arXiv:1804.08475v2 [math.GR] 12 May 2018

EXISTENCE OF EQUIVARIANT MODELS OF G-VARIETIES

MIKHAIL BOROVOI

ABSTRACT. Let ko be a field of characteristic 0, and let k£ be a fixed algebraic closure
of ko. Let G be an algebraic k-group, and let Y be a G-variety over k. Let Go be a
ko-model (ko-form) of G. We ask whether Y admits a Go-equivariant ko-model Y.

We assume that Y admits a G¢-equivariant ko-model Yy, where G, is an inner form
of Go. We give a Galois-cohomological criterion for the existence of a Gg-equivariant
ko-model Yy of Y. We apply this criterion to certain spherical homogeneous varieties
Y =G/H.

1. INTRODUCTION

1.1. Let kg be a field of characteristic 0, and let k be a fixed algebraic closure of ky. Set
I' = Gal(k/ko).

Let G be a connected algebraic group over k (not necessarily linear). Let Y be a
G-variety, that is, an irreducible algebraic variety over k together with a morphism

HiGXkY—)Y

defining an action of G on Y. We say that (Y,0) is a G-k-variety or just that Y is a
G-k-variety.

Let Gy be a kg-model (ko-form) of G, that is, an algebraic group over kg together with
an isomorphism of algebraic k-groups

| Zen GO Xkok:)G.

By a Gy-equivariant ko-model of the G-k-variety (Y,0) we mean a Go-ko-variety (Y, 6p)
together with an isomorphism vy : Yy xj, k — Y such that the following diagram com-
mutes:

0o,k
Gox Xk Yo — Yo

UGXI/yl lVY
0

GXkY Y

Inspired by the works of Akhiezer and Cupit-Foutou [2], [1], for a given kyp-model G of
G we ask whether there exists a Gy-equivariant kg-model Y of Y.

1.2. With the above notation, we consider the group Aut(G) of automorphisms of G. We
regard Aut(G) as an abstract group. Any g € G(k) defines an inner automorphism

ig: G — G, xvw grg ' for z € G(k).

We obtain a homomorphism

it G(k) — Aut(G).
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We denote by Inn(G) C Aut(G) the image of the homomorphism 7 and we say that Inn(G)
is the group of inner automorphisms of G. We may identify Inn(G) with G(k), where

G=G/Z(G)
and Z(G) is the center of G.

Let G¢ be a kp-model of G. We write Zy, for the center Z(G,), then Gy =Gy /Zs is
a ko-model of G. Let ¢: I' = G (k) be a 1-cocycle, that is, a locally constant map such
that the following cocycle condition is satisfied:

(1.3) cst = cg - ¢y forall s,tel.

We denote the set of such 1-cocycles by Z1(T', G (k)) or by Z'(ko,Gy). For ¢ € Z'(ko, G)
one can define the c-twisted inner form .(G¢) of Ge; see Subsection below. For
simplicity we write .G, for (G ).

1.4. It is well known that if G is a connected reductive k-group, then any kg-model Gg
of G is an inner form of a quasi-split model; see e.g., Springer [I4, Proposition 16.4.9].
In other words, there exist a quasi-split model G4 of G and a 1-cocycle ¢ € Z 1(/<:0,6q5)
such that Gy = .Ggs. In some cases it is clear that Y admits a Ggs-equivariant ko-
model. For example, assume that Y = G/U, where U = R, (B), the unipotent radical of
a Borel subgroup B of G. Since G is a quasi-split model, there exists a Borel subgroup
Bys C Ggs (defined over ko). Set Ugs = Ry(Bgs), then Ggs/Ugs is a Ggs-equivariant
ko-model of Y = G/U.

1.5. In the setting of [LT and .2 let G, be a ko-model of G and let Gy = .G, where
c € Z ko, Gy). Motivated by [L4, we assume that Y admits a G-equivariant kg-model
Y., and we ask whether ¥ admits a Gg-equivariant kyp-model Y.

We consider the short exact sequence
1= Zy =Gy — Gy — 1
and the connecting map -
§: H' (ko,Go) — H?(ko, Zs);
see Serre [11], 1.5.7, Proposition 43]. If ¢ € Z'(ko, G,), we write [¢] for the corresponding
cohomology class in H'(kg, G ). By abuse of notation we write d[c] for §([c]).

We consider the group A := Aut®(Y) of G-equivariant automorphisms of Y, which we
regard as an abstract group. The G -equivariant kp-model Yy of YV defines a I'-action on
A, see Subsection below, and we denote the obtained I'-group by A. One can define
the second Galois cohomology set H2(T', As). See Springer [13, 1.14] for a definition of
H?(T', Ay) in the case when the I'-group A, is nonabelian.

For z € Z (k) we consider the G-equivariant automorphism
yr—z-y: Y =Y.
We obtain a ['-equivariant homomorphism
w: Zo(k) — Ag,
which induces a map
s H?(ko, Zo) — H*(T, As).

Theorem 1.6 (Theorem B.H). Let k, G, Y, ko, G¢, Yo, Ag, 9, . be as in Subsections
(L1 and L3 In particular, we assume that Y admits a G -equivariant ko-model Y. We
assume also that Y is quasi-projective. Let ¢ € Z'(ko,Gy) be a 1-cocycle, and consider
its class [c] € H'(ko,Gy). Set Go = Gy (the inner twisted form of G defined by the
1-cocycle ¢). Then the G-variety Y admits a Go-equivariant ko-model if and only if the
cohomology class

s.(0lc]) € H*(T, A)
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1s neutral.

Remark 1.7. In the case when A, is abelian, the condition “s,(d[c]) is neutral” means
that s (d[c]) = 1.

Theorem is the main result of this paper. Theorems [[.8, [[LT2] and [[LT4] below are
applications of Theorem to the case when Y = G/H is a homogeneous space of G. In
this case A = A(k), where A = Ng(H)/H and Ng(H) denotes the normalizer of H in G;
see e.g. [4, Lemma 5.1].

In the following theorem, G is a connected reductive group.

Theorem 1.8 (Theorem [3]). Let G be a reductive group over an algebraically closed field
k of characteristic 0. Let H C G be a k-subgroup. Let kg C k be a subfield such that k is
an algebraic closure of k. Let Gy be a ko-model of G. Write Gy = Gqs, where Gy is a
quasi-split ko-model of G and ¢ € Z*(ko, Gqs/Z(Gys)). Assume that

(%) G/H admits a Gqs-equivariant ko-model Y.
The ko-model Yys defines a ko-model Aqs = Aut®=(Yys) of A = AutY(Y). Then G/H
admits a Go-equivariant ko-model Yy if and only if the image in H?(ko, Ays) of the Tits

class t(Go) € H2(ko, Z(éqs)) is neutral (see Section[]) below for the definition of the Tits
class).

Remark 1.9. In Theorem [L§] if there exists a Gp-equivariant ky-model Yy of G/H, then
the set of isomorphism classes of such models is in a canonical bijection with the set
H* (ko, Aut“(Yp)).

1.10. Let

c:I' — GQ(]C)

be a l-cocycle with values in Gy, that is, & € Z'(ko,Gy). Consider i o ¢ € Z'(ko,Gy),
then by abuse of notation we write :G, for ;o:G¢. We say that :G¢ is a pure inner form
of G. For a pure inner form Gy = G, the G-variety Y clearly admits a Gg-equivariant
ko-model: we may take Yy = :Ys; see Lemma [24] below. It follows from the cohomology

exact sequence (B3] below that for a cocycle ¢ € Z'(ko,G), the twisted form .G is a
pure inner form of G, if and only if d[c] = 1.

1.11. Let H be a connected linear k-group, and set G = H X, H. Let Y = H, where G
acts on Y by
(h1,ho) ¥y = hyyhy .
Note that Y = G/A, where A C H Xy H is the diagonal, that is, A is H embedded in G
diagonally. Let Hél) and Hé2) be two kp-models of H. We set Gy = Hél) X ko Hé2) and ask
whether Y admits a Gg-equivariant kg-model.
Theorem 1.12 (Theorem [.2). With the notation and assumptions of [L11, Y = (H X
H)/A admits an Ho(l) X ko Héz)—equz'vam'ant ko-model if and only if Héz) 1S a pure inner
form of Ho(l).
Example 1.13. Let k = C, kg = R, then I' = {1, s}, where s is the complex conjugation.
Let H = SL(4,C). Consider the diagonal matrices
Iy = diag(1,1,1,1) and Iy9 = diag(1,1,—1,-1).
Consider the real models SU(2,2) and SU(4) of G-
HY = SU(2,2), where SU(2,2)(R) = {g € SL(4,C) | g- L5 - %" = Ly},

HY = SU(4), where SU4)(R) = {g € SL(4,C) | g- I, - %" = I},
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where g% denotes the transpose of g. Consider the 1-cocycle
C: F—)SU(Q,Q)(R), 1~ 1, S|—>1—272.

A calculation shows that .SU(2,2) ~ SU(4). Thus SU(4) is a pure inner form of SU(2,2).
By Theorem [[L12] there exists an SU(2,2) xg SU(4)-equivariant real model Yy of ¥ =
(H x H)/A. We describe this model explicitly. We may take for Yj the transporter

Yo={9 €SL(4,C) | g- I1 - *g" = L2}

Clearly Yy is defined over R. It is well known that Y is nonempty but it has no R-points.
The group Gg := Ho(l) XR HO(Q) acts on Yy by

(h1,he) * g = h1ghy '

It is clear that Y[ is a principal homogeneous space of both Hél) and Hé2). Thus Yy is a
Go-equivariant kgp-model of Y. Compare [4, Example 10.11].

In the following theorem, G is a connected reductive group and Y = G/U.

Theorem 1.14 (Theorem [B1)). Let k and ko be as in [L1, and let G be a connected
reductive group over k. Let B C G be a Borel subgroup, and write U for the unipotent
radical of B. Consider the homogeneous space Y = G/U. Let Gy be a ko-model of G.
Then Y admits a Go-equivariant ko-model if and only if Gy is a pure inner form of a
quasi-split model of G.

Example 1.15. Let k = C, kg = R, G = SL(4,C), Y = G/U, where U is as in Theorem
[LT4 Let Gop = SU(4). Since Gy is a pure inner form of the quasi-split group SU(2,2), by
Theorem [[LT4] the variety G/U admits an SU(4)-equivariant R-model Y. This model has
no R-points (because the stabilizer of an R-point would be a unipotent subgroup of Gy
defined over R).

The plan for the rest of the paper is as follows. In Section 2] we recall basic definitions
and results. In Section Bl we prove Theorem In Section @ we prove Theorem In
Section Bl we prove Theorem [[LTIl In Section [6l we prove Theorem [[LT4]

ACKNOWLEDGEMENTS. The author is grateful to Boris Kunyavskii, Giuliano Gagliardi,
Stephan Snigerov, and Ronan Terpereau for stimulating discussions and/or e-mail ex-
changes.

2. PRELIMINARIES

2.1. Let kg, k, and I" be as in Subsection [[LTl By a kg-model of a k-scheme Y we mean a
ko-scheme Y| together with an isomorphism of k-schemes

vy : Yb Xko k :> Y.
We write I' = Gal(k/kg). For s € T', denote by s*: Speck — Speck the morphism of
schemes induced by s. Notice that (st)* =t* o s*.

Let (Y,py:Y — Speck) be a k-scheme. A k/ky-semilinear automorphism of Y is a
pair (s, u) where s € I"and p: Y — Y is an isomorphism of schemes such that the diagram
below commutes:

Speck L Speck
In this case we say also that p is an s-semilinear automorphism of Y. We shorten
“s-semilinear automorphism” to “s-semi-automorphism”. Note that if (s,u) is a semi-
automorphism of Y, then p uniquely determines s; see [4, Lemma 1.2].
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We denote SAut(Y') the group of all s-semilinear automorphisms p of Y, where s runs
over I' = Gal(k/kg). By a semilinear action of T' on Y we mean a homomorphism of
groups

w: T —= SAut(Y), s+ ps
such that for each s € I', ps is s-semilinear.

If we have a kg-scheme Yj, then the formula
(2.2) s+ idy, x (s*)71
defines a semilinear action of I" on

Y = YO Xko k= YO XSpec ko Spec k.
Thus a kg-model of Y induces a semilinear action of I" on Y.

Let (G,pg: G — Speck) be a k-group-scheme. A k/kg-semi-linear automorphism of
G is a pair (s,7) where s € I" and 7: G — G is a morphism of schemes such that the
following diagram commutes

G T G
N #
(S*)_l
Speck Speck
and the k-morphism
Ty 8:G — G

is an isomorphism of algebraic groups over k; see [4, Definition 2.2] for the notations 7

and s,G.
We denote by SAuty, /i, (G), or just by SAut(G), the group of all s-semilinear automor-
phisms 7 of G, where s runs over I' = Gal(k/kg). By a semilinear action of I" on G' we

mean a homomorphism

o: ' = SAut(G), s~ o
such that for all s € I', o4 is s-semilinear. As above, a kg-model Gy of G induces a
semilinear action of I on G.

Let G be an algebraic group over k and let Y be a G-k-variety. Let G be a kg-model of
G. It gives rise to a semilinear action o: I' = SAut(G), s — o5. Let Y be a Gg-equivariant
ko-model of Y. It gives rise to a semilinear action p: I' — SAut(Y’) such that for all s in
I" we have

1s(g-y) = 0s(g) - ps(y) for ally € Y(k), g € G(k).
We say then that pg is os-equivariant.

2.3. Let kg, k, and T" be as in Subsection [[1l Let Gy be a kg-model of G; it defines a
semilinear action

o: ' = SAut(G).
This action induces an action of I' on the abstract group Aut(G). Recall that a map

c: I' = Aut(G)

is called a 1-cocycle if the map c is locally constant and satisfies the cocycle condition
(C3). The set of such 1-cocycles is denoted by ZY(T, Aut(G)) or Z'(ko, Aut(G)). For
c € Z(ko, Aut(G)), we consider the c-twisted semilinear action

o' : T — SAut(G), s+ cso0s.

Then, clearly, o/, is an s-semi-automorphism of G for any s € I'. Tt follows from the cocycle
condition (L3) that

ol =o.oao, forall s,t€T.



6 MIKHAIL BOROVOI

Since G is an algebraic group, the semilinear action ¢’ comes from some kyp-model G, of
G; see Serre [10, Section V.4.20, Corollary 2(ii) of Proposition 12] and Serre [I1} III1.1.3,
Proposition 5. We write G, = .Gy and say that G|, is the twisted form of Gy defined by
the 1-cocycle c.

Lemma 2.4. Let G be a linear algebraic group over k, and let Y be a quasi-projective
G-k-variety. Let G¢ be a ko-model of G, and assume that Y admits a G -equivariant
ko-model Yy, Let é € Z'(ko, Gy) be a 1-cocycle. Consider the pure inner form :G. Then
Y admits a ;G -equivariant ko-model.

Proof. Write Gy = :G(. We take Yy = Yy, then Yj is a Go-equivariant kp-model.
We give details. The ko-models G, and Yy, define semilinear actions
o: "= SAut(G) and p: T — SAut(Y)

such that for any s € I' the semi-automorphism g is os-equivariant, that is,

wlg-y) =os(g) - ps(y) forall g€ G(k), y € Y(k).

Let é: ' — G(k) be a l-cocycle, that is, ¢ € Z'(kg,Gy). Consider the pure inner form
Gop = Gy, then

0%(g) =& -0s(g) - & for s €T, g € G(k).

S
where ¢¥ is the semilinear action defined by Go. Now we define the twisted form Yo, as
follows. We set

p(y) = & - 1(y)-
Since ¢ is a 1-cocycle, we have
Mgt :,ugo,u? for all s,t €T

Since Y is quasi-projective, by Borel and Serre [3, Lemme 2.12] the semilinear action
p?: T — SAut(Y) defines a kg-model Yy of Y. An easy calculation shows that

1(g-y) =03(g) - pily) forall g € G(k), y € Y (),
hence by Galois descent we obtain an action of Gy on Y (defined over ky); see Jahnel [6]
Theorem 2.2(b)]. Thus Y admits a Gp-equivariant kg-model Yy = ;Y. O

3. MODEL FOR AN INNER TWIST OF THE GROUP

3.1. Let k be an algebraically closed field of characteristic 0. Let G be an algebraic group
over k. Let Y be a G-k-variety. Let Z(G) denote the center of G. We consider the
algebraic group G := G/Z(G). The group G(k) naturally acts on G:

9Z(G): xz v grg™ ' for gZ(G) € G(k), = € G(k).
Let ko be a subfield of k such that k/kq is an algebraic extension. We write I' =
Gal(k/kg), which is a profinite group.

Let G4 be a kg-model of G. We write G, = G /Z(Gy), where Z(G,) is the center of
G- The ko-model G, of G defines a semilinear action:

o: ' = SAut(G);

cf. Z2). We write Gy (k) for the group of k-points of the algebraic ko-group G, then we
have an action of I' on G (k):

(5,9) = %g=04(g) forseTl, ge Gs(k)=G(k).

Let ¢ € Z'(ko, G) be a 1-cocycle, that is, a locally constant map
c: T — Go(k) suchthat cg=cs-% forall s tel.



MODELS OF G-VARIETIES 7

We denote by Gy = .G, the corresponding inner twisted form of G, see Subsection
This means that Go(k) = G (k), but the Galois action is twisted by e

0
o, =cso0s forsel,

where we embed G (k) into Aut(G).

In this section we assume that there exists a G-equivariant kp-model Y, of Y. We give
a criterion for the existence of a Gp-equivariant kp-model Yy of Y, where Gy = .Gy

3.2. We write [c] € H!(ko, G,) for the cohomology class of c. We consider the short exact
sequence

1= Z(Gy) > Gy —Gp — 1
and the corresponding connecting map
§: H(ko,Go) — H?*(ko, Z(Gy))
from the cohomology exact sequence
(3.3) H'(ko, Z(Go)) — H'(ko, Go) — H'(ko, Go) —— H2(ko, Z(G));
see Serre [I1] 1.5.7, Proposition 43]. We obtain 6[c] € H?(ko, Z(G).
The G y-equivariant kg-model Yy, of Y defines an action of T' on A := Aut®(Y) by

(%a)(Py) = (a(y)) forseTl, aec A, yeY(k).

We denote by Ay the corresponding I'-group. We obtain homomorphisms
p: T — SAut(Y), s+ us, where us(y) =% forsel, yeY(k)=Yq(k),

and

7:T'— Aut(A), s+ 75, where75(a) =" forseTl, ae€ A

The center Z, C Gy, acts on Yo, and this action clearly commutes with the action of
G. Thus we obtain a canonical I'-equivariant homomorphism

w: Zo(k) — Ag.

3.4. We need the nonabelian cohomology set H?(T, A ); see Springer [13, 1.14]. Recall
that an (abelian) 2-cocycle z € Z2%(ko, Z,) is a locally constant map

a: I'x T — Zy(k), (s,t) — zsy
such that
Sdt,u . ds,tu = ds,t . dst,u for all S, t, u el
Then s,([2]) € H*(T, As) is by definition the class of the 2-cocycle (7, s o 2). This class
is called neutral if there exists a locally constant map a: I' = A, such that

as - “ar - (2 4t) -a;} =1 forall s,tel.

Theorem 3.5. Let G, H, Y, ko, G¢, Yo, A, 0 be as in Subsections [31 and [Z2.
In particular we assume that Y admits a G -equivariant ko-model Yo,. We assume also
that Y is quasi-projective. Let ¢ € Z'(ko,G) be a 1-cocycle, and consider it class [c] €
Hl(ko,Gy). Set Go = .Gy (the inner twisted form of Gy defined by the 1-cocycle c). The
G-variety Y admits a Go-equivariant ko-model if and only if the cohomology class

s.(0]c]) € H(T, As)

18 neutral.
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Proof. The ko-model G, of G defines a homomorphism
o: T = SAut(G), s~ os,

where each o, is an s-semi-automorphism of G. The G-equivariant kp-model Yo, of Y
defines a homomorphism
p: = SAut(Y), s+ pus

such that each ug is an s-semi-automorphism of Y and is os-equivariant, that is,

(3.6) ps(g-y) = 0s(g) - ps(y) for all g € G(k), y € Y ().
Since the map s +— ps is a homomorphism, we have

(3.7) st = jis O py  for all s,¢ € T.
We lift the 1-cocycle -
c: I'— G(k)
to a locally constant map
¢: ' = G(k),

which does not have to be a 1-cocycle. Let 0”: T' — SAut(G) denote the homomorphism
corresponding to the twisted form Gy = .G, then by definition
0d(g) = & 0u(g) - & "

For g € G(k), we write [(g) for the automorphism y +— ¢ -y of Y. We have
(3.8) l(g)oca=aol(g) forall ge Gk), a€ Ay,

because a is a G-equivariant automorphism of Y. By (B.6]) we have us(g-y) = os(g) - 1s(y),
hence

(3.9 psol(g) =1U(os(g)) ous forall sel, ge Gy(k).
Similarly, 7(a)(ps(y)) = ps(a(y)), hence,
(3.10) psoa=rgs(a)opus forallsel, ae As.

By definition (Serre [11] 1.5.6])
3[c] € H(ko, Z(G.))
is the class of the 2-cocycle given by
(5,t) = G5 - - E5 € Z(Go)(k) (s,t €T).
Then s, (d[c]) is the class of the 2-cocycle
(5,1) = 5¢(Cs - - E1) € Ao

Let
a: ' — Ag

be a locally constant map. We define

pd = as o l(&) o ps = (&) 0 ag o pus.
Lemma 3.11. For any s € ', the s-semi-automorphism ul is o2-equivariant.
Proof. Using (3.8]) and ([3.9), we compute:

139 - y) = (as 0 1(&))(ns(g - 9))

= as(Cs - 05(g) - 1s(y))

= 505(9)& " - as(@s - ps(y)) = 93(9) - 1o (y)- O
Lemma 3.12. The map s — pu? is a homomorphism if and only if
(3.13) as - ag - 2(6C ') ~ag =1 for all s,t €T.
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Proof. Let s,t € I'. Using (38), 39), and BI0]), we compute:
W00 1l 0 (1) ™) = ay 0 (&) o iy 0 a0 (&) o iy © i3t 0 U(Esr) 0 a7
— g 0 7ar) o (@) 0 How(@)) © s i 0 it 0 U(G) o aigh

By (1) we obtain that

pd o pd o (1l) ™t = as 0 y(ar) 0 1(Es) 0 l(0s(&r)) 0 1(Est) F 0 ag,
= as - “ay - #(Cs ¢ 6;1) . as_tl.
We see that
plo o ()t =1
if and only if ([B.I3) holds. Thus the map s — p2 is a homomorphism if and only if (Z.I3)
holds, which completes the proof of Lemma O

Now assume that s, (5[c]) € H?(T', A, ) is neutral. This means that there exists a locally
constant map

a: ' — .A<>
such that (3.I3]) holds. Then by Lemma the map
pl: T — SAut(Y), s pul

is a homomorphism, hence it satisfies hypothesis (i) of [4], Lemma 6.3. By Lemma BT
12 is o-equivariant, hence p° satisfies hypothesis (iv) of [4], Lemma 6.3. The variety
Y = G/H is quasi-projective, hence hypothesis (iii) of this lemma is satisfied. It is easy
to see that the restriction of the homomorphism pg to Gal(k/k1) for some finite Galois
extension ki /ko in k comes from a Gi-equivariant kj-model Y] of Y, where G1 = Go X, k1.
Thus the homomorphism p° satisfies hypothesis (ii) of [4], Lemma 6.3. By this lemma the
variety Y admits a Go-equivariant kg-model Yy inducing the homomorphism s + u2, as
required.

Conversely, assume that Y admits a Gg-equivariant kg-model Yy inducing a homomor-

phism
pl: T — SAut(G), s pul.
Then by Lemma BIT] (in the case as = 1) the s-semi-automorphism I(cs) o ps of Y is
ol-equivariant for any s € I'. Since 10 is 0%-equivariant as well, we have
py = as o l(cs) o pug
for some locally constant map
a:I' = Ay, s+ as.

Since the map s + p? is a homomorphism, by Lemma B.12] the equality (3.I3]) holds and
hence, s, (8[c]) is neutral in H?(T, A,). This completes the proof of Theorem B35 O

4. MODEL OF A HOMOGENEOUS SPACE OF A REDUCTIVE GROUP

Let k, ko, and T" be as in Subsection [LIl In this section G is a connected reductive
group over k. Let H C G be a k-subgroup (not necessarily spherical). We consider the
homogeneous G-variety Y = G/H. Consider the abstract group A = Aut®(G/H) and the
algebraic group A = Ng(H)/H, then there is a canonical isomorphism A(k) = A; see e.g.
[, Lemma 5.1]. Let Gqs be a quasi-split kg-model of G and let Y5 be a Gs-equivariant
model of G/H, then we obtain a I'-action on A(k) = A and hence, a ko-model Ay of A.
We need the following result:



10 MIKHAIL BOROVOI

Proposition 4.1. Let kg C k be a subfield such that k is a Galois extension of k. Let G be
a connected reductive group over k. Let Gy be any ko-model of G. Then there exist a quasi-
split inner ko-model Gqs of G and a cocycle ¢ € Zl(ko,Inn(Gqs)) such that Gy ~ Ggs
(we say that Gy is a quasi-split inner ko-form of Gg). Moreover, if Gy and Géls are two
quasi-split inner ko-forms of Gg, then they are isomorphic.

Proof. See “The Book of Involutions” [7, Proposition(31.5)], or Conrad [5, Proposition
7.2.12], the existence only in Springer [14] Proposition 16.4.9]. O

4.2. Let G be a connected reductive group over k, and let Gy be a kg-model of G. Write
G = G/Z(G) for the corresponding adjoint group, and G for the universal cover of the
connected semisimple group [G,G|. By Proposition 4] we may write Gy = .Ggs, where
Ggs is a quasi-split kp-model of G and ¢ € Z'(ko, Gqs/Z(Ggs)). We fix Ggs and c. We
write Ggs = Gas/Z (Gs).-

We write qu for the center Z (éqs) of the universal cover C~¥qs of the connected semisimple

group [Ggs, Ggs|. Similarly, we write Zj for the center Z (éo) of the universal cover Gy of
the connected semisimple group [Gg, Gg]. The short exact sequence

1= Zgs — Gos = Gos — 1

induces a cohomology exact sequence
~ ~ _ 5 ~
HY (ko, Zgs) — H'(ko, Gys) — H' (ko, Gos) —— H?(ko, Zys)-

By definition, the Tits class t(Go) is the image of [¢] € Z'(ko, Gqs) in H2(k, Zqs) under the
connecting map 6: H' (ko, Glys) — H?(ko, Zys); compare [7], Section 31, before Proposition
(31.7).

Theorem 4.3. Let G be a reductive group over an algebraically closed field k of charac-
teristic 0. Let H C G be an algebraic subgroup. Let kg C k be a subfield such that k is
an algebraic closure of k. Let G be a ko-model of G. Write Gy = .Gy, where Ggs s
a quasi-split inner form of Go and where ¢ € Z'(ko,Gqs). Assume that G/H admits a
Gs-equivariant ko-model. Then G/H admits a Go-equivariant ko-model if and only if the

image in H?(ko, Aqs) of the Tits class t(Go) € H%(ky, Z(éqs)) is neutral.

Proof. By Theorem B8] the homogeneous variety G/H admits a Go-equivariant kg-form if
and only if the image

#(0[c]) € H2(k‘0, Ags)

is neutral. We write Zqs for Z(Gqs) and qu for Z (éqs). From the commutative diagram
with exact rows

1 Zes Gos e 1
l l lid
1 Z qas Gqs Gqs 1

we obtain a commutative diagram
— S ~
Hl(kOa Gos) — HQ(kO, Zgs)
J I
Vol 6
Hl(k:(), Ggs) — Hz(ko’ Zgs);

which shows that
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By definition
t(Go) = b[c] € H?(ko, Zqs)-
Thus 5(8[c]) is the image in H?(kq, Aqs) of t(Go) under the map
H(ko, Zgs) — H*(ko, Zgs) — H* (Ko, Ags)

induced by the homomorphism qu — Zgs — Ags- We conclude that the homogeneous va-
riety G/H admits a Gp-equivariant ko-form if and only if the image of ¢(Go) in H?(ko, Aqs)
is neutral, as required. O

5. MODELS OF (H x H)/A

5.1. Let H be a connected algebraic k-group, and set G = H x, H. Let Y = H, where G
acts on Y by

(h1,ha) %y = hiyhy '
Note that Y = G/A, where A € H xj, H is the diagonal, that is, A is H embedded in G

diagonally. Let Hél) and HSQ) be two kp-models of H. We set Gy = Hél) X ko H(§2) and ask
whether Y admits a Gg-equivariant kg-model.

Theorem 5.2. With the notation and assumptions of [, Y = (H x H)/A admits an

Hél) X ko Hé2)—equivariant ko-model if and only if Hé2) is a pure inner form of Hél).

Proof of Theorem[2.2. Set G1 = Hél) X ko Hél), then Y admits a kg-model Y} = Ho(l)
(with the natural action of G). Assume that H® is a pure inner form of H®), then
Gy := Hél) X ko Héz) is a pure inner form of G, and by Lemma 2.4l the G-variety Y admits
a Go-equivariant kp-model. Explicitly, let P; denote the torsor (principal homogeneous
space) of H® corresponding to the 1-cocycle & see Serre 11l Section 1.5.2]. Then H®
acts on Ps, and H(k) = HW (k) acts on P simply transitively. Moreover, H?) = s(HM)
acts on P as well, and these two actions commute; see Serre [11] Section 1.5.3, Corollary
of Proposition 34]. Thus P; is an Ho(l) X ko HO(Q)—equivariant ko-model of Y.

)

Conversely, assume that Y admits an H, él) X ko H, 82 -equivariant kg-model. First we show

that then H® is an inner form of HY. Indeed, let
o®: T — SAut(H)

denote the semilinear actions corresponding to the model Ho(i) of H for i = 1,2. Recall
that A(k) = {(h,h) | h € H(k)}. Then for any s € I" we have

(o) x o) (AK)) = {(o{V (h), 0 (W) | h € H(K)}.
Since Y admits an Hél) X ko Hé2)—equivariant ko-model, the subgroup (Ugl) X 0£2))(A) is
conjugate to A in G = H x H; see, e.g., [I2, Lemma 4.1]. This means that there exists a
pair (hy, hs) € H(k) x H(k) such that
(e (h), P (h)) = (hihhT!, hohhyt) for all h € H(k).

It follows that
oM (h) = (hihy ") - 0P (h) - (hihy ")

S

We see that for any s € I', the s-semi-automorphism aff) of H differs from a£2) by an

) )

inner automorphism of H. This means that H(g? is an inner form of Hél .

Now we know that Hé2) = C(Hél)) for some 1-cocycle ¢ € Zl(kro,ﬁ(l)). Set G =
Hél) X ko Hél), then Y7 := Hél) with the natural action of G is a Gi-equivariant kg-model
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of Y. Moreover, Gg = Hél) X ko H(§2) is the inner twisted form of G; given by the 1-cocycle
(1,¢) € Z'(ko,G1). Then
Ol(1,0)] € H(ko, 2(Gh)) = H>(ko, Z(Hy")) x HA (ko, Z(H"))
is (1,dp[c]), where
Su: H ko, Hy) — H(ko, Z(HY))
is the connecting map. By Theorem 3.5 Y admits an Hél) X ko HO(Q)—equivariant ko-model

if and only if 5. (d[1,¢c]) = 0, that is, if and only if s, (1,dx[c]) = 1. An easy calculation
shows that

Nag(A)=Z(G)-A and A:=Ng(A)/JA=Z(G)/Z(A)=(Z(H) x Z(H))/Z(A).
Similarly, over ky we obtain
Ne, (A1) = Z(Gr)-Ay and Ay = Ng, (A1) /Ay = Z(Gh)/Z(A) = (Z(HP) < Z(H§)) ) 2(HY).
It is easy to see that the morphism of abelian kg-groups
ZHM) = Ay, 2o (1,2) - Z(A)
is an isomorphism. It follows that the induced map on cohomology
H?(ko, Z(Hg")) — H?(ko, A1)
)

-equivariant

ko-model if and only if dx[c] = 1, that is, if and only if HSQ) is a pure inner form of H(l),

as required. O

is an isomorphism of abelian groups. Therefore, Y admits an Hél) X ko HSQ

Lemma 5.3. Let Hy be a simply connected semisimple group over a p-adic field ky. Then
any pure inner form of Hy is isomorphic to Hy.

Proof. Indeed, by Kneser’s theorem we have H'(kq, Hy) = 1; see Platonov and Rapinchuk
[8, Theorem 6.4]. O

Corollary 5.4. In Theorem [2.3, if ko is a p-adic field and H is a stmply connected
semisimple group over k, then'Y admits an Hél) X ko HSQ)—equz'vam'ant ko-model if and only
if H(§2) 18 isomorphic to Hél).

Proof. Indeed, by Theorem 5.2 the variety Y admits an Hél) X ko Héz)—equivariant ko-model

(1)

if and only if Héz) is a pure inner form of H;’, and by Lemma [5.3] any pure inner form of

Ho(l) is isomorphic to Ho(l). O

6. MODELS OF G/U

Theorem 6.1. Let k be a fixed algebraic closure of a field k of characteristic 0, and let G
be a connected reductive group over k. Let B C G be a Borel subgroup, and write U for the
unipotent radical of B. Consider the homogeneous space Y = G/U. Let Gy be a ko-model
of G. ThenY admits a Go-equivariant ko-model if and only if G is a pure inner form of
a quasi-split model of G.

Proof. 1t is well known that Gg is an inner form of a quasi-split model Gy of G see
Springer [14 Proposition 16.4.9]) or “The Book of Involutions” [7, Proposition (31.5)],
or Conrad [5l, Proposition 7.2.12]. This means that Gy = .Gqs, where ¢ € Zl(ko,aqs).
Since G is quasi-split, there exists a Borel subgroup Bys C Ggs (defined over k). Set
Uqgs = Ry(Bgs), then Ggs/Uqs is a Ggs-equivariant kp-model of Y = G/U. By Theorem
B35 Y admits a Go-equivariant ko-model if and only if ».(8[c]) C H?(ko, Aqs) vanishes,
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where Aqs = Ng(Uqs)/Uqs = Tys and Tgs C Bgs is a maximal torus. Note that »: Zgs —
Aqs = Tis is the canonical embedding, where Zys = Z(Gqs).

We show that the homomorphism
st H?(ko, Zys) — H?(ko, Tes)
is injective. Indeed, we have a short exact sequence
1= Zgs — Tys — Ts — 1,
which induces a cohomology exact sequence
oo H(ko, Tos) — H*(ko, Zgs) — H?(ko, Tys) — - - -

Since G¢s is quasi-split, by Lemma below we have H'(kg,T4s) = 1, hence the homo-
morphism sz, is injective, as required.

We see that s (d[c]) = 1 if and only if d[¢c] = 1. Now consider the cohomology exact
sequence

o= H(ko, Gos) — H' (ko, o) —— H?(ko, Zas) — ...
It follows from the construction of the map ¢ (see Serre [II], Section 1.5.6]) that d[c] = 1 if

and only if ¢ can be lifted to a 1-cocycle é € Z(ko, G), that is, if and only if Gy = Gas
is a pure inner form of G, as required.

We conclude that Y admits a Gp-equivariant kg-model if and only if G is a pure inner
form of G . U

Lemma 6.2. Let Gy be a quasi-split semisimple group of adjoint type, By C Gp be a
Borel subgroup defined over kg, and Ty C Bo be a mazimal torus. Then H'(ko, By) =
H(ko, Tp) = 1.

Proof. Note that Ty ~ By/R,(By), which gives a canonical bijection H'(ko, By) — H"(ko, To);
see Sansuc [9, Lemme 1.13]. Since Gy is a group of adjoint type, the set of simple roots
S = S(Gok, Tok, Bo) is a basis of the character group X*(7p ); see Springer [14] 8.1.11].
Since By, is defined over ko, the action of I" on X*(Tp ) preserves the basis S. In other
words, X*(Tp i) is a permutation I'-module, hence T is a quasi-trivial ko-torus, and there-
fore, H'(ko, To) = 1; see Sansuc [9, Lemme 1.9]. O

Remark 6.3. In Theorem [6.1] assume that G is a semisimple group of adjoint type. Then
a ko-model of G/U, if exists, is unique. Indeed, then Ay = Tis, and by Lemma [6.2] we
have

H' (o, Ags) = H' (ko, Tys) = 1.

Corollary 6.4. In Theorem[6.1 assume that kg is a p-adic field and that G is semisimple
and simply connected. Then G /U admits a Gg-equivariant ko-model if and only if Gy is
quasi-split.

Proof. Indeed, by Theorem the G-variety G/U admits a Gy-equivariant kg-model if
and only if G is a pure inner form of a quasi-split group Gs. Since kg is a p-adic field,
by Lemma then G is isomorphic to Gs. O
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