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Abstract—This paper considers a downlink ultra-dense hetero-
geneous cloud radio access network (H-CRAN) which guarantees
seamless coverage and can provide high date rates. In order
to reduce channel state information (CSI) feedback overhead,
incomplete inter-cluster CSI is considered, i.e., each remote radio
head (RRH) or macro base station (MBS) only measures the
CSI from user equipments (UEs) in its serving cluster. To reduce
pilot consumption, pilot reuse among UEs is assumed, resulting
in imperfect intra-cluster CSI. A two-stage optimization problem
is then formulated. In the first stage, a pilot scheduling algorithm
is proposed to minimize the sum mean square error (MSE) of all
channel estimates. Specifically, the minimum number of required
pilots along with a feasible pilot allocation solution are first
determined by applying the Dsatur algorithm, and adjustments
based on the defined level of pilot contamination are then carried
out for further improvement. Based on the pilot allocation result
obtained in the first stage, the second stage aims to maximize
the sum spectral efficiency (SE) of the network by optimizing the
beam-vectors. Due to incomplete inter-cluster CSI and imperfect
intra-cluster CSI, an explicit expression of each UE’s achievable
rate is unavailable. Hence, a lower bound on the achievable rate
is derived based on Jensen’s inequality, and an alternative robust
transmission design (RTD) algorithm along with its distributed
realization are then proposed to maximize the derived tight lower
bound. Simulation results show that compared with existing
algorithms, the system performance can be greatly improved by
the proposed algorithms in terms of both sum MSE and sum SE.

I. INTRODUCTION

According to the forecast in [1], there will be 1.5 mobile

devices per capita and the monthly global mobile data traffic

will surpass 49 exabytes by 2021. To meet the continuously

growing demand for ubiquitous high-speed wireless access,
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a 1000 times capacity boost is thus expected in the fifth-

generation (5G) network compared to the current fourth-

generation network [2]. To realize this 5G vision, cloud radio

access network (C-RAN) has been recognized as a promising

solution [3]. In the C-RAN architecture, a baseband unit

(BBU) pool with powerful computation capability acts as a

cloud data center, and remote radio heads (RRHs) configured

only with some radio-frequency functionalities are connected

to the BBU pool through optical fiber fronthaul links. Due to

the simplified functionalities, RRHs can be densely and dis-

tributedly deployed to improve network access in conventional

cellular networks, especially in hot spots with a large number

of user equipments (UEs) like hospitals, shopping malls, etc.

In addition, different from untra-dense small cell networks that

suffer from cochannel interference [4], interference mitigation

can be effectively realized in a C-RAN by applying Coordi-

nated Multi-Point Transmission/Reception (CoMP) thanks to

the powerful BBU pool [5].

Since a C-RAN is mainly adopted to provide high data rates

in hot spots, real-time voice service and control signalling

are not efficiently supported. If UEs move fast, the switching

speed of the RRH service in a C-RAN is relatively high,

resulting in a high signalling exchange load. On the other

hand, the fronthaul capacity of a C-RAN is usually limited,

making it difficult to serve all UEs in a network. Hence, lack

of high power nodes may make it hard to ensure backward

compatibility with the existing cellular systems [6], [7]. In

order to deliver the overall control signalling and guarantee

seamless coverage, an advanced architecture, known as a

heterogeneous cloud radio access network (H-CRAN), was

proposed to combine the advantages of both C-RAN and

heterogeneous networks [8]–[10]. In an H-CRAN, besides

the BBU pool and RRHs, macro base stations (MBSs) are

also included. The BBU pool and MBSs are interfaced via

backhaul links for coodination. Hence, the delivery of control

and broadcast signalling can be shifted from RRHs to MBSs

to alleviate the capacity and time delay on the fronthaul [11],

[12]. Unnecessary handover and re-association can then be

avoided.

In H-CRANs, cochannel interference suppression is an im-

portant technical issue. In C-RANs, only interference among

RRHs exists and it can be effectively mitigated via centralized

processing at the BBU pool. While in H-CRANs, when RRHs

and MBSs operate on the same time-frequency resource block

(RB), a UE served by RRHs (a MBS) will not only experience

intra-tier interference from RRHs (MBSs), but also suffer

additional inter-tier interference from MBSs (RRHs). Hence,

the signal-to-interference-plus-noise ratio (SINR) expressions
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of UEs contain more cochannel interference terms, making the

problem more challenging. In [11]–[13], interference suppres-

sion problems in H-CRANs were studied aiming at different

design metrics. Specifically, reference [11] aimed to maximize

the average throughput and maintain the network stability

by traffic admission control, user association and resource

allocation. In [12], a contract-based interference coordination

framework was proposed to mitigate the inter-tier interference

between RRHs and MBSs. Reference [13] aimed to maxi-

mize the energy efficiency (EE) of an H-CRAN by resource

assignment and power control. All these works, however,

focused on single-input single-output (SISO) networks. By

considering multi-antenna MBSs and multi-antenna RRHs,

the performance of H-CRANs can be further enhanced by

applying beamforming techniques.

Downlink beamforming design has been widely studied

in both the conventional cellular networks [14]–[16] and C-

RANs [17]–[19]. Perfect global channel state information

(CSI) was assumed available for system performance anal-

ysis and optimization. However, it is in practice difficult to

obtain perfect CSI of all links due to channel estimation and

quantization errors. In addition, feeding back the CSI from

all UEs to each RRH or MBS requires excessive overhead,

which may easily overwhelm the capacity of the wireless

radio interface, especially in ultra-dense C-RANs [20], [21].

Hence, transmission design based on incomplete CSI has

drawn great attention recently [22]–[28]. In [22] and [23],

a multi-user massive multiple-input multiple-output (MIMO)

network and a full-duplex MIMO cognitive radio system

are respectively considered, and beamforming vectors were

designed under channel uncertainties. In [24]–[26], distributed

transmit beamforming was studied with imperfect CSI under

different scenarios. Specifically, references [24] and [25] con-

sidered a cognitive radio network, while [26] considered a

multicell cellular system. In [27] and [28], incomplete CSI

was assumed in C-RANs, i.e., each RRH only estimated the

CSI from UEs in its serving cluster (named intra-cluster CSI).

As for the UEs outside the serving cluster, it was assumed

that the RRH only had the large-scale channel gains (named

inter-cluster CSI). However, perfect intra-cluster CSI was still

assumed in [27] and [28]. To this end, orthogonal training has

to be adopted for channel estimation. In this case, the length

of pilot overhead increases linearly with the number of UEs,

which could be unaffordable for ultra-dense networks.

One promising way to reduce pilot overhead is allowing

pilots to be reused among UEs. Pilot reuse design has been

extensively studied in massive MIMO networks [29]–[33]

as well as device-to-device (D2D) underlaid systems [34]–

[36]. In particular, references [29]–[31] considered pilot reuse

in multiple-cell scenarios, i.e., UEs in the same cell use

orthogonal pilots, and the same set of pilots are reused in

different cells. In [32] and [33], it was shown that due to the

uncorrelation feature of massive MIMO antennas, the same

pilot could be reused by UEs with different angular positions.

In [34]–[36], pilots were allowed to be reused by D2D pairs.

Since RRHs are usually located dispersively and they use

low power for short-distance transmission, the pilot reuse by

UEs far away from each other would cause marginal pilot

contamination. This paper mainly focuses on pilot scheduling

and robust beamforming design for an ultra-dense H-CRAN.

To the best of the authors’ knowledge, this problem has not

yet been studied. The main contributions of this paper are

summarized as follows:

• This paper considers an ultra-dense H-CRAN, where

RRHs are mainly used to provide high data rates and

MBSs are deployed for guaranteeing seamless coverage

as well as control signalling delivery. Different from the

SISO scenarios in [11]–[13], it is assumed that both

RRHs and MBSs are equipped with multiple antennas.

In order to reduce CSI feedback overhead, incomplete

CSI is considered, i.e., each RRH as well as MBS only

measures the CSI from UEs in its serving cluster while

tracks the large-scale channel gains of UEs outside its

serving cluster. Let RUE and BUE represent the UEs

served by RRHs and the MBS, respectively. To reduce

pilot overhead, pilots are allowed to be reused by RUEs

in different RRH clusters. Based on these settings, a

two-stage optimization, i.e., pilot scheduling and robust

transmission design, is considered to enhance the network

performance.

• In the first stage, a problem aiming to minimize the

sum mean square error (MSE) of all channel estimates

is formulated. To distinguish the channels from different

RUEs, it is assumed that the RUEs served by the same

RRH apply orthogonal pilots for channel estimation.

Upon this constraint, a minimum number of pilots applies.

By constructing an undirected graph to describe this con-

straint and employing the Dsatur algorithm in [37], which

aims to color the vertices of an undirected graph with

the minimum number of different colors, the minimum

number of pilots can be obtained. Since this algorithm

only takes into account the constraint that RUEs served

by the same RRH apply orthogonal training, while ignores

the objective function, i.e., minimizing the sum MSE of

channel estimation, it outputs a feasible pilot allocation

solution, which may not be satisfactory. Hence, it is

necessary to adjust the pilots allocated to each RUE by

the Dsatur algorithm. A pilot scheduling algorithm (PSA)

is thus proposed to further mitigate pilot contamination

resulting from pilot reuse.

• The second stage aims to maximize the sum spectral

efficiency (SE) of the network by optimizing the beam-

vectors under incomplete CSI. Since each RRH or MBS

has only imperfect intra-cluster CSI, it is difficult to obtain

explicit expressions of the achievable rates of RUEs and

BUEs. Lower bounds on the achievable rates are derived

using the Jensen’s inequality. Then, instead of directly

solving the original problem, the achievable rate of each

UE in the objective function is replaced with the lower

bound. It is shown that the data rate lower bound of

either an RUE or a BUE can be regarded as the rate of

a mobile user in an equivalent downlink multiple-input

single-output (MISO) interfering network. An alternative

robust transmission design (RTD) algorithm along with

its distributed realization are then provided to obtain a

suboptimal solution.
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• In the simulation part, the performances of the proposed

algorithms are illustrated and compared in terms of both

sum MSE and sum SE. Simulation results show that

the sum MSE of channel estimation can be effectively

suppressed by the proposed PSA. Compared with the

existing schemes which assume perfect CSI, the sum SE

of the network can be significantly increased by pilot

reuse and the proposed RTD algorithm.

The rest of this paper is organized as follows. In Sec-

tion II, the signal transmission of an ultra-dense H-CRAN

and the estimation of intra-cluster channels are presented.

In Section III, a pilot scheduling algorithm is proposed to

minimize the sum MSE of channel estimation. In Section IV,

an alternative algorithm along with its distributed realization

are provided to maximize the sum SE of the network by

optimizing the transmit beam-vectors. Numerical results are

presented in Section V before conclusions in Section VI.

This paper follows commonly used notations. R and C

denote the real space and the complex space, respectively.

The boldface upper (lower) case letters are used to denote

matrices (vectors). IN stands for the N × N dimensional

identity matrix and 0 denotes the all-zero vector or matrix.

“ \ ” represents the set subtraction operation. Superscript (·)H
denotes the conjugated-transpose operation and E{·} denotes

the expectation operation. ‖g‖ is used to give the Euclidean

norm of g.

II. SYSTEM MODEL

A. Signal Transmission Model

Consider the downlink of a dense H-CRAN with an MBS,

a BBU pool, K RRHs and M UEs as shown in Fig. 1, where

each RRH connects with the BBU pool through an optical fiber

and the MBS connects with the BBU pool through a backhaul

link. The MBS and each RRH are respectively equipped with

B and N antennas, and each UE has a single antenna. Denote

the sets of RRHs and UEs by K and M, respectively. As

discussed in [5], there are usually two types of clustering

methods for RRHs to serve UEs namely disjoint clustering

and user-centric clustering. In this paper, user-centric cluster

method is adopted, i.e., each UE prefers to access the network

via a selected subset of neighboring RRHs and different

clusters for different UEs may overlap. If a UE cannot be

served by any RRH, the MBS will offer network access to

guarantee seamless coverage. For example, in Fig. 1, each

RUE is served by RRHs inside the circle centered on this

RUE. Hence, RUE 1, 2, 3, 4, 5 are served by RRHs, and

BUE 1 and BUE 2 are served by the MBS. Denote the sets

of RUEs and BUEs by MR and MB, respectively. Denote

Ki ⊆ K and Mk ⊆ MR as the set of RRHs serving RUE i and

the set of RUEs served by RRH k, respectively. Assume that

all transmitters use the same time-frequency RB to transmit

signals, leading to cochannel interference. Then, the received

signal at UE m is given by

ym =
∑

i∈MR

∑

k∈Ki

hH
k,mwk,ixi +

∑

j∈MB

hH
b,mwb,jxj + nm, (1)

where hk,m ∈ CN×1 represents the channel vector from RRH

k to UE m, wk,i ∈ CN×1 denotes the beam-vector adopted

MBS

Backhaul

RRH 1

RRH 3

RRH 6

RRH 4

RRH 7 RRH 8

RRH 2

RRH 5

RUE 1

RUE 3

RUE 2

RUE 4

RUE 5

BUE 1

BUE 2

BBU Pool

Fronthaul

Fig. 1. Illustration of an H-CRAN.

by RRH k for transmitting signal to RUE i, and xi is the

zero-mean unit-variance data symbol for RUE i. Likewise,

hb,m,wb,j ∈ CB×1 and xj are similarly defined for the MBS

and BUE j, and nm is the complex white Gaussian noise with

variance N0, i.e., nm ∼ CN (0, N0).

B. Channel Estimation

In most of the related literature, it is usually assumed that

the global CSI over the network is available for optimization.

To this end, orthogonal pilots should be adopted for channel

estimation. However, in a dense H-CRAN network with large

numbers of UEs, obtaining CSI of all links is almost infeasible

due to limited training resources. As a result, in this paper,

orthogonal pilots are adopted by BUEs and RUEs in the

same RRH cluster for channel estimation, while pilot reuse

among RUEs in different RRH clusters is allowed to reduce

pilot overhead. For further pilot overhead reduction, the pilot

sequence used by a BUE is allowed to be shared with RUEs.

For example, in Fig. 1, BUE 1 and BUE 2 both access the

network via the MBS. Hence, BUE 1 and BUE 2 adopt

orthogonal training for channel estimation. RUE 1 and RUE 2

are both served by RRH 3 and RRH 4. Therefore, RUE 1 and

RUE 2 belong to the same cluster and they should be assigned

orthogonal pilots. Since the set of RRHs serving RUE 1 and

the set of RRHs serving RUE 5 do not overlap, RUE 1 could

reuse the pilot of RUE 5. In addition, due to the long distance

between RUE 1 and BUE 2, they may be allocated the same

pilot for pilot overhead reduction.

In the uplink training phase, assume that RRH k estimates

the CSI from all RUEs in Mk and the MBS estimates the CSI

from all BUEs. The large-scale channel gains from all UEs to

each RRH and to the MBS, i.e., {αk,m, ∀ k ∈ K, m ∈ M}
and {αb,m, ∀ m ∈ M}, are assumed to be available at both

the BBU pool and the MBS. Denote Q = {1, · · · , τ} as the

available pilot set and Q = [q1, · · · , qτ ] ∈ Cτ×τ as the pilot
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matrix with orthogonal column vectors (i.e., QHQ = Iτ ).

τ (|MB| ≤ τ ≤ M ) is the length of the pilots and is

also the number of pilots available for channel estimation

(this is the smallest amount of pilots that are required).

Let P(M,Q) = {(m,πm)| m ∈ M, πm ∈ Q} denote an

arbitrary pilot assignment scheme, where (m,πm) means that

UE m is allocated pilot qπm
. In addition, let Uπ = {i| πi = π,

∀ i ∈ MR} and Vπ = {j| πj = π, ∀ j ∈ MB}, respectively,

denote the sets of RUEs and BUEs that use pilot qπ for channel

estimation. Note that since BUEs apply orthogonal pilots for

channel estimation, it follows that |Vπ| ∈ {0, 1}.

1) Channel Estimation for RUEs: Given the pilot assign-

ment scheme P(M,Q), the N×τ dimensional received signal

matrix of pilots at RRH k can be written as

Y
(R)
k =

∑

i∈MR

√
pRhk,iq

H
πi

+
∑

j∈MB

√
pBhk,jq

H
πj

+N
(R)
k , (2)

where pR and pB are, respectively, the pilot transmit powers

of RUEs and BUEs. N
(R)
k is the noise matrix which consists

of independently and identically distributed (i.i.d.) Gaussian

elements with zero mean and variance N0. Then, the minimum

mean square error (MMSE) estimate of hk,i, ∀ k ∈ K, i ∈
Mk is given by [38]

ĥk,i =

√
pRαk,i

∑

i′∈Uπi

pRαk,i′ +
∑

j∈Vπi

pBαk,j +N0
Y

(R)
k qπi

. (3)

Given the channel estimate vector ĥk,i, the true channel vector

hk,i can be expressed as hk,i = ĥk,i + h̃k,i, where the error

vector h̃k,i represents the CSI uncertainty. Due to the property

of MMSE estimation [38], h̃k,i is statistically independent of

ĥk,i and it follows that CN (0, δk,iIN ), where δk,i is given by

δk,i =

αk,i

(

∑

i′∈Uπi
\i

pRαk,i′ +
∑

j∈Vπi

pBαk,j +N0

)

∑

i′∈Uπi

pRαk,i′ +
∑

j∈Vπi

pBαk,j +N0
. (4)

2) Channel Estimation for BUEs: Similarly, the B × τ

dimensional received signal matrix of pilots at the MBS can

be written as

Y (B) =
∑

i∈MR

√
pRhb,iq

H
πi

+
∑

j∈MB

√
pBhb,jq

H
πj

+N (B), (5)

where N (B) is the noise matrix which consists of i.i.d.

Gaussian elements with zero mean and variance N0. Then,

the MMSE estimate of hb,j , ∀ j ∈ MB is

ĥb,j =

√
pBαb,j

∑

i∈Uπj

pRαb,i + pBαb,j +N0
Y (B)qπj

. (6)

It follows hb,j = ĥb,j + h̃b,j , and h̃b,j ∼ CN (0, δb,jIB) is

statistically independent of ĥb,j , where δb,j is given by

δb,j =

αb,j

(

∑

i∈Uπj

pRαb,i +N0

)

∑

i∈Uπj

pRαb,i + pBαb,j +N0
. (7)

In general, sum SE is a very important metric in evaluating

a wireless network’s performance, and sum SE maximization

has been widely studied in different kinds of networks [14],

[15], [39]. Since pilot reuse is assumed in this paper, pilot

contamination inevitably exists. Hence, how to effectively

mitigate pilot contamination is also important. A two-stage

optimization framework is thus studied in the following for

network performance maximization. Specifically, the sum

MSE of channel estimation is minimized by designing a

pilot scheduling algorithm in Section III. Based on the pilot

allocation result obtained in Section III, the sum SE of the

network is then maximized by optimizing beam-vectors under

imperfect CSI in Section IV.

III. STAGE I: PILOT SCHEDULING

In this stage, a pilot scheduling algorithm is designed to

allocate pilots to UEs based on the metric of minimizing the

sum MSE of channel estimation.

A. Problem Formulation

Since pilots are reused among UEs to shorten pilot over-

head, pilot contamination inevitably exists. Considering the

location dispersion of UEs, it is preferred that pilot contami-

nation can be effectively mitigated by designing an appropriate

pilot scheduling algorithm. According to (4) and (7), the sum

MSE of all channel CSI is given by

∑

i∈MR

∑

k∈Ki

E

{

∥

∥

∥h̃k,i

∥

∥

∥

2
}

+
∑

j∈MB

E

{

∥

∥

∥h̃b,j

∥

∥

∥

2
}

=
∑

i∈MR

∑

k∈Ki

Nδk,i +
∑

j∈MB

Bδb,j . (8)

To distinguish the channels from different RUEs, it is assumed

that any two RUEs for which the sets of serving RRHs are

(partially) overlapping would need to be allocated orthogonal

pilots. This can be mathematically expressed as follows

πi 6= πi′ , ∀ i, i′ ∈ MR, i 6= i′, Ki ∩ Ki′ 6= ∅. (9)

Thus, the problem of minimizing the sum MSE of channel

estimation can be formulated as

min
P(M,Q)

∑

i∈MR

∑

k∈Ki

Nδk,i +
∑

j∈MB

Bδb,j

s.t. (9). (10)

Problem (10) is a resource allocation problem, which can

be readily transformed to an equivalent mixed integer pro-

gramming problem which is, however, usually difficult to

solve. The optimal pilot scheduling scheme can be obtained

through exhaustive search (ES). However, the complexity of

ES increases exponentially with the number of UEs, becoming

infeasible for a dense H-CRAN. Therefore, a low complexity

pilot scheduling algorithm is proposed in the following sub-

section.
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RUE 1
RUE 2

RUE 3

RUE 4

RUE 5

(a) (b)

RUE 1
RUE 2

RUE 3

RUE 4

RUE 5

Fig. 2. (a) Undirected graph consisting of all RUEs in Fig. 1; (b) The colored
undirected graph after applying the Dsatur algorithm.

B. Pilot Scheduling Algorithm

Constraint (9) indicates that any two RUEs served by at least

one common RRH should be allocated different pilots. This

constraint can be equivalently represented by an |MR|×|MR|
dimensional matrix A with each element given by

ai,i′ =

{

1, if i 6= i′, Ki ∩ Ki′ 6= ∅
0, otherwise

, ∀ i, i′ ∈ MR. (11)

In matrix A, when two RUEs are served by at least one

common RRH, the corresponding element is one. Otherwise,

the element is zero. Obviously, to satisfy constraint (9), a

minimum number of pilots t exists. In order to obtain t, an

undirected graph can be constructed to describe constraint (9)

based on A, where any two RUEs served by at least one

common RRH are connected with each other. Then, determin-

ing t is equivalent to coloring the vertices of the undirected

graph with the minimum number of different colors, which can

be optimally solved by using the Dsatur algorithm proposed

in [37]. Note that the pilots used by BUEs are mutually

orthogonal. Therefore, the length of the pilots should satisfy

max {|MB| , t} ≤ τ ≤ M . Taking the H-CRAN in Fig. 1

for example, the undirected graph consisting of all RUEs in

Fig. 1 can be depicted as Fig. 2 (a), and the colored graph

of Fig. 2 (a) after applying the Dsatur algorithm is shown in

Fig. 2 (b). It can be seen that for the considered case, t = 3.

Since M = 7 and |MB| = 2, the pilot length should satisfy

3 ≤ τ ≤ 7.

Though the Dsatur algorithm can yield the minimum num-

ber of pilots required by RUEs as well as a feasible pilot

allocation solution, it only takes into account constraint (9)

while ignores the objective function of problem (10). Hence,

this solution may not be satisfactory. For example, in Fig. 2

(b), RUEs in the same color share the same pilot, and RUEs in

different colors use orthogonal pilots for channel estimation.

There may exist measurable pilot contamination between RUE

2 and RUE 4 since they are not so far away from each other. If

τ = t, by exchanging the colors of RUE 2 and RUE 1 without

changing t, the pilot contamination may be reduced due to

the relatively longer distance between RUE 1 and RUE 4. If

τ > t, the pilot contamination can be certainly decreased by

replacing a reused pilot in Fig. 2 (b) with an unused one.

Since channel estimation is mainly affected by pilot con-

tamination besides the effect of noise, it is thus of great

importance to further mitigate pilot contamination. To this

end, it is necessary to adjust the pilots allocated to each RUE

by the Dsatur algorithm. As stated above, it is difficult to

solve problem (10) in polynomial time. Hence, a heuristic low-

complexity pilot scheduling algorithm is provided in the fol-

lowing. In order to implement this algorithm, it is first required

to figure out how to measure the level of pilot contamination.

In [31], a multi-cell massive MIMO network was considered

and pilot reuse was assumed among different cells. To mitigate

pilot contamination, a metric was defined to indicate the

interference strength among UEs, and a graph coloring based

scheme was then proposed. In [36], a continuous-valued metric

was defined to evaluate the potential interference strength

between any two D2D pairs when the same pilot was reused,

and a pilot scheduling algorithm was then provided based on

this metric. Motivated by these works, a similar metric based

on large-scale channel gains is defined to measure the level

of pilot contamination between an RUE and another UE when

they reuse the same pilot. First, for any two unconnected RUEs

in the undirected graph, define

βi,i′ = ln






1 +

∑

k∈Ki

αk,i′

∑

k∈Ki

αk,i

+

∑

k′∈Ki′

αk′,i

∑

k′∈Ki′

αk′,i′






,

∀ i, i′ ∈ MR, i 6= i′, Ki ∩ Ki′ = ∅. (12)

The definition of βi,i′ is inspired by the channel estimation

error in (4). Inside the ln(·) operation of (12), the second

term is defined to measure the level of pilot contamination

experienced by RUE i from RUE i′ if they are assigned the

same pilot, and vice versa for the third term. Obviously, a

larger βi,i′ means more severe potential pilot contamination

between RUE i and RUE i′ when they are assigned the same

pilot. For any RUE i, let βi,i = 0. For any two connected

RUEs, since they are assigned orthogonal pilots, there will be

no potential pilot contamination between them. Hence,

βi,i′ = 0, ∀ i, i′ ∈ MR, i 6= i′, Ki ∩ Ki′ 6= ∅. (13)

As for an RUE and a BUE, define

βi,j = ln






1 +

∑

k∈Ki

αk,j

∑

k∈Ki

αk,i

+
αb,i

αb,j






, ∀ i ∈ MR, j ∈ MB.

(14)

Motivated by [31] and [36], a pilot scheduling algorithm

(PSA) is proposed and summarized in Algorithm 1. According

to Algorithm 1, it is necessary to first check whether τ is larger

than or equal to the minimum required number of orthogonal

pilots or not. If the number of available pilots are not enough to

satisfy the scheduled constraints, τ has to be increased. Then,

without loss of generality, pilot qj is allocated to BUE j, and

{q1, · · · , qt} are randomly allocated to t clusters with RUEs

in each cluster using the same pilot. In order to further mitigate

pilot contamination, three steps are iteratively carried out to

adjust the pilots assigned to each RUE. The basic idea is that

the RUE experiencing larger pilot contamination possesses a

higher priority for pilot adjustment. The main steps in each

iteration can be explained as follows. First, RUE i ∈ MR \Λ
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experiencing the largest interference is selected. Next, pilot π

which causes the least interference to RUE i is chosen from

the set of available pilots, i.e., Q \ Xi. Finally, pilot qπ is

assigned to RUE i, and sets Uπi
, Uπ, Λ and Xl, ∀ l ∈ MR

are updated. The algorithm will be carried out for |MR| times

until all RUEs’ pilots have been adjusted.

Algorithm 1 Pilot Scheduling Algorithm (PSA)

Initialization:

Initialize the set of RUEs which have been allocated

pilots, i.e., Λ = ∅.

Obtain matrix A from (11) and calculate t by using the

Dsatur algorithm.

If τ < max {|MB| , t}, set τ = max {|MB| , t}.

Calculate βi,m, ∀ i ∈ MR, m ∈ M.

Pilot Allocation:

Assign pilot qj to BUE j, ∀ j ∈ MB.

Divide all RUEs into t clusters by using the Dsatur

algorithm, and randomly allocate pilots {q1, · · · , qt} to

them with RUEs in each cluster using the same pilot. Let

Xi denote the set of different pilots allocated to the RUEs

connected to RUE i, ∀ i ∈ MR.

for d = 1, · · · , |MR| do

1: i = arg max
l∈MR\Λ

(

∑

i′∈Uπl

βl,i′ +
∑

j∈Vπl

βl,j

)

.

2: π = arg min
ι∈Q\Xi

(

∑

i′∈Uι

βi,i′ +
∑

j∈Vι

βi,j

)

.

3: Uπi
= Uπi

\ i, qπi
= qπ, Uπ = Uπ ∪ i, Λ = Λ ∪ i.

Update Xl, ∀ l ∈ MR.

end for

C. Complexity Analysis

In this subsection, the computational complexity of Algo-

rithm 1 is analyzed with order notation. According to [40], the

Dsatur algorithm involves a complexity of O
(

|MR|2
)

. In or-

der to adjust the pilots allocated to RUEs, |MR| iterations are

carried out. In each iteration, a complexity of O
(

|MR|2
)

is

required to find the RUE experiencing the largest interference,

and the pilot causing the least interference to this RUE. The

total complexity of the iteration process is thus O
(

|MR|3
)

.

As a result, Algorithm 1 involves an overall complexity of

O
(

|MR|3
)

. In contrast, to obtain the optimal pilot allocation

solution, the ES scheme requires a complexity of O
(

τM
)

,

which increases exponentially with the number of UEs. Hence,

the proposed algorithm is more efficient for practical use.

IV. STAGE II: ROBUST TRANSMISSION DESIGN

After obtaining the pilot allocation result by using Algo-

rithm 1, the sum SE maximization problem under incomplete

inter-cluster CSI and imperfect intra-cluster CSI is considered

in this section. A robust transmission design algorithm and its

distributed realization are proposed to solve the problem.

A. Problem Formulation

In order to simplify the expression of (1), the beam-

vectors from all RRHs in set Ki for transmitting signal to

RUE i can be merged to form a large-dimension vector

wi, i.e., wi =
[

wH
k,i, ∀ k ∈ Ki

]H

∈ CN |Ki|×1. Similarly,

let gi,m =
[

hH
k,m, ∀ k ∈ Ki

]H

∈ CN |Ki|×1 represent the

aggregated channel vector from all RRHs in Ki to UE m.

Then, (1) can be reformulated as

ym =
∑

i∈MR

gH
i,mwixi +

∑

j∈MB

hH
b,mwb,jxj + nm. (15)

In the following, all transmit beam-vectors are designed

based on the obtained channel estimates, i.e., (3), (4), (6)

and (7), and channel statistics, i.e., the large-scale channel

gains. Consider the block fading model, where all channels

remain unchanged over the coherence interval with length T .

Then, the effective SINR and the achievable rate of RUE i

are, respectively, given by

η
(R)
i =

∣

∣ĝH
i,iwi

∣

∣

2

∣

∣g̃H
i,iwi

∣

∣

2
+

∑

i′∈MR\i

|gi′,iwi′ |2+
∑

j∈MB

∣

∣

∣
hH
b,iwb,j

∣

∣

∣

2

+N0

,

R
(R)
i =

T − τ

T
E

{

log2

(

1 + η
(R)
i

)}

, ∀ i ∈ MR, (16)

where ĝi,i =
[

ĥH
k,i, ∀ k ∈ Ki

]H

∈ CN |Ki|×1 and g̃i,i =
[

h̃H
k,i, ∀ k ∈ Ki

]H

∈ CN |Ki|×1, respectively, denote the

aggregated channel estimation vector and the aggregated error

vector from all RRHs in Ki to RUE i. Since only MMSE

estimates of the channel vectors and the distribution of chan-

nel estimation error are available, as in [41] and [36], the

useful signal in (16) only contains
∣

∣ĝH
i,iwi

∣

∣

2
, and the terms

corresponding to the channel estimation errors are regarded

as Gaussian noise. The expectation operation in (16) is taken

over the unknown channel estimation errors h̃k,i, ∀ k ∈ Ki,

the inter-cluster channel vectors hk,i, ∀ k ∈ K \Ki and hb,i.

Similarly, the effective SINR and the achievable rate of BUE

j can be, respectively, written as

η
(B)
j =

∣

∣

∣̂hH
b,jwb,j

∣

∣

∣

2

∣

∣

∣h̃H
b,jwb,j

∣

∣

∣

2

+
∑

i∈MR

|gi,jwi|2+
∑

j′∈MB\j

∣

∣

∣hH
b,jwb,j′

∣

∣

∣

2

+N0

,

R
(B)
j =

T − τ

T
E

{

log2

(

1 + η
(B)
j

)}

, ∀ j ∈ MB, (17)

where the expectation is taken over the unknown channel

estimation error h̃b,j and hk,j , ∀ k ∈ K.

Due to the fractional form of the SINR expressions and the

log(·) operation, it is difficult to obtain explicit expressions of

the achievable rate. In the following theorem, a lower bound

on the achievable rate is derived.
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Theorem 1: Given the SINR formulas in (16) and (17),

the achievable rates R
(R)
i and R

(B)
j are, respectively, lower

bounded by (18) and (19) as follows

r
(R)
i =

T − τ

T
log2

(

1 +

∣

∣ĝH
i,iwi

∣

∣

2

J
(R)
i

)

, ∀ i ∈ MR, (18)

r
(B)
j =

T − τ

T
log2






1 +

∣

∣

∣ĥH
b,jwb,j

∣

∣

∣

2

J
(B)
j






, ∀ j ∈ MB, (19)

where

J
(R)
i = wH

i E
(R)
i,i wi +

∑

i′∈MR\i

wH
i′ G

(R)
i′,iwi′

+
∑

j∈MB

wH
b,jH

(R)
b,i wb,j +N0, ∀ i ∈ MR, (20)

J
(B)
j = wH

b,jE
(B)
b,j wb,j +

∑

i∈MR

wH
i G

(B)
i,j wi

+
∑

j′∈MB\j

wH
b,j′H

(B)
b,j wb,j′ +N0, ∀ j ∈ MB. (21)

E
(R)
i,i , G

(R)
i′,i, H

(R)
b,i , E

(B)
b,j , G

(B)
i,j and H

(B)
b,j in (20) and (21) are

all positive definite matrices defined in Appendix A.

Proof: See Appendix A. �

This paper aims to maximize the sum SE of the network

by designing robust transmit beam-vectors under incomplete

inter-cluster CSI and imperfect intra-cluster CSI. As discussed

above, explicit expressions of achievable rates of both RUEs

and BUEs are unavailable, while their lower bounds can

be obtained according to Theorem 1. The tightness between

achievable rates and their lower bounds is verified in the sim-

ulation part. Hence, R
(R)
i and R

(B)
j are, respectively, replaced

with r
(R)
i and r

(B)
j , and the problem is formulated as follows

max
w

∑

i∈MR

r
(R)
i +

∑

j∈MB

r
(B)
j (22a)

s.t.
∑

i∈Mk

‖wk,i‖2 ≤ P
(R)
k , ∀ k ∈ K, (22b)

∑

j∈MB

‖wb,j‖2 ≤ P (B), (22c)

where w is the collection of all beam-vectors, including

wk,i, ∀ k ∈ K, i ∈ Mk and wb,j, ∀ j ∈ MB, and P
(R)
k

and P (B), respectively, denote the maximum transmit power

of RRH k and the MBS.

B. Robust Transmission Design

Problem (22) has a form similar to the conventional sum SE

maximization problems in downlink MISO systems, which can

be effectively solved by adopting the weighted minimum mean

square error (WMMSE) algorithm based on the following

lemma [14], [15], [42]. For brevity, the proof of Lemma 1

is omitted.

Lemma 1: In a downlink interfering network, if MMSE

receive filters are adopted for signal detection, the following

relationship between the MMSE and the SINR of each link

holds

MMSE =
1

1 + SINR
. (23)

However, two factors make it difficult to directly exploit

the WMMSE algorithm to solve problem (22). First, due

to imperfect channel estimation, self-interference exists in

the achievable rate expressions, i.e., terms wH
i E

(R)
i,i wi and

wH
b,jE

(B)
b,j wb,j exist in r

(R)
i and r

(B)
j , which is different from

the typical rate expression under perfect CSI; Second, due to

the expectation operation, E
(R)
i,i , G

(R)
i′,i, H

(R)
b,i , E

(B)
b,j , G

(B)
i,j and

H
(B)
b,j are all positive definite matrices rather than conjugate

symmetric rank-one matrices as in popular rate expressions

of a downlink MISO system. Because of these two factors,

Lemma 1 cannot be directly applied. To deal with this diffi-

culty, the following theorem is first introduced.

Theorem 2: r
(R)
i in (18) can be regarded as the rate of

a mobile user in an equivalent downlink interfering MISO

network. The MSE and single-tap MMSE receive equalizer

of this user are, respectively, given by

MSE
(R)
i =

∣

∣

∣

∣

(

f
(R)
i

)H

ĝH
i,iwi − 1

∣

∣

∣

∣

2

+
∣

∣

∣
f
(R)
i

∣

∣

∣

2

J
(R)
i , (24)

f
(R)
i =

ĝH
i,iwi

wH
i ĝi,iĝ

H
i,iwi + J

(R)
i

, ∀ i ∈ MR. (25)

Similarly, r
(B)
j can also be regarded as the rate of a mobile user

in an equivalent downlink interfering MISO network, and its

MSE and single-tap MMSE receive equalizer are, respectively,

given by

MSE
(B)
j =

∣

∣

∣

∣

(

f
(B)
j

)H

ĥH
b,jwb,j − 1

∣

∣

∣

∣

2

+
∣

∣

∣f
(B)
j

∣

∣

∣

2

J
(B)
j , (26)

f
(B)
j =

ĥH
b,jwb,j

wH
b,jĥb,jĥ

H
b,jwb,j + J

(B)
j

, ∀ j ∈ MB. (27)

Proof: See Appendix B. �

According to Lemma 1 and Theorem 2, r
(R)
i and r

(B)
j can

be rewritten as

r
(R)
i = −T − τ

T
log2 MMSE

(R)
i

= −T − τ

T
min
f
(R)
i

log2 MSE
(R)
i , ∀ i ∈ MR, (28)

r
(B)
j = −T − τ

T
log2 MMSE

(B)
j

= −T − τ

T
min
f
(B)
j

log2 MSE
(B)
j , ∀ j ∈ MB, (29)

and problem (22) can be equivalently reformulated as 1

min
w,f

∑

i∈MR

lnMSE
(R)
i +

∑

j∈MB

lnMSE
(B)
j

s.t. (22b), (22c), (30)

1Note that in the objective function of problem (30), T−τ

T
is omitted and

log(·) is replaced with ln(·) for the convenience of the following analysis.
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where f =
(

f
(R)
1 , · · · , f (R)

|MR|
, f

(B)
1 , · · · , f (B)

|MB|

)T

.

Though the fractional SINR expressions have been avoided,

problem (30) is still nonconvex and is generally difficult to

solve. To make it tractable, the following auxiliary functions

are introduced to remove the ln(·) operation in (30)

S
(R)
i

(

u
(R)
i

)

= exp
(

u
(R)
i − 1

)

MSE
(R)
i − u

(R)
i , ∀ i ∈ MR,

S
(B)
j

(

u
(B)
j

)

= exp
(

u
(B)
j − 1

)

MSE
(B)
j − u

(B)
j , ∀ j ∈ MB,

(31)

where u
(R)
i and u

(B)
j are newly introduced auxiliary variables.

Checking the first-order optimality condition of (31) yields

min
u
(R)
i

S
(R)
i

(

u
(R)
i

)

= lnMSE
(R)
i , ∀ i ∈ MR,

min
u
(B)
j

S
(B)
j

(

u
(B)
j

)

= lnMSE
(B)
j , ∀ j ∈ MB, (32)

and the corresponding optimal solutions

u
(R)∗
i = 1− lnMSE

(R)
i , ∀ i ∈ MR,

u
(B)∗
j = 1− lnMSE

(B)
j , ∀ j ∈ MB. (33)

Therefore, according to (32) and by substituting (31) into

(30), the problem becomes

min
w,f ,u

∑

i∈MR

[

exp
(

u
(R)
i − 1

)

MSE
(R)
i − u

(R)
i

]

+
∑

j∈MB

[

exp
(

u
(B)
j − 1

)

MSE
(B)
j − u

(B)
j

]

s.t. (22b), (22c), (34)

where u =
(

u
(R)
1 , · · · , u(R)

|MR|
, u

(B)
1 , · · · , u(B)

|MB|

)T

. Compared

with problem (30), problem (34) is much easier to solve since

it is convex with respect to (w.r.t.) each of the individual vari-

ables. By alternatively optimizing w, f and u, a suboptimal

solution of problem (34) can be obtained.

For fixed w and u, the optimal f can be obtained from

(25) and (27). For given w and f , the optimal u can be

obtained according to (33). When f and u have been deter-

mined, for notational brevity, denote β
(R)
i = exp

(

u
(R)
i − 1

)

,

β
(B)
j = exp

(

u
(B)
j − 1

)

, and delete constants u
(R)
i as well as

u
(B)
j in the objective function of (34). Then, based on (24) and

(26), problem (34) can be equivalently transformed to 2

min
w

∑

i∈MR

{

wH
i F

(R)
i wi − 2β

(R)
i Re

[

(

f
(R)
i

)H

ĝH
i,iwi

]}

+
∑

j∈MB

{

wH
b,jF

(B)
j wb,j − 2β

(B)
j Re

[

(

f
(B)
j

)H

ĥH
b,jwb,j

]}

s.t. (22b), (22c), (35)

2Note that for brevity, a constant term in the objective function of (35) is
omitted, which does not affect the equivalence between (34) and (35).

where

F
(R)
i = β

(R)
i

∣

∣

∣f
(R)
i

∣

∣

∣

2

ĝi,iĝ
H
i,i + β

(R)
i

∣

∣

∣f
(R)
i

∣

∣

∣

2

E
(R)
i,i

+
∑

i′∈MR\i

β
(R)
i′

∣

∣

∣
f
(R)
i′

∣

∣

∣

2

G
(R)
i,i′ +

∑

j∈MB

β
(B)
j

∣

∣

∣
f
(B)
j

∣

∣

∣

2

G
(B)
i,j ,

F
(B)
j = β

(B)
j

∣

∣

∣f
(B)
j

∣

∣

∣

2

ĥb,jĥ
H
b,j + β

(B)
j

∣

∣

∣f
(B)
j

∣

∣

∣

2

E
(B)
b,j

+
∑

i∈MR

β
(R)
i

∣

∣

∣f
(R)
i

∣

∣

∣

2

H
(R)
b,i +

∑

j′∈MB\j

β
(B)
j′

∣

∣

∣f
(B)
j′

∣

∣

∣

2

H
(B)
b,j′ . (36)

From Theorem 1 and (36), it is known that both F
(R)
i and

F
(B)
j are positive definite matrices. Hence, problem (35) is a

quadratically constrained quadratic programming (QCQP), and

can be optimally solved by adopting a standard convex opti-

mization solver such as CVX, which is a toolbox developed

in MATLAB for solving convex problems [43].

Based on the above analysis, problem (34) can be effectively

solved by alternatively optimizing w, f and u. Detailed steps

are summarized in Algorithm 2.

Algorithm 2 Robust Transmission Design (RTD)

1: Set d = 0, initialize w(d) = 0, f(d) = 1, u(d) = 1 and

ρ = 10−3.

2: repeat

3: Solve QCQP problem (35) to obtain w(d + 1) by

adopting the CVX toolbox.

4: Obtain f(d+ 1) based on (25) and (27).

5: Obtain u(d+ 1) based on (33).

6: d = d+ 1.

7: until
∑

i∈MR

‖wi(d+ 1)−wi(d)‖2 +
∑

j∈MB

‖wb,j(d+ 1)−wb,j(d)‖2 ≤ ρ.

C. Distributed Implementation of the Proposed RTD Algo-

rithm

Solving problem (34) using the proposed RTD algorithm

requires a control center with great computation power,

especially for an ultra-dense multi-cell network. Hence, it

is desirable to obtain the beam-vectors in a decentralized

manner with only local CSI, i.e., the BBU pool uses only
{

ĥk,i, ∀ k ∈ Ki, i ∈ MR

}

to obtain w(R), and the MBS

uses
{

ĥb,j , ∀ j ∈ MB

}

to obtain w(B), where w(R) and w(B)

respectively denote the collections of all beam-vectors used

by RRHs and the MBS. Since it is assumed that both the

BBU pool and the MBS have global large-scale channel gains,

i.e., {αk,m, ∀ k ∈ K,m ∈ M} and {αb,m, ∀ m ∈ M}, it is

shown in the following that the proposed RTD algorithm can,

fortunately, be implemented in a distributed manner.

Denote f (R) =
(

f
(R)
1 , · · · , f (R)

|MR|

)T

, f (B) =
(

f
(B)
1 , · · · ,

f
(B)
|MB|

)T

, u(R) =
(

u
(R)
1 , · · · , u(R)

|MR|

)T

and u(B) =
(

u
(B)
1 ,

· · · , u(B)
|MB|

)T

. Then, the dth iteration of Algorithm 2 can
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be processed in a decentralized fashion as follows. First,

the BBU pool sends
(

f (R)(d− 1),u(R)(d− 1)
)

obtained in

the (d − 1)th iteration to the MBS, and the MBS sends
(

f (B)(d− 1),u(B)(d− 1)
)

to the BBU pool. Second, divide

problem (35) into two subproblems with the first subproblem

aiming to minimize the first term of the objection function of

(35) subject to constraint (22b) and the second one aiming

to minimize the second term of the objection function of

(35) subject to constraint (22c). These two subproblems can

be independently solved, and w(R)(d) as well as w(B)(d)
can thus be respectively obtained at the BBU pool and the

MBS. The BBU pool and the MBS then exchange the ob-

tained w(R)(d) and w(B)(d) with each other, and respectively

calculate
(

f (R)(d),u(R)(d)
)

and
(

f (B)(d),u(B)(d)
)

based on

(25), (27) and (33). After checking the termination criterion,

the algorithm stops if the algorithm converges. Otherwise,

continue to the next iteration.

The computational complexity of executing the proposed

RTD algorithm is analyzed in the next subsection, from which

it can be seen that, compared with the centralized way, execut-

ing the algorithm in a distributed manner can help spread out

the compute task of the control center over the BBU pool and

the MBS. This will help reduce the computational burden of

the control center, especially for a network with multiple cells.

The cost of the distributed implementation is the exchange

of variables
(

f (R)(d),u(R)(d)
)

, w(R)(d),
(

f (B)(d),u(B)(d)
)

and w(B)(d) between the BBU pool and the MBS. However,

when distributed implementation is adopted, either the BBU

pool or the MBS solves the corresponding problem with only

local CSI, i.e., there is no need to collect the overall CSI,

which improves the scalability. In addition, it is shown in

Section V that the RTD algorithm converges rapidly within

a few iterations. Hence, the distributed implementation is

suitable for practical applications.

D. Convergence and Complexity Analysis

Since Algorithm 2 is carried out in an alternative manner, it

is necessary to characterize its convergence behavior. In each

iteration, the optimal w is first obtained by solving (35). Then,

the optimal f and u are obtained according to (25), (27) and

(33). As a result, the objective function of (34) decreases in

each iteration. Due to the fact that this objective function is

always lower bounded, the convergence of the proposed RTD

algorithm is thus guaranteed.

Then, the computational complexity of the proposed RTD

algorithm is analyzed. The complexity of this algorithm mainly

lies in solving QCQP problem (35). As stated in Subsection

IV-C, problem (35) can be divided into two subproblems,

and according to [5], both of these subproblems can be

equivalently transformed to a second-order cone programming

(SOCP). The total numbers of variables in the two equivalent

SOCP problems are, respectively, D1 =
∑

i∈MR

N |Ki| and

D2 = B |MB|. Hence, each iteration involves an approximate

complexity of O
(

D3.5
1 +D3.5

2

)

[44]. Assume that L iterations

are required for Algorithm 2 to converge. The total complexity

of Algorithm 2 is thus O
(

L
(

D3.5
1 +D3.5

2

))

. When the RTD

algorithm is carried out in a distributed way, the BBU poll

TABLE I
SIMULATION PARAMETERS

Radius of the cell 500 m

Pilot power of BUEs pB 20 dBm

Pilot power of RUEs pR 17 dBm

Maximum transmit power of the MBS P (B) 30 dBm

Maximum transmit power of each RRH P (R) 27 dBm

Additive noise power N0 -100 dBm

Path loss exponent 3.7

Standard deviation of log-normal shadowing fading 8 dB

Accuracy ρ 10−3

and the MBS will, respectively, solve the two subproblems,

and as the centralized way, L iterations are required for the

algorithm to converge. Therefore, complexities of O
(

LD3.5
1

)

and O
(

LD3.5
2

)

are, respectively, involved at the BBU pool

and the MBS.

V. SIMULATION RESULTS

In this section, representative simulation results are pre-

sented to evaluate the performance of the proposed algorithms.

An isolated H-CRAN is considered with the MBS located at

the center of the cell and all UEs randomly distributed. When

a UE is close to the MBS, it usually prefers to access the

network via the MBS. Hence, it is assumed that all RRHs are

uniformly distributed in a ring area centered around the base

station with the radius of the inner ring to be 200 m and the

radius of the outer ring equal to the radius of the cell. Each

RRH has a covering radius of Dmax m. If the distance between

a UE and an RRH is within Dmax m, the UE chooses to

access the network via this RRH. Assume that each RRH can

simultaneously serve 3 UEs. If more than 3 UEs are associated

with an RRH, the RRH will choose to serve the 3 closest UEs,

and the rest UEs will be served by either the other RRHs

or the MBS. If a UE cannot be served by any RRHs, the

conventional cellular communication serves this UE. For the

sake of brevity, equal maximum power constraint for all RRHs

is assumed, i.e., P
(R)
k = P (R), ∀ k ∈ K. Unless otherwise

specified, the other system parameters are summarized in Table

I. All simulation results are obtained by averaging over 1000
channel realizations, and each channel realization is obtained

by generating a random user distribution as well as a random

set of fading coefficients.

A. Performance of the Proposed PSA alorithm

In this subsection, the performance of the proposed PSA

alorithm is investigated in terms of sum MSE of the network.

For comparison, the results obtained by the Dsatur algorithm

and the ES scheme are taken as benchmarks. In particular,

the Dsatur algorithm divides all RUEs into t clusters, and

randomly allocates pilots {q1, · · · , qt} to RUEs with RUEs

in each cluster using the same pilot. The ES scheme searches

all feasible pilot allocation schemes and can always find the

optimal solution with high calculation cost. Note that in the

simulation process, since the UEs and RRHs are randomly

generated, if the number of required pilots can not be satisfied

for given τ , i.e., τ < max {|MB| , t}, set τ = max {|MB| , t}.
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Fig. 3. Sum MSE of channel estimation versus pilot length with M = 8,
K = 25, B = 10, N = 4, Dmax = 100 and T = 50.
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Fig. 4. Sum MSE of channel estimation versus the number of UEs with
K = 25, B = 10, N = 4, Dmax = 100, τ = 5 and T = 50.

In Fig. 3, the sum MSE of channel estimation versus pilot

length is depicted. It can be seen from this figure that the pro-

posed PSA algorithm outperforms the Dsatur algorithm greatly

in terms of sum MSE. When τ increases, as expected, the sum

MSE obtained by the proposed PSA algorithm decreases with

τ and approaches that obtained by the ES scheme. While for

the Dsatur algorithm, the sum MSE remains unchanged since

it always assigns t pilots to RUEs regardless of τ .

Fig. 4 depicts the sum MSE of channel estimation versus the

number of UEs. Compared with the Dsatur algorithm, the sum

MSE of the network can be decreased greatly by the proposed

PSA algorithm. As the number of UEs grows, more channels

are required to be estimated and the probability of pilot reusing

increases for given τ , leading to more pilot contamination.

Hence, the sum MSE increases for all considered cases. When

the number of UEs is equal to the pilot length, i.e., M = τ ,

orthogonal training is the optimal pilot allocation solution. In

this case, there will be no pilot contamination, and channel

estimation is only affected by thermal noise. Hence, the sum

MSE will be very small, which can be found from both Figs.

3 and 4.
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Fig. 5. Convergence behaviors of the proposed RTD algorithm with M = 10,
B = 10, N = 4, Dmax = 100, τ = 5 and T = 50.
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Fig. 6. (a) Sum SE of RUEs versus the number of RRH antennas with
M = 10, K = 25, B = 10, Dmax = 100, τ = 5 and T = 50; (b) Sum
SE of BUEs versus the number of MBS antennas with M = 10, K = 25,
N = 4, Dmax = 100, τ = 5 and T = 50.

B. Performance of the Proposed RTD alorithm

In this subsection, the performance of the proposed RTD

alorithm is evaluated.

First, in Fig. 5, the convergence behavior of the proposed

RTD algorithm under different values of K is illustrated. It can

be seen from this figure that the lower bound on sum SE of the

network monotonically increases during the iterative procedure

and converges rapidly after only a few iterations (within 8

iterations for all considered configurations). Fig. 5 also shows

that the sum SE increases with the number of RRHs. This

is because more UEs will access the network via RRHs and

each RUE can be served by more RRHs as K grows. Due

to short transmission distance between RUEs and RRHs, SE

gains can be obtained in contrast to the conventional cellular

communication.

Since explicit expressions of achievable rate of both RUEs

and BUEs are unavailable, this paper aims to maximize the

lower bound on sum SE of the network. It is thus necessary to

verify the feasibility. In Fig. 6, the gaps between the achievable
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Fig. 7. Sum SE of the network versus pilot length with M = 15, K = 25,
B = 16, N = 4 and Dmax = 100.
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Fig. 8. Sum SE of the network versus the number of UEs with B = 16,
N = 4, Dmax = 100, τ = 5 and T = 50.

rate of RUEs, BUEs and their corresponding lower bounds

are investigated. Fig. 6 shows that the achievable sum rates of

RUEs and BUEs are both close to their corresponding lower

bounds, indicating that it is reasonable to solve the sum SE

maximization problem based on lower bounds (18) and (19).

In addition, Fig. 6 also shows that the sum SE increases with

RRH and MBS antennas, which is consistent with intuition.

In Fig. 7, the effect of pilot length under different values of

coherence interval is investigated. It is shown that for all con-

sidered cases, the sum SE of the network first grows and then

decreases w.r.t. τ . This is because only a few orthogonal pilots

are reused among UEs for a small τ . In this case, the channel

estimation is significantly influenced by pilot contamination.

Therefore, the sum SE can be enhanced by increasing τ .

However, as τ becomes large enough, the channel estimation

accuracy can be hardly improved by further enlarging τ . Coun-

terproductively, increasing pilot length reduces the number of

symbols available for data transmission, and thereby reduces

the sum SE. Note that in Fig. 7, the minimum sum SE is

obtained when τ = M , i.e., UEs adopt the conventional

orthogonal training scheme for channel estimation. Hence, the
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Fig. 9. Sum SE of the network versus the covering radius of RRHs with
K = 25, B = 16, N = 4, τ = 5 and T = 50.

sum SE of the network can be significantly increased by pilot

reuse and the proposed RTD algorithm, especially when T is

small.

Fig. 8 depicts the sum SE of the network versus the number

of UEs under different values of K . For comparison, the

results obtained by using Algorithm 2 proposed in [5] are

depicted as benchmarks, which assume that perfect global

CSI is available. Note that reference [5] considered a C-RAN

without MBS. Hence, for the sake of fairness, the same H-

CRAN network is considered when obtaining the benchmarks.

From Fig. 8, several observations can be made. First, as

expected, the sum SE grows with K for all considered cases.

Second, as the number of UEs increases, the sum SE grows

monotonically for the proposed RTD algorithm, while first

increases and then slightly decreases for Algorithm 2 proposed

in [5]. This is because orthogonal training is used by [5] to

obtain the perfect CSI. As M grows, the number of required

pilots increases, and thereby decreases the sum SE. In addition,

it can also be seen that compared with Algorithm 2 proposed in

[5], the sum SE of the network can be significantly improved

by the proposed RTD algorithm.

In Fig. 9, the effect of covering radius of RRHs on sum

SE of the network is investigated. As Dmax increases, more

UEs will access the network via RRHs and each RUE can be

served by more RRHs. Hence, for the cases with M = 13 and

M = 16, the sum SE of the network grows with Dmax for

both the proposed RTD algorithm and Algorithm 2 proposed

in [5]. However, when M = 10, the sum SE first decreases

and then increases for both the proposed RTD algorithm and

the benchmark. This is due to the fact that as Dmax increases,

channel conditions between RRHs and RUEs become worse.

Though coverage areas of RRHs become large, the sum SE

gains brought by this are limited when M is small. Hence, the

sum SE of the network suffers a decrease.

VI. CONCLUSIONS

This paper has studied pilot scheduling and robust trans-

mission design problems in an ultra-dense H-CRAN. Since

pilot reuse was assumed among UEs to shorten pilot overhead,
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pilot contamination inevitably exists. Hence, a pilot scheduling

algorithm was proposed to minimize the sum MSE of all

channel estimates. Afterwards, robust transmit beam-vectors

were designed to maximize the sum SE of the network.

Since each RRH or the MBS only has the imperfect CSI

of intra-cluster UEs and only tracks the large-scale channel

gains of inter-cluster UEs, it was difficult to obtain the exact

achievable rate of each link. Hence, a lower bound on each

UE’s achievable rate was derived and an alternative robust

transmission design algorithm was proposed to maximize the

lower bound on sum SE. Simulation results showed that

compared with existing algorithms, the system performance

can be significantly improved by the proposed algorithms in

terms of both sum MSE and sum SE.

APPENDIX A

PROOF OF THEOREM 1

Using the convexity of log2
(

1 + 1
x

)

(∀ x > 0) and applying

the Jensen’s inequality, a lower bound on R
(R)
i can be derived

as (37) at the bottom of this page. Denote

E
(R)
i,i = E

{

g̃i,ig̃
H
i,i

}

, G
(R)
i′,i = E

{

gi′,ig
H
i′,i

}

,

H
(R)
b,i = E

{

hb,ih
H
b,i

}

, ∀ i ∈ MR, i′ ∈ MR \ i. (38)

From the definition of g̃i,i, it is known that g̃i,i consists of

i.i.d. Gaussian elements with zero mean and variance given

by (4). Hence,

E
(R)
i,i = blkdiag {δk,iIN , ∀ k ∈ Ki} . (39)

To obtain the explicit expression of G
(R)
i′,i, denote the set of

RRHs serving RUE i′ as Ki′ =
{

ki
′

1 , · · · , ki
′

|Ki′ |

}

. Then,

according to the definition of gi′,i, G
(R)
i′,i can be rewritten as

G
(R)
i′,i =













(

G
(R)
i′,i

)

1,1
. . .

(

G
(R)
i′,i

)

1,|Ki′ |

...
. . .

...
(

G
(R)
i′,i

)

|Ki′ |,1
. . .

(

G
(R)
i′,i

)

|Ki′ |,|Ki′ |













,

(40)

where
(

G
(R)
i′,i

)

o,z
, E

{

hki′
o ,ih

H
ki′
z ,i

}

, ∀ o, z ∈ {1, · · · ,
|Ki′ |} represents the oth row and zth column block matrix

of G
(R)
i′,i. From Stage I it is known that for any RUE i, only

channel vectors hk,i, ∀k ∈ Ki are estimated, while hk,i, ∀k ∈
K\Ki are unknown. In addition, different channel vectors are

independent with each other. As a result,
(

G
(R)
i′,i

)

o,z
is given

by

(

G
(R)
i′,i

)

o,z
=











ĥki′
o ,iĥ

H
ki′
o ,i

+δki′
o ,iIN , if o = z, ki

′

o ∈ Ki,

αki′
o ,iIN , if o = z, ki

′

o 6∈ Ki,

0, otherwise.
(41)

Since for any RUE i, hb,i is not estimated, it follows that

H
(R)
b,i = αb,iIB . (42)

Substituting (39), (40) and (42) into (37), the lower bound (18)

can be obtained.

Similarly, for BUE j, a lower bound on R
(B)
j can also be

derived as (43) shown at the bottom of this page. Denote

E
(B)
b,j = E

{

h̃b,j h̃
H
b,j

}

, G
(B)
i,j = E

{

gi,jg
H
i,j

}

,

H
(B)
b,j = E

{

hb,jh
H
b,j

}

, ∀ j ∈ MB, i ∈ MR. (44)

R
(R)
i ≥ T − τ

T
log2



1 +

(

E

{

1

η
(R)
i

})−1




=
T − τ

T
log2











1 +

∣

∣ĝH
i,iwi

∣

∣

2

E

{

∣

∣g̃H
i,iwi

∣

∣

2
}

+
∑

i′∈MR\i

E

{

|gi′,iwi′ |2
}

+
∑

j∈MB

E

{

∣

∣

∣hH
b,iwb,j

∣

∣

∣

2
}

+N0











, r
(R)
i , ∀ i ∈ MR, (37)

R
(B)
j ≥ T − τ

T
log2



1 +

(

E

{

1

η
(B)
j

})−1




=
T − τ

T
log2











1 +

∣

∣

∣ĥH
b,jwb,j

∣

∣

∣

2

E

{

∣

∣

∣
h̃H
b,jwb,j

∣

∣

∣

2
}

+
∑

i∈MR

E

{

|gi,jwi|2
}

+
∑

j′∈MB\j

E

{

∣

∣

∣
hH
b,jwb,j′

∣

∣

∣

2
}

+N0











, r
(R)
j , ∀ j ∈ MB, (43)
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Since for any BUE j, only hb,j is estimated, while channel

vectors gi,j , ∀ i ∈ MR are unknown, E
(B)
b,j , G

(B)
b,j and H

(B)
b,j

can thus be readily obtained as follows

E
(B)
b,j = δb,jIB ,

G
(B)
i,j = blkdiag {αk,jIN , ∀ k ∈ Ki} ,

H
(B)
b,j = ĥb,j ĥ

H
b,j + δb,jIB . (45)

Substituting (45) into (43), the lower bound (19) can be

obtained.

Since large-scale channel gains and the variance of channel

estimation errors, i.e., (4) and (7) are all positive, it can be

easily verified that E
(R)
i,i , G

(R)
i′,i, H

(R)
b,i , E

(B)
b,j , G

(B)
i,j and H

(B)
b,j

are all positive definite matrices. Thus, Theorem 1 is proven.

APPENDIX B

PROOF OF THEOREM 2

In order to simplify the proof, a special case is first

considered. Denote

r = log2

(

1 +

∣

∣gHw
∣

∣

2

wHEw + vHGv +N0

)

, (46)

where g,w,v ∈ CC×1, E = diag {θ1, · · · , θC} ∈ R
C×C
+

and N0 ∈ R++. G ∈ C
C×C is a positive definite Hermitian

matrix and admits an eigen-decomposition G = UΓUH ,

where U is a C × C dimensional unitary matrix with each

column being the eigenvector of G and Γ is a diagonal matrix

whose diagonal elements are the corresponding eigenvalues

of G, i.e., Γc,c = γc [45]. θc and γc, ∀ c ∈ {1, · · · , C}
are all positive real constants. Let ec denote a C dimensional

vector with one in the cth position and zeros elsewhere. E

and Γ can then be rewritten as E = [θ1e1, · · · , θCeV ] and

Γ = [γ1e1, · · · , γCeV ], respectively. Denote v̄ = UHv. It

follows that

r = log2









1 +

∣

∣gHw
∣

∣

2

C
∑

c=1
θc |eHc w|2 +

C
∑

c=1
γc |eHc v̄|2 +N0









.

(47)

Obviously, (47) shows that r can be seen as the rate of

a mobile user in an equivalent downlink interfering MISO

network. The received signal of this user is given by

y = gHwx0 +

C
∑

c=1

√

θce
H
c wxc +

C
∑

c=1

√
γce

H
c v̄sc + n, (48)

where the first term denotes the desired signal, and the second

to the third terms are the interference from other users.

g,
√
θcec and

√
γcec denote the channel vectors from all

transmitters to the desired receiver. w and v are the transmit

beam-vectors. x0, xc and sc represent the i.i.d. data symbols

with zero mean and unit variance. n is the complex white

Gaussian noise with variance N0, i.e., n ∼ CN (0, N0). Thus,

the MSE of the considered link can be written as

MSE = E

{

∣

∣fHy − x0

∣

∣

2
}

=
∣

∣fHgHw − 1
∣

∣

2
+

C
∑

c=1

θc
∣

∣fHeHc w
∣

∣

2

+
C
∑

c=1

γc
∣

∣fHeHc v̄
∣

∣

2
+N0|f |2

=
∣

∣fHgHw − 1
∣

∣

2
+ |f |2wHEw + |f |2v̄H

Γv̄ +N0|f |2

=
∣

∣fHgHw − 1
∣

∣

2
+ |f |2wHEw + |f |2vHGv +N0|f |2,

(49)

and the corresponding MMSE receiver which minimizes (49)

is given by

f =
gHw

wH (ggH +E)w + vHGv +N0
. (50)

From (39), (40), (42) and (45), it is known that E
(R)
i,i , H

(R)
b,i ,

E
(B)
b,j and G

(B)
i,j are all diagonal matrices as E in (46), and

G
(R)
i′,i and H

(B)
b,j are both positive definite Hermitian matrices

as G in (46). Analogously, Theorem 2 can be readily verified

as above.
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