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ERDŐS’ MULTIPLICATION TABLE PROBLEM FOR FUNCTION

FIELDS AND SYMMETRIC GROUPS

PATRICK MEISNER

Abstract. Erdős first showed that the number of positive integers up to x

which can be written as a product of two number less than
√

x has zero density.
Ford then found the correct order of growth of the set of all these integers.
We will use the tools developed by Ford to answer the analogous question
in the function field setting. Finally, we will use a classical result relating
factorization of polynomials to factorization of permutations to recover a result
of Eberhard, Ford and Green of an analogous multiplication table problem for
permutations.

1. Introduction

Let A(x) be the set of positive integers up to x that can be written as a product
of two numbers less than

√
x. Using estimates on the number of integers with a

given number of prime divisors Erdős [4] was able to show that

|A(x)| ≪ x

(log x)δ(log log x)1/2
,

where

δ = 1− 1 + log log 2

log 2
= 0.086071....

Much later, Ford [5, 6] considered the set H(x, y, z) consisting of the number of
integers up to x which has a divisor in (y, z]. In particular, he showed that

|H(x, y, 2y)| ≍ x

(log y)δ(log log y)3/2
(3 ≤ y ≤

√
x),(1.1)

and that
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from which you can then conclude that

|A(x)| ≍ x

(log x)δ(log log x)3/2
.(1.2)

Here we use the notation that f(x) ≪ g(x) if there is a constant C and X > 0
such that |f(x)| ≤ |g(x)| for all x ≥ X . Further, we write f(x) ≍ g(x) to mean
f(x) ≪ g(x) and g(x) ≪ f(x).

Several authors have generalized this problem to various other settings. Kouk-
oulopoulos [8, 9, 10] considered the number of integers up to x that can be written
as a product of k different integers in certain intervals, the so-called generalized
multiplication table problem. Eberhard, Ford and Green [2] considered an analo-
gous problem for permutations in the symmetric group (see Section 1.2 for further
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discussion) while the first two authors with Koukoulopolous [3] looked at the gen-
eralized multiplication table problem for the symmetric group. Finally, Mangerel
proved the analogous statement for arithmetical semigroups that satisfy an “α-
prime element theorem” (see [11] for more details). We are interested, however, in
the analogous statement in the function field setting.

1.1. Function Field Analogy. There is a dictionary of sorts that relates state-
ments made about integers to statements about polynomials over finite fields:

Z Fq[t]
p, prime P , prime polynomial
positive monic
|m| |F | = qdegF

m ≤ x degF = n
log x degF

Therefore, we can make statements about function fields that are analogous to
statements in the integers by replacing the appropriate “words”. For example the
prime number theorem states that the number of primes up to x is

π(x) := |{p ≤ x : p is prime}| ∼ x

log(x)
.

The analogous question, the prime polynomial theorem, asks how many prime
polynomials over Fq[t] are there of degree n with the answer being

πq(n) := |{P ∈ Mn : P is a prime polynomial}| = qn

n
+O

(

qn/2

n

)

,

where Mn is the set of monic polynomials of degree n. Note that we get a square-
root saving in the error term for the prime polynomial theorem as the Riemann
Hypothesis is known for function fields.

Using this dictionary we can create analogous sets to A(x) and H(x, y, 2y) in the
function field setting. The background set for A(x) is all the positive integers less
than x so the background set in the function field setting would be Mn, the monic
polynomials of degree n. Since degree is the analogy of log, the condition of being
the product of two integers less than

√
x in A(x) is analogous to being the product

of two polynomials of degree n/2. Clearly this only makes sense if n is even and so
we define

M(2n) := {F ∈ M2n : F = GH,G,H ∈ Mn}.(1.3)

Then the multiplication table problem would be to find the size of set M(2n). Using
the dictionary we can make a good guess as to how large the set should be and in
fact that is what we get.

Theorem 1.1.

|M(2n)| ≍ q2n

nδ(1 + logn)3/2

as qn → ∞.

Notice that since n replaces log x, logn replaces log log x. Moreover, we have a
(1 + log(n))3/2 in the denominator to correct for when n = 1.

The analogy for H(x, y, 2y) is a little subtler. We must ask ourselves what is
the correct analogue of 2 and the importance it plays in the proof of (1.1). In fact
2 is important in this context because it is the smallest prime. While the concept
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of a smallest prime is not well defined in the function field setting, the degree of
the smallest prime is well defined, and it is 1. Therefore, the analogue of a number
having a divisor in (y, 2y] would be for a polynomial to have a divisor with degree
in (b, b+1]. But since the degree is always an integer we see that this is equivalent
to saying a polynomial has a divisor of some fixed degree. Thus we define

H(n, b) :={F ∈ Mn : F has a divisor of degree b}(1.4)

={F ∈ Mn : F = GH,G ∈ Mb, H ∈ Mn−b}.
Moreover, we see that H(n, b) = H(n, n−b) so we may always assume that b ≤ n/2.
Again, the result predicted by the dictionary is the truth.

Theorem 1.2. For b ≤ n/2,

|H(n, b)| ≍ qn

bδ(1 + log b)3/2

as qn → ∞.

Of course M(2n) = H(2n, n) so Theorem 1.1 is a direct corollary of Theorem
1.2.

1.2. Symmetric Groups. Let Sn be the symmetric group on n elements and
define

I(n, b) := {σ ∈ Sn : σ fixes some subset of size b}.
Eberhard, Ford and Green [2] adapted the methods of Ford in [5, 6] to show that

Theorem 1.3. For b ≤ n/2,

|I(n, b)| ≍ n!

bδ(1 + log b)3/2

as n → ∞.

As well as the analogy between integers and polynomials over a finite field, there
is an analogy between polynomials over a finite field of degree n and the symmetric
group on n elements. In particular, one can show that, in the q-limit, the probability
a polynomial has a given factorization into prime polynomials is the same as the
probability a permutation has the same factorization type into cyclic elements.
Through this analogy we can relate the relative size of I(n, b) to the relative size of
H(n, b).

Theorem 1.4.

lim
q→∞

|H(n, b)|
qn

=
|I(n, b)|

n!
.

The proof of Theorem 1.4 is independent of Theorems 1.2 and 1.3. Therefore
Theorems 1.3 and 1.4 imply Theorem 1.2 for n fixed and q tending to infinity.
However, the proof we give here of Theorem 1.2 is independent of Theorem 1.3 and
is valid for qn tending to infinity in any way (in particular, for q fixed and n tending
to infinity). Hence we get a new proof of Theorem 1.3.

Define these two properties of permutations on Sn:

Definition 1.5. We say σ, τ ∈ Sn are disjoint if they permute different elements.
That is, if σ(k) 6= k then τ(k) = k and, vice versa, if τ(k) 6= k then σ(k) = k.
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Definition 1.6. We say σ ∈ Sn embeds into Sm if there is a subset I ⊂ {1, . . . , n}
of size m such that σ permutes I and is trivial outside of I. That is, σ(k) ∈ I for
all k ∈ I and σ(k) = k for all k 6∈ I.

Then we see that I(n, b) has an equivalent definition

I(n, b) := {σ ∈ Sn : σ = τ1τ2 such that τ1, τ2 are disjoint and τ1 embeds into Sb}.
(1.5)

In this way we see that I(2n, n) is a reasonable analogue of the multiplication
table set in S2n. However, Theorem 1.3 is then surprising as one would expect
from (1.2) and Theorem 1.2 that the multiplication table set of S2n would have size
roughly

|S2n|
(log |S2n|)δ(1 + log log |S2n|)3/2

=
(2n)!

(log((2n)!))δ(1 + log log((2n)!))3/2

≍ (2n)!

(n logn)δ(1 + logn)3/2

So this raises the question:

Question 1.7. Does there exist a different (more reasonable) analogue of the mul-
tiplication table set in S2n that has size roughly like the above equation?

Outline of the paper: In Section 2 we will prove Theorem 1.4. Then Sections
3 and 4 will be devoted to proving the lower and upper bounds for Theorem 1.2,
respectively. We will use the techniques developed by Ford to reduce the question
down to the same estimates as for the integer case. Finally, we include an appendix
with proofs of function field analogues of well known useful results in the integer
setting.

We will preserve the variable P (with any subscript) to denote a prime polyno-
mial. Moreover, for brevity, if we write a sum (or product) with P in the subscript,
we will always have this denote the sum (or product) over prime polynomials that
satisfy the other conditions imposed by the sum (or product).

Acknowledgements: I would like to thank Ben Green, Dimitris Koukoulopou-
los and Sacha Mangerel for bringing to my attention some of the literature of the
field. I would also like to thank Ofir Gorodetsky for pointing out some inaccuracies
in the appendix in an earlier version.

The research leading to these results has received funding from the European
Research Council under the European Union’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no 320755.

2. Symmetric Groups

Let F ∈ Mn. Suppose it can be factored as F =
∏t

i=1 Pi where the Pi are not
necessarily distinct primes. Then the tuple (degP1, . . . , degPt) gives a partition of
n. Denote this partition as λF . Further, for any partition λ of n, define

πq(n, λ) = |{F ∈ Mn : λF = λ}|
to be the number of polynomials of degree n with a fixed factorization type.
Note that if we set λ = (n), the partition consisting only of n, then we see that
πq(n, (n)) = πq(n), the number of primes of degree n.

Likewise, all σ ∈ Sn can be decomposed as σ =
∏t

i=1 ci where the ci are disjoint
cycles. Then the tuple (ℓ(c1), . . . , ℓ(ct)) gives a partition of n, where ℓ(ci) is the
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length of ci. Denote this partition λσ. Note: if σ(k) = k, then we include the cycle
(k) in the decomposition of σ and this contributes a 1 to the partition of n. Now,
for any partition λ of n, define

P (λ) =
|{σ ∈ Sn : λσ = λ}|

n!

to be the probability that a permutation has a certain cycle decomposition. Then
there is a classical result that follows directly from the prime polynomial theorem:

Theorem 2.1. [Lemma 2.1 of [1]]
Let n be a positive integer. Then there exists a c(n) > 0 depending only on n

such that

|πq(n, λ)− P (λ)qn| ≤ c(n)qn−1.

We can now use this result to prove Theorem 1.4.

Proof of Theorem 1.4. We will say λ has a b-subpartition if there exists a subset
of λ that is a partition of b. Therefore F ∈ H(n, b) if and only if λF has a b-
subpartition. Indeed if F ∈ H(n, b) then F = GH with G ∈ Mb and λG will be a
b-subpartition of λF . Conversely, if λ′ is a b-subpartition of λF , then define G to
be the product of the primes of F corresponding to λ′. Then G|F and G ∈ Mb

and hence F ∈ H(n, b).
Let

Λ(n, b) := {λ : λ is a partition of n with a b-subpartition}.

Then we get that

H(n, b) =
⋃

λ∈Λ(n,b)

{F ∈ Mn : λF = λ}.

Moreover, this union is disjoint as if λF 6= λG then F 6= G. Therefore,

|H(n, b)| =
∑

λ∈Λ(n,b)

|{F ∈ Mn : λF = λ}|

=
qn

n!

∑

λ∈Λ(n,b)

|{σ ∈ Sn : λσ = λ}|+O
(

c(n)qn−1eπ
√

2n/3
)

where the last equality comes from Theorem 2.1 and bounds on the number of
partition of n as proved by Hardy and Ramanujan [7].

Furthermore, σ ∈ I(n, b) if and only if λσ ∈ Λ(n, b). Indeed if σ ∈ I(n, b)
then, using the second definition of I(n, b) in the introduction, σ = τ1τ2 with τ1
and τ2 disjoint and τ1 embeds into Sb therefore, λτ1 will be a b-subpartition of
λσ. Conversely, if λσ has a b-subpartition then let τ1 be the product of the cycles
corresponding to the subpartition and τ2 be the product of the remaining cycles.
Then τ1 will embed into Sb, τ1 and τ2 will be disjoint and σ = τ1τ2.

Therefore, we get

I(n, b) =
⋃

λ∈Λ(n,b)

{σ ∈ Sn : λσ = λ}
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and since this union is disjoint (as λσ 6= λτ implies σ 6= τ) then we finally have

|I(n, b)|
n!

=
∑

λ∈Λ(n,b)

|{σ ∈ Sn : λσ = λ}|

=
|H(n, b)|

qn
+O

(

c(n)eπ
√

2n/3

q

)

.

Finally, if we let q tend to infinity, then the big-O term will go to zero.
�

3. Lower Bound

In Ford’s proof for the integers, he expresses the size of H(x, y, 2y) in terms of “a
measure of the degree of clustering of the divisors of an integer a” which he defines
as

L(a) = measL (a), L (a) =
⋃

d|a

[log(d/2), log d).

Again, here the importance of 2 is just that it is the smallest prime integer. The
analogue of log 2 in the function field setting is then just the degree of the smallest
prime, which is 1. Hence, for a polynomialA and a divisorD ofA, the corresponding
interval we will want to consider is something of the form [deg(D) − 1, deg(D)).
However, since the deg function only takes integer values, we actually only care
about the singleton deg(D). Hence, we will define

L (A) = {d : d = deg(D) for some D|A}, L(A) = |L (A)|.
Lemma 3.1. For b ≤ n/2,

|H(n, b)| ≫ qn

b2

∑

deg(A)≤b/8

L(A)

|A|

as qn → ∞.

Proof. Consider the set of polynomials of the form F = APB where deg(A) ≤ b/8,
P is a prime with b − deg(P ) ∈ L (A) and all the primes of B have degree ≥ b
or in [b/4, 3b/4]. The condition on P implies that AP has a divisor of degree b.
Moreover, we have 7b/8 ≤ deg(P ) ≤ b and so every polynomial of this form has a
unique representation. Fix A,P and note that deg(B) = n − deg(AP ) ≥ 7b/8. If
deg(B) ≥ b then, by (A.1), the number of such B will be greater than

|{B ∈ Mn−deg(AP ) : deg(P
−(B)) ≥ b}| ≍ qn−deg(AP )

b
=

qn

b|AP | ,

where P−(B) is the smallest prime divisor of B.
Otherwise, if deg(B) < b, then B will have at least two prime divisors from

[b/4, 3b/4]. Hence the number of such B will be greater than

∑

d1,d2∈[b/4,3b/4]
d1+d2=n−deg(AP )

πq(d1)πq(d2) =

n−b/4−deg(AP )
∑

d=b/4

πq(d)πq(n− deg(AP )− d)

≫ qn

|AP |

5b/4
∑

d=b/4

1

d(b − d)
≫ qn

b|AP | ,
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where πq(n) is the number of prime polynomials of degree n.
Therefore,

|H(n, b)| ≥
∑

deg(A)≤b/8

∑

P
b−deg(P )∈L (A)

∑∗

B

1 ≫ qn

b

∑

deg(A)≤b/8

1

|A|
∑

P
b−deg(P )∈L (A)

1

|P | ,

where
∑∗

indicates we sum over all such B described above.

Finally,

∑

P
b−deg(P )∈L (A)

1

|P | =
∑

d
b−d∈L (A)

πq(d)

qd
∼

∑

d
b−d∈L (A)

1

d
≫ L(A)

b

and this completes the proof.
�

For any polynomial A, let τ(A) be the number of divisors of A and τd(A) be the
number of divisors of A of degree d. Then we clearly have

τ(A) =
∑

d∈L (A)

τd(A).

Then, for any subset A of polynomials we have by Cauchy-Schwarz that

(

∑

A∈A

τ(A)

|A|

)2

=





∑

A∈A

∑

d∈L (A)

τd(A)

|A|





2

≤





∑

A∈A

∑

d∈L (A)

1

|A|









∑

A∈A

∑

d∈L (A)

τd(A)
2

|A|





=

(

∑

A∈A

L(A)

|A|

)(

∑

A∈A

W (A)

|A|

)

,

where

W (A) =
∑

d∈L (A)

τ2d (A) = |{(D,D′) : D,D′|A, deg(D) = deg(D′)}|.

Hence if we have any collection of disjoint sets of polynomials A1, . . . ,At, all of
whose degrees are less than b/8 then we get from Lemma 3.1 that

|H(n, b)| ≫ qn

b2

t
∑

j=1

∑

A∈Aj

L(A)

|A| ≥ qn

b2

t
∑

j=1

(

∑

A∈Aj

τ(A)
|A|

)2

∑

A∈Aj

W (A)
|A|

(3.1)

We will now construct appropriate sets that will give us the lower bound we
desire. Towards this, partition the primes into subsets D1, D2, . . . , such that Dj

consists of primes whose degree are in the interval (λj−1, λj ] so that λj is largest
so that

∑

deg(P )∈(λj−1,λj ]

1

|P | ≤ log(2).

Such partitions exists as a consequence of (A.2). In fact, (A.2) tells us that for any
λj−1 < λj , we have

∑

deg(P )∈(λj−1,λj ]

1

|P | = log(λj)− log(λj−1) +O

(

1

λj−1

)

.
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Therefore, there exists some constant K such that

2j−K ≤ λj ≤ 2j+K .

Finally, for any b = (b1, . . . ,bJ) let A(b) be the set of square-free polynomials
with exactly bj prime factors coming from the interval Dj .

Lemma 3.2.

∑

A∈A(b)

W (A)

|A| ≪ (2 log(2))b1+···+bJ

b1! · · · bJ !

J
∑

j=1

2−j+b1+···+bj .

Proof. Let B = b1 + · · ·+ bJ and A = P1 · · ·PB such that

P1, . . . , Pb1 ∈ D1, Pb1+1, . . . , Pb1+b2 ∈ D2 and so on.(3.2)

Then W (A) is the number of subsets Y, Z ⊂ {1, . . . , B} such that
∑

i∈Y

deg(Pi) =
∑

i∈Z

deg(Pi).(3.3)

Hence,
∑

A∈A(b)

W (A)

|A| ≤ 1

b1! · · · bJ !
∑

Y,Z⊂{1,...,B}

∑′

P1,...,PB

1

|P1| · · · |PB |
.(3.4)

where
∑′

indicates that we are summing over all tuples P1, . . . , PB that satisfy

(3.2) and (3.3).
Consider the diagonal terms when Y = Z of (3.4):

∑

Y=Z⊂{1,...,B}

∑′

P1,...,PB

1

|P1| · · · |PB |
≤

∑

Y ⊂{1,...,B}

J
∏

j=1





∑

Pj∈Dj

1

|Pj |





bj

≤ (2 log(2))B

For the off-diagonal terms when Y 6= Z, let I be the maximum element of
(Y ∪Z)\ (Y ∩Z). If we fix all the other Pi, then this fixes the degree of PI by (3.3).
Moreover, if we let E(I) be such that PI ∈ DE(I) then deg(PI) ≥ λE(I)−1 ≫ 2E(I).
Therefore,

∑

PI

1

PI
=

πq(deg(PI))

qdeg(PI)
≪ 1

| deg(PI)|
≪ 2−E(I)

Hence for a fixed Y 6= Z we get
∑′

P1,...,PB

1

|P1| · · · |PB|
≪ 2−E(I) log(2)B.

Finally, there are 2B+I−1 pairs of Y, Z for each fixed I and we get,

∑

A∈A(b)

W (A)

|A| ≤ (2 log(2))B

b1! · · · bJ !

[

1 +

B
∑

I=1

2−E(I)2I−1

]

≪ (2 log(2))B

b1! · · · bJ !

J
∑

j=1

2−j
∑

I:E(I)=j

2I

≪ (2 log(2))b1+···+bJ

b1! · · · bJ !

J
∑

j=1

2−j2b1+···+bj ,
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where the last inequality follows from that fact that E(I) = j if and only if b1 +
· · ·+ bj−1 ≤ I ≤ b1 + · · · bj . �

Lemma 3.3. If we suppose that bi = 0 for i < M and bj ≤ Mj for a sufficiently
large M , then

∑

A∈A(b)

τ(A)

|A| ≫ (2 log(2))bM+···+bJ

bM ! · · · bJ !

Proof. We have

∑

A∈A(b)

τ(A)

|A| = 2bM+···+bJ

J
∏

j=M

1

bj!











∑

P1,··· ,Pbj
∈Dj

Pi distinct

1

|P1 · · ·Pbj |











By the choice of Dj and the prime polynomial theorem, we get that there is an
absolute constant C such that

∑

P∈Dj

1

|P | ≥ log(2)−
∑

deg(P )=λj+1

1

|P | ≥ log(2)− 1

λj + 1
− C

qλj/2
.

Now, fix P1, . . . , Pk ∈ Dj and consider the sum

∑

P∈Dj

P 6=P1,...,Pk

1

|P | =
∑

P∈Dj

1

|P | −
k
∑

i=1

1

|Pi|
≥ log(2)− 1

λj + 1
− C

qλj/2
− k

qλj−1

Therefore,

J
∏

j=M











∑

P1,··· ,Pbj
∈Dj

Pi distinct

1

|P1 · · ·Pbj |











≥
J
∏

j=M

(

log(2)− 1

λj + 1
− C

qλj/2
− bj

qλj−1

)bj

≥ log(2)bM+···+bJ

J
∏

j=M

(

1− 1

log(2)

(

1

λj + 1
+

C

qλj/2
+

bj
qλj−1

))bj

.

So it remains to show that this remaining product is bounded above. Indeed if we
denote

Cj :=
1

log(2)

(

1

λj + 1
+

C

qλj/2
+

bj
qλj−1

)

≪ 1

2j

then

− log

J
∏

j=M

(1− Cj)
bj = −

J
∑

j=M

bj log (1− Cj)

=

J
∑

j=M

bj

∞
∑

n=1

Cn
j

n

≪
J
∑

j=M

∞
∑

n=1

j

2njn
= O(1).

This completes the proof.
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�

Finally, set k = ⌊log2(b) − 2M⌋ and let B be the set of b = (b1, . . . , bJ) with
J = M + k − 1, bj = 0 for j ≤ M , bj ≤ min(Mj,M(J − j + 1)). Then for every
A ∈ A(b), we have

deg(A) ≤
J
∑

j=M

bjλj ≤ M

J−M
∑

ℓ=0

(ℓ+ 1)2J+K−ℓ

≤ 2K+1M2J+1 = 2K+1M2M+k

≤ 2K+1 M

2M
b ≤ b

8

for M sufficiently large.
Therefore, (3.1) gives us

|H(n, b)| ≫ qn

b2

∑

b∈B

(

∑

A∈A(b)
τ(A)
|A|

)2

∑

A∈A(b)
W (A)
|A|

.

Now, if we let

f(b) =
J
∑

h=M

2M−1−h+bM+···+bh

then we have by Lemma 3.2 that

∑

A∈A(b)

W (A)

|A| ≪ (2 log(2))k

bM ! · · · bJ !
(

1 + 21−Mf(b)
)

≤ (2 log(2))k

bM ! · · · bJ !
f(b)(3.5)

since f(b) ≥ 1/2. Hence, by Lemma 3.3, (3.1) and (3.5), we get

|H(n, b)| ≫ qn(2 log(2))k

b2

∑

b∈B

1

bM ! · · · bJ !f(b)
.

Finally, Ford in [6] shows that

∑

b∈B

1

bM ! · · · bJ !f(b)
≫ kk−1

k!
≫ 1

k3/2
,

where the last inequality is due to Stirling’s formula.
Therefore, since k ∼ log(b)/ log(2), we get

|H(n, b)| ≫ qn

bδ log(b)3/2

which finished the proof of the lower bound.

4. Upper Bound

Before we begin, we need some basic bounds for L(A).

Lemma 4.1. (1) L(A) ≤ min(τ(A), deg(A))
(2) If (A,B) = 1, then L(AB) ≤ τ(B)L(A)
(3) If P1, . . . , Pk are distinct primes, then L(P1 · · ·Pk) ≤ min0≤j≤k(2

k−j deg(P1 · · ·Pj))
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Proof. For part (1), we have

L(A) =
∑

d∈L (A)

1 ≤
∑

D|A

1 = τ(A).

While on the other hand, L (A) ⊂ {1, . . . , deg(A)} and so L(A) ≤ deg(A).
For part (2), we have

L (AB) =
⋃

D|B

{d+ deg(D) : d ∈ L (A)}

and so L(AB) ≤
∑

D|B L(A) = τ(B)L(A).

Part (3) follows from applying parts (1) and (2) with A = P1 · · ·Pj and B =
Pj+1 · · ·Pk.

�

We shall first prove the upper bound in the case of squarefree polynomials. That
is, let H∗(n, b) be the set of squarefree polynomials in Mn which has a divisor of
degree b.

Lemma 4.2. For b ≤ n/2,

|H∗(n, b)| ≪ qn(S(b) + S(n− b)),

as qn → ∞, where

S(d) =
∑

deg(P+(A))≤d

µ2(A)=1

L(A)

|A| (deg(P+(A)) + d− deg(A))
2

and P+(A) denotes the largest prime divisor of A and µ is the Möbius function.

Proof. Let F ∈ H∗(n, b). Then F = G1G2 where G1 ∈ Mb and G2 ∈ Mn−b.
Moreover, necessarily, G1 and G2 are squarefree and coprime.

First, suppose that deg(P+(G1)) ≤ deg(P+(G2)) and choose P |G1 such that
deg(P ) = deg(P+(G1)). Write F = ABP such that deg(P+(A)) ≤ deg(P ) and
all primes dividing G1, except for P , divide A and deg(P−(B)) ≥ deg(P ) and all
primes dividing G2 with degree greater than or equal to P divides B.

Then, by design we have AP has a divisor of degree b. Therefore, deg(P ) ≥
b − deg(A). Moreover, if we fix A and P , we get that B ∈ Mn−deg(AP ) with

deg(P−(B)) ≥ deg(P ). Therefore, by (A.1) the number of such B will be

≪ qn

|AP | deg(P )

We know that A has a divisor of degree b− deg(P ). So we get that

∑

deg(P )≥C
b−deg(P )∈L(A)

1

|P | deg(P )
≪ 1

C

∑

d∈L (A)
d−b≥C

∑

P∈Md−b

1

|P |(4.1)

≪ 1

C

∑

d∈L (A)
d−b≥C

1

d− b
≪ L(A)

C2
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We have that deg(P ) ≥ max(deg(P+(A)), b−deg(A)). The case where deg(P+(A)) ≤
b− deg(A) will contribute to H∗(n, b) at most

qn
∑

deg(P+(A))≤b−deg(A)

µ2(A)=1

1

|A|
∑

deg(P )≥b−deg(A)
b−deg(P )∈L (A)

1

|P | deg(P )

≪qn
∑

deg(P+(A))≤b

µ2(A)=1

L(A)

|A|(b − deg(A))2

≪qnS(b),

where the last inequality comes from the fact that b−deg(A) ≥ (deg(P+(A))+ b−
deg(A))/2 in this case.

In the case where deg(P+(A)) ≥ d−deg(A), then deg(P ) ≥ deg(P+(A)). More-
over, since AP has a divisor of degree b, we must have deg(P+(A)) ≤ b. Hence we
get this case contributes to H∗(n, b) at most

qn
∑

b−deg(A)≤deg(P+(A))≤b

µ2(A)=1

1

|A|
∑

deg(P )≥deg(P+(A))
b−deg(P )∈L (A)

1

|P | deg(P )

≪qn
∑

deg(P+(A))≤b

µ2(A)=1

L(A)

|A| deg(P+(A))2

≪qnS(b),

where again the last inequality comes from the fact that deg(P+(A)) ≥ (deg(P+(A))+
b− deg(A))/2 in this case.

Therefore, we get a contribution of at most qnS(b) under the assumption that
deg(P+(G1)) ≤ deg(P+(G2)). Now, suppose F = G1G2 with G1 ∈ Mb, G2 ∈ Mn−b

such that deg(P+(G2)) ≤ deg(P+(G1)) and choose P |G2 such that deg(P ) =
deg(P+(G2)). Then write F = ABP such that deg(P+(A)) ≤ deg(P ), all primes
that divide G2 divide A and deg(P−(B)) ≥ deg(P ) and all the primes dividing G1

whose degree is greater than or equal to deg(P ) divide B.
Following the same logic as above with b replaced with n − b, we get that this

contributes at most

≪ qn
∑

deg(P+(A))≤n−b

µ2(A)=1

L(A)

|A| (n− b− deg(A) + deg(P+(A)))
2 = qnS(n− b)

which concludes the proof.
�

Define

T (d,m) =
∑

deg(P+(A))≤d

deg(A)≥m,µ2(A)=1

L(A)

|A|

If either deg(A) ≤ d/2 or deg(P+(A)) ≥ ǫd, then (d−deg(A)+deg(P+(A)))2 ≫ d2.
Conversely if deg(P+(A)) ≤ ǫd then we can find a 0 ≤ g ≤ log(d)+ log(ǫ) such that
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eg ≤ deg(P+(A)) ≤ eg+1 and we get

S(d) =
∑

deg(P+(A))≤d

µ2(A)=1

L(A)

|A| (deg(P+(A)) + d− deg(A)+)
2

≪ T (d, 1)

d2
+

∑

deg(P+(A))≤ǫd

deg(A)≥d/2,µ2(A)=1

L(A)

|A| (deg(P+(A)) + d− deg(A))
2

≪ T (d, 1)

d2
+

log(d)+log(ǫ)
∑

g=0

∑

eg−1≤deg(P+(A))≤eg

deg(A)≥d/2,µ2(A)=1

L(A)

|A| (deg(P+(A)) + d− deg(A))2

≪ T (d, 1)

d2
+

log(d)+log(ǫ)
∑

g=0

e−2gT (eg, d/2).

Finally define

Tk(d,m) =
∑

deg(P+(A))≤d

deg(A)≥m,µ2(A)=1
ω(A)=k

L(A)

|A| ,

where ω(A) is the number of prime divisors of A.

Lemma 4.3. For d large and m ≥ 1, let v = ⌊log2(d)⌋. The for 1 ≤ k ≤ 10v, we
have

Tk(d,m) ≪ e−m/d(2 log(d))k
1 + |v − k|2

(k + 1)!(2k−v + 1)

Proof. Firstly,

Tk(d,m) ≤
∑

deg(P+(A))≤d
deg(A)≥m,ω(A)=k

L(A)

|A| ≤ e−m/d
∑

deg(P+(A))≤d
ω(A)=k

L(A)

|A|1−1/ log(q)d

Now, by (A.3) we get

∑

deg(P )≤d

1

|P |1−1/ log(q)d
= log(d) +O(1).

Therefore, we can partition the interval [1, d] into subintervals E0, . . . , Ev+K−1 (for
some constant K) such that for all j, Ej is the next largest interval such that

∑

P∈Me

e∈Ej

1

|P |1−1/ log(q)d
≤ log(2)

Consequently, P ∈ Ej implies that deg(P ) ≤ 2j+K .
Now, let A = P1 · · ·Pk with deg(P1) ≤ · · · ≤ deg(Pk) ≤ d. Let ji be such that

Pi ∈ Eji . Then Lemma 4.1 says

L(A) ≤ min
0≤t≤k

2k−t deg(P1 · · ·Pt) ≤ 2k+K min
0≤t≤k

2−t
t
∑

i=1

2ji
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Therefore, if we define

F (j) := min
0≤t≤k

2−t
t
∑

i=1

2ji

then

Tk(d,m) ≤ q−m/d2k+K
∑

j∈J

F (j)
∑

P1,...,Pk

Pi∈Eji

1

|P1 . . . Pk|1−1/ log(q)d

where J is the set of all vectors j such that j1 ≤ · · · ≤ jk ≤ v +K − 1.
Fix a j = (j1, . . . , jk). For each 0 ≤ j ≤ v+K+1, let bj be the number of i such

that ji = j. Then the inner sum of P1, . . . , Pk will be less than

v+K−1
∏

j=1

1

bj!





∑

P∈Ej

1

|P |1−1/ log(q)d





bj

≤ log(2)k

b0! · · · bv+K−1!

= ((v +K) log(2))k
∫

R(j)

1dξ

≤ e10K(v log(2))k
∫

R(j)

1dξ

where

R(j) = {0 ≤ ξ1 ≤ · · · ≤ ξk ≤ 1 : ji ≤ (v +K)ξi ≤ ji + 1∀i}

and the last inequality uses the hypothesis that k ≤ 10v.
Finally, Ford in [6] shows that

∑

j∈J

F (j)

∫

R(j)

1dξ ≪ 1 + |v − k|2
(k + 1)!(2k−v + 1)

and the lemma follows. �

Lemma 4.4.

T (d,m) ≪ e−m/d d2−δ

log(d)3/2

Proof. We clearly have

T (d,m) =
∑

k

Tk(d,m)

Then if v = ⌊log2(d)⌋, Lemma 4.3 says that

∑

v≤k≤10v

Tk(d,m) ≪ e−m/d
∑

v≤k≤10v

1 + (k − v)2

2k−v

(2 log(d))k

(k + 1)!
≪ e−m/d (2 log(d))

v

(v + 1)!
.
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For 1 ≤ k ≤ v, we have

∑

1≤k≤v

Tk(d,m) ≪ 2vq−m/d
∑

1≤k≤v

(1 + (v − k)2)(log(d))k

(k + 1)!

= e−m/d(2 log(d))v
∑

0≤k≤v−1

1 + k2

log(d)k(v − k + 1)!

≪ e−m/d (2 log(d))
v

(v + 1)!

∑

0≤k≤v−1

(1 + k2)

(

v + 1

log(d)

)

· · ·
(

v − k + 1

log(d)

)

≪ e−m/d (2 log(d))
v

(v + 1)!

∑

0≤k≤v−1

1 + k2

log(2)k

≪ e−m/d (2 log(d))
v

(v + 1)!
,

where the second last inequality comes from the fact that v − j ≤ log2(d) for all j.
For k ≥ 10v, we use the Lemma 4.1 and the definition of Tk(d,m) to get

∑

k≥10v

Tk(d,m) =
∑

k≥10v

∑

deg(P+(A))≤d

deg(A)≥m,µ2(A)=1
ω(A)=k

L(A)

|A| ≪ e−m/d
∑

k≥10v

2k
∑

deg(P+(A))≤d

ω(A)=k,µ2(A)=1

1

|A|1−1/d

≪ e−m/d
∑

k≥10v

2k

k!





∑

deg(P )≤d

1

|P |1−1/d





k

≪ e−m/d
∑

k≥10v

2k

k!
(log(d) +O(1))

k

≪ e−m/d (2 log(d))
10v

(10v)!
≪ e−m/d (2 log(d))

v

(v + 1)!

Finally, we using Stirling’s bound we get the desired result.
�

Hence,

S(d) ≪ T (d, 1)

d2
+

log(ǫd)
∑

g=1

e−2gT (eg, d/2)

≪ q−1/d

dδ(log(d))3/2
+

log(ǫd)
∑

g=1

1

qd/2egeδgg3/2

≪ 1

dδ(log(d))3/2

and as long as we assume that b ≤ n/2, then

|H∗(n, b)| ≪ qn(S(b) + S(n− b))

≪ qn
(

1

bδ(log(b))3/2
+

1

(n− b)δ(log(n− b))3/2

)

≪ qn

bδ(log(b))3/2

It remains now to deduce the correct upper bound from the square-free case.
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Lemma 4.5.

|H(n, b)| ≪ qn

bδ(log(b))3/2
.

Proof. Write F = F ′F ′′ where F ′ is square-free, F ′′ is square-full and (F ′, F ′′) = 1.
The number of F with deg(F ′′) ≥ (4 + ǫ) log(b) will be less than

qn
∑

F ′′ square-full
deg(F ′′)≥(4+ǫ) log(b)

1

|F ′′| ≪
qn

b2

by (A.4)
Now, suppose deg(F ′′) ≤ (4 + ǫ) log(b), then there is a D|F ′′ such that F ′ has a

divisor of degree b− deg(D). Thus

|H(n, b)| ≤
∑

F ′′ square-full
deg(F ′′)≤(4+ǫ) log(b)

∑

D|F ′′

|H∗(n− deg(F ′′), b− deg(D))|+O

(

qn

b2

)

≪ qn
∑

F ′′ square-full
deg(F ′′)≤(4+ǫ) log(b)

∑

D|F ′′

1

|F ′′|(b− deg(D))δ(log(b− deg(D)))3/2
+O

(

qn

b2

)

≪ qn

bδ(log(b))3/2

∑

F ′′ square-full
deg(F ′′)≤(4+ǫ) log(b)

τ(F ′′)

|F ′′| +O

(

qn

b2

)

≪ qn

bδ(log(b))3/2
,

where the last inequality is due to (A.5).
�

Appendix A. Estimates on Polynomials

In the whole appendix we will frequently use the prime polynomial theorem:

πq(n) := |{P ∈ Mn : P is a prime polynomial}| = qn

n
+O

(

qn/2

n

)

.

A.1. Rough Polynomials. In this section we prove the following result:

|{F ∈ Mn : deg(P−(F )) ≥ d}| ≍ qn

d
, (d ≤ n)(A.1)

as qn → ∞ where P−(F ) denotes the smallest prime divisor of F .
Consider the generating series

∑

F
deg(P−(F )≥d

1

|F |s =
∏

deg(P )≥d

(

1− 1

|P |s
)−1

= ζq(s)
∏

deg(P )<d

(

1− 1

|P |s
)

.

Hence, standard analytic tools show that

∑

F∈Mn

deg(P−(F ))≥d

1 = qn
∏

deg(P )<d

(

1− 1

|P |

)

+O
(

q(1/2+ǫ)n
)

.
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Finally,

log
∏

deg(P )<d

(

1− 1

|P |

)

=
∑

deg(P )<d

log

(

1− 1

|P |

)

= −
∞
∑

k=1

∑

deg(P )<d

1

|P |k

= −
∞
∑

k=1

∑

m≤d

πq(m)

qmk

= −
∑

m≤d

1

m

∞
∑

k=0

1

qkm
+O





∑

m≤d

qm/2

m

∞
∑

k=1

1

qmk





= −
∑

m≤d

1

m
−
∑

m≤d

1

m(qm − 1)
+O





∑

m≤d

1

mqm/2





= log(1/d) +O(1)

where the constant in the term O(1) is independent of q.

A.2. Sum of Inverse Prime Polynomials. In this section we prove that

∑

d1≤deg(P )≤d2

1

|P | = log(d2)− log(d1) +O

(

1

d1

)

.(A.2)

and
∑

deg(P )≤d

1

|P |1−1/ log(q)d
= log(d) +O(1).(A.3)

where the implied constants are independent of q
Applying the prime polynomial theorem, we get

∑

d1≤deg(P )≤d2

1

|P | =
d2
∑

n=d1

πq(n)

qn
=

d2
∑

n=d1

(

1

n
+O

(

1

nqn/2

))

= log(d2)− log(d1) +O

(

1

d1

)

.

Further, since deg(P ) ≤ d, we get that |P |1/d log(q) = edeg(P )/d = 1+O (deg(P )/d).
Hence,

∑

deg(P )≤d

1

|P |1−1/d log(q)
=

∑

deg(P )≤d

1

|P | +O





1

d

∑

deg(P )≤d

deg(P )

|P |





= log(d) +O(1) +O





1

d

∑

n≤d

nπq(n)

qn





= log(d) +O(1).

A.3. Sum of Squarefull Polynomials. In this section we prove that

∑

F square-full
deg(F )≥C

1

|F | ≪ q−(1/2−ǫ)C(A.4)
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and
∑

F square-full

τ(F )

|F | = O(1),(A.5)

where the implied constants are independent of q.
We have the identity

∑

F square-full

1

|F |s =
∏

P

(

1 +
1

|P |2s +
1

|P |3s + · · ·
)

=
∏

P

(

1− 1/|P |6s
(1− 1/|P |2s)(1 − 1/|P |3s)

)

=
ζq(2s)ζq(3s)

ζq(6s)
.

So the generating series can be analytically continued to ℜ(s) > 1/2. Hence we
have

|{F square-full : deg(F ) = n}| ≪ q(1/2+ǫ)n

and therefore
∑

F square-full
deg(F )≥C

1

|F | =
∑

n≥C

|{F square-full : deg(F ) = n}|
qn

≪
∑

n≥C

q−(1/2−ǫ)n ≪ q−(1/2−ǫ)C .

Finally,
∑

F square-full

τ(F )

|F |s =
∏

P

(

1 +
3

|P |2s +
4

|P |3s + · · ·
)

and so converges at s = 1 and tends to 1 in the q-limit.
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