EXISTENCE OF EQUIVARIANT MODELS OF G-VARIETIES

MIKHAIL BOROVOI

ABSTRACT. Let k_0 be a field of characteristic 0, and let k be a fixed algebraic closure of k_0 . Let G be an algebraic k-group, and let Y be a G-variety over k. Let G_0 be a k_0 -model (k_0 -form) of G. We ask whether Y admits a G_0 -equivariant k_0 -model Y_0 .

We assume that Y admits a G_{\Diamond} -equivariant k_0 -model Y_{\Diamond} , where G_{\Diamond} is an inner form of G_0 . We give a Galois-cohomological criterion for the existence of a G_0 -equivariant k_0 -model Y_0 of Y. We apply this criterion to certain spherical homogeneous varieties Y = G/H.

1. INTRODUCTION

1.1. Let k_0 be a field of characteristic 0, and let k be a fixed algebraic closure of k_0 . Set $\Gamma = \text{Gal}(k/k_0)$.

Let G be a connected algebraic group over k (not necessarily linear). Let Y be a G-variety, that is, an irreducible algebraic variety over k together with a morphism

$$\theta \colon G \times_k Y \to Y$$

defining an action of G on Y. We say that (Y, θ) is a G-k-variety or just that Y is a G-k-variety.

Let G_0 be a k_0 -model (k_0 -form) of G, that is, an algebraic group over k_0 together with an isomorphism of algebraic k-groups

$$\nu_G \colon G_0 \times_{k_0} k \xrightarrow{\sim} G.$$

By a G_0 -equivariant k_0 -model of the G-k-variety (Y, θ) we mean a G_0 - k_0 -variety (Y_0, θ_0) together with an isomorphism $\nu_Y \colon Y_0 \times_{k_0} k \xrightarrow{\sim} Y$ such that the following diagram commutes:

$$\begin{array}{ccc} G_{0,k} \times_k Y_{0,k} & \xrightarrow{\theta_{0,k}} Y_{0,k} \\ & & \downarrow^{\nu_G \times \nu_Y} & & \downarrow^{\nu_Y} \\ & & G \times_k Y & \xrightarrow{\theta} Y \end{array}$$

Inspired by the works of Akhiezer and Cupit-Foutou [2], [1], for a given k_0 -model G_0 of G we ask whether there exists a G_0 -equivariant k_0 -model Y_0 of Y.

1.2. With the above notation, we consider the group $\operatorname{Aut}(G)$ of automorphisms of G. We regard $\operatorname{Aut}(G)$ as an abstract group. Any $g \in G(k)$ defines an *inner automorphism*

 $i_q: G \to G, \quad x \mapsto gxg^{-1} \text{ for } x \in G(k).$

We obtain a homomorphism

$$i: G(k) \to \operatorname{Aut}(G).$$

Date: April 11, 2019.

²⁰¹⁰ Mathematics Subject Classification. 20G15, 12G05, 14M17, 14G27, 14M27.

Key words and phrases. Equivariant model, inner form, pure inner form, algebraic group, spherical homogeneous space.

This research was partially supported by the Israel Science Foundation (grant No. 870/16).

We denote by $\operatorname{Inn}(G) \subset \operatorname{Aut}(G)$ the image of the homomorphism *i* and we say that $\operatorname{Inn}(G)$ is the group of inner automorphisms of *G*. We may identify $\operatorname{Inn}(G)$ with $\overline{G}(k)$, where

$$\overline{G} = G/Z(G)$$

and Z(G) is the center of G.

Let G_{\Diamond} be a k_0 -model of G. We write Z_{\Diamond} for the center $Z(G_{\Diamond})$, then $\overline{G}_{\Diamond} := G_{\Diamond}/Z_{\Diamond}$ is a k_0 -model of \overline{G} . Let $c \colon \Gamma \to \overline{G}_{\Diamond}(k)$ be a 1-cocycle, that is, a locally constant map such that the following cocycle condition is satisfied:

(1.3)
$$c_{st} = c_s \cdot {}^s c_t \quad \text{for all } s, t \in \Gamma.$$

We denote the set of such 1-cocycles by $Z^1(\Gamma, \overline{G}_{\diamond}(k))$ or by $Z^1(k_0, \overline{G}_{\diamond})$. For $c \in Z^1(k_0, \overline{G})$ one can define the *c*-twisted inner form $_c(G_{\diamond})$ of G_{\diamond} ; see Subsection 2.3 below. For simplicity we write $_cG_{\diamond}$ for $_c(G_{\diamond})$.

1.4. It is well known that if G is a connected reductive k-group, then any k_0 -model G_0 of G is an inner form of a quasi-split model; see e.g., Springer [14, Proposition 16.4.9]. In other words, there exist a quasi-split model G_{qs} of G and a 1-cocycle $c \in Z^1(k_0, \overline{G}_{qs})$ such that $G_0 = {}_cG_{qs}$. In some cases it is clear that Y admits a G_{qs} -equivariant k_0 model. For example, assume that Y = G/U, where $U = R_u(B)$, the unipotent radical of a Borel subgroup B of G. Since G_{qs} is a quasi-split model, there exists a Borel subgroup $B_{qs} \subset G_{qs}$ (defined over k_0). Set $U_{qs} = R_u(B_{qs})$, then G_{qs}/U_{qs} is a G_{qs} -equivariant k_0 -model of Y = G/U.

1.5. In the setting of 1.1 and 1.2, let G_{\diamond} be a k_0 -model of G and let $G_0 = {}_cG_{\diamond}$, where $c \in Z^1(k_0, \overline{G}_{\diamond})$. Motivated by 1.4, we assume that Y admits a G_{\diamond} -equivariant k_0 -model Y_{\diamond} , and we ask whether Y admits a G_0 -equivariant k_0 -model Y_0 .

We consider the short exact sequence

$$1 \to Z_{\diamondsuit} \to G_{\diamondsuit} \to \overline{G}_{\diamondsuit} \to 1$$

and the connecting map

$$\delta \colon H^1(k_0, \overline{G}_{\diamond}) \to H^2(k_0, Z_{\diamond});$$

see Serre [11, I.5.7, Proposition 43]. If $c \in Z^1(k_0, \overline{G}_{\diamond})$, we write [c] for the corresponding cohomology class in $H^1(k_0, \overline{G}_{\diamond})$. By abuse of notation we write $\delta[c]$ for $\delta([c])$.

We consider the group $\mathcal{A} := \operatorname{Aut}^G(Y)$ of *G*-equivariant automorphisms of *Y*, which we regard as an abstract group. The G_{\diamond} -equivariant k_0 -model Y_{\diamond} of *Y* defines a Γ -action on \mathcal{A} , see Subsection 3.2 below, and we denote the obtained Γ -group by \mathcal{A}_{\diamond} . One can define the second Galois cohomology set $H^2(\Gamma, \mathcal{A}_{\diamond})$. See Springer [13, 1.14] for a definition of $H^2(\Gamma, \mathcal{A}_{\diamond})$ in the case when the Γ -group \mathcal{A}_{\diamond} is nonabelian.

For $z \in Z_{\Diamond}(k)$ we consider the *G*-equivariant automorphism

$$y \mapsto z \cdot y \colon Y \to Y$$

We obtain a Γ -equivariant homomorphism

$$\varkappa: Z_{\diamondsuit}(k) \to \mathcal{A}_{\diamondsuit},$$

which induces a map

$$\varkappa_* \colon H^2(k_0, Z_{\diamondsuit}) \to H^2(\Gamma, \mathcal{A}_{\diamondsuit})$$

Theorem 1.6 (Theorem 3.5). Let k, G, Y, k_0 , G_{\diamond} , Y_{\diamond} , A_{\diamond} , δ , \varkappa_* be as in Subsections 1.1 and 1.5. In particular, we assume that Y admits a G_{\diamond} -equivariant k_0 -model Y_{\diamond} . We assume also that Y is quasi-projective. Let $c \in Z^1(k_0, \overline{G}_{\diamond})$ be a 1-cocycle, and consider its class $[c] \in H^1(k_0, \overline{G}_{\diamond})$. Set $G_0 = {}_cG_{\diamond}$ (the inner twisted form of G_{\diamond} defined by the 1-cocycle c). Then the G-variety Y admits a G_0 -equivariant k_0 -model if and only if the cohomology class

$$\varkappa_*(\delta[c]) \in H^2(\Gamma, \mathcal{A}_{\diamondsuit})$$

is neutral.

Remark 1.7. In the case when \mathcal{A}_{\Diamond} is abelian, the condition " $\varkappa_*(\delta[c])$ is neutral" means that $\varkappa_*(\delta[c]) = 1$.

Theorem 1.6 is the main result of this paper. Theorems 1.8, 1.12, and 1.14 below are applications of Theorem 1.6 to the case when Y = G/H is a homogeneous space of G. In this case $\mathcal{A} = A(k)$, where $A = \mathcal{N}_G(H)/H$ and $\mathcal{N}_G(H)$ denotes the normalizer of H in G; see e.g. [4, Lemma 5.1].

In the following theorem, G is a connected reductive group.

Theorem 1.8 (Theorem 4.3). Let G be a reductive group over an algebraically closed field k of characteristic 0. Let $H \subset G$ be a k-subgroup. Let $k_0 \subset k$ be a subfield such that k is an algebraic closure of k. Let G_0 be a k_0 -model of G. Write $G_0 = {}_cG_{qs}$, where G_{qs} is a quasi-split k_0 -model of G and $c \in Z^1(k_0, G_{qs}/Z(G_{qs}))$. Assume that

(*) G/H admits a G_{as} -equivariant k_0 -model Y_{as} .

The k_0 -model Y_{qs} defines a k_0 -model $A_{qs} = \operatorname{Aut}^{G_{qs}}(Y_{qs})$ of $A = \operatorname{Aut}^G(Y)$. Then G/Hadmits a G_0 -equivariant k_0 -model Y_0 if and only if the image in $H^2(k_0, A_{qs})$ of the Tits class $t(\widetilde{G}_0) \in H^2(k_0, Z(\widetilde{G}_{qs}))$ is neutral (see Section 4 below for the definition of the Tits class).

Remark 1.9. In Theorem 1.8, if there exists a G_0 -equivariant k_0 -model Y_0 of G/H, then the set of isomorphism classes of such models is in a canonical bijection with the set $H^1(k_0, \operatorname{Aut}^{G_0}(Y_0))$.

1.10. Let

$$\tilde{c}\colon\Gamma\to G_{\diamond}(k)$$

be a 1-cocycle with values in G_{\Diamond} , that is, $\tilde{c} \in Z^1(k_0, G_{\Diamond})$. Consider $i \circ \tilde{c} \in Z^1(k_0, \overline{G}_{\Diamond})$, then by abuse of notation we write $_{\tilde{c}}G_{\Diamond}$ for $_{i\circ\tilde{c}}G_{\Diamond}$. We say that $_{\tilde{c}}G_{\Diamond}$ is a pure inner form of G_{\Diamond} . For a pure inner form $G_0 = _{\tilde{c}}G_{\Diamond}$, the *G*-variety *Y* clearly admits a G_0 -equivariant k_0 -model: we may take $Y_0 = _{\tilde{c}}Y_{\Diamond}$; see Lemma 2.4 below. It follows from the cohomology exact sequence (3.3) below that for a cocycle $c \in Z^1(k_0, \overline{G}_{\Diamond})$, the twisted form $_{c}G_{\Diamond}$ is a pure inner form of G_{\Diamond} if and only if $\delta[c] = 1$.

1.11. Let H be a connected linear k-group, and set $G = H \times_k H$. Let Y = H, where G acts on Y by

$$(h_1, h_2) * y = h_1 y h_2^{-1}.$$

Note that $Y = G/\Delta$, where $\Delta \subset H \times_k H$ is the diagonal, that is, Δ is H embedded in G diagonally. Let $H_0^{(1)}$ and $H_0^{(2)}$ be two k_0 -models of H. We set $G_0 = H_0^{(1)} \times_{k_0} H_0^{(2)}$ and ask whether Y admits a G_0 -equivariant k_0 -model.

Theorem 1.12 (Theorem 5.2). With the notation and assumptions of 1.11, $Y = (H \times H)/\Delta$ admits an $H_0^{(1)} \times_{k_0} H_0^{(2)}$ -equivariant k_0 -model if and only if $H_0^{(2)}$ is a pure inner form of $H_0^{(1)}$.

Example 1.13. Let $k = \mathbb{C}$, $k_0 = \mathbb{R}$, then $\Gamma = \{1, s\}$, where s is the complex conjugation. Let $H = SL(4, \mathbb{C})$. Consider the diagonal matrices

$$I_4 = \text{diag}(1, 1, 1, 1)$$
 and $I_{2,2} = \text{diag}(1, 1, -1, -1).$

Consider the real models SU(2, 2) and SU(4) of G:

$$H_0^{(1)} = \mathrm{SU}(2,2), \text{ where } \mathrm{SU}(2,2)(\mathbb{R}) = \{g \in \mathrm{SL}(4,\mathbb{C}) \mid g \cdot I_{2,2} \cdot {}^s g^{\mathrm{tr}} = I_{2,2}\}, \\ H_0^{(2)} = \mathrm{SU}(4), \text{ where } \mathrm{SU}(4)(\mathbb{R}) = \{g \in \mathrm{SL}(4,\mathbb{C}) \mid g \cdot I_4 \cdot {}^s g^{\mathrm{tr}} = I_4\},$$

where $g^{\rm tr}$ denotes the transpose of g. Consider the 1-cocycle

$$c: \Gamma \to \mathrm{SU}(2,2)(\mathbb{R}), \quad 1 \mapsto I_4, \ s \mapsto I_{2,2}.$$

A calculation shows that $_{c}SU(2,2) \simeq SU(4)$. Thus SU(4) is a pure inner form of SU(2,2). By Theorem 1.12, there exists an $SU(2,2) \times_{\mathbb{R}} SU(4)$ -equivariant real model Y_0 of $Y = (H \times H)/\Delta$. We describe this model explicitly. We may take for Y_0 the *transporter*

$$Y_0 = \{g \in \mathrm{SL}(4, \mathbb{C}) \mid g \cdot I_4 \cdot {}^s g^{\mathrm{tr}} = I_{2,2}\}.$$

Clearly Y_0 is defined over \mathbb{R} . It is well known that Y_0 is nonempty but it has no \mathbb{R} -points. The group $G_0 := H_0^{(1)} \times_{\mathbb{R}} H_0^{(2)}$ acts on Y_0 by

$$(h_1, h_2) * g = h_1 g h_2^{-1}.$$

It is clear that Y_0 is a principal homogeneous space of both $H_0^{(1)}$ and $H_0^{(2)}$. Thus Y_0 is a G_0 -equivariant k_0 -model of Y. Compare [4, Example 10.11].

In the following theorem, G is a connected reductive group and Y = G/U.

Theorem 1.14 (Theorem 6.1). Let k and k_0 be as in 1.1, and let G be a connected reductive group over k. Let $B \subset G$ be a Borel subgroup, and write U for the unipotent radical of B. Consider the homogeneous space Y = G/U. Let G_0 be a k_0 -model of G. Then Y admits a G_0 -equivariant k_0 -model if and only if G_0 is a pure inner form of a quasi-split model of G.

Example 1.15. Let $k = \mathbb{C}$, $k_0 = \mathbb{R}$, $G = SL(4, \mathbb{C})$, Y = G/U, where U is as in Theorem 1.14. Let $G_0 = SU(4)$. Since G_0 is a pure inner form of the quasi-split group SU(2,2), by Theorem 1.14 the variety G/U admits an SU(4)-equivariant \mathbb{R} -model Y_0 . This model has no \mathbb{R} -points (because the stabilizer of an \mathbb{R} -point would be a unipotent subgroup of G_0 defined over \mathbb{R}).

The plan for the rest of the paper is as follows. In Section 2 we recall basic definitions and results. In Section 3 we prove Theorem 1.6. In Section 4 we prove Theorem 1.8. In Section 5 we prove Theorem 1.11. In Section 6 we prove Theorem 1.14.

ACKNOWLEDGEMENTS. The author is grateful to Boris Kunyavskiĭ, Giuliano Gagliardi, Stephan Snigerov, and Ronan Terpereau for stimulating discussions and/or e-mail exchanges.

2. Preliminaries

2.1. Let k_0 , k, and Γ be as in Subsection 1.1. By a k_0 -model of a k-scheme Y we mean a k_0 -scheme Y_0 together with an isomorphism of k-schemes

$$\nu_Y \colon Y_0 \times_{k_0} k \xrightarrow{\sim} Y.$$

We write $\Gamma = \text{Gal}(k/k_0)$. For $s \in \Gamma$, denote by $s^* \colon \text{Spec } k \to \text{Spec } k$ the morphism of schemes induced by s. Notice that $(st)^* = t^* \circ s^*$.

Let $(Y, p_Y \colon Y \to \operatorname{Spec} k)$ be a k-scheme. A k/k_0 -semilinear automorphism of Y is a pair (s, μ) where $s \in \Gamma$ and $\mu \colon Y \to Y$ is an isomorphism of schemes such that the diagram below commutes:

In this case we say also that μ is an *s*-semilinear automorphism of *Y*. We shorten "*s*-semilinear automorphism" to "*s*-semi-automorphism". Note that if (s, μ) is a semi-automorphism of *Y*, then μ uniquely determines *s*; see [4, Lemma 1.2].

We denote $\operatorname{SAut}(Y)$ the group of all s-semilinear automorphisms μ of Y, where s runs over $\Gamma = \operatorname{Gal}(k/k_0)$. By a semilinear action of Γ on Y we mean a homomorphism of groups

$$\mu \colon \Gamma \to \mathrm{SAut}(Y), \quad s \mapsto \mu_s$$

such that for each $s \in \Gamma$, μ_s is s-semilinear.

If we have a k_0 -scheme Y_0 , then the formula

$$(2.2) s \mapsto \operatorname{id}_{Y_0} \times (s^*)^{-1}$$

defines a semilinear action of Γ on

$$Y := Y_0 \times_{k_0} k = Y_0 \times_{\operatorname{Spec} k_0} \operatorname{Spec} k.$$

Thus a k_0 -model of Y induces a semilinear action of Γ on Y.

Let $(G, p_G : G \to \operatorname{Spec} k)$ be a k-group-scheme. A k/k_0 -semi-linear automorphism of G is a pair (s, τ) where $s \in \Gamma$ and $\tau : G \to G$ is a morphism of schemes such that the following diagram commutes

and the k-morphism

$$\tau_{\flat} \colon s_* G \to G$$

is an isomorphism of algebraic groups over k; see [4, Definition 2.2] for the notations τ_{\natural} and s_*G .

We denote by $\operatorname{SAut}_{k/k_0}(G)$, or just by $\operatorname{SAut}(G)$, the group of all *s*-semilinear automorphisms τ of G, where *s* runs over $\Gamma = \operatorname{Gal}(k/k_0)$. By a semilinear action of Γ on G we mean a homomorphism

$$\sigma \colon \Gamma \to \mathrm{SAut}(G), \quad s \mapsto \sigma_s$$

such that for all $s \in \Gamma$, σ_s is s-semilinear. As above, a k_0 -model G_0 of G induces a semilinear action of Γ on G.

Let G be an algebraic group over k and let Y be a G-k-variety. Let G_0 be a k_0 -model of G. It gives rise to a semilinear action $\sigma \colon \Gamma \to \text{SAut}(G), s \mapsto \sigma_s$. Let Y_0 be a G_0 -equivariant k_0 -model of Y. It gives rise to a semilinear action $\mu \colon \Gamma \to \text{SAut}(Y)$ such that for all s in Γ we have

$$\mu_s(g \cdot y) = \sigma_s(g) \cdot \mu_s(y)$$
 for all $y \in Y(k), g \in G(k)$

We say then that μ_s is σ_s -equivariant.

2.3. Let k_0 , k, and Γ be as in Subsection 1.1. Let G_0 be a k_0 -model of G; it defines a semilinear action

$$\sigma \colon \Gamma \to \mathrm{SAut}(G).$$

This action induces an action of Γ on the abstract group $\operatorname{Aut}(G)$. Recall that a map

$$c \colon \Gamma \to \operatorname{Aut}(G)$$

is called a *1-cocycle* if the map c is locally constant and satisfies the cocycle condition (1.3). The set of such 1-cocycles is denoted by $Z^1(\Gamma, \operatorname{Aut}(G))$ or $Z^1(k_0, \operatorname{Aut}(G))$. For $c \in Z^1(k_0, \operatorname{Aut}(G))$, we consider the c-twisted semilinear action

$$\sigma' \colon \Gamma \to \mathrm{SAut}(G), \quad s \mapsto c_s \circ \sigma_s.$$

Then, clearly, σ'_s is an s-semi-automorphism of G for any $s \in \Gamma$. It follows from the cocycle condition (1.3) that

$$\sigma'_{st} = \sigma'_s \circ \sigma'_t$$
 for all $s, t \in \Gamma$.

Since G is an algebraic group, the semilinear action σ' comes from some k_0 -model G'_0 of G; see Serre [10, Section V.4.20, Corollary 2(ii) of Proposition 12] and Serre [11, III.1.3, Proposition 5]. We write $G'_0 = {}_cG_0$ and say that G'_0 is the twisted form of G_0 defined by the 1-cocycle c.

Lemma 2.4. Let G be a linear algebraic group over k, and let Y be a quasi-projective G-k-variety. Let G_{\diamond} be a k_0 -model of G, and assume that Y admits a G_{\diamond} -equivariant k_0 -model Y_{\diamond} . Let $\tilde{c} \in Z^1(k_0, G_{\diamond})$ be a 1-cocycle. Consider the pure inner form $_{\tilde{c}}G_{\diamond}$. Then Y admits a $_{\tilde{c}}G_{\diamond}$ -equivariant k_0 -model.

Proof. Write $G_0 = {}_{\tilde{c}}G_{\diamond}$. We take $Y_0 = {}_{\tilde{c}}Y_{\diamond}$, then Y_0 is a G_0 -equivariant k_0 -model.

We give details. The k_0 -models G_{\Diamond} and Y_{\Diamond} define semilinear actions

 $\sigma \colon \Gamma \to \mathrm{SAut}(G) \quad \mathrm{and} \quad \mu \colon \Gamma \to \mathrm{SAut}(Y)$

such that for any $s \in \Gamma$ the semi-automorphism μ_s is σ_s -equivariant, that is,

$$\mu(g \cdot y) = \sigma_s(g) \cdot \mu_s(y)$$
 for all $g \in G(k), y \in Y(k)$.

Let $\tilde{c}: \Gamma \to G(k)$ be a 1-cocycle, that is, $\tilde{c} \in Z^1(k_0, G_{\diamond})$. Consider the pure inner form $G_0 = {}_{\tilde{c}}G_{\diamond}$, then

$$\sigma_s^0(g) = \tilde{c}_s \cdot \sigma_s(g) \cdot \tilde{c}_s^{-1}$$
 for $s \in \Gamma$, $g \in G(k)$

where σ^0 is the semilinear action defined by G_0 . Now we define the twisted form $_{\tilde{c}}Y_{\diamond}$ as follows. We set

$$\mu_s^0(y) = \tilde{c}_s \cdot \mu_s^0(y).$$

Since \tilde{c} is a 1-cocycle, we have

$$\mu_{st}^0 = \mu_s^0 \circ \mu_t^0 \quad \text{for all } s, t \in \Gamma.$$

Since Y is quasi-projective, by Borel and Serre [3, Lemme 2.12] the semilinear action $\mu^0: \Gamma \to \text{SAut}(Y)$ defines a k_0 -model Y_0 of Y. An easy calculation shows that

 $\mu^0(g\cdot y) = \sigma^0_s(g)\cdot \mu^0_s(y) \quad \text{for all } g\in G(k), \ y\in Y(k),$

hence by Galois descent we obtain an action of G_0 on Y_0 (defined over k_0); see Jahnel [6, Theorem 2.2(b)]. Thus Y admits a G_0 -equivariant k_0 -model $Y_0 = {}_{\tilde{c}}Y_{\diamondsuit}$.

3. Model for an inner twist of the group

3.1. Let k be an algebraically closed field of characteristic 0. Let G be an algebraic group over k. Let Y be a G-k-variety. Let Z(G) denote the center of G. We consider the algebraic group $\overline{G} := G/Z(G)$. The group $\overline{G}(k)$ naturally acts on G:

$$gZ(G)$$
: $x \mapsto gxg^{-1}$ for $gZ(G) \in \overline{G}(k), x \in G(k)$.

Let k_0 be a subfield of k such that k/k_0 is an algebraic extension. We write $\Gamma = \text{Gal}(k/k_0)$, which is a profinite group.

Let G_{\diamond} be a k_0 -model of G. We write $\overline{G}_{\diamond} = G_{\diamond}/Z(G_{\diamond})$, where $Z(G_{\diamond})$ is the center of G_{\diamond} . The k_0 -model \overline{G}_{\diamond} of \overline{G} defines a semilinear action:

$$\tau\colon\Gamma\to\mathrm{SAut}(\overline{G});$$

cf. (2.2). We write $\overline{G}_{\diamond}(k)$ for the group of k-points of the algebraic k_0 -group \overline{G}_{\diamond} , then we have an action of Γ on $\overline{G}_{\diamond}(k)$:

$$(s,g) \mapsto {}^{s}g = \sigma_{s}(g) \text{ for } s \in \Gamma, \ g \in \overline{G}_{\Diamond}(k) = \overline{G}(k)$$

Let $c \in Z^1(k_0, \overline{G}_{\diamond})$ be a 1-cocycle, that is, a locally constant map

 $c \colon \Gamma \to \overline{G}_{\Diamond}(k)$ such that $c_{st} = c_s \cdot {}^s c_t$ for all $s, t \in \Gamma$.

We denote by $G_0 = {}_cG_{\diamond}$ the corresponding inner twisted form of G_{\diamond} , see Subsection 2.3. This means that $G_0(k) = G_{\diamond}(k)$, but the Galois action is twisted by c:

$$\sigma_s^0 = c_s \circ \sigma_s \quad \text{for } s \in \Gamma,$$

where we embed $\overline{G}_{\diamond}(k)$ into $\operatorname{Aut}(G)$.

In this section we assume that there exists a G_{\diamond} -equivariant k_0 -model Y_{\diamond} of Y. We give a criterion for the existence of a G_0 -equivariant k_0 -model Y_0 of Y, where $G_0 = {}_cG_{\diamond}$.

3.2. We write $[c] \in H^1(k_0, \overline{G}_{\diamond})$ for the cohomology class of c. We consider the short exact sequence

$$1 \to Z(G_{\diamondsuit}) \to G_{\diamondsuit} \to \overline{G}_{\diamondsuit} \to 1$$

and the corresponding connecting map

$$\delta \colon H^1(k_0, \overline{G}_{\diamond}) \to H^2(k_0, Z(G_{\diamond}))$$

from the cohomology exact sequence

$$(3.3) H^1(k_0, Z(G_{\diamond})) \to H^1(k_0, G_{\diamond}) \to H^1(k_0, \overline{G}_{\diamond}) \xrightarrow{\delta} H^2(k_0, Z(G_{\diamond}));$$

see Serre [11, I.5.7, Proposition 43]. We obtain $\delta[c] \in H^2(k_0, Z(G_{\diamond}))$.

The G_{\diamond} -equivariant k_0 -model Y_{\diamond} of Y defines an action of Γ on $\mathcal{A} := \operatorname{Aut}^G(Y)$ by

$$({}^{s}a)({}^{s}y) = {}^{s}(a(y))$$
 for $s \in \Gamma$, $a \in \mathcal{A}, y \in Y(k)$.

We denote by \mathcal{A}_{\Diamond} the corresponding Γ -group. We obtain homomorphisms

$$\mu \colon \Gamma \to \operatorname{SAut}(Y), \quad s \mapsto \mu_s, \quad \text{where } \mu_s(y) = {}^s\!y \text{ for } s \in \Gamma, \ y \in Y(k) = Y_{\diamondsuit}(k),$$

and

$$\tau \colon \Gamma \to \operatorname{Aut}(\mathcal{A}), \quad s \mapsto \tau_s, \quad \text{where } \tau_s(a) = {}^s\!\! a \text{ for } s \in \Gamma, \ a \in \mathcal{A}.$$

The center $Z_{\diamond} \subset G_{\diamond}$ acts on Y_{\diamond} , and this action clearly commutes with the action of G_{\diamond} . Thus we obtain a canonical Γ -equivariant homomorphism

$$\varkappa: Z_{\Diamond}(k) \to \mathcal{A}_{\Diamond}.$$

3.4. We need the nonabelian cohomology set $H^2(\Gamma, \mathcal{A}_{\diamond})$; see Springer [13, 1.14]. Recall that an (abelian) 2-cocycle $z \in Z^2(k_0, Z_{\diamond})$ is a locally constant map

$$a: \Gamma \times \Gamma \to Z_{\diamondsuit}(k), \quad (s,t) \mapsto z_{s,t}$$

such that

$${}^{s}d_{t,u} \cdot d_{s,tu} = d_{s,t} \cdot d_{st,u} \quad \text{for all } s, t, u \in \Gamma.$$

Then $\varkappa_*([z]) \in H^2(\Gamma, \mathcal{A}_{\diamond})$ is by definition the class of the 2-cocycle $(\tau, \varkappa \circ z)$. This class is called *neutral* if there exists a locally constant map $a: \Gamma \to \mathcal{A}_{\diamond}$ such that

$$a_s \cdot {}^s a_t \cdot \varkappa(z_{s,t}) \cdot a_{st}^{-1} = 1$$
 for all $s, t \in \Gamma$.

Theorem 3.5. Let G, H, Y, k_0 , G_{\diamond} , Y_{\diamond} , A_{\diamond} , δ be as in Subsections 3.1 and 3.2. In particular we assume that Y admits a G_{\diamond} -equivariant k_0 -model Y_{\diamond} . We assume also that Y is quasi-projective. Let $c \in Z^1(k_0, \overline{G}_{\diamond})$ be a 1-cocycle, and consider it class $[c] \in$ $H^1(k_0, \overline{G}_{\diamond})$. Set $G_0 = {}_cG_{\diamond}$ (the inner twisted form of G_{\diamond} defined by the 1-cocycle c). The G-variety Y admits a G_0 -equivariant k_0 -model if and only if the cohomology class

$$\varkappa_*(\delta[c]) \in H^2(\Gamma, \mathcal{A}_{\diamondsuit})$$

is neutral.

Proof. The k_0 -model G_{\diamond} of G defines a homomorphism

$$\sigma \colon \Gamma \to \mathrm{SAut}(G), \quad s \mapsto \sigma_s$$

where each σ_s is an s-semi-automorphism of G. The G_{\Diamond} -equivariant k_0 -model Y_{\Diamond} of Y defines a homomorphism

$$\mu \colon \Gamma \to \mathrm{SAut}(Y), \quad s \mapsto \mu_s$$

such that each μ_s is an s-semi-automorphism of Y and is σ_s -equivariant, that is,

(3.6)
$$\mu_s(g \cdot y) = \sigma_s(g) \cdot \mu_s(y) \quad \text{for all } g \in G(k), \ y \in Y(k).$$

Since the map $s \mapsto \mu_s$ is a homomorphism, we have

(3.7)
$$\mu_{st} = \mu_s \circ \mu_t \quad \text{for all } s, t \in \Gamma.$$

We lift the 1-cocycle

$$c\colon \Gamma\to \overline{G}(k)$$

to a locally constant map

$$\tilde{c}\colon\Gamma\to G(k)$$

which does not have to be a 1-cocycle. Let $\sigma^0 \colon \Gamma \to \text{SAut}(G)$ denote the homomorphism corresponding to the twisted form $G_0 = {}_cG_{\diamond}$, then by definition

$$\sigma_s^0(g) = \tilde{c}_s \cdot \sigma_s(g) \cdot \tilde{c}_s^{-1}.$$

For $g \in G(k)$, we write l(g) for the automorphism $y \mapsto g \cdot y$ of Y. We have

(3.8)
$$l(g) \circ a = a \circ l(g) \quad \text{for all } g \in G(k), \ a \in \mathcal{A}_{\diamondsuit}$$

because a is a G-equivariant automorphism of Y. By (3.6) we have $\mu_s(g \cdot y) = \sigma_s(g) \cdot \mu_s(y)$, hence

(3.9)
$$\mu_s \circ l(g) = l(\sigma_s(g)) \circ \mu_s \quad \text{for all } s \in \Gamma, \ g \in G_{\Diamond}(k).$$

Similarly, $\tau_s(a)(\mu_s(y)) = \mu_s(a(y))$, hence,

(3.10)
$$\mu_s \circ a = \tau_s(a) \circ \mu_s \quad \text{for all } s \in \Gamma, \ a \in \mathcal{A}_{\diamond}.$$

By definition (Serre [11, I.5.6])

$$\delta[c] \in H^2(k_0, Z(G_{\diamond}))$$

is the class of the 2-cocycle given by

$$(s,t) \mapsto \tilde{c}_s \cdot {}^s \tilde{c}_t \cdot \tilde{c}_{st}^{-1} \in Z(G_{\diamond})(k) \quad (s,t \in \Gamma).$$

Then $\varkappa_*(\delta[c])$ is the class of the 2-cocycle

$$(s,t)\mapsto \varkappa(\tilde{c}_s\cdot {}^s\tilde{c}_t\cdot \tilde{c}_{st}^{-1})\in \mathcal{A}_\diamond$$

Let

$$a\colon\Gamma\to\mathcal{A}_{\diamond}$$

be a locally constant map. We define

$$\mu_s^0 = a_s \circ l(\tilde{c}_s) \circ \mu_s = l(\tilde{c}_s) \circ a_s \circ \mu_s$$

Lemma 3.11. For any $s \in \Gamma$, the s-semi-automorphism μ_s^0 is σ_s^0 -equivariant.

Proof. Using (3.8) and (3.9), we compute:

$$\begin{aligned} \mu_s^0(g \cdot y) &= (a_s \circ l(\tilde{c}_s))(\mu_s(g \cdot y)) \\ &= a_s(\tilde{c}_s \cdot \sigma_s(g) \cdot \mu_s(y)) \\ &= \tilde{c}_s \sigma_s(g) \tilde{c}_s^{-1} \cdot a_s(\tilde{c}_s \cdot \mu_s(y)) = \sigma_s^0(g) \cdot \mu_\sigma^0(y). \end{aligned}$$

Lemma 3.12. The map $s \to \mu_s^0$ is a homomorphism if and only if (3.13) $a_s \cdot {}^s\!a_t \cdot \varkappa(\tilde{c}_s {}^s \tilde{c}_t \tilde{c}_{st}^{-1}) \cdot a_{st}^{-1} = 1$ for all $s, t \in \Gamma$. *Proof.* Let $s, t \in \Gamma$. Using (3.8), (3.9), and (3.10), we compute:

$$\mu_{s}^{0} \circ \mu_{t}^{0} \circ (\mu_{st}^{0})^{-1} = a_{s} \circ l(\tilde{c}_{s}) \circ \mu_{s} \circ a_{t} \circ l(\tilde{c}_{t}) \circ \mu_{t} \circ \mu_{st}^{-1} \circ l(\tilde{c}_{st})^{-1} \circ a_{st}^{-1}$$
$$= a_{s} \circ \tau_{s}(a_{t}) \circ l(\tilde{c}_{s}) \circ l(\sigma_{s}(\tilde{c}_{t})) \circ \mu_{s} \circ \mu_{t} \circ \mu_{st}^{-1} \circ l(\tilde{c}_{st})^{-1} \circ a_{st}^{-1}.$$

By (3.7) we obtain that

$$\mu_s^0 \circ \mu_t^0 \circ (\mu_{st}^0)^{-1} = a_s \circ \tau_s(a_t) \circ l(\tilde{c}_s) \circ l(\sigma_s(\tilde{c}_t)) \circ l(\tilde{c}_{st})^{-1} \circ a_{st}^{-1} = a_s \cdot {}^s a_t \cdot \varkappa(\tilde{c}_s {}^s \tilde{c}_t \tilde{c}_{st}^{-1}) \cdot a_{st}^{-1}.$$

We see that

$$\mu_s^0 \circ \mu_t^0 \circ (\mu_{st}^0)^{-1} = 1$$

if and only if (3.13) holds. Thus the map $s \to \mu_s^0$ is a homomorphism if and only if (3.13) holds, which completes the proof of Lemma 3.12.

Now assume that $\varkappa_*(\delta[c]) \in H^2(\Gamma, \mathcal{A}_{\diamond})$ is neutral. This means that there exists a locally constant map

$$a\colon\Gamma\to\mathcal{A}_{\langle}$$

such that (3.13) holds. Then by Lemma 3.12 the map

$$\mu^0 \colon \Gamma \to \mathrm{SAut}(Y), \quad s \mapsto \mu_s^0$$

is a homomorphism, hence it satisfies hypothesis (i) of [4], Lemma 6.3. By Lemma 3.11 μ_s^0 is σ_s^0 -equivariant, hence μ^0 satisfies hypothesis (iv) of [4], Lemma 6.3. The variety Y = G/H is quasi-projective, hence hypothesis (iii) of this lemma is satisfied. It is easy to see that the restriction of the homomorphism μ_0 to $\operatorname{Gal}(k/k_1)$ for some finite Galois extension k_1/k_0 in k comes from a G_1 -equivariant k_1 -model Y_1 of Y, where $G_1 = G_0 \times_{k_0} k_1$. Thus the homomorphism μ^0 satisfies hypothesis (ii) of [4], Lemma 6.3. By this lemma the variety Y admits a G_0 -equivariant k_0 -model Y_0 inducing the homomorphism $s \mapsto \mu_s^0$, as required.

Conversely, assume that Y admits a G_0 -equivariant k_0 -model Y_0 inducing a homomorphism

$$\mu^0 \colon \Gamma \to \mathrm{SAut}(G), \quad s \mapsto \mu^0_s.$$

Then by Lemma 3.11 (in the case $a_s = 1$) the s-semi-automorphism $l(c_s) \circ \mu_s$ of Y is σ_s^0 -equivariant for any $s \in \Gamma$. Since μ_s^0 is σ_s^0 -equivariant as well, we have

$$\mu_s^0 = a_s \circ l(c_s) \circ \mu_s$$

for some locally constant map

$$a\colon\Gamma\to\mathcal{A}_{\diamondsuit},\quad s\mapsto a_s.$$

Since the map $s \mapsto \mu_s^0$ is a homomorphism, by Lemma 3.12 the equality (3.13) holds and hence, $\varkappa_*(\delta[c])$ is neutral in $H^2(\Gamma, \mathcal{A}_{\diamondsuit})$. This completes the proof of Theorem 3.5. \Box

4. Model of a homogeneous space of a reductive group

Let k, k_0 , and Γ be as in Subsection 1.1. In this section G is a connected reductive group over k. Let $H \subset G$ be a k-subgroup (not necessarily spherical). We consider the homogeneous G-variety Y = G/H. Consider the abstract group $\mathcal{A} = \operatorname{Aut}^G(G/H)$ and the algebraic group $A = \mathcal{N}_G(H)/H$, then there is a canonical isomorphism $A(k) \xrightarrow{\sim} \mathcal{A}$; see e.g. [4, Lemma 5.1]. Let G_{qs} be a quasi-split k_0 -model of G and let Y_{qs} be a G_{qs} -equivariant model of G/H, then we obtain a Γ -action on $A(k) = \mathcal{A}$ and hence, a k_0 -model A_{qs} of A. We need the following result: **Proposition 4.1.** Let $k_0 \subset k$ be a subfield such that k is a Galois extension of k. Let G be a connected reductive group over k. Let G_0 be any k_0 -model of G. Then there exist a quasi-split inner k_0 -model G_{qs} of G and a cocycle $c \in Z^1(k_0, \text{Inn}(G_{qs}))$ such that $G_0 \simeq {}_cG_{qs}$ (we say that G_{qs} is a quasi-split inner k_0 -form of G_0). Moreover, if G_{qs} and G'_{qs} are two quasi-split inner k_0 -forms of G_0 , then they are isomorphic.

Proof. See "The Book of Involutions" [7, Proposition(31.5)], or Conrad [5, Proposition 7.2.12], the existence only in Springer [14, Proposition 16.4.9]. \Box

4.2. Let G be a connected reductive group over k, and let G_0 be a k_0 -model of G. Write $\overline{G} = G/Z(G)$ for the corresponding adjoint group, and \widetilde{G} for the universal cover of the connected semisimple group [G, G]. By Proposition 4.1 we may write $G_0 = {}_cG_{qs}$, where G_{qs} is a quasi-split k_0 -model of G and $c \in Z^1(k_0, G_{qs}/Z(G_{qs}))$. We fix G_{qs} and c. We write $\overline{G}_{qs} = G_{qs}/Z(G_{qs})$.

We write \widetilde{Z}_{qs} for the center $Z(\widetilde{G}_{qs})$ of the universal cover \widetilde{G}_{qs} of the connected semisimple group $[G_{qs}, G_{qs}]$. Similarly, we write \widetilde{Z}_0 for the center $Z(\widetilde{G}_0)$ of the universal cover \widetilde{G}_0 of the connected semisimple group $[G_0, G_0]$. The short exact sequence

$$1 \to \widetilde{Z}_{\rm qs} \to \widetilde{G}_{\rm qs} \to \overline{G}_{\rm qs} \to 1$$

induces a cohomology exact sequence

$$H^1(k_0, \widetilde{Z}_{qs}) \to H^1(k_0, \widetilde{G}_{qs}) \to H^1(k_0, \overline{G}_{qs}) \xrightarrow{\delta} H^2(k_0, \widetilde{Z}_{qs}).$$

By definition, the Tits class $t(\tilde{G}_0)$ is the image of $[c] \in Z^1(k_0, \overline{G}_{qs})$ in $H^2(k, \widetilde{Z}_{qs})$ under the connecting map $\tilde{\delta} \colon H^1(k_0, \overline{G}_{qs}) \to H^2(k_0, \widetilde{Z}_{qs})$; compare [7], Section 31, before Proposition (31.7).

Theorem 4.3. Let G be a reductive group over an algebraically closed field k of characteristic 0. Let $H \subset G$ be an algebraic subgroup. Let $k_0 \subset k$ be a subfield such that k is an algebraic closure of k. Let G_0 be a k_0 -model of G. Write $G_0 = {}_cG_{qs}$, where G_{qs} is a quasi-split inner form of G_0 and where $c \in Z^1(k_0, \overline{G}_{qs})$. Assume that G/H admits a G_{qs} -equivariant k_0 -model. Then G/H admits a G_0 -equivariant k_0 -model if and only if the image in $H^2(k_0, A_{qs})$ of the Tits class $t(\widetilde{G}_0) \in H^2(k_0, Z(\widetilde{G}_{qs}))$ is neutral.

Proof. By Theorem 3.5 the homogeneous variety G/H admits a G_0 -equivariant k_0 -form if and only if the image

$$\varkappa(\delta[c]) \in H^2(k_0, A_{qs})$$

is neutral. We write Z_{qs} for $Z(G_{qs})$ and \widetilde{Z}_{qs} for $Z(\widetilde{G}_{qs})$. From the commutative diagram with exact rows

we obtain a commutative diagram

$$\begin{array}{c} H^{1}(k_{0},\overline{G}_{\mathrm{qs}}) \xrightarrow{\delta} H^{2}(k_{0},\widetilde{Z}_{\mathrm{qs}}) \\ \downarrow^{\mathrm{id}} & \downarrow^{\lambda} \\ H^{1}(k_{0},\overline{G}_{\mathrm{qs}}) \xrightarrow{\delta} H^{2}(k_{0},Z_{\mathrm{qs}}), \end{array}$$

which shows that

$$\delta[c] = \lambda(\tilde{\delta}[c]).$$

By definition

$$t(\widetilde{G}_0) = \widetilde{\delta}[c] \in H^2(k_0, \widetilde{Z}_{qs})$$

Thus $\varkappa(\delta[c])$ is the image in $H^2(k_0, A_{qs})$ of $t(\widetilde{G}_0)$ under the map

$$H^2(k_0, \widetilde{Z}_{qs}) \to H^2(k_0, Z_{qs}) \to H^2(k_0, A_{qs})$$

induced by the homomorphism $\widetilde{Z}_{qs} \to Z_{qs} \to A_{qs}$. We conclude that the homogeneous variety G/H admits a G_0 -equivariant k_0 -form if and only if the image of $t(\widetilde{G}_0)$ in $H^2(k_0, A_{qs})$ is neutral, as required.

5. Models of
$$(H \times H)/\Delta$$

5.1. Let *H* be a connected algebraic *k*-group, and set $G = H \times_k H$. Let Y = H, where *G* acts on *Y* by

$$(h_1, h_2) * y = h_1 y h_2^{-1}.$$

Note that $Y = G/\Delta$, where $\Delta \in H \times_k H$ is the diagonal, that is, Δ is H embedded in G diagonally. Let $H_0^{(1)}$ and $H_0^{(2)}$ be two k_0 -models of H. We set $G_0 = H_0^{(1)} \times_{k_0} H_0^{(2)}$ and ask whether Y admits a G_0 -equivariant k_0 -model.

Theorem 5.2. With the notation and assumptions of 5.1, $Y = (H \times H)/\Delta$ admits an $H_0^{(1)} \times_{k_0} H_0^{(2)}$ -equivariant k_0 -model if and only if $H_0^{(2)}$ is a pure inner form of $H_0^{(1)}$.

Proof of Theorem 5.2. Set $G_1 = H_0^{(1)} \times_{k_0} H_0^{(1)}$, then Y admits a k_0 -model $Y_1 = H_0^{(1)}$ (with the natural action of G_1). Assume that $H^{(2)}$ is a pure inner form of $H^{(1)}$, then $G_0 := H_0^{(1)} \times_{k_0} H_0^{(2)}$ is a pure inner form of G_1 , and by Lemma 2.4 the *G*-variety Y admits a G_0 -equivariant k_0 -model. Explicitly, let $P_{\tilde{c}}$ denote the *torsor* (principal homogeneous space) of $H^{(1)}$ corresponding to the 1-cocycle \tilde{c} ; see Serre [11, Section I.5.2]. Then $H^{(1)}$ acts on $P_{\tilde{c}}$, and $H(k) = H^{(1)}(k)$ acts on P simply transitively. Moreover, $H^{(2)} = _{\tilde{c}}(H^{(1)})$ acts on $P_{\tilde{c}}$ as well, and these two actions commute; see Serre [11, Section I.5.3, Corollary of Proposition 34]. Thus $P_{\tilde{c}}$ is an $H_0^{(1)} \times_{k_0} H_0^{(2)}$ -equivariant k_0 -model of Y.

Conversely, assume that Y admits an $H_0^{(1)} \times_{k_0} H_0^{(2)}$ -equivariant k_0 -model. First we show that then $H^{(2)}$ is an *inner form* of $H^{(1)}$. Indeed, let

$$\sigma^{(i)} \colon \Gamma \to \mathrm{SAut}(H)$$

denote the semilinear actions corresponding to the model $H_0^{(i)}$ of H for i = 1, 2. Recall that $\Delta(k) = \{(h, h) \mid h \in H(k)\}$. Then for any $s \in \Gamma$ we have

$$(\sigma_s^{(1)} \times \sigma_s^{(2)})(\Delta(k)) = \{(\sigma_s^{(1)}(h), \sigma_s^{(2)}(h)) \mid h \in H(k)\}.$$

Since Y admits an $H_0^{(1)} \times_{k_0} H_0^{(2)}$ -equivariant k_0 -model, the subgroup $(\sigma_s^{(1)} \times \sigma_s^{(2)})(\Delta)$ is conjugate to Δ in $G = H \times H$; see, e.g., [12, Lemma 4.1]. This means that there exists a pair $(h_1, h_2) \in H(k) \times H(k)$ such that

$$(\sigma_s^{(1)}(h), \sigma_s^{(2)}(h)) = (h_1 h h_1^{-1}, h_2 h h_2^{-1})$$
 for all $h \in H(k)$.

It follows that

$$\sigma_s^{(1)}(h) = (h_1 h_2^{-1}) \cdot \sigma_s^{(2)}(h) \cdot (h_1 h_2^{-1})^{-1}.$$

We see that for any $s \in \Gamma$, the *s*-semi-automorphism $\sigma_s^{(2)}$ of *H* differs from $\sigma_s^{(2)}$ by an inner automorphism of *H*. This means that $H_0^{(2)}$ is an inner form of $H_0^{(1)}$.

Now we know that $H_0^{(2)} = {}_c(H_0^{(1)})$ for some 1-cocycle $c \in Z^1(k_0, \overline{H}^{(1)})$. Set $G_1 = H_0^{(1)} \times_{k_0} H_0^{(1)}$, then $Y_1 := H_0^{(1)}$ with the natural action of G_1 is a G_1 -equivariant k_0 -model

of Y. Moreover, $G_0 = H_0^{(1)} \times_{k_0} H_0^{(2)}$ is the inner twisted form of G_1 given by the 1-cocycle $(1, c) \in Z^1(k_0, G_1)$. Then

$$\delta[(1,c)] \in H^2(k_0, Z(G_1)) = H^2(k_0, Z(H_0^{(1)})) \times H^2(k_0, Z(H_0^{(1)}))$$

is $(1, \delta_H[c])$, where

is the connecting map. By Theorem 3.5, Y admits an $H_0^{(1)} \times_{k_0} H_0^{(2)}$ -equivariant k_0 -model if and only if $\varkappa_*(\delta[1,c]) = 0$, that is, if and only if $\varkappa_*(1,\delta_H[c]) = 1$. An easy calculation shows that

$$\mathcal{N}_G(\Delta) = Z(G) \cdot \Delta$$
 and $A := \mathcal{N}_G(\Delta) / \Delta = Z(G) / Z(\Delta) = (Z(H) \times Z(H)) / Z(\Delta).$

Similarly, over k_0 we obtain

 $\mathcal{N}_{G_1}(\Delta_1) = Z(G_1) \cdot \Delta_1 \text{ and } A_1 := \mathcal{N}_{G_1}(\Delta_1) / \Delta_1 = Z(G_1) / Z(\Delta_1) = (Z(H_0^{(1)}) \times Z(H_0^{(1)})) / Z(H_0^{(1)}).$ It is easy to see that the morphism of abelian k_0 -groups

$$Z(H_0^{(1)}) \to A_1, \quad z \mapsto (1,z) \cdot Z(\Delta)$$

is an isomorphism. It follows that the induced map on cohomology

$$H^2(k_0, Z(H_0^{(1)})) \to H^2(k_0, A_1)$$

is an isomorphism of abelian groups. Therefore, Y admits an $H_0^{(1)} \times_{k_0} H_0^{(2)}$ -equivariant k_0 -model if and only if $\delta_H[c] = 1$, that is, if and only if $H_0^{(2)}$ is a pure inner form of $H_0^{(1)}$, as required.

Lemma 5.3. Let H_0 be a simply connected semisimple group over a p-adic field k_0 . Then any pure inner form of H_0 is isomorphic to H_0 .

Proof. Indeed, by Kneser's theorem we have $H^1(k_0, H_0) = 1$; see Platonov and Rapinchuk [8, Theorem 6.4].

Corollary 5.4. In Theorem 5.2, if k_0 is a *p*-adic field and *H* is a simply connected semisimple group over *k*, then *Y* admits an $H_0^{(1)} \times_{k_0} H_0^{(2)}$ -equivariant k_0 -model if and only if $H_0^{(2)}$ is isomorphic to $H_0^{(1)}$.

Proof. Indeed, by Theorem 5.2 the variety Y admits an $H_0^{(1)} \times_{k_0} H_0^{(2)}$ -equivariant k_0 -model if and only if $H_0^{(2)}$ is a pure inner form of $H_0^{(1)}$, and by Lemma 5.3 any pure inner form of $H_0^{(1)}$ is isomorphic to $H_0^{(1)}$.

6. Models of G/U

Theorem 6.1. Let k be a fixed algebraic closure of a field k of characteristic 0, and let G be a connected reductive group over k. Let $B \subset G$ be a Borel subgroup, and write U for the unipotent radical of B. Consider the homogeneous space Y = G/U. Let G_0 be a k_0 -model of G. Then Y admits a G_0 -equivariant k_0 -model if and only if G_0 is a pure inner form of a quasi-split model of G.

Proof. It is well known that G_0 is an inner form of a quasi-split model G_{qs} of G; see Springer [14, Proposition 16.4.9]) or "The Book of Involutions" [7, Proposition (31.5)], or Conrad [5, Proposition 7.2.12]. This means that $G_0 = {}_cG_{qs}$, where $c \in Z^1(k_0, \overline{G}_{qs})$. Since G_{qs} is quasi-split, there exists a Borel subgroup $B_{qs} \subset G_{qs}$ (defined over k_0). Set $U_{qs} = R_u(B_{qs})$, then G_{qs}/U_{qs} is a G_{qs} -equivariant k_0 -model of Y = G/U. By Theorem 3.5, Y admits a G_0 -equivariant k_0 -model if and only if $\varkappa_*(\delta[c]) \subset H^2(k_0, A_{qs})$ vanishes, where $A_{qs} = \mathcal{N}_G(U_{qs})/U_{qs} \cong T_{qs}$ and $T_{qs} \subset B_{qs}$ is a maximal torus. Note that $\varkappa: Z_{qs} \to A_{qs} = T_{qs}$ is the canonical embedding, where $Z_{qs} = Z(G_{qs})$.

We show that the homomorphism

$$\varkappa_* \colon H^2(k_0, Z_{qs}) \to H^2(k_0, T_{qs})$$

is injective. Indeed, we have a short exact sequence

$$1 \to Z_{\rm qs} \xrightarrow{\varkappa} T_{\rm qs} \to \overline{T}_{\rm qs} \to 1,$$

which induces a cohomology exact sequence

$$\cdots \to H^1(k_0, \overline{T}_{qs}) \to H^2(k_0, Z_{qs}) \xrightarrow{\varkappa} H^2(k_0, T_{qs}) \to \dots$$

Since G_{qs} is quasi-split, by Lemma 6.2 below we have $H^1(k_0, \overline{T}_{qs}) = 1$, hence the homomorphism \varkappa_* is injective, as required.

We see that $\varkappa_*(\delta[c]) = 1$ if and only if $\delta[c] = 1$. Now consider the cohomology exact sequence

$$\cdots \to H^1(k_0, G_{qs}) \to H^1(k_0, \overline{G}_{qs}) \xrightarrow{\delta} H^2(k_0, Z_{qs}) \to \ldots$$

It follows from the construction of the map δ (see Serre [11, Section I.5.6]) that $\delta[c] = 1$ if and only if c can be lifted to a 1-cocycle $\tilde{c} \in Z^1(k_0, G)$, that is, if and only if $G_0 = {}_cG_{qs}$ is a pure inner form of G_{qs} , as required.

We conclude that Y admits a G_0 -equivariant k_0 -model if and only if G_0 is a pure inner form of G_{qs} .

Lemma 6.2. Let G_0 be a quasi-split semisimple group of adjoint type, $B_0 \subset G_0$ be a Borel subgroup defined over k_0 , and $T_0 \subset B_0$ be a maximal torus. Then $H^1(k_0, B_0) = H^1(k_0, T_0) = 1$.

Proof. Note that $T_0 \simeq B_0/R_u(B_0)$, which gives a canonical bijection $H^1(k_0, B_0) \xrightarrow{\sim} H^1(k_0, T_0)$; see Sansuc [9, Lemme 1.13]. Since G_0 is a group of adjoint type, the set of simple roots $S = S(G_{0,k}, T_{0,k}, B_{0,k})$ is a basis of the character group $X^*(T_{0,k})$; see Springer [14, 8.1.11]. Since $B_{0,k}$ is defined over k_0 , the action of Γ on $X^*(T_{0,k})$ preserves the basis S. In other words, $X^*(T_{0,k})$ is a permutation Γ -module, hence T_0 is a quasi-trivial k_0 -torus, and therefore, $H^1(k_0, T_0) = 1$; see Sansuc [9, Lemme 1.9].

Remark 6.3. In Theorem 6.1 assume that G is a semisimple group of adjoint type. Then a k_0 -model of G/U, if exists, is unique. Indeed, then $A_{qs} \cong T_{qs}$, and by Lemma 6.2 we have

$$H^{1}(k_{0}, A_{qs}) = H^{1}(k_{0}, T_{qs}) = 1.$$

Corollary 6.4. In Theorem 6.1 assume that k_0 is a p-adic field and that G is semisimple and simply connected. Then G/U admits a G_0 -equivariant k_0 -model if and only if G_0 is quasi-split.

Proof. Indeed, by Theorem 6.1 the *G*-variety G/U admits a G_0 -equivariant k_0 -model if and only if G_0 is a pure inner form of a quasi-split group G_{qs} . Since k_0 is a *p*-adic field, by Lemma 5.3 then G_0 is isomorphic to G_{qs} .

References

- Dmitri Akhiezer, Satake diagrams and real structures on spherical varieties, Internat. J. Math. 26 (2015), no. 12, 1550103, 13 pp.
- [2] Dmitri Akhiezer and Stéphanie Cupit-Foutou, On the canonical real structure on wonderful varieties, J. reine angew. Math., 693 (2014), 231–244.
- [3] Armand Borel et Jean-Pierre Serre, Théorèmes de finitude en cohomologie galoisienne, Comm. Math. Helv., 39 (1964), 111–164.

MIKHAIL BOROVOI

- [4] Mikhail Borovoi with an appendix by Giuliano Gagliardi, *Equivariant models of spherical varieties*, arXiv:1710.02471[math.AG].
- Brian Conrad, Reductive group schemes, in: Autour des schémas en groupes, Vol. I, 93–444, Panor. Synthèses, 42/43, Soc. Math. France, Paris, 2014.
- [6] Jörg Jahnel, The Brauer-Severi variety associated with a central simple algebra, Linear Algebraic Groups and Related Structures 52 (2000), 1-60.
- [7] Max-Albert Knus, Alexander Merkurjev, Markus Rost, and Jean-Pierre Tignol, *The Book of Involu*tions, American Mathematical Society Colloquium Publications, 44. American Mathematical Society, Providence, RI, 1998.
- [8] Vladimir Platonov and Andrei Rapinchuk, Algebraic groups and number theory, Pure and Applied Mathematics, 139, Academic Press, Boston, MA, 1994.
- [9] Jean-Jacques Sansuc, Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. reine angew. Math., 327 (1981), 12–80.
- [10] Jean-Pierre Serre, Algebraic groups and class fields, Graduate Texts in Mathematics, 117, Springer-Verlag, New York, 1988.
- [11] Jean-Pierre Serre, Galois cohomology, Springer-Verlag, Berlin, 1997.
- [12] Stephan Snigerov, Spherical varieties over large fields, arXiv:1805.01871[math.AG].
- [13] Tonny A. Springer, Nonabelian H² in Galois cohomology, (Proc. Sympos. Pure Math. 9, Boulder, Colo., 1965) pp. 164–182, Amer. Math. Soc., Providence, R.I., 1966.
- [14] Tonny A. Springer, *Linear algebraic groups*, Second edition. Progress in Mathematics, 9. Birkhuser Boston, Inc., Boston, MA, 1998.

RAYMOND AND BEVERLY SACKLER SCHOOL OF MATHEMATICAL SCIENCES, TEL AVIV UNIVERSITY, 6997801 TEL AVIV, ISRAEL

E-mail address: borovoi@post.tau.ac.il