.

Proof . We only need to prove the case for q = ν
1− να

d
, by off-diagonal extrapolation in Proposition

4.6, it yields the cases for ν ≤ q < ν
1− να

d
and ν

1− να
d

< q < ∞. By Minkowski’s inequality and (3.4),
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we can estimate




∫

Rn

(

∑

Q∈Sm

〈f〉να,Q1Q
)

q
ν υ





1
q

≤





∑

Q∈Sm

(∫

Rn

〈f〉qα,Q1Qυ

)
ν
q





1
ν

=





∑

Q∈Sm

〈f〉να,Qυ
ν
q (Q)





1
ν

.





∑

Q∈Sm

〈f1Em(Q)〉
ν
α,Qυ

ν
q (Q)





1
ν

≤





∑

Q∈Sm

〈fp1Em(Q)w
p〉α,Q〈σ

p′〉
p
p′

α,Qυ
p
q (Q)





1
p

≤ [w]
1
q

Aq,ν





∑

Q∈Sm

∫

Em(Q)
fp1Em(Q)w

p





1
p

≤ [w]
1
ν
−α

d
Aq,ν

‖wf‖Lp ,

where p = ν in the above estimate. ✷

The good property of Lebesgue measure appear in the paper [6].

Proposition 4.9. Let any λ > 0, Sm defined as (3.1) and b =
∑

Q′∈Sm
1Q′, then we have that for

any dyadic cube Q ∈ Sm

|{x ∈ Q : b(x) > λ}| . exp(−cλ)|Q|.

For log1[w
q]A∞

≤ m < ∞, we also have following estimate.

Lemma 4.10. Let υ denote the weight wq, for all integers m0 > 0, then

υ
(

∞
∑

m=m0

(ASm
α,ν(f))

ν > 1
)

. [w]Ap,q

(

[w]A∞

2m0

)q

‖wf‖qLp . (4.6)

Proof . Define

S∗
m := {Q maximal s.t. Q ∈ Sm} and Bm :=

⋃

{Q : Q ∈ S∗
m}.

By the definitions of Sm and (ASm
α,ν(f))

ν , we can write (ASm
α,ν(f))

ν as 2−νmbm, where

bm ≤
∑

Q∈Sm

1Q and supp(bm) ⊂ Bm.

For any dyadic cube Q ∈ Sm, by Proposition 4.9, we know that the function bm is locally expo-

nentially integrable. By the sharp weak-type estimate for the fractional maximal function [15], we

know that

υ(Bm) . 2qm[w]Ap,q‖wf‖
q
Lp .

The left hand side of (4.6) can be estimated as

υ
(

∞
∑

m=m0

(ASm
α,ν(f))

ν > 1
)

= υ
(

∞
∑

m=m0

2−νmbm >
∞
∑

m=m0

2m0−m−1
)

≤

∞
∑

m=m0

υ(bm > 2m0+(ν−1)m−1).
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Taking

β(Q) := {x ∈ Q : bm(x) > 2m0+(ν−1)m−1}

for any dyadic cube Q ∈ S∗
m, by the definition of S∗

m and Proposition 4.9, we show that

|β(Q)| . exp(−c2m0+(ν−1)m)|Q|.

Using the A∞ property for A1+ q
p′

weights with υ-measure and Proposition 4.4, there holds

υ(β(Q)) = 〈υ1β(Q)〉Q|Q| ≤ 〈1β(Q)〉
( 1
r(υ)

)′

Q 〈υr(υ)〉
1

r(υ)

Q |Q|

.

[

|β(Q)|

|Q|

](c[υ]A∞
)−1

υ(Q) . υ(Q) exp

(

−c
2m0+(ν−1)m

[υ]A∞

)

,

where r(υ) as in (4.4).

Summing over the disjoint cubes in S∗
m, we obtain

υ
(

∞
∑

m=m0

(ASm
α,ν(f))

ν > 1
)

. [w]Ap,q‖wf‖
q
Lp

∞
∑

m=m0

2mq exp

(

−c
2m0+(ν−1)m

[υ]A∞

)

. (4.7)

The sum in the right hand side of (4.7), we can be controlled by

∞
∑

m=m0

2mq exp

(

−c
2m0+(ν−1)m

[υ]A∞

)

≤

∫ ∞

m0

2qx exp

(

−c
2m0+(ν−1)x

[υ]A∞

)

dx

≈

∫ ∞

2(ν−1)m0

yq exp

(

−c
2m0

[υ]∞
y

)

dy

y

=

(

[υ]∞
2m0

)q ∫ ∞

2νm0
[υ]∞

yqe−cy dy

y
.

(

[υ]∞
2m0

)q

. (4.8)

Combining (4.7) and (4.8), we obtain the desired result. This completes the proof Lemma 4.10. ✷

Proof of Theorem 4.7. The case for 1 ≤ q < ν is easy and contained in Theorem 1.1,as so only

our attention on the case for q ≥ ν. By scaling the left hand side of (4.5) suffices to estimate

λqυ({x ∈ R
n : AS

α,ν > λ}). (4.9)

Now, we assume that λ = 3
1
ν , ‖f‖Lp(wp) = 1 and notice that (3.6), the (4.9) can be estimated as

υ((AS
α,ν(f))

ν > 3) ≤ υ((AS′

α,ν(f))
ν > 1) + υ

(m0−1
∑

m=0

(ASm
α,ν(f))

ν > 1

)

+ υ

( ∞
∑

m=m0

(ASm
α,ν(f))

ν > 1

)

.

By the sharp weak-type estimate for the fractional maximal function [15], the first term to arrive

at the bound

υ((AS′

α,ν(f))
ν > 1) . [w]

1
q

Ap,q
. (4.10)
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By Chebysheff’s inequality and Minkowski’s inequality for q ≥ ν, the second term from Lemma 4.8

υ

(m0−1
∑

m=0

(ASm
α,ν(f))

ν > 1

)

≤

∥

∥

∥

∥

m0−1
∑

m=0

(ASm
α,ν(f))

ν

∥

∥

∥

∥

q
ν

L
q
ν (υ)

≤

(m0−1
∑

m=0

‖(ASm
α,ν(f))

ν‖
L

q
ν (υ)

)
q
ν

=

(m0−1
∑

m=0

‖ASm
α,ν(f)‖

ν
Lq(wq)

)
q
ν

. (m0[w]
1
ν
−α

d
Ap,q

)
q
ν . (4.11)

By Lemma 4.10, the third term can be estimate as

υ

( ∞
∑

m=m0

(ASm
α,ν(f))

ν > 1

)

. [w]Ap,q

(

[wq]∞
2m0

)q

. (4.12)

Combining (4.10), (4.11) and (4.12), we get

‖AS
α,ν‖Lq,∞(wq) . [w]

1
q

Ap,q
+m

1
ν
0 [w]

1
ν
−α

d
Ap,q

+ [w]
1
q

Ap,q
[wq]A∞

2−m0 ≈ [w]
max( 1

q
, 1
ν
−α

d
)

Ap,q
(log1[w

q]A∞
)
1
ν ,

due to m0 ≈ log1[w
q]A∞

. This finishs the proof Theorem 4.7. ✷

However, this is not the end of the story; we can prove even more. Here we present our full

statement of the main theorem. This estimate is sharp in the following sense.

Theorem 4.11. For any weight w, we have

‖AS
α,ν‖Lp(wp)→Lq,∞(wq) ≥ [w]

1
q

Ap,q
.

P roof . Let υ denote the weight wq and consider f = |f |χQ, then we obtain for Q ∈ S

AS
α,2(f) ≥ 〈|f |〉α,Q.

Taking N := ‖AS
α,ν(f)‖Lp(wp)→Lq,∞(υ), by the inequality of norm AS

α,ν(f), we have

N‖f‖Lp(wp) ≥ ‖AS
α,ν(f)‖Lq,∞(υ) ≥ ‖〈|f |〉α,Q‖Lq,∞(υ) =

υ(Q)
1
q

|Q|1−
α
d

∫

Q
|f | =

υ(Q)
1
q

|Q|1−
α
d

∫

Q
|f |w−pwp

for all positive functions |f | on Q. By the converse to Hölder’s inequality, this shows that

N ≥
υ(Q)

1
q

|Q|1−
α
d

‖w−p‖Lp′ (wp) =
υ(Q)

1
q σ(Q)

1
p′

|Q|1−
α
d

,

and taking the supremuum over all Q proves this theorem. ✷

Theorem 4.12. Let ν ≥ 1, 0 ≤ α < d and 1 ≤ p ≤ q < ∞ with 1
q +

α
d = 1

p . If Φ be an increasing

function such that

‖AS
α,ν‖Lp(wp)→Lq,∞(wq) ≤ Φ([w]Ap,q )

for all w ∈ Ap,q, then Φ(t) & ct
1
ν
−α

d .

Lacey and Scurry [16] show that this in class of power functions, namely, they proved that there

cannot be a bound the form Φ(t) = t
1
2
−η for η > 0. We will extend their methods to general case.

Proof . We will consider two cases to prove this theorem: ν > 1 and ν = 1.



WEAK TYPE ESTIMATES FOR SPARSE OPERATORS 13

Case 1: ν > 1. Following the same arguments as that in [11, 16], the assumption implies
∥

∥

(

∑

Q

〈aQ · wq〉να,Q1Q
) 1

ν
∥

∥

Lp′ (w−p′)
. Φ([w]Ap,q )

∥

∥

(

∑

Q

aνQ
) 1

ν
∥

∥

Lq′,1 (wq)
(4.13)

for all sequences of measurable functions aQ. For ϑ ∈ (0, 1), we consider w(x) = |x|
ϑ−1
q and a

sequence of functions

a[0,2−k)(x) := ak(x) := ϑ
1

ν−1
− 1

ν

∞
∑

j=k+1

2−ϑ(j−k)1[2−j ,2−j+1)(x), k ∈ N.

Then it is easy to check that

[w]Ap,q = [wq]A1+
q
p′

≃ ϑ−1 and
∑

k

aνk(x) . ϑ
ν

ν−1
−2

1[0,1].

In fact, we choose Ik = [0, 2−k] and x ∈ (2−(l+1), 2−l] with l ∈ N0 such that

ak(x) ≃ ϑ
1

ν−1
− 1

ν |Ik|
−ϑ|x|ϑ1Ik(x).

A simple calculation shows that

∞
∑

k=0

aνk(x) = ϑ
ν

ν−1
−1|x|νϑ

∞
∑

k=0

|Ik|
−νϑ1Ik(x) = ϑ

ν
ν−1

−1|x|νϑ
l
∑

k=0

(2νϑ)k

= ϑ
ν

ν−1
−1|x|νϑ

2ν(l+1)ϑ − 1

2νϑ − 1
. ϑ

ν
ν−1

−2|x|νϑ2νlϑ . ϑ
ν

ν−1
−2

1[0,1].

This directly for the right hand side of (4.13)

∥

∥

(

∞
∑

k=1

ak(x)
ν
) 1

ν
∥

∥

Lq′,1(wq)
. q′

∫ ∞

0

(

∫

{x∈[0,1]: cϑ
ν

ν−1−2
>s}

|x|ϑ−1dx

) 1
q′

ds

≤

∫ cϑ
ν

ν−1−2

0

(
∫ 1

0
|x|ϑ−1dx

)

1
q′

ds ≃ ϑ
ν

ν−1
−2ϑ

− 1
q′ .

On the other hand, the left hand side of (4.13) can be estimated as

〈ak · w
q〉α,[0,2−k) ≃ ϑ

1
ν−1

− 1
ν 2k(1−

α
d
)

∞
∑

j=k+1

2−ϑ(j−k)2−ϑj ≃ ϑ
1

ν−1
− 1

ν
−12k(1−

α
d
−ϑ),

It follows that

∫

[0,1]

(

∞
∑

k=1

〈ak · w
q〉να,[0,2−k)1[0,2−k)

)
p′

ν w−p′ ≃ ϑ
p′

ν−1
− p′

ν
−p′
∫ 1

0
|x|(ϑ−(1−α

d
)p′ |x|

− (ϑ−1)p′

q dx

= ϑ
p′

ν−1
− p′

ν
−p′
∫ 1

0
|x|

ϑp′

q′
−1

dx =
q′

p′
ϑ

p′

ν−1
− p′

ν
−p′−1.

By assumption, this implies

ϑ
1

ν−1
− 1

p′
− 1

ν
−1

. Φ([w]Ap,q )ϑ
ν

ν−1
−2ϑ

− 1
q′ . Φ(cϑ−1)ϑ

ν
ν−1

−2ϑ
− 1

q′ .

Hence, we show that Φ(t) & t
1
ν
−α

d , this finishes the Case 1 of the estimate.

Case 2: ν = 1. This case upper bound follows from [15], and we show that

‖AS
α,1(f)‖Lq,∞(wq) . Φ([w]Ap,q )‖wf‖Lp (4.14)
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holds for Φ(t) ≥ ct1−
α
d .

By (4.3), we show that

‖AS
α,1(f)‖Lq,∞(wq) . Φ([wq]A1+q/p′

)‖wf‖Lp , (4.15)

and if we let u = wq, then

‖AS
α,1(f)‖Lq,∞(u) . Φ([u]A1+q/p′

)‖f‖Lp(up/q). (4.16)

Assume now that u ∈ A1, then (4.16) it yields that

‖AS
α,1(f)‖Lq,∞(u) . Φ([u]A1)‖f‖Lp(up/q). (4.17)

Since p
q = 1− pα

d , this is equivalent to

‖AS
α,1(u

α
d f)‖Lq,∞(u) . Φ([u]A1)‖f‖Lp(u). (4.18)

We now prove that (4.18) holds for Φ(t) ≥ ct1−
α
d . Let

u(x) = |x|ϑ−n

with 0 < ϑ < 1. Then standard computations shows that

[u]A1 ≃ ϑ−1. (4.19)

Consider the function f = χB where B is the unit ball, we can compute its norm to be

‖f‖Lp(u) = u(B)
1
p ≃ ϑ

− 1
p . (4.20)

By sparse domination formula, we know there exists a sparse family S such that

AS
α,1(|f |)(x) & |Iαf(x)|, (4.21)

where Iα is defined by (1.5). Let 0 < xϑ < 1 be a parameter whose value will be chosen soon. By

(4.21), we have that

‖AS
α,1(u

α
d f)‖Lq,∞(u) & ‖Iαu

α
d f‖Lq,∞(u)

≥ sup
λ>0

(

u{|x| < xϑ :

∫

B

|y|(ϑ−1)α/d

|x− y|1−α/d
dx > λ}

)
1
q

≥ sup
λ>0

(

u{|x| < xϑ :

∫

B\B(0,|x|)

|y|(ϑ−1)α/d

|x− y|1−α/d
dx > λ}

)
1
q

≥ sup
λ>0

(

u{|x| < xϑ :

∫

B\B(0,|x|)

|y|(ϑ−1)α/d

(2|y|)1−α/d
dx > λ}

)
1
q

= sup
λ>0

(

u{|x| < xϑ :
cα,d
ϑ

(1− |x|ϑα/d) > λ}
)

1
q

≥
cα,d
2ϑ

(

u{|x| < xϑ :
cα,d
ϑ

(1− |x|ϑα/d) >
cα,d
2ϑ

}
)

1
q

=
cα,d
2ϑ

u(B(0, xϑ))
1
q ,
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where taking xϑ = (12 )
d/αϑ in the last step. It now follows that for 0 < ϑ < 1,

‖AS
α,1(u

α
d f)‖Lq,∞(u) &

1

ϑ

(xϑ
ϑ

)
1
q
≃ ϑ−1− 1

q . (4.22)

Finally, combining (4.19), (4.20), (4.22), and using that 1
q + α

d = 1
p , we have that (4.18) holds for

Φ(t) ≥ ct1−
α
d , which gives the desired bound by the monotonicity of Φ. ✷

References

[1] F. Bernicot, D. Frey, and S. Petermichl, Sharp weighted norm estimates beyond Caldern-Zygmund theory. Anal.
& PDE, 9(5):1079-1113, 2016.

[2] Carme Cascante, Joaquin M. Ortega, and Igor E. Verbitsky, Nonlinear potentials and two weight trace inequalities
for general dyadic and radial kernels, Indiana Univ. Math. J., 53(3):845-882, 2004.

[3] D. Cruz-Uribe and K. Moen, A fractional Muckenhoupt-Wheeden theorem and its consequences, Integral Equa-
tions Operator Theory, 76(3):421-446, 2013.

[4] D. Cruz-Uribe and K. Moen, One and two weight norm inequalities for Riesz potentials, available at Illinois J.
Math., 57(1):295-323, 2013.

[5] S. Fackler and T.P. Hytönen, Off-diagonal sharp two-weight estimates for sparse operators, availble at
http://arxiv.org/abs/1711.08274v3.

[6] C. Domingo-Salazr, M.T. Lacey, and G. Rey, Borderline Weak Type Estimates for Singular Integrals and Square
Functions, Bull. Lond. Math. Soc., 48 (1):63-73, 2016.

[7] Javier Duoandikoetxea, Extrapolation of weights revisited: new proofs and sharp bounds, J. Funct. Anal., 260
(6):1886-1901, 2011.
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