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EXISTENCE OF EQUIVARIANT MODELS OF G-VARIETIES

MIKHAIL BOROVOI

Abstract. Let k0 be a field of characteristic 0, and let k be a fixed algebraic closure
of k0. Let G be an algebraic k-group, and let Y be a G-variety over k. Let G0 be a
k0-model (k0-form) of G. We ask whether Y admits a G0-equivariant k0-model Y0.

We assume that Y admits a G♦-equivariant k0-model Y♦, where G♦ is an inner form
of G0. We give a Galois-cohomological criterion for the existence of a G0-equivariant
k0-model Y0 of Y . We apply this criterion to certain spherical homogeneous varieties
Y = G/H .

1. Introduction

1.1. Let k0 be a field of characteristic 0, and let k be a fixed algebraic closure of k0. Set
Γ = Gal(k/k0).

Let G be a connected algebraic group over k (not necessarily linear). Let Y be a
G-variety, that is, an irreducible algebraic variety over k together with a morphism

θ : G×k Y → Y

defining an action of G on Y . We say that (Y, θ) is a G-k-variety or just that Y is a
G-k-variety.

Let G0 be a k0-model (k0-form) of G, that is, an algebraic group over k0 together with
an isomorphism of algebraic k-groups

νG : G0 ×k0 k
∼

→ G.

By a G0-equivariant k0-model of the G-k-variety (Y, θ) we mean a G0-k0-variety (Y0, θ0)

together with an isomorphism νY : Y0 ×k0 k
∼

→ Y such that the following diagram com-
mutes:

G0,k ×k Y0,k

θ0,k
//

νG×νY
��

Y0,k

νY
��

G×k Y
θ

// Y

Inspired by the works of Akhiezer and Cupit-Foutou [2], [1], for a given k0-model G0 of
G we ask whether there exists a G0-equivariant k0-model Y0 of Y .

1.2. With the above notation, we consider the group Aut(G) of automorphisms of G. We
regard Aut(G) as an abstract group. Any g ∈ G(k) defines an inner automorphism

ig : G → G, x 7→ gxg−1 for x ∈ G(k).

We obtain a homomorphism

i : G(k) → Aut(G).
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We denote by Inn(G) ⊂ Aut(G) the image of the homomorphism i and we say that Inn(G)
is the group of inner automorphisms of G. We may identify Inn(G) with G(k), where

G = G/Z(G)

and Z(G) is the center of G.

Let G♦ be a k0-model of G. We write Z♦ for the center Z(G♦), then G♦ := G♦/Z♦ is
a k0-model of G. Let c : Γ → G♦(k) be a 1-cocycle, that is, a locally constant map such
that the following cocycle condition is satisfied:

(1.3) cst = cs ·
sct for all s, t ∈ Γ.

We denote the set of such 1-cocycles by Z1(Γ, G♦(k)) or by Z1(k0, G♦). For c ∈ Z1(k0, G)
one can define the c-twisted inner form c(G♦) of G♦; see Subsection 2.3 below. For
simplicity we write cG♦ for c(G♦).

1.4. It is well known that if G is a connected reductive k-group, then any k0-model G0

of G is an inner form of a quasi-split model; see e.g., Springer [14, Proposition 16.4.9].
In other words, there exist a quasi-split model Gqs of G and a 1-cocycle c ∈ Z1(k0, Gqs)
such that G0 = cGqs. In some cases it is clear that Y admits a Gqs-equivariant k0-
model. For example, assume that Y = G/U , where U = Ru(B), the unipotent radical of
a Borel subgroup B of G. Since Gqs is a quasi-split model, there exists a Borel subgroup
Bqs ⊂ Gqs (defined over k0). Set Uqs = Ru(Bqs), then Gqs/Uqs is a Gqs-equivariant
k0-model of Y = G/U .

1.5. In the setting of 1.1 and 1.2, let G♦ be a k0-model of G and let G0 = cG♦, where
c ∈ Z1(k0, G♦). Motivated by 1.4, we assume that Y admits a G♦-equivariant k0-model
Y♦, and we ask whether Y admits a G0-equivariant k0-model Y0 .

We consider the short exact sequence

1 → Z♦ → G♦ → G♦ → 1

and the connecting map
δ : H1(k0, G♦) → H2(k0, Z♦);

see Serre [11, I.5.7, Proposition 43]. If c ∈ Z1(k0, G♦), we write [c] for the corresponding
cohomology class in H1(k0, G♦). By abuse of notation we write δ[c] for δ([c]).

We consider the group A := AutG(Y ) of G-equivariant automorphisms of Y , which we
regard as an abstract group. The G♦-equivariant k0-model Y♦ of Y defines a Γ-action on
A, see Subsection 3.2 below, and we denote the obtained Γ-group by A♦. One can define
the second Galois cohomology set H2(Γ,A♦). See Springer [13, 1.14] for a definition of
H2(Γ,A♦) in the case when the Γ-group A♦ is nonabelian.

For z ∈ Z♦(k) we consider the G-equivariant automorphism

y 7→ z · y : Y → Y.

We obtain a Γ-equivariant homomorphism

κ : Z♦(k) → A♦ ,

which induces a map
κ∗ : H

2(k0, Z♦) → H2(Γ,A♦).

Theorem 1.6 (Theorem 3.5). Let k, G, Y, k0, G♦, Y♦, A♦, δ, κ∗ be as in Subsections
1.1 and 1.5. In particular, we assume that Y admits a G♦-equivariant k0-model Y♦. We
assume also that Y is quasi-projective. Let c ∈ Z1(k0, G♦) be a 1-cocycle, and consider
its class [c] ∈ H1(k0, G♦). Set G0 = cG♦ (the inner twisted form of G♦ defined by the
1-cocycle c). Then the G-variety Y admits a G0-equivariant k0-model if and only if the
cohomology class

κ∗(δ[c]) ∈ H2(Γ,A♦)
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is neutral.

Remark 1.7. In the case when A♦ is abelian, the condition “κ∗(δ[c]) is neutral” means
that κ∗(δ[c]) = 1.

Theorem 1.6 is the main result of this paper. Theorems 1.8, 1.12, and 1.14 below are
applications of Theorem 1.6 to the case when Y = G/H is a homogeneous space of G. In
this case A = A(k), where A = NG(H)/H and NG(H) denotes the normalizer of H in G;
see e.g. [4, Lemma 5.1].

In the following theorem, G is a connected reductive group.

Theorem 1.8 (Theorem 4.3). Let G be a reductive group over an algebraically closed field
k of characteristic 0. Let H ⊂ G be a k-subgroup. Let k0 ⊂ k be a subfield such that k is
an algebraic closure of k. Let G0 be a k0-model of G. Write G0 = cGqs, where Gqs is a
quasi-split k0-model of G and c ∈ Z1(k0, Gqs/Z(Gqs)). Assume that

(∗) G/H admits a Gqs-equivariant k0-model Yqs.

The k0-model Yqs defines a k0-model Aqs = AutGqs(Yqs) of A = AutG(Y ). Then G/H
admits a G0-equivariant k0-model Y0 if and only if the image in H2(k0, Aqs) of the Tits

class t(G̃0) ∈ H2(k0, Z(G̃qs)) is neutral (see Section 4 below for the definition of the Tits
class).

Remark 1.9. In Theorem 1.8, if there exists a G0-equivariant k0-model Y0 of G/H, then
the set of isomorphism classes of such models is in a canonical bijection with the set
H1(k0,Aut

G0(Y0)).

1.10. Let

c̃ : Γ → G♦(k)

be a 1-cocycle with values in G♦, that is, c̃ ∈ Z1(k0, G♦). Consider i ◦ c̃ ∈ Z1(k0, G♦),
then by abuse of notation we write c̃G♦ for i◦c̃G♦. We say that c̃G♦ is a pure inner form
of G♦. For a pure inner form G0 = c̃G♦, the G-variety Y clearly admits a G0-equivariant
k0-model: we may take Y0 = c̃Y♦; see Lemma 2.4 below. It follows from the cohomology
exact sequence (3.3) below that for a cocycle c ∈ Z1(k0, G♦), the twisted form cG♦ is a
pure inner form of G♦ if and only if δ[c] = 1.

1.11. Let H be a connected linear k-group, and set G = H ×k H. Let Y = H, where G
acts on Y by

(h1, h2) ∗ y = h1yh
−1
2 .

Note that Y = G/∆, where ∆ ⊂ H ×k H is the diagonal, that is, ∆ is H embedded in G

diagonally. Let H
(1)
0 and H

(2)
0 be two k0-models of H. We set G0 = H

(1)
0 ×k0 H

(2)
0 and ask

whether Y admits a G0-equivariant k0-model.

Theorem 1.12 (Theorem 5.2). With the notation and assumptions of 1.11, Y = (H ×

H)/∆ admits an H
(1)
0 ×k0 H

(2)
0 -equivariant k0-model if and only if H

(2)
0 is a pure inner

form of H
(1)
0 .

Example 1.13. Let k = C, k0 = R, then Γ = {1, s}, where s is the complex conjugation.
Let H = SL(4,C). Consider the diagonal matrices

I4 = diag(1, 1, 1, 1) and I2,2 = diag(1, 1,−1,−1).

Consider the real models SU(2, 2) and SU(4) of G:

H
(1)
0 = SU(2, 2), where SU(2, 2)(R) = {g ∈ SL(4,C) | g · I2,2 ·

sgtr = I2,2},

H
(2)
0 = SU(4), where SU(4)(R) = {g ∈ SL(4,C) | g · I4 ·

sgtr = I4},
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where gtr denotes the transpose of g. Consider the 1-cocycle

c : Γ → SU(2, 2)(R), 1 7→ I4, s 7→ I2,2 .

A calculation shows that cSU(2, 2) ≃ SU(4). Thus SU(4) is a pure inner form of SU(2, 2).
By Theorem 1.12, there exists an SU(2, 2) ×R SU(4)-equivariant real model Y0 of Y =
(H ×H)/∆. We describe this model explicitly. We may take for Y0 the transporter

Y0 = {g ∈ SL(4,C) | g · I4 ·
sgtr = I2,2}.

Clearly Y0 is defined over R. It is well known that Y0 is nonempty but it has no R-points.

The group G0 := H
(1)
0 ×R H

(2)
0 acts on Y0 by

(h1, h2) ∗ g = h1gh
−1
2 .

It is clear that Y0 is a principal homogeneous space of both H
(1)
0 and H

(2)
0 . Thus Y0 is a

G0-equivariant k0-model of Y . Compare [4, Example 10.11].

In the following theorem, G is a connected reductive group and Y = G/U .

Theorem 1.14 (Theorem 6.1). Let k and k0 be as in 1.1, and let G be a connected
reductive group over k. Let B ⊂ G be a Borel subgroup, and write U for the unipotent
radical of B. Consider the homogeneous space Y = G/U . Let G0 be a k0-model of G.
Then Y admits a G0-equivariant k0-model if and only if G0 is a pure inner form of a
quasi-split model of G.

Example 1.15. Let k = C, k0 = R, G = SL(4,C), Y = G/U , where U is as in Theorem
1.14. Let G0 = SU(4). Since G0 is a pure inner form of the quasi-split group SU(2, 2), by
Theorem 1.14 the variety G/U admits an SU(4)-equivariant R-model Y0. This model has
no R-points (because the stabilizer of an R-point would be a unipotent subgroup of G0

defined over R).

The plan for the rest of the paper is as follows. In Section 2 we recall basic definitions
and results. In Section 3 we prove Theorem 1.6. In Section 4 we prove Theorem 1.8. In
Section 5 we prove Theorem 1.11. In Section 6 we prove Theorem 1.14.

Acknowledgements. The author is grateful to Boris Kunyavskĭı, Giuliano Gagliardi,
Stephan Snigerov, and Ronan Terpereau for stimulating discussions and/or e-mail ex-
changes.

2. Preliminaries

2.1. Let k0, k, and Γ be as in Subsection 1.1. By a k0-model of a k-scheme Y we mean a
k0-scheme Y0 together with an isomorphism of k-schemes

νY : Y0 ×k0 k
∼

→ Y.

We write Γ = Gal(k/k0). For s ∈ Γ, denote by s∗ : Speck → Speck the morphism of
schemes induced by s. Notice that (st)∗ = t∗ ◦ s∗.

Let (Y, pY : Y → Spec k) be a k-scheme. A k/k0 -semilinear automorphism of Y is a
pair (s, µ) where s ∈ Γ and µ : Y → Y is an isomorphism of schemes such that the diagram
below commutes:

Y
µ

//

pY
��

Y

pY
��

Speck
(s∗)−1

// Spec k

In this case we say also that µ is an s-semilinear automorphism of Y . We shorten
“s-semilinear automorphism” to “s-semi-automorphism”. Note that if (s, µ) is a semi-
automorphism of Y , then µ uniquely determines s; see [4, Lemma 1.2].
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We denote SAut(Y ) the group of all s-semilinear automorphisms µ of Y , where s runs
over Γ = Gal(k/k0). By a semilinear action of Γ on Y we mean a homomorphism of
groups

µ : Γ → SAut(Y ), s 7→ µs

such that for each s ∈ Γ, µs is s-semilinear.

If we have a k0-scheme Y0, then the formula

(2.2) s 7→ idY0
× (s∗)−1

defines a semilinear action of Γ on

Y := Y0 ×k0 k = Y0 ×Spec k0 Speck.

Thus a k0-model of Y induces a semilinear action of Γ on Y .

Let (G, pG : G → Spec k) be a k-group-scheme. A k/k0 -semi-linear automorphism of
G is a pair (s, τ) where s ∈ Γ and τ : G → G is a morphism of schemes such that the
following diagram commutes

G
τ

//

pG
��

G

pG
��

Speck
(s∗)−1

// Spec k

and the k-morphism

τ♮ : s∗G → G

is an isomorphism of algebraic groups over k; see [4, Definition 2.2] for the notations τ♮
and s∗G.

We denote by SAutk/k0(G), or just by SAut(G), the group of all s-semilinear automor-
phisms τ of G, where s runs over Γ = Gal(k/k0). By a semilinear action of Γ on G we
mean a homomorphism

σ : Γ → SAut(G), s 7→ σs

such that for all s ∈ Γ, σs is s-semilinear. As above, a k0-model G0 of G induces a
semilinear action of Γ on G.

Let G be an algebraic group over k and let Y be a G-k-variety. Let G0 be a k0-model of
G. It gives rise to a semilinear action σ : Γ → SAut(G), s 7→ σs. Let Y0 be a G0-equivariant
k0-model of Y . It gives rise to a semilinear action µ : Γ → SAut(Y ) such that for all s in
Γ we have

µs(g · y) = σs(g) · µs(y) for all y ∈ Y (k), g ∈ G(k).

We say then that µs is σs-equivariant.

2.3. Let k0, k, and Γ be as in Subsection 1.1. Let G0 be a k0-model of G; it defines a
semilinear action

σ : Γ → SAut(G).

This action induces an action of Γ on the abstract group Aut(G). Recall that a map

c : Γ → Aut(G)

is called a 1-cocycle if the map c is locally constant and satisfies the cocycle condition
(1.3). The set of such 1-cocycles is denoted by Z1(Γ,Aut(G)) or Z1(k0,Aut(G)). For
c ∈ Z1(k0,Aut(G)), we consider the c-twisted semilinear action

σ′ : Γ → SAut(G), s 7→ cs ◦ σs.

Then, clearly, σ′

s is an s-semi-automorphism of G for any s ∈ Γ. It follows from the cocycle
condition (1.3) that

σ′

st = σ′

s ◦ σ
′

t for all s, t ∈ Γ.
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Since G is an algebraic group, the semilinear action σ′ comes from some k0-model G′

0 of
G; see Serre [10, Section V.4.20, Corollary 2(ii) of Proposition 12] and Serre [11, III.1.3,
Proposition 5]. We write G′

0 = cG0 and say that G′

0 is the twisted form of G0 defined by
the 1-cocycle c.

Lemma 2.4. Let G be a linear algebraic group over k, and let Y be a quasi-projective
G-k-variety. Let G♦ be a k0-model of G, and assume that Y admits a G♦-equivariant
k0-model Y♦. Let c̃ ∈ Z1(k0, G♦) be a 1-cocycle. Consider the pure inner form c̃G♦. Then
Y admits a c̃G♦-equivariant k0-model.

Proof. Write G0 = c̃G♦. We take Y0 =c̃ Y♦, then Y0 is a G0-equivariant k0-model.

We give details. The k0-models G♦ and Y♦ define semilinear actions

σ : Γ → SAut(G) and µ : Γ → SAut(Y )

such that for any s ∈ Γ the semi-automorphism µs is σs-equivariant, that is,

µ(g · y) = σs(g) · µs(y) for all g ∈ G(k), y ∈ Y (k).

Let c̃ : Γ → G(k) be a 1-cocycle, that is, c̃ ∈ Z1(k0, G♦). Consider the pure inner form
G0 = c̃G♦, then

σ0
s(g) = c̃s · σs(g) · c̃

−1
s for s ∈ Γ, g ∈ G(k).

where σ0 is the semilinear action defined by G0. Now we define the twisted form c̃Y♦ as
follows. We set

µ0
s(y) = c̃s · µ

0
s(y).

Since c̃ is a 1-cocycle, we have

µ0
st = µ0

s ◦ µ
0
t for all s, t ∈ Γ.

Since Y is quasi-projective, by Borel and Serre [3, Lemme 2.12] the semilinear action
µ0 : Γ → SAut(Y ) defines a k0-model Y0 of Y . An easy calculation shows that

µ0(g · y) = σ0
s(g) · µ

0
s(y) for all g ∈ G(k), y ∈ Y (k),

hence by Galois descent we obtain an action of G0 on Y0 (defined over k0); see Jahnel [6,
Theorem 2.2(b)]. Thus Y admits a G0-equivariant k0-model Y0 = c̃Y♦. �

3. Model for an inner twist of the group

3.1. Let k be an algebraically closed field of characteristic 0. Let G be an algebraic group
over k. Let Y be a G-k-variety. Let Z(G) denote the center of G. We consider the
algebraic group G := G/Z(G). The group G(k) naturally acts on G:

gZ(G) : x 7→ gxg−1 for gZ(G) ∈ G(k), x ∈ G(k).

Let k0 be a subfield of k such that k/k0 is an algebraic extension. We write Γ =
Gal(k/k0), which is a profinite group.

Let G♦ be a k0-model of G. We write G♦ = G♦/Z(G♦), where Z(G♦) is the center of
G♦. The k0-model G♦ of G defines a semilinear action:

σ : Γ → SAut(G);

cf. (2.2). We write G♦(k) for the group of k-points of the algebraic k0-group G♦, then we
have an action of Γ on G♦(k):

(s, g) 7→ sg = σs(g) for s ∈ Γ, g ∈ G♦(k) = G(k).

Let c ∈ Z1(k0, G♦) be a 1-cocycle, that is, a locally constant map

c : Γ → G♦(k) such that cst = cs ·
sct for all s, t ∈ Γ.
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We denote by G0 = cG♦ the corresponding inner twisted form of G♦, see Subsection 2.3.
This means that G0(k) = G♦(k), but the Galois action is twisted by c:

σ0
s = cs ◦ σs for s ∈ Γ,

where we embed G♦(k) into Aut(G).

In this section we assume that there exists a G♦-equivariant k0-model Y♦ of Y . We give
a criterion for the existence of a G0-equivariant k0-model Y0 of Y , where G0 = cG♦.

3.2. We write [c] ∈ H1(k0, G♦) for the cohomology class of c. We consider the short exact
sequence

1 → Z(G♦) → G♦ → G♦ → 1

and the corresponding connecting map

δ : H1(k0, G♦) → H2(k0, Z(G♦))

from the cohomology exact sequence

(3.3) H1(k0, Z(G♦)) → H1(k0, G♦) → H1(k0, G♦)
δ

−−→ H2(k0, Z(G♦));

see Serre [11, I.5.7, Proposition 43]. We obtain δ[c] ∈ H2(k0, Z(G♦).

The G♦-equivariant k0-model Y♦ of Y defines an action of Γ on A := AutG(Y ) by

(sa)(sy) = s(a(y)) for s ∈ Γ, a ∈ A, y ∈ Y (k).

We denote by A♦ the corresponding Γ-group. We obtain homomorphisms

µ : Γ → SAut(Y ), s 7→ µs, where µs(y) =
sy for s ∈ Γ, y ∈ Y (k) = Y♦(k),

and

τ : Γ → Aut(A), s 7→ τs , where τs(a) =
sa for s ∈ Γ, a ∈ A.

The center Z♦ ⊂ G♦ acts on Y♦, and this action clearly commutes with the action of
G♦. Thus we obtain a canonical Γ-equivariant homomorphism

κ : Z♦(k) → A♦.

3.4. We need the nonabelian cohomology set H2(Γ,A♦); see Springer [13, 1.14]. Recall
that an (abelian) 2-cocycle z ∈ Z2(k0, Z♦) is a locally constant map

a : Γ× Γ → Z♦(k), (s, t) 7→ zs,t

such that
sdt,u · ds,tu = ds,t · dst,u for all s, t, u ∈ Γ.

Then κ∗([z]) ∈ H2(Γ,A♦) is by definition the class of the 2-cocycle (τ,κ ◦ z). This class
is called neutral if there exists a locally constant map a : Γ → A♦ such that

as ·
sat · κ(zs,t) · a

−1
st = 1 for all s, t ∈ Γ.

Theorem 3.5. Let G, H, Y, k0, G♦, Y♦, A♦, δ be as in Subsections 3.1 and 3.2.
In particular we assume that Y admits a G♦-equivariant k0-model Y♦. We assume also
that Y is quasi-projective. Let c ∈ Z1(k0, G♦) be a 1-cocycle, and consider it class [c] ∈
H1(k0, G♦). Set G0 = cG♦ (the inner twisted form of G♦ defined by the 1-cocycle c). The
G-variety Y admits a G0-equivariant k0-model if and only if the cohomology class

κ∗(δ[c]) ∈ H2(Γ,A♦)

is neutral.
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Proof. The k0-model G♦ of G defines a homomorphism

σ : Γ → SAut(G), s 7→ σs ,

where each σs is an s-semi-automorphism of G. The G♦-equivariant k0-model Y♦ of Y
defines a homomorphism

µ : Γ → SAut(Y ), s 7→ µs

such that each µs is an s-semi-automorphism of Y and is σs-equivariant, that is,

(3.6) µs(g · y) = σs(g) · µs(y) for all g ∈ G(k), y ∈ Y (k).

Since the map s 7→ µs is a homomorphism, we have

(3.7) µst = µs ◦ µt for all s, t ∈ Γ.

We lift the 1-cocycle
c : Γ → G(k)

to a locally constant map
c̃ : Γ → G(k),

which does not have to be a 1-cocycle. Let σ0 : Γ → SAut(G) denote the homomorphism
corresponding to the twisted form G0 = cG♦, then by definition

σ0
s(g) = c̃s · σs(g) · c̃

−1
s .

For g ∈ G(k), we write l(g) for the automorphism y 7→ g · y of Y . We have

(3.8) l(g) ◦ a = a ◦ l(g) for all g ∈ G(k), a ∈ A♦ ,

because a is a G-equivariant automorphism of Y . By (3.6) we have µs(g ·y) = σs(g) ·µs(y),
hence

(3.9) µs ◦ l(g) = l(σs(g)) ◦ µs for all s ∈ Γ, g ∈ G♦(k).

Similarly, τs(a)(µs(y)) = µs(a(y)), hence,

(3.10) µs ◦ a = τs(a) ◦ µs for all s ∈ Γ, a ∈ A♦ .

By definition (Serre [11, I.5.6])

δ[c] ∈ H2(k0, Z(G♦))

is the class of the 2-cocycle given by

(s, t) 7→ c̃s ·
sc̃t · c̃

−1
st ∈ Z(G♦)(k) (s, t ∈ Γ).

Then κ∗(δ[c]) is the class of the 2-cocycle

(s, t) 7→ κ(c̃s ·
sc̃t · c̃

−1
st ) ∈ A♦.

Let
a : Γ → A♦

be a locally constant map. We define

µ0
s = as ◦ l(c̃s) ◦ µs = l(c̃s) ◦ as ◦ µs.

Lemma 3.11. For any s ∈ Γ, the s-semi-automorphism µ0
s is σ0

s-equivariant.

Proof. Using (3.8) and (3.9), we compute:

µ0
s(g · y) = (as ◦ l(c̃s))(µs(g · y))

= as(c̃s · σs(g) · µs(y))

= c̃sσs(g)c̃
−1
s · as(c̃s · µs(y)) = σ0

s(g) · µ
0
σ(y). �

Lemma 3.12. The map s → µ0
s is a homomorphism if and only if

(3.13) as ·
sat · κ(c̃s

sc̃t c̃
−1
st ) · a

−1
st = 1 for all s, t ∈ Γ.
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Proof. Let s, t ∈ Γ. Using (3.8), (3.9), and (3.10), we compute:

µ0
s ◦ µ

0
t ◦ (µ

0
st)

−1 = as ◦ l(c̃s) ◦ µs ◦ at ◦ l(c̃t) ◦ µt ◦ µ
−1
st ◦ l(c̃st)

−1 ◦ a−1
st

= as ◦ τs(at) ◦ l(c̃s) ◦ l(σs(c̃t)) ◦ µs ◦ µt ◦ µ
−1
st ◦ l(c̃st)

−1 ◦ a−1
st .

By (3.7) we obtain that

µ0
s ◦ µ

0
t ◦ (µ

0
st)

−1 = as ◦ τs(at) ◦ l(c̃s) ◦ l(σs(c̃t)) ◦ l(c̃st)
−1 ◦ a−1

st

= as ·
sat · κ(c̃s

sc̃t c̃
−1
st ) · a

−1
st .

We see that

µ0
s ◦ µ

0
t ◦ (µ

0
st)

−1 = 1

if and only if (3.13) holds. Thus the map s → µ0
s is a homomorphism if and only if (3.13)

holds, which completes the proof of Lemma 3.12. �

Now assume that κ∗(δ[c]) ∈ H2(Γ,A♦) is neutral. This means that there exists a locally
constant map

a : Γ → A♦

such that (3.13) holds. Then by Lemma 3.12 the map

µ0 : Γ → SAut(Y ), s 7→ µ0
s

is a homomorphism, hence it satisfies hypothesis (i) of [4], Lemma 6.3. By Lemma 3.11
µ0
s is σ0

s -equivariant, hence µ0 satisfies hypothesis (iv) of [4], Lemma 6.3. The variety
Y = G/H is quasi-projective, hence hypothesis (iii) of this lemma is satisfied. It is easy
to see that the restriction of the homomorphism µ0 to Gal(k/k1) for some finite Galois
extension k1/k0 in k comes from a G1-equivariant k1-model Y1 of Y , where G1 = G0×k0 k1.
Thus the homomorphism µ0 satisfies hypothesis (ii) of [4], Lemma 6.3. By this lemma the
variety Y admits a G0-equivariant k0-model Y0 inducing the homomorphism s 7→ µ0

s, as
required.

Conversely, assume that Y admits a G0-equivariant k0-model Y0 inducing a homomor-
phism

µ0 : Γ → SAut(G), s 7→ µ0
s.

Then by Lemma 3.11 (in the case as = 1) the s-semi-automorphism l(cs) ◦ µs of Y is
σ0
s -equivariant for any s ∈ Γ. Since µ0

s is σ0
s -equivariant as well, we have

µ0
s = as ◦ l(cs) ◦ µs

for some locally constant map

a : Γ → A♦, s 7→ as.

Since the map s 7→ µ0
s is a homomorphism, by Lemma 3.12 the equality (3.13) holds and

hence, κ∗(δ[c]) is neutral in H2(Γ,A♦). This completes the proof of Theorem 3.5. �

4. Model of a homogeneous space of a reductive group

Let k, k0, and Γ be as in Subsection 1.1. In this section G is a connected reductive
group over k. Let H ⊂ G be a k-subgroup (not necessarily spherical). We consider the
homogeneous G-variety Y = G/H. Consider the abstract group A = AutG(G/H) and the

algebraic group A = NG(H)/H, then there is a canonical isomorphism A(k)
∼

→ A; see e.g.
[4, Lemma 5.1]. Let Gqs be a quasi-split k0-model of G and let Yqs be a Gqs-equivariant
model of G/H, then we obtain a Γ-action on A(k) = A and hence, a k0-model Aqs of A.
We need the following result:
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Proposition 4.1. Let k0 ⊂ k be a subfield such that k is a Galois extension of k. Let G be
a connected reductive group over k. Let G0 be any k0-model of G. Then there exist a quasi-
split inner k0-model Gqs of G and a cocycle c ∈ Z1(k0, Inn(Gqs)) such that G0 ≃ cGqs

(we say that Gqs is a quasi-split inner k0-form of G0). Moreover, if Gqs and G′

qs are two
quasi-split inner k0-forms of G0, then they are isomorphic.

Proof. See “The Book of Involutions” [7, Proposition(31.5)], or Conrad [5, Proposition
7.2.12], the existence only in Springer [14, Proposition 16.4.9]. �

4.2. Let G be a connected reductive group over k, and let G0 be a k0-model of G. Write

G = G/Z(G) for the corresponding adjoint group, and G̃ for the universal cover of the
connected semisimple group [G,G]. By Proposition 4.1 we may write G0 = cGqs, where
Gqs is a quasi-split k0-model of G and c ∈ Z1(k0, Gqs/Z(Gqs)). We fix Gqs and c. We

write Gqs = Gqs/Z(Gqs).

We write Z̃qs for the center Z(G̃qs) of the universal cover G̃qs of the connected semisimple

group [Gqs, Gqs]. Similarly, we write Z̃0 for the center Z(G̃0) of the universal cover G̃0 of
the connected semisimple group [G0, G0]. The short exact sequence

1 → Z̃qs → G̃qs → Gqs → 1

induces a cohomology exact sequence

H1(k0, Z̃qs) → H1(k0, G̃qs) → H1(k0, Gqs)
δ̃

−−→ H2(k0, Z̃qs).

By definition, the Tits class t(G̃0) is the image of [c] ∈ Z1(k0, Gqs) in H2(k, Z̃qs) under the

connecting map δ̃ : H1(k0, Gqs) → H2(k0, Z̃qs); compare [7], Section 31, before Proposition
(31.7).

Theorem 4.3. Let G be a reductive group over an algebraically closed field k of charac-
teristic 0. Let H ⊂ G be an algebraic subgroup. Let k0 ⊂ k be a subfield such that k is
an algebraic closure of k. Let G0 be a k0-model of G. Write G0 = cGqs, where Gqs is

a quasi-split inner form of G0 and where c ∈ Z1(k0, Gqs). Assume that G/H admits a
Gqs-equivariant k0-model. Then G/H admits a G0-equivariant k0-model if and only if the

image in H2(k0, Aqs) of the Tits class t(G̃0) ∈ H2(k0, Z(G̃qs)) is neutral.

Proof. By Theorem 3.5 the homogeneous variety G/H admits a G0-equivariant k0-form if
and only if the image

κ(δ[c]) ∈ H2(k0, Aqs)

is neutral. We write Zqs for Z(Gqs) and Z̃qs for Z(G̃qs). From the commutative diagram
with exact rows

1 // Z̃qs
//

��

G̃qs
//

��

Gqs
//

id
��

1

1 // Zqs
// Gqs

// Gqs
// 1

we obtain a commutative diagram

H1(k0, Gqs)
δ̃

//

id
��

H2(k0, Z̃qs)

λ
��

H1(k0, Gqs)
δ

// H2(k0, Zqs),

which shows that

δ[c] = λ(δ̃[c]).
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By definition

t(G̃0) = δ̃[c] ∈ H2(k0, Z̃qs).

Thus κ(δ[c]) is the image in H2(k0, Aqs) of t(G̃0) under the map

H2(k0, Z̃qs) → H2(k0, Zqs) → H2(k0, Aqs)

induced by the homomorphism Z̃qs → Zqs → Aqs . We conclude that the homogeneous va-

riety G/H admits a G0-equivariant k0-form if and only if the image of t(G̃0) in H2(k0, Aqs)
is neutral, as required. �

5. Models of (H ×H)/∆

5.1. Let H be a connected algebraic k-group, and set G = H ×k H. Let Y = H, where G
acts on Y by

(h1, h2) ∗ y = h1yh
−1
2 .

Note that Y = G/∆, where ∆ ∈ H ×k H is the diagonal, that is, ∆ is H embedded in G

diagonally. Let H
(1)
0 and H

(2)
0 be two k0-models of H. We set G0 = H

(1)
0 ×k0 H

(2)
0 and ask

whether Y admits a G0-equivariant k0-model.

Theorem 5.2. With the notation and assumptions of 5.1, Y = (H × H)/∆ admits an

H
(1)
0 ×k0 H

(2)
0 -equivariant k0-model if and only if H

(2)
0 is a pure inner form of H

(1)
0 .

Proof of Theorem 5.2. Set G1 = H
(1)
0 ×k0 H

(1)
0 , then Y admits a k0-model Y1 = H

(1)
0

(with the natural action of G1). Assume that H(2) is a pure inner form of H(1), then

G0 := H
(1)
0 ×k0 H

(2)
0 is a pure inner form of G1, and by Lemma 2.4 the G-variety Y admits

a G0-equivariant k0-model. Explicitly, let Pc̃ denote the torsor (principal homogeneous
space) of H(1) corresponding to the 1-cocycle c̃; see Serre [11, Section I.5.2]. Then H(1)

acts on Pc̃, and H(k) = H(1)(k) acts on P simply transitively. Moreover, H(2) = c̃(H
(1))

acts on Pc̃ as well, and these two actions commute; see Serre [11, Section I.5.3, Corollary

of Proposition 34]. Thus Pc̃ is an H
(1)
0 ×k0 H

(2)
0 -equivariant k0-model of Y .

Conversely, assume that Y admits an H
(1)
0 ×k0H

(2)
0 -equivariant k0-model. First we show

that then H(2) is an inner form of H(1). Indeed, let

σ(i) : Γ → SAut(H)

denote the semilinear actions corresponding to the model H
(i)
0 of H for i = 1, 2. Recall

that ∆(k) = {(h, h) | h ∈ H(k)}. Then for any s ∈ Γ we have

(σ(1)
s × σ(2)

s )(∆(k)) = {(σ(1)
s (h), σ(2)

s (h)) | h ∈ H(k)}.

Since Y admits an H
(1)
0 ×k0 H

(2)
0 -equivariant k0-model, the subgroup (σ

(1)
s × σ

(2)
s )(∆) is

conjugate to ∆ in G = H ×H; see, e.g., [12, Lemma 4.1]. This means that there exists a
pair (h1, h2) ∈ H(k)×H(k) such that

(σ(1)
s (h), σ(2)

s (h)) = (h1hh
−1
1 , h2hh

−1
2 ) for all h ∈ H(k).

It follows that

σ(1)
s (h) = (h1h

−1
2 ) · σ(2)

s (h) · (h1h
−1
2 )−1.

We see that for any s ∈ Γ, the s-semi-automorphism σ
(2)
s of H differs from σ

(2)
s by an

inner automorphism of H. This means that H
(2)
0 is an inner form of H

(1)
0 .

Now we know that H
(2)
0 = c(H

(1)
0 ) for some 1-cocycle c ∈ Z1(k0,H

(1)
). Set G1 =

H
(1)
0 ×k0 H

(1)
0 , then Y1 := H

(1)
0 with the natural action of G1 is a G1-equivariant k0-model
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of Y . Moreover, G0 = H
(1)
0 ×k0 H

(2)
0 is the inner twisted form of G1 given by the 1-cocycle

(1, c) ∈ Z1(k0, G1). Then

δ[(1, c)] ∈ H2(k0, Z(G1)) = H2(k0, Z(H
(1)
0 ))×H2(k0, Z(H

(1)
0 ))

is (1, δH [c]), where

δH : H1(k0,H
(1)
0 ) → H2(k0, Z(H

(1)
0 ))

is the connecting map. By Theorem 3.5, Y admits an H
(1)
0 ×k0 H

(2)
0 -equivariant k0-model

if and only if κ∗(δ[1, c]) = 0, that is, if and only if κ∗(1, δH [c]) = 1. An easy calculation
shows that

NG(∆) = Z(G) ·∆ and A := NG(∆)/∆ = Z(G)/Z(∆) = (Z(H)× Z(H))/Z(∆).

Similarly, over k0 we obtain

NG1
(∆1) = Z(G1)·∆1 and A1 := NG1

(∆1)/∆1 = Z(G1)/Z(∆1) = (Z(H
(1)
0 )×Z(H

(1)
0 ))/Z(H

(1)
0 ).

It is easy to see that the morphism of abelian k0-groups

Z(H
(1)
0 ) → A1, z 7→ (1, z) · Z(∆)

is an isomorphism. It follows that the induced map on cohomology

H2(k0, Z(H
(1)
0 )) → H2(k0, A1)

is an isomorphism of abelian groups. Therefore, Y admits an H
(1)
0 ×k0 H

(2)
0 -equivariant

k0-model if and only if δH [c] = 1, that is, if and only if H
(2)
0 is a pure inner form of H

(1)
0 ,

as required. �

Lemma 5.3. Let H0 be a simply connected semisimple group over a p-adic field k0. Then
any pure inner form of H0 is isomorphic to H0.

Proof. Indeed, by Kneser’s theorem we have H1(k0,H0) = 1; see Platonov and Rapinchuk
[8, Theorem 6.4]. �

Corollary 5.4. In Theorem 5.2, if k0 is a p-adic field and H is a simply connected

semisimple group over k, then Y admits an H
(1)
0 ×k0 H

(2)
0 -equivariant k0-model if and only

if H
(2)
0 is isomorphic to H

(1)
0 .

Proof. Indeed, by Theorem 5.2 the variety Y admits an H
(1)
0 ×k0H

(2)
0 -equivariant k0-model

if and only if H
(2)
0 is a pure inner form of H

(1)
0 , and by Lemma 5.3 any pure inner form of

H
(1)
0 is isomorphic to H

(1)
0 . �

6. Models of G/U

Theorem 6.1. Let k be a fixed algebraic closure of a field k of characteristic 0, and let G
be a connected reductive group over k. Let B ⊂ G be a Borel subgroup, and write U for the
unipotent radical of B. Consider the homogeneous space Y = G/U . Let G0 be a k0-model
of G. Then Y admits a G0-equivariant k0-model if and only if G0 is a pure inner form of
a quasi-split model of G.

Proof. It is well known that G0 is an inner form of a quasi-split model Gqs of G; see
Springer [14, Proposition 16.4.9]) or “The Book of Involutions” [7, Proposition (31.5)],
or Conrad [5, Proposition 7.2.12]. This means that G0 = cGqs, where c ∈ Z1(k0, Gqs).
Since Gqs is quasi-split, there exists a Borel subgroup Bqs ⊂ Gqs (defined over k0). Set
Uqs = Ru(Bqs), then Gqs/Uqs is a Gqs-equivariant k0-model of Y = G/U . By Theorem
3.5, Y admits a G0-equivariant k0-model if and only if κ∗(δ[c]) ⊂ H2(k0, Aqs) vanishes,
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where Aqs = NG(Uqs)/Uqs
∼= Tqs and Tqs ⊂ Bqs is a maximal torus. Note that κ : Zqs →

Aqs = Tqs is the canonical embedding, where Zqs = Z(Gqs).

We show that the homomorphism

κ∗ : H
2(k0, Zqs) → H2(k0, Tqs)

is injective. Indeed, we have a short exact sequence

1 → Zqs
κ

−−→ Tqs → T qs → 1,

which induces a cohomology exact sequence

· · · → H1(k0, T qs) → H2(k0, Zqs)
κ∗−−→ H2(k0, Tqs) → . . .

Since Gqs is quasi-split, by Lemma 6.2 below we have H1(k0, T qs) = 1, hence the homo-
morphism κ∗ is injective, as required.

We see that κ∗(δ[c]) = 1 if and only if δ[c] = 1. Now consider the cohomology exact
sequence

· · · → H1(k0, Gqs) → H1(k0, Gqs)
δ

−−→ H2(k0, Zqs) → . . .

It follows from the construction of the map δ (see Serre [11, Section I.5.6]) that δ[c] = 1 if
and only if c can be lifted to a 1-cocycle c̃ ∈ Z1(k0, G), that is, if and only if G0 = cGqs

is a pure inner form of Gqs, as required.

We conclude that Y admits a G0-equivariant k0-model if and only if G0 is a pure inner
form of Gqs. �

Lemma 6.2. Let G0 be a quasi-split semisimple group of adjoint type, B0 ⊂ G0 be a
Borel subgroup defined over k0, and T0 ⊂ B0 be a maximal torus. Then H1(k0, B0) =
H1(k0, T0) = 1.

Proof. Note that T0 ≃ B0/Ru(B0), which gives a canonical bijectionH1(k0, B0)
∼

→ H1(k0, T0);
see Sansuc [9, Lemme 1.13]. Since G0 is a group of adjoint type, the set of simple roots
S = S(G0,k, T0,k, B0,k) is a basis of the character group X

∗(T0,k); see Springer [14, 8.1.11].
Since B0,k is defined over k0, the action of Γ on X

∗(T0,k) preserves the basis S. In other
words, X∗(T0,k) is a permutation Γ-module, hence T0 is a quasi-trivial k0-torus, and there-
fore, H1(k0, T0) = 1; see Sansuc [9, Lemme 1.9]. �

Remark 6.3. In Theorem 6.1 assume that G is a semisimple group of adjoint type. Then
a k0-model of G/U , if exists, is unique. Indeed, then Aqs

∼= Tqs, and by Lemma 6.2 we
have

H1(k0, Aqs) = H1(k0, Tqs) = 1.

Corollary 6.4. In Theorem 6.1 assume that k0 is a p-adic field and that G is semisimple
and simply connected. Then G/U admits a G0-equivariant k0-model if and only if G0 is
quasi-split.

Proof. Indeed, by Theorem 6.1 the G-variety G/U admits a G0-equivariant k0-model if
and only if G0 is a pure inner form of a quasi-split group Gqs. Since k0 is a p-adic field,
by Lemma 5.3 then G0 is isomorphic to Gqs. �
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