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ALL SOLUTIONS TO AN OPERATOR NEVANLINNA-PICK

INTERPOLATION PROBLEM

A.E. FRAZHO, S. TER HORST, AND M.A. KAASHOEK

Abstract. The main results presented in this paper provide a complete and
explicit description of all solutions to the left tangential operator Nevanlinna-
Pick interpolation problem assuming the associated Pick operator is strictly
positive. The complexity of the solutions is similar to that found in descrip-
tions of the sub-optimal Nehari problem and variation on the Nevanlinna-Pick
interpolation problem in the Wiener class that have been obtained through
the band method. The main techniques used to derive the formulas are based
on the theory of co-isometric realizations, and use the Douglas factorization
lemma and state space calculations. A new feature is that we do not assume
an additional stability assumption on our data, which allows us to view the
Leech problem and a large class of commutant lifting problems as special cases.
Although the paper has partly the character of a survey article, all results are
proved in detail and some background material has been added to make the
paper accessible to a large audience including engineers.

1. Introduction

Nevanlinna-Pick interpolation problems have a long and interesting history which
goes back to the papers of G. Pick [42] and R. Nevanlinna [41] for scalar func-
tions. Since then interpolation problems with metric constraints involving matrix
or operator-valued functions, in one or several variables, has been a topic of intense
study with rich applications to system and control theory, prediction theory and
geophysics. See, for example, the introductions of the books [18, 19], Chapter 7 in
the book [5], the papers [36] and [37], several variable papers [2, 3], and references
therein.

In the present paper we deal with the left tangential Hilbert space operator
Nevanlinna-Pick interpolation problem in one variable with the unkowns being
opeators. Our aim is to give a self-contained presentation combining the best
techniques from commutant lifting [18, 19], the band method [27, 28, 29], state
space analysis [2, 3, 13], and other interpolation methods [1, 16, 36, 37, 17, 45].
In particular, the technique of extending a partial isometry used in the present
paper goes back to work of Sz.-Nagy-Koranyi [45] and also appears in the so-called
“lurking Isometry” method of Ball and co-authors [11] and Arov-Grossman [6], to
name only a few. In [8] this problem was considered in the more general setting of
the Drury-Arveson space and solved via a modification of the Potapov methodology.
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Our proofs are not based on the commutant lifting method, and the approach
taken here avoids the complications that arise in describing the solutions when
the isometric lifting is not minimal, as is typically the case in the commutant
lifting reformulation of the operator interpolation problem. As main tools we use
the theory of co-isometric realizations, the Douglas factorization lemma and state
space calculations, which are common in mathematical system theory.

As a by-product of our method we present in Subsection A.4 an alternative way to
construct co-isometric realizations of Schur class functions, which seems to be new
and could be of interest in the multi-variable case. In the appendix we also give an
alternative proof of the Beurling-Lax-Halmos theorem and present a new approach
to the maximum entropy principle. We made an effort for the paper to be readable
by someone whose has an elementary knowledge of Hilbert space operator theory
with state space techniques from systems and control theory. On the other hand
in order to achieve self-containedness, the appendix provides background material
that is used throughout the paper.

Let us now introduce the Hilbert space operator Nevanlinna-Pick interpolation
problem we shall be dealing with and review some of our main new results. The data

for the problem is a triplet of bounded linear Hilbert space operators {W, W̃ , Z},
where, for given Hilbert spaces Z, Y and U , we have

Z : Z → Z, W : ℓ2+(Y) → Z, W̃ : ℓ2+(U) → Z,

with ℓ2+(Y) (respectively ℓ2+(U)) the Hilbert space of square summable unilateral
sequences of vectors from Y (respectively U), and where the following intertwining
relations are satisfied

(1.1) ZW = WSY and ZW̃ = W̃SU .

Here SU and SY are the unilateral forward shift operators on ℓ2+(U) and ℓ2+(Y),
respectively.

We say that F is a solution to the operator Nevanlinna-Pick (LTONP for short)

interpolation problem with data set {W, W̃ , Z} if

(1.2) F ∈ S(U ,Y) and WTF = W̃ .

Here TF is the Toeplitz operator with defining function F mapping ℓ2+(U) into
ℓ2+(Y). Moreover, S(U ,Y) is the Schur class of operator-valued functions whose
values map U into Y, that is, the set of all operator-valued analytic functions F in
the open unit disc D whose values map U into Y such that ‖F‖∞ = sup{‖F (λ)‖ :
λ ∈ D} ≤ 1.

Note that this class of Nevanlinna-Pick interpolation problems has the same
point evaluation interpolation condition as the one considered in Section 1.4 of
[19], but is larger in the sense that, unlike in [19], we do not assume the spectral
radius of Z to be strictly less that one. To see that the point evaluation condition

coincides with that of [19], note that the fact that W and W̃ satisfy (1.1) implies
that they are the controllability operators (cf., [19, page 20]) of the pairs {Z,B}

and {Z, B̃}, respectively, where B and B̃ are the operators given by

(1.3) B = WEY : Y → Z and B̃ = W̃EU : U → Z.

Here EY and EU are the operators embedding Y and U , respectively, into the first
component of ℓ2+(Y) and ℓ2+(U), respectively; see the final paragraph of this section
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for more details. Then for F ∈ S(U ,Y), the operator WTF is also a controllability
operator, namely for the pair {Z, (BF )(Z)left}, where

(BF )(Z)left =

∞∑

k=0

ZkBFk,

with F0, F1, F2, . . . being the Taylor coefficients of F at zero. Then WTF = W̃ is

equivalent to the left tangential operator argument condition (BF )(Z)left = B̃.
Although the LTONP interpolation problem has a simple formulation, it covers

two relevant special cases that will be discussed in Sections 8 and 9 below. In both
cases it is essential that we do not demand that the spectral radius is strictly less
than one. In Section 8 we discuss a large class of commutant lifting problems that
can be written in the form of a LTONP interpolation problem. Conversely, any
LTONP interpolation problem can be rewritten as a commutant lifting problem
from this specific class. Hence the problems are equivalent in this sense. In this
case, the operator Z will be a compression of a unilateral forward shift operator
and will typically not have spectral radius less than one. The connection with
commutant lifting is already observed in [19, Section II.2] and also appears in the
more general setting of the Drury-Arveson space in [8].

The second special case, discussed in Section 9, is the Leech problem. This
problem, and its solution, originates from a paper by R.B. Leech, which was written
in 1971-1972, but published only recently [40]; see [35] for an account of the history
behind this paper. The Leech problem is another nontrivial example of a LTONP
interpolation problem for which the operator Z need not have spectral radius less
than one, in fact, in this case, the operator Z is equal to a unilateral forward
shift operator and hence its spectral radius is equal to one. Our analysis of the
rational Leech problem [22, 23, 24] inspired us to study in detail the class of LTONP
interpolation problems. It led to new results and improvements on our earlier results
on the Leech problem.

Next we will present our main results. This requires some preparation. Let

{W, W̃ , Z} be a LTONP data set. Set P = WW ∗ and P̃ = W̃W̃ ∗. The intertwining
relations in (1.1) imply that

P − ZPZ∗ = BB∗, where B = WEY : Y → Z,(1.4)

P̃ − ZP̃Z∗ = B̃B̃∗, where B̃ = W̃EU : U → Z.(1.5)

Here, as before (see (1.3)), the maps EY and EU are the operators embedding Y
and U , respectively, into the first component of ℓ2+(Y) and ℓ2+(U), respectively; see

the final paragraph of this section for more details. The operator Λ = P − P̃ is

called the Pick operator associated with the data set {W, W̃ , Z}.
If the LTONP interpolation problem is solvable, then necessarily the Pick oper-

ator is non-negative. Indeed, assume there exists a function F in S(U ,Y) satisfying

WTF = W̃ . Then TF is a contraction so that

〈P̃ x, x〉 = ‖W̃ ∗x‖2 = ‖T ∗
FW

∗x‖2 ≤ ‖W ∗x‖2 = 〈Px, x〉, x ∈ Z.

Hence Λ = P − P̃ ≥ 0.
The converse is also true. If the Pick operator is non-negative, then the LTONP

interpolation problem is solvable (see Theorem 2.1 in the next section). In this
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paper our aim is to describe all solutions, in particular for the case when Λ is
strictly positive.

To state our first main theorem we need two auxiliary operators. Assume P =
WW ∗ is strictly positive, which is the case if Λ is strictly positive. Then there exist
a Hilbert space E and a pair of operators C : Z → E and D : Y → E such that

[
D C
B Z

] [
IY 0
0 P

] [
D∗ B∗

C∗ Z∗

]
=

[
IE 0
0 P

]
,(1.6)

[
D∗ B∗

C∗ Z∗

] [
IE 0
0 P−1

] [
D C
B Z

]
=

[
IY 0
0 P−1

]
.(1.7)

We shall call such a pair C and D an admissible pair of complementary operators

determined by the data set {W, W̃ , Z}. In (1.6) and (1.7) the symbols IE and IY
denote the identity operators on the spaces E and Y, respectively. In general, when
it is clear from the context on which space the identity operator is acting, the
subscript is omitted and we simply write I.

An application of Lemma XXVIII.7.1 in [26] shows that admissible pairs exist
and that such a pair is unique up to multiplication by a unitary operator from the
left. There are various ways to construct admissible pairs in a concrete way, also
in a multivariable setting (see, e.g., [10]). In this introduction we mention only one
way to obtain such a pair of operators, namely as follows. Since ZW = WSY , the
space KerW is an invariant subspace for the forward shift SY . But then, by the
Beurling-Lax-Halmos theorem, there exists an inner function Θ ∈ S(E ,U), for some
Hilbert space E , such that KerW = ImTΘ. Now put

(1.8) C = E∗
ET

∗
ΘSYW

∗P−1 : Z → E and D = Θ(0)∗ : Y → E .

Then C and D form an admissible pair of complementary operators. Another
method to construct admissible pairs of complementary operators, which has the
advantage that it can be readily used in Matlab in the finite dimensional case, is
given Section A.3. We are now ready to state our first main result.

Theorem 1.1. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem.

Assume Λ = WW ∗− W̃W̃ ∗ is strictly positive. Then P = WW ∗ is strictly positive
and the operator Λ−1 − P−1 is non-negative, the operator Z∗ is pointwise stable
and its spectral radius is less than or equal to one. Furthermore, all solutions to
the LTONP interpolation problem are given by

(1.9) F (λ) =
(
Υ11(λ)X(λ) + Υ12(λ)

)(
Υ21(λ)X(λ) + Υ22(λ)

)−1

, λ ∈ D

where the free parameter X is an arbitrary Schur class function, X ∈ S(U , E), and
the coefficients in (1.9) are the analytic functions on D given by

Υ11(λ) = D∗Q◦ + λB∗(I − λZ∗)−1Λ−1PC∗Q◦,(1.10)

Υ12(λ) = B∗(I − λZ∗)−1Λ−1B̃R◦,(1.11)

Υ21(λ) = λB̃∗(I − λZ∗)−1Λ−1PC∗Q◦,(1.12)

Υ22(λ) = R◦ + B̃∗(I − λZ∗)−1Λ−1B̃R◦.(1.13)

Here the operators B and B̃ are given by (1.4) and (1.5), respectively, the operators
C : Z → E and D : Y → E form an admissible pair of complementary operators,
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and Q◦ and R◦ are the strictly positive operators given by

(1.14)
Q◦ =

(
IE + CP (Λ−1 − P−1)PC∗

)− 1
2 : E → E ,

R◦ = (IU + B̃∗Λ−1B̃)−
1
2 : U → U .

The parameterization given by (1.9) is proper, that is, the map X 7→ F is one-to-
one.

Note that (1.9) implicitly contains the statement that the operator Υ21(λ)X(λ)+
Υ22(λ) is invertible for each λ ∈ D. In particular, taking X ≡ 0 in (1.9), we see
that under the conditions of the above theorem, the operator Υ22(λ) is invertible
for each λ ∈ D.

Furthermore, setting X ≡ 0 in (1.9), we obtain the so-called central solution
F◦(λ) = Υ12(λ)Υ22(λ)

−1, which is introduced, in a different way, in Remark 2.2.
See also Theorem 4.2 and Proposition 6.2. In Section 7 we show that the central
solution is the unique Schur class function that maximizes a notion of entropy
among all solutions; see Theorem 7.1 below.

By Theorem 1.1 the set of all solutions is parameterised by the Schur class
S(U , E). Hence the LTONP interpolation problem has a single solution if and only
if E = {0}; [we assume that U is non-trivial]. On the other hand we know that E
can be chosen in such a way that KerW = ImTΘ, where Θ ∈ S(E ,U) is an inner
function. Thus E = {0} holds if and only if KerW = {0}, i.e., W is one-to-one.
On the other hand, since we assume Λ to be strictly positive, WW ∗ is also strictly
positive. Thus there exists a single solution if and only if W is invertible.

In Section 9 we specialize Theorem 1.1 for the Leech problem case, yielding
Theorem 9.1 below, which gives a generalization and a further improvement of the
description of all solutions of the rational Leech problem given in [24].

The explicit formulas for the functions Υij , 1 ≤ i, j ≤ 2, given in (1.10)–(1.13) are
new. The formulas are of the same complexity as the corresponding formulas for the
coefficients appearing in the linear fractional representation of all solutions of the
sub-optimal Nehari problem presented in the classical Adamjan-Arov-Krěın paper
[1]. See also Theorem XXXV.4.1 in [26] where the linear fractional representation
of all solutions of the sub-optimal Nehari problem in the Wiener class setting is
obtained as an application of the band method [27] and [28]. The variation of
the band method for solving extension problems presented in [34] and the related
unpublished manuscript [33] inspired us to derive the formulas in Theorem 1.1.

When the inner function Θ determined by KerW = ImTΘ is bi-inner, then the
LTONP interpolation problem is equivalent to a Nehari extension problem. But
even in this special case, it requires some work to derive the formulas (1.10) – (1.13);
cf., [26, Section XXXV.5].

The next theorem is an addition to Theorem 1.1 which will allow us to derive
further properties for the coefficients Υij , 1 ≤ i, j ≤ 2, in the linear fractional
representation (1.9); see Proposition 1.3 below and Section 6. The theorem also
shows that the functions (1.10) – (1.13) are the natural analogs of the formulas
appearing [26, Theorem XXXV.4.1] for the Nehari problem.

Theorem 1.2. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem.

Assume Λ = WW ∗−W̃W̃ ∗ is strictly positive. Then P = WW ∗ is strictly positive,
the operator

(1.15) A = W ∗P−1W̃ : ℓ2+(U) → ℓ2+(Y)
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is a strict contraction, and the functions defined by (1.10) – (1.13) are also given
by

Υ11(λ) = D∗Q◦ + λE∗
Y(I − λS∗

Y)
−1(I −AA∗)−1W ∗C∗Q◦,(1.16)

Υ12(λ) = E∗
Y

(
I − λS∗

Y

)−1
A(I −A∗A)−1EUR◦,(1.17)

Υ21(λ) = λE∗
U (I − λS∗

U )
−1A∗(I −AA∗)−1W ∗C∗Q◦,(1.18)

Υ22(λ) = E∗
U

(
I − λS∗

U

)−1
(I −A∗A)−1EUR◦.(1.19)

Here, as in the preceding theorem, C : Z → E and D : Y → E form an admissible
pair of complementary operators determined by the data. Furthermore, the strictly
positive operators Q◦ and R◦ defined by (1.14) are also given by

Q◦ =
(
IE + CWA

(
I −A∗A

)−1
A∗W ∗C∗

)− 1
2

,(1.20)

R◦ =
(
E∗

U

(
I −A∗A

)−1
EU

)− 1
2

.(1.21)

In the following result we list a few properties of the coefficients of the linear
fractional transformation (1.9).

Proposition 1.3. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem.

Assume Λ = WW ∗−W̃W̃ ∗ is strictly positive. Then the functions Υij, 1 ≤ i, j ≤ 2,
given by (1.10)–(1.13) are H2-functions. More precisely, we have

Υ11(·)x ∈ H2(Y) and Υ21(·)x ∈ H2(U), x ∈ E ,(1.22)

Υ12(·)u ∈ H2(Y) and Υ22(·)u ∈ H2(U), u ∈ U .(1.23)

Moreover, the functions Υi,j form a 2× 2 J-contractive operator function, that is,
for all λ ∈ D we have

(1.24)

[
Υ11(λ)

∗ Υ21(λ)
∗

Υ12(λ)
∗ Υ22(λ)

∗

] [
IY 0
0 −IU

] [
Υ11(λ) Υ12(λ)
Υ21(λ) Υ22(λ)

]
≤

[
IE 0
0 −IU

]
,

with equality for each λ in the intersection of the resolvent set of Z and the unit
circle T. Furthermore, Υ22(λ) is invertible for each λ ∈ D and Υ22(λ)

−1 is a Schur
class function.

Here for any Hilbert space V the symbol H2(V) stands for the Hardy space of
V-valued measurable functions on the unit circle T that are square integrable and
whose negative Fourier coefficients are equal to zero. Equivalently, ϕ ∈ H2(V) if and
only if ϕ is an V-valued analytic function on the unit D and its Taylor coefficients
ϕ0, ϕ1, ϕ2, . . . are square summable in norm.

Assume that Λ = WW ∗ − W̃W̃ ∗ is strictly positive. Then A = W ∗P−1W̃ is
a strict contraction. Because P = WW ∗ is strictly positive, we see that ImW is

closed and ImA ⊂ ImW ∗. Furthermore, WA = W̃ , and hence W (TF − A) = 0
for any solution F to the LTONP interpolation problem. In other words, if F is a
solution to the LTONP interpolation problem, then necessarily

TF =

[
A
⋆

]
: ℓ2+(U) →

[
ImW ∗

KerW

]
.

The converse is also true. This observation enables us to rephrase the LTONP
interpolation problem as a commutant lifting problem. On the other hand, as we
shall see in Section 8, a large class of commutant lifting problems can be viewed as
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LTONP interpolation problems, and hence Theorem 1.2 can be used to describe all
solutions of a large class commutant lifting problems. This will lead to a commutant
lifting version of Theorem 1.2; see Theorem 8.1 below.

Contents. The paper consists of nine sections, including the present introduc-
tion, and an appendix. In Section 2 we develop our primary techniques that are
used to prove the main results, namely observable, co-isometric realizations from
system theory, and we show how solutions can be obtained from a specific class of
observable, co-isometric realizations, referred to as Λ-preferable. The main result,
Theorem 2.1, presents yet another description of the solutions to the LTONP in-
terpolation problem. This description is less explicit, but on the other hand only
requires the Pick operator to be non-negative. In Section 3 we prove the main result
of Section 2, Theorem 2.1. Starting with Section 4 we add the assumption that
the Pick operator is strictly positive. The main results, Theorems 1.1 and 1.2 are
proven in Sections 4 and 5, respectively. The next section is devoted to the proof of
Proposition 1.3. Here we also show that the central solution, introduced in Remark
2.2, is indeed given by the quotient formula mentioned in the first paragraph after
Theorem 1.1; see Proposition 6.2. In Section 7 we introduce a notion of entropy as-
sociated with the LTONP interpolation problem and show that the central solution
is the unique solution that maximizes the entropy. This result is in correspondence
with similar results on metric constrained interpolation; cf., Section IV.7 in [19].
The new feature in the present paper is that we can rephrase the entropy of a
solution in terms of its Λ-preferable, observable, co-isometric realizations. In the
last two sections, Sections 8 and 9, we describe the connections with the commu-
tant lifting problem and the Leech problem, respectively. Finally, the appendix
consists of seven subsections containing various preliminary results that are used
throughout the paper, with proofs often added for the sake of completeness.

Terminology and Notation. We conclude this introduction with a few words on
terminology and notation. With the term operator we will always mean a bounded
linear operator. Moreover, we say that an operator is invertible when it is both
injective and surjective, and in that case its inverse is an operator, and hence
bounded. An operator T on a Hilbert space H is called strictly positive whenever it
is non-negative (T ≥ 0) and invertible; we denote this by T ≫ 0. The unique non-

negative square root of a non-negative operator T is denoted by T
1
2 . Furthermore,

an operator T on H is said to be exponentially stable whenever its spectrum σ(T )
is inside the open unit disc D, in other words, when the spectral radius rspec(T ) of
T is strictly less than one. Moreover, we say that T is pointwise stable whenever
T nh → 0 for each h ∈ H; by some authors (see, e.g., Definition 4.5 in [9]) this kind
of stability is referred to as strongly stable. Clearly, a exponentially stable operator
is also pointwise stable. A subspace M of a Hilbert space H is by definition a closed
linear manifold in H. Given a subspace M of H we write PM for the orthogonal
projection on H along M. We will also use the embedding operator τM : M → H,
which maps m ∈ M to m ∈ H. Its adjoint τ∗M : H → M will also be denoted
by ΠM, and thus Π∗

M is the embedding operator τM. Recall that SU denotes the
unilateral forward shift operator on ℓ2+(U), for a given Hilbert space U . We will also

need the operator EU : U → ℓ2+(U) which is the embedding operator that embeds

U into the first entry of ℓ2+(U), that is, EUu =
[
u 0 0 · · ·

]⊤
∈ ℓ2+(U). Here,

and in the sequel, the symbol ⊤ indicates the block transpose. Hence for a (finite
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or infinite) sequence C1, C2, . . . of vectors or operators we have

[
C1 C2 · · ·

]⊤
=




C1

C2

...


 and




C1

C2

...




⊤

=
[
C1 C2 · · ·

]
.

Finally, for any y = col
[
yj
]∞
j=0

in ℓ2+(Y) we have

(1.25) ŷ(λ) := E∗
Y(I − λS∗

Y)
−1




y0
y1
y2
...


 =

∞∑

n=0

λnyn, λ ∈ D.

It follows that ŷ belongs to the Hardy space H2(Y), and any function in the Hardy
space H2(Y) is obtained in this way. The map y 7→ ŷ is the Fourier transform
mapping ℓ2+(Y) onto the Hardy space H2(Y).

2. Operator Nevanlinna-Pick interpolation and co-isometric

realizations

Throughout this section {W, W̃ , Z} is a data set for a LTONP interpolation
problem, and Λ is the associate Pick operator. We assume that Λ is a non-negative
operator, but not necessarily strictly positive, and we define Z◦ to be the closure
of the range of Λ. Thus

(2.1) Z = Z◦ ⊕KerΛ.

The main result of this section, Theorem 2.1 below, provides a Redheffer type
description of the set of all solutions of the LTONP interpolation problem with

data set {W, W̃ , Z}. The proof of this result will be given in Section 3, but much
of the preparatory work is done in the current section.

From the definition of the Pick operator and the two identities (1.4) and (1.5) it
follows that

(2.2) Λ− ZΛZ∗ = BB∗ − B̃B̃∗.

Since Λ ≥ 0, the identity (2.2) can be rewritten as K1K
∗
1 = K2K

∗
2 , where

(2.3) K1 =
[
B̃ Λ

1
2

]
:

[
U
Z

]
→ Z and K2 =

[
B ZΛ

1
2

]
:

[
Y
Z

]
→ Z.

This allows to apply Lemma A.3. Let F and F ′ be the subspaces defined by

(2.4) F = ImK∗
1 and F ′ = ImK∗

2 .

Notice that F is a subspace of U ⊕Z◦ while F ′ is a subspace of Y ⊕ Z◦, where Z◦

is the subspace of Z given by (2.1). Applying Lemma A.3 we see that there exists
a unique operator ω from F into F ′ such that

(2.5)
[
B ZΛ

1
2

] [ B∗

Λ
1
2Z∗

]
=

[
B ZΛ

1
2

]
ω

[
B̃∗

Λ
1
2

]
=

[
B̃ Λ

1
2

] [
B̃∗

Λ
1
2

]
.

Moreover, ω is a unitary operator mapping F onto F ′. We shall refer to ω as the

unitary operator determined by the data set {W, W̃ , Z}. Note that the two identities
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in (2.5) imply that

(2.6) ω

[
B̃∗

Λ
1
2

]
=

[
B∗

Λ
1
2Z∗

]
and

[
B ZΛ

1
2

]
ω =

[
B̃ Λ

1
2

]∣∣∣F .

In fact each of the identities in (2.6) separately can be used as the definition of ω.
In the sequel G and G′ will denote the orthogonal complements of F and F ′ in

U ⊕ Z◦ and Y ⊕ Z◦, respectively, that is,

(2.7) G = (U ⊕ Z◦)⊖F and G′ = (Y ⊕ Z◦)⊖F ′.

In particular, F⊕G = U⊕Z◦ and F ′⊕G′ = Y⊕Z◦. The fact that G is perpendicular
to F and G′ is perpendicular to F ′ implies that

(2.8) K1G = {0} and K2G
′ = {0}.

The following result, which is the main theorem of this section, will be used in the
later sections to derive our main theorems.

Theorem 2.1. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem
with Z∗ being pointwise stable, and assume that the Pick operator Λ is non-negative.
Furthermore, let ω be the unitary operator determined by the data set. Then the
LTONP interpolation problem is solvable and its solutions are given by

(2.9) F (λ) = G11(λ) + λG12(λ) (IZ◦
− λG22(λ))

−1 G21(λ), λ ∈ D,

where

(2.10) G =

[
G11 G12

G21 G22

]
∈ S(U ⊕ Z◦,Y ⊕ Z◦) and G(0)|F = ω.

Moreover, there is a one-to-one correspondence between the set of all solutions F
and the set of all Schur class functions G satisfying the two conditions in (2.10).

Remark 2.2. Let G◦ be the function identically equal to ωPF . Then G◦ is a Schur
class function, G◦ ∈ S(U ⊕ Z◦,Y ⊕ Z◦), and G◦(λ)|F = ω for each λ ∈ D. Thus
the two conditions in (2.10) are satisfied for G = G◦. The corresponding solution
F is denoted by F◦ and referred to as the central solution. Note that F◦ ∈ S(U ,Y).

The following corollary is an immediate consequence of Theorem 2.1 using the
definition of the central solution given above.

Corollary 2.3. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem
with Z∗ being pointwise stable, and assume that the Pick operator Λ is non-negative.
Furthermore, let M◦ be the operator mapping U ⊕Z◦ into Y ⊕Z◦ defined by M◦ =
ωPF , where ω is the unitary operator determined by the data set. Write M◦ as a
2× 2 operator matrix as follows:

M◦ =

[
δ◦ γ◦
β◦ α◦

]
:

[
U
Z◦

]
→

[
Y
Z◦

]
.

Then the central solution F◦ is given by

(2.11) F◦(λ) = δ◦ + λγ◦(IZ◦
− λα◦)

−1β◦, λ ∈ D.

Since M◦ is a contraction, one calls the right side of (2.11) a contractive realiza-
tion. The next example is a trivial one to a certain extend, on the other hand it
tells us how one can construct a contractive realization for any Schur class function.
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Example 2.4. Let F be a Schur class function, F ∈ S(U ,Y), and let TF be the
Toeplitz operator defined by F . Put Z1 = ℓ2+(Y), and consider the operators

(2.12) W1 = Iℓ2
+
(Y), W̃1 = TF , Z1 = SY .

Then

Z1W1 = SY = W1SY , Z1W̃1 = SYTF = TFSU = W̃1SU .

Thus {W1, W̃1, Z1} is a data set for a LTONP interpolation problem. Moreover,
Z∗
1 = S∗

Y , and hence Z∗
1 is pointwise stable. Note that Ψ ∈ S(U ,Y) is a solution

to the related LTONP interpolation problem if and only if W1TΦ = W̃1. But

W1TΦ = W̃1 if and only if TΦ = TF . It follows that the LTONP interpolation

problem for the data set {W1, W̃1, Z1} is solvable, and the solution is unique, namely
Φ = F . But then F is the central solution of the LTONP interpolation problem for

the data set {W1, W̃1, Z1}, and Corollary 2.3 tells us that F admits a representation
of the form

(2.13) F (λ) = δ1 + λγ1(IZ1,◦
− λα1)

−1β1, λ ∈ D.

Moreover, the operator matrix M1 defined by

M1 =

[
δ1 γ1
β1 α1

]
:

[
U

Z1,◦

]
→

[
Y

Z1,◦

]
,

is given by M1 = ω1PF1
, where ω1 is the unitary operator determined by the data

set {W1, W̃1, Z1}. SinceM1 is a contraction, the right hand side is a contractive real-
ization of F . Thus given any F ∈ S(U ,Y) Corollary 2.3 provides a way to construct
a contractive realization for F . Finally, it is noted that in this setting the corre-
sponding subspace G′

1 := G′ = {0}, and thus, M1 = ω1PF1
is in fact a co-isometry.

Indeed, to see that this is the case, note that Z1,◦ := Z◦ = Im (I − TFT ∗
F )

1
2 and F ′

1

is the closure of the range of
[

E∗
YIℓ2+(Y)

(I − TFT
∗
F )

1
2S∗

Y

]
=

[
IY 0

0 (I − TFT
∗
F )

1
2

] [
E∗

Y

S∗
Y

]
.

Since the block column operator on the right hand side is unitary it follows that
F ′

1 is equal to the closure of the range of the 2× 2 block operator on the right hand
side, which equals Y ⊕ Z1,◦. Therefore, G′

1 = (Y ⊕ Z1,◦) ⊖ F ′
1 = {0}, as claimed.

We shall come back to this construction in Subsection A.4 of the appendix.

Describing the solution set of an interpolation problem with a map of the form
(2.9) with a restriction ofG equal to a constant unitary operator is one of “standard”
methods of parameterizing all solutions of interpolation problems. For instance, this
type of formula is used in the description of all solutions to the commutant lifting
theorem; see Section VI.5 in [19], where the unitary operator ω is defined by formula
(2.2) on page 265, the analogs of the spaces F , F ′, G, G′ appear on page 266, and
the analog of the function G is referred to as a Schur contraction. Such maps are
also used to describe all solutions to the so-called abstract interpolation problem,
cf., [36, 37], and these are only a few of many instances. The operator ω is also
closely related to the “lurking isometry” used in [12], which has its roots in [45].

In the present paper the proof of Theorem 2.1 is based purely on state space
methods, using the theory of co-isometric realizations. Therefore we first review
some notation, terminology and standard facts from realization theory, including
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the main theorem about observable, co-isometric realizations of Schur class func-
tions. The reader familiar with system theory may skip this subsection.

2.1. Preliminaries from realization theory. We say that a quadruple of Hilbert
space operators Σ = {α, β, γ, δ},

α : X → X , β : U → X , γ : X → Y, δ : U → Y,

is a (state space) realization for a function F with values in L(U ,Y) if

(2.14) F (λ) = δ + λγ(I − λα)−1β

for all λ in some neighborhood of the origin. The space X is called the state space
while U is the input space and Y is the output space. In systems theory F is referred
to as the transfer function of the system Σ = {α, β, γ, δ}. Note that {α, β, γ, δ} is a
realization for F implies that F is analytic in some neighborhood of the origin, and
in that case the coefficients {Fn}

∞
n=0 of the Taylor expansion of F (λ) =

∑∞

n=0 λ
nFn

at zero are given by

(2.15) F0 = F (0) = δ and Fn = γαn−1β (n ≥ 1).

The system Σ = {α, β, γ, δ} or the pair {γ, α} is said to be observable if ∩n≥0Ker γαn =
{0}. Two systems {α1, β1, γ1, δ1} and {α2, β2, γ2, δ2} with state spaces X1 and X2,
respectively, are called unitarily equivalent if δ1 = δ2 and there exists a unitary
operator U mapping X1 onto X2 such that

α2U = Uα1, β2 = Uβ1, γ2U = γ1.

Clearly, two unitarily equivalent systems both realize the same transfer function F .
Given a system Σ = {α, β, γ, δ} the 2× 2 operator matrix MΣ defined by

(2.16) MΣ =

[
δ γ
β α

]
:

[
U
X

]
→

[
Y
X

]
,

is called the system matrix defined by Σ. If the system matrix MΣ is a contraction,
then its transfer function is a Schur class function, F ∈ S(U ,Y), that is, F is
analytic on the open unit disc D and supλ∈D

‖F (λ)‖ ≤ 1. The converse is also true.
More precisely, we have the following classical result.

Theorem 2.5. A function F is in S(U ,Y) if and only if F admits an observable,
co-isometric realization. Moreover, all observable, co-isometric realizations of F
are unitarily equivalent.

The ‘if part” of the above theorem is rather straight forward to prove, the “only
if part” is much less trivial and has a long and interesting history, for example
involving operator model theory (see [43] and the revised and enlarged edition [44])
or the theory of reproducing kernel Hilbert spaces (see, [14] and [15]) . We also
mention Ando’s Lecture Notes [4, Theorem 3.9 and formulas (3.16), (3.17)], and
recent work in a multivariable setting due to J.A. Ball and co-authors [7]– [13].

An alternative new proof of Theorem 2.5 is given in Subsection A.4 in the Ap-
pendix.

If the system Σ = {α, β, γ, δ} has a contractive system matrix, then

(2.17) Γ := col
[
γαj

]∞
j=0

=




γ
γα
γα2

...


 : X → ℓ2+(Y)
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is a well defined operator and Γ is a contraction. This classical result is Lemma
3.1 in [20]; see also Lemma A.10 in the Appendix where the proof is given for
completeness. We call Γ the observability operator defined by Σ, or simply by the
pair {γ, α}. Note that in this case Σ is observable if and only if Γ is one-to-one.
We conclude with the following lemma.

Lemma 2.6. If F ∈ S(U ,Y) has a co-isometric realization, then F has an observ-
able, co-isometric realization.

Proof. Assume that Σ = {α, β, γ, δ} is a co-isometric realization of F . Let Γ be
the observability operator defined (2.17), and let X0 be the closure of the range
of Γ∗. Thus X = X0 ⊕ KerΓ, and relative to this Hilbert space direct sum the
operators α, β, γ admit the following partitions:

α =

[
α0 0
⋆ ⋆

]
:

[
X0

KerΓ

]
→

[
X0

KerΓ

]
, β =

[
β0

⋆

]
: U →

[
X0

KerΓ

]
,

γ =
[
γ0 0

]
:

[
X0

KerΓ

]
→ Y.

Then the system Σ0 = {α0, β0, γ0, δ} is an observable realization of F .
The system matrix M0 = MΣ0

for Σ0 is also co-isometric. To see this notice
that MΣ admits a matrix representation of the form

MΣ =



δ γ0 0
β0 α0 0
⋆ ⋆ ⋆


 =

[
M0 0
⋆ ⋆

]
, and hence MΣM

∗
Σ =

[
M0M

∗
0 ⋆

⋆ ⋆

]
.

Since MΣ is a co-isometry, MΣM
∗
Σ is the identity operator on the space Y ⊕

X0 ⊕ KerΓ, and thus M0M
∗
0 is the identity operator on Y ⊕ X0. Therefore,

Σ0 = {α0, β0, γ0, δ} is an observable, co-isometric realization of F . �

2.2. Solutions of the LTONP interpolation problem and Λ-preferable re-

alizations. As before {W, W̃ , Z} is a data set for a LTONP interpolation problem,
and we assume that the Pick operator Λ is non-negative.

Let Σ = {α, β, γ, δ} be a co-isometric realization of F with state space X and
system matrix M = MΣ. We call the realization Λ-preferable if X = Z◦ ⊕ V for
some Hilbert space V and M |F = ω. As before, Z◦ equals the closure of the range
of Λ; see (2.1), and ω is the unitary operator from F onto F ′ determined by the

data set {W, W̃ , Z}. In particular, F and F ′ are the subspaces of U⊕Z◦ and Y⊕Z◦,
respectively, defined by (2.4). Note that X = Z◦ ⊕V implies that F ⊂ U ⊕X , and
thus M |F is well defined. Furthermore, M partitions as

(2.18) M =



δ γ1 γ2
β1 α11 α12

β2 α21 α22


 :



U
Z◦

V


 →



Y
Z◦

V


 ,

and the constraint M |F = ω is equivalent to

(2.19) ω =

[
δ γ1
β1 α11

]∣∣∣∣F .

To see the latter, observe that M |F = ω implies that MF = ωF = F ′ ⊂ Y ⊕ Z◦,
and hence

[
β2 α21

]
|F = {0}. Conversely, if (2.19) holds, then the restriction of

the first two bock rows of M in (2.18) to F is equal to ω. Since ω is unitary, the
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restriction of the last block row to F must be zero, for otherwise M would not be
a contraction. Hence M |F = ω.

The following theorem is the main result of the present subsection.

Theorem 2.7. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem
with Z∗ being pointwise stable, and assume that the Pick operator Λ is non-negative.
Then all solutions F of the LTONP interpolation problem are given by

(2.20) F (λ) = δ + λγ(I − λα)−1β, λ ∈ D,

where Σ = {α, β, γ, δ} is an observable, co-isometric realization of F which is Λ-
preferable. Moreover,

(2.21) Λ = WΓΓ∗W ∗,

where Γ is the observability operator mapping X into ℓ2+(Y) determined by {γ, α}.
Finally, up to unitary equivalence of realizations this parameterization of all solu-
tions to the LTONP interpolation problem via Λ-preferable, observable, co-isometric
realizations Σ = {α, β, γ, δ} is one-to-one and onto.

Remark 2.8. If one specifies Theorem 2.7 for the case when the data set is the

set {W1, W̃1, Z1}, where W1, W̃1 and Z1 are given by (2.12), then Theorem 2.5
is obtained. Note however that Theorem 2.5 is used in the proof of Theorem 2.7,
and therefore Theorem 2.5 does not appear as a corollary of Theorem 2.7. On the
other hand, if one uses the arguments in the proof of Theorem 2.7 for the data set

{W1, W̃1, Z1} only, then one obtains a new direct proof of the fact that any Schur
class function admits an observable co-isometric realization. This proof is given in
Subsection A.4; cf., Example 2.4.

The proof of Theorem 2.7 will be based on two lemmas.

Lemma 2.9. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem with
Z∗ being pointwise stable, and assume that the Pick operator Λ is non-negative. Let
F ∈ S(U ,Y), and assume that Σ = {α, β, γ, δ} is a Λ-preferable, co-isometric real-
ization of F . Then F is a solution to the LTONP interpolation problem. Moreover,

(2.22) Λ
1
2ΠZ◦

= WΓ,

where Γ is the observability operator defined by {γ, α} and Z◦ = ImΛ; see (2.1).

Proof. Using ZW = WSY and S∗
YΓ = Γα, we obtain

WΓ− ZWΓα = W
(
I − SYS

∗
Y

)
Γ = WEYE

∗
YΓ = Bγ.

In other words,

(2.23) WΓ− ZWΓα = Bγ.

Because Z∗ is pointwise stable, it follows that WΓ is the unique solution to the
Stein equation Ω− ZΩα = Bγ; see Lemma A.1 in the Appendix.

Since the system Σ = {α, β, γ, δ} is Λ-preferable, we know that the state space
X is equal to Z◦ ⊕ V for some Hilbert space V , where Z◦ = ImΛ. Let ΠZ◦

be the
orthogonal projection from X = Z◦ ⊕ V onto Z◦. We shall prove that

(2.24)
[
B ZΛ

1
2ΠZ◦

] [δ γ
β α

]
=

[
B̃ Λ

1
2ΠZ◦

]
.

Let M = MΣ be the system matrix of the realization Σ, i.e., the 2 × 2 operator
matrix appearing in the left hand side of (2.24). To prove the identity (2.24) we
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first note that the second identity in (2.6) and M |F = ω imply that the two sides of
(2.24) are equal when restricted to F . Next, consider the orthogonal complements

F⊥ = (U ⊕ Z◦ ⊕ V)⊖F = G ⊕ V F ′⊥ = (Y ⊕ Z◦ ⊕ V)⊖F ′ = G′ ⊕ V .

Since M is a contraction with MF = F ′ and M |F is unitary, we haveMF⊥ ⊂ F ′⊥.
Therefore it remains to show that the two sides of (2.24) are also equal when
restricted to F⊥. To do this, take f =

[
u0 z0 v0

]
⊤ in F⊥. Here u0 ∈ U ,

z0 ∈ Z◦, and v0 ∈ V . Then

(2.25)
[
B̃ Λ

1
2ΠZ◦

]
f =

[
B̃ Λ

1
2 |Z◦ 0

]


u0

z0
v0


 =

[
B̃ Λ

1
2

] [
u0

z0

]
.

But the vector
[
u0 z0

]
⊤ belongs to the space G. Thus the first identity in (2.8)

shows that
[
B̃ Λ

1
2ΠZ◦

]
f = 0. Now consider f ′ := Mf ∈ F ′⊥. Write f ′ =

[
y0 z′0 v′0

]
⊤, where y0 ∈ Y, z′0 ∈ Z◦, and v′0 ∈ V . Then

[
B ZΛ

1
2ΠZ◦

]
Mf =

[
B ZΛ

1
2 |Z◦ 0

]


y0
z′0
v′0


 =

[
B ZΛ

1
2

] [y0
z′0

]
= 0,

because
[
y0 z′0

]
⊤ belongs to G′ and using the second identity in (2.8). We conclude

that
[
B ZΛ

1
2ΠZ◦

]
Mf = 0. Hence when applied to f both sides of (2.24) are equal

to zero, which completes the proof of (2.24).
Note that (2.24) is equivalent to the following two identities:

(2.26) Λ
1
2ΠZ◦

= ZΛ
1
2ΠZ◦

α+Bγ and B̃ = ZΛ
1
2ΠZ◦

β +Bδ.

Because WΓ is the unique solution to the Stein equation (2.23), as observed above,

the first identity in (2.26) shows that WΓ = Λ
1
2ΠZ◦

, i.e., the identity (2.22) holds
true.

By consulting the second equation in (2.26), we have B̃ = ZWΓβ + Bδ. Using
this we obtain

WTFEU =
[
WEY WSY

] [ F (0)
S∗
YTFEU

]
=

[
B ZW

] [ δ
Γβ

]
= B̃.

Therefore WTFEU = B̃ = W̃EU . So for any integer n ≥ 0, we have

WTFS
n
UEU = WSn

YTFEU = ZnWTFEU = ZnW̃EU = W̃Sn
UEU .

Because {Sn
UEUU}

∞
n=0 spans ℓ2+(U), we see that WTF = W̃ . Hence, F is a solution

to the LTONP interpolation problem. �

Lemma 2.10. Let F be a solution to the LTONP interpolation problem with data

set {W, W̃ , Z}, and assume Σ = {α, β γ, δ} is a co-isometric realization of F . Then
up to unitary equivalence the realization Σ is Λ-preferable.

Proof. Throughout F (λ) = δ + λγ(I − λα)−1β is a co-isometric realization of the

solution F for the LTONP interpolation problem with data set {W, W̃ , Z}. We
split the proof into three parts.

Part 1. In this part we show that

(2.27)
[
B ZWΓ

] [δ γ
β α

]
=

[
B̃ WΓ

]
.
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To prove this equality, note that

[
B ZWΓ

] [δ
β

]
= Bδ + ZWΓβ = Bδ +WSYΓβ

= WEYδ +WSYΓβ = W (EYδ + SYΓβ)

= W




δ
γβ
γαβ
γα2β

...



= WTFEU = W̃EU = B̃.(2.28)

Furthermore, we have

[
B ZWΓ

] [γ
α

]
= Bγ + ZWΓα = WEYγ +WSYΓα

= W (EYγ + SYΓα) = WΓ.(2.29)

Together the identities (2.28) and (2.29) prove the identity (2.27).

Part 2. In this part we show that WΓΓ∗W ∗ is equal to the Pick operator Λ.
Since the realization {α, β, γ, δ} is co-isometric, the corresponding system matrix
is a co-isometry, and hence (2.27) implies that

[
B̃ WΓ

] [
B̃∗

Γ∗W ∗

]
=

[
B ZWΓ

] [ B∗

Γ∗W ∗Z∗

]
.

Now put Ω = WΓΓ∗W ∗. Then the preceding identity is equivalent to

Ω− ZΩZ∗ = BB∗ − B̃B̃∗.

Hence Ω is a solution to the Stein equation (2.2). Since Z∗ is pointwise stable, the
solution to this Stein equation is unique (see Lemma A.1), and thus, Ω = Λ.

Part 3. In this part we show that up to unitary equivalence the system Σ =
{α, β, γ, δ} is Λ-preferable. Let X be the state space of Σ, and decompose X as
X = X◦ ⊕ V , where V = KerWΓ. Since

(WΓ)(WΓ)∗ = Λ = Λ
1
2ΠZ◦

Π∗
Z◦

Λ
1
2

by the second part of the proof, the Douglas factorization lemma shows that there
exists a unique unitary operator τ◦ mapping Z◦ onto X◦ such that

(2.30) (WΓ|X◦)τ◦ = Λ
1
2 |Z◦.

Now, put X̃ = Z◦ ⊕ V , let U be the unitary operator from X̃ onto X defined by

(2.31) U =

[
τ◦ 0
0 IV

]
:

[
Z◦

V

]
→

[
X◦

V

]
,

and define the system Σ̃ = {α̃, β̃, γ̃, δ̃} by setting

(2.32) α̃ = U−1αU, β̃ = U−1β, γ̃ = γU, δ̃ = δ.

Note that the systems Σ and Σ̃ are unitarily equivalent. Thus Σ̃ is a co-isometric

realization of F . Furthermore, the space Z◦ is a subspace of X̃ . Therefore in order

to complete the proof it remains to show that the system matrix M̃ of the system

Σ̃ has the following property:

M̃ |F = ω.
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Here ω is the unitary operator determined by the given data set {W, W̃ , Z}. In
particular, ω : F → F ′, with F and F ′ being defined by (2.4).

Let M be the system matrix for Σ. Multiplying (2.27) from the right by M∗,
using the fact that M is a co-isometry, and taking adjoints, we see that

(2.33) M

[
B̃∗

(WΓ)∗

]
=

[
B∗

(WΓ)∗Z∗

]
.

Note that (WΓ)∗ maps Z into X◦. Hence taking adjoints in (2.30) and using that
τ◦ is a unitary operator, we see that

(WΓ)∗z = τ◦Λ
1
2 z for each z ∈ Z.

But then, using the definition of U in (2.31), we obtain
(2.34)[

IU 0
0 U−1

] [
B̃∗

(WΓ)∗

]
=

[
B̃∗

Λ
1
2

]
and

[
IY 0
0 U−1

] [
B∗

(WΓ)∗Z∗

]
=

[
B∗

Λ
1
2Z∗

]
.

From (2.32) it follows that

M̃

[
IU 0
0 U−1

]
=

[
IY 0
0 U−1

]
M.

Using the later identity and the ones in (2.33) and (2.34) we see that

M̃

[
B̃∗

Λ
1
2

]
= M̃

[
IU 0
0 U−1

] [
B̃∗

(WΓ)∗

]
=

[
IY 0
0 U−1

]
M

[
B̃∗

(WΓ)∗

]

=

[
IY 0
0 U−1

] [
B∗

(WΓ)∗Z∗

]
=

[
B∗

Λ
1
2Z∗

]
.

Now recall that ω is the unique operator satisfying the first identity in (2.6). Thus

M̃ and ω coincide on F , that is, M̃ |F = ω. �

Corollary 2.11. If F ∈ S(U ,Y) has a Λ-preferable, co-isometric realization, then
F has a Λ-preferable, observable, co-isometric realization.

Proof. The fact that F has Λ-preferable, co-isometric realization implies (use
Lemma 2.9) that F is a solution to the LTONP interpolation problem. More-
over, from Lemma 2.6 we know that F has an observable, co-isometric realization.
Since observability is preserved under unitarily equivalence, Lemma 2.10 tells us
that F has a Λ-preferable, observable, co-isometric realization. �

Proof of Theorem 2.7. Let Σ be an observable, co-isometric system which is Λ-
preferable, and let F be its transfer function. Then Lemma 2.9 tells is that F is a
solution to the LTONP interpolation problem. Moreover, since Z◦ is the closure of
the range of Λ, the identity (2.22) shows that

WΓΓ∗W ∗ = Λ
1
2ΠZ◦

Π∗
Z◦

Λ
1
2 = Λ,

which proves (2.21). Conversely, by Theorem 2.5 and Lemma 2.10, if F is a solu-
tion to the LTONP interpolation problem, then F has a Λ-preferable, co-isometric
realization. But then F also has a Λ-preferable, observable, co-isometric realization
by Corollary 2.11. Finally, by Theorem 2.5, two observable, co-isometric realiza-
tions have the same transfer function F if and only if they are unitarily equivalent.
This proves that up to unitary equivalence the parametrization is one-to-one and
onto. �
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For later purposes, namely the proof of Theorem 2.1 in the next section, we
conclude this subsection with the following corollary of Lemma 2.9.

Corollary 2.12. Let F ∈ S(U ,Y), and let the systems Σ = {α, β, γ, δ} and Σ′ =
{α′, β′, γ′, δ} be Λ-preferable, co-isometric realizations of F with state spaces X =
Z◦ ⊕ V and X ′ = Z◦ ⊕ V ′, respectively. If U : X → X ′ is a unitary operator such
that

(2.35) α′U = Uα, β′ = Uβ, γ′U = γ.

Then U |Z◦ is the identity operator on Z◦ and UV = V ′.

Proof. Let Γ and Γ′ be the observability operators of Σ and Σ′, respectively. From
(2.35) it follows that Γ′U = Γ. Furthermore, using the identity (2.22) for both Σ
and Σ′ we see that

Λ
1
2ΠZ◦

= WΓ and Λ
1
2ΠZ◦

= WΓ′.

Taking adjoints, it follows that UΠ∗
Z◦

Λ
1
2 = UΓ∗W ∗ = Γ′∗W ∗ = Π∗

Z◦
Λ

1
2 . Since the

range of Λ
1
2 is dense in Z◦, we conclude that the operator U acts as the identity

operator on Z◦, i.e., U |Z◦ = IZ◦
. But then, using the fact that U is unitary, we

see that UV = V ′. �

3. Proof of Theorem 2.1

In this section we prove Theorem 2.1. Thus throughout {W, W̃ , Z} is a data
set for a LTONP interpolation problem with Z∗ being pointwise stable, and we
assume that the Pick operator Λ is non-negative. Furthermore, we use freely the
notation and terminology introduced in the first three paragraphs of Section 2. In
particular, ω is the unitary operator determined by the data set.

We begin with two lemmas. The first shows show how Schur class functions
F and G that satisfy (2.9) can be constructed from contractive realizations, and
hence, in particular, from co-isometric realizations.

Lemma 3.1. Let M be a contractive linear operator mapping U ⊕ Z◦ ⊕ V into
Y ⊕ Z◦ ⊕ V, for some Hilbert space V, partitioned as in (2.18). Define

F (λ) = δ + λ
[
γ1 γ2

](
I − λ

[
α11 α12

α21 α22

])−1 [
β1

β2

]
,

G(λ) =

[
G11(λ) G12(λ)
G21(λ) G22(λ)

]

=

[
δ γ1
β1 α11

]
+ λ

[
γ2
α12

]
(I − λα22)

−1 [β2 α21

]
.(3.1)

Then F , G and the functions Gij , 1 ≤ i, j ≤ 2, are Schur class functions, and

(3.2) F (λ) = G11(λ) + λG12(λ) (IZ◦
− λG22(λ))

−1 G21(λ), λ ∈ D.

Proof. Since M is contractive, the system matrices of the realizations of F and G
in (3.1) are also contractive, and hence F and G are Schur class functions. Note
that the second identity in (3.1) tells us that

G11(λ) = δ + λγ2 (I − λα22)
−1

β2, G12(λ) = γ1 + λγ2 (I − λα22)
−1

α21,

G21(λ) = β1 + λα12 (I − λα22)
−1

β2, G22(λ) = α11 + λα12 (I − λα22)
−1

α21.
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Again using M is contractive, we see that the system matrices of the realizations
of Gij , 1 ≤ i, j ≤ 2, are also contractive, and hence the functions Gij , 1 ≤ i, j ≤ 2,
are also Schur class functions.

Now let F be given by the first identity in (3.1). Fix λ ∈ D and u ∈ U . Put
y = F (λ)u, and define

[
x1

x2

]
:=

(
IZ◦⊕V − λ

[
α11 α12

α21 α22

])−1 [
β1

β2

]
u.

Then the identity F (λ)u = y is equivalent to the following three identities:

y = δu+ λγ1x1 + λγ2x2,(3.3)

x1 = β1u+ λα11x1 + λα12x2, x2 = β2u+ λα21x1 + λα22x2.(3.4)

The second identity in (3.4) implies that

(3.5) x2 = (I − λα22)
−1 β2u+ λ (I − λα22)

−1 α21x1.

Inserting this formula for x2 into the first identity in (3.4) yields

x1 = β1u+ λα11x1 + λα12 (I − λα22)
−1

β2u+ λ2α12 (I − λα22)
−1

α21x1

= G21(λ)u + λα11x1 + λ
(
G22(λ)x1 − α11x1

)

= G21(λ)u + λG22(λ)x1,

and thus

(3.6) x1 = (I − λG22(λ))
−1

G21(λ)u.

Using the identity (3.3) together with the identities (3.5) and (3.6) we obtain

F (λ)u = δu+ λγ1x1 + λγ2x2

= δu+ λγ1x1 + λγ2 (I − λα22)
−1

β2u+ λ2γ2 (I − λα22)
−1

α21x1

= G11(λ)u + λ
(
γ1 + λγ2 (I − λα22)

−1 α21

)
x1

= G11(λ)u + λG12(λ) (I − λG22(λ))
−1

G21(λ)u.

Hence (3.2) holds as claimed. �

Lemma 3.2. Let M be a contractive linear operator mapping U ⊕ Z◦ ⊕ V into
Y ⊕ Z◦ ⊕ V, for some Hilbert space V, partitioned as in (2.18). Consider the
systems

Σ =

{[
α11 α12

α21 α22

]
,

[
β1

β2

]
,
[
γ1 γ2

]
, δ

}
,(3.7)

Σ̃ =

{
α22,

[
β2 α21

]
,

[
γ2
α12

]
,

[
δ γ1
β1 α11

]}
.(3.8)

Then Σ is observable if and only if Σ̃ is observable and

(3.9)
[
γ1 γ2

] [α11 α12

α21 α22

]n [
z
v

]
= 0 (n = 0, 1, 2, . . .) =⇒ z = 0.

Proof. We split the proof into two parts. In the first part we assume Σ is observ-

able, and we prove that Σ̃ is observable and that (3.9) holds. The second part deals
with the reverse implication.
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Part 1. Let Σ be observable. In that case the identities on the left side of the
arrow in (3.9) imply that z = 0 and v = 0. In particular, the implication in (3.9)

holds. To see that Σ̃ is observable, fix a v ∈ V , and assume that
[
γ2
α12

]
αn
22v = 0, n = 0, 1, 2, . . . .

In other words, we assume that

(3.10) γ2α
n
22v = 0 and α12α

n
22v = 0, n = 0, 1, 2, . . . .

We want to show that v = 0. We first show that

(3.11)

[
α11 α12

α21 α22

]n [
0
v

]
=

[
0

αn
22v

]
, n = 0, 1, 2, . . . .

For n = 0 the statement is trivially true. Assume that the identity in (3.11) holds
for some integer n ≥ 0. Then, using the second part of (3.11), we obtain

[
α11 α12

α21 α22

]n+1 [
0
v

]
=

[
α11 α12

α21 α22

][
0

αn
22v

]
=

[
α12α

n
22v

αn+1
22 v

]
=

[
0

αn+1
22 v

]
.

By induction (3.11) is proved. Using the second part of (3.11), we conclude that

[
γ1 γ2

] [α11 α12

α21 α22

]n [
0
v

]
=

[
γ1 γ2

] [ 0
αn
22v

]
= γ2α

n
22v = 0, n = 0, 1, 2, . . . .

Since the system Σ is observable, we conclude that v = 0, and hence Σ̃ is observable.

Part 2. Assume that Σ̃ is observable and that (3.9) holds. Let Γ be the observ-
ability operator defined by Σ. Thus

Γ =




γ
γα
γα2

...


 : X → ℓ2+(Y), where X = Z◦ ⊕ V and

γ =
[
γ1 γ2

]
:

[
Z◦

V

]
→ Y, α =

[
α11 α12

α21 α22

]
:

[
Z◦

V

]
→

[
Z◦

V

]
.

Since M is a contraction, the operator Γ is a well defined contraction; see Lemma
A.10. We want to prove that Γ is one-to-one.

Let x = z⊕v ∈ KerΓ. Then condition (3.9) tells us that z = 0. Thus KerΓ ⊂ V .
It remains to prove that v = 0.

Observe that S∗
YΓ = Γα. Thus αnx ∈ KerΓ ⊂ V for each n = 0, 1, 2, . . . which,

by induction, implies that

(3.12) αn

[
0
v

]
=

[
0

αn
22v

]
, n = 0, 1, 2, . . . .

We see that

0 = γαn

[
0
v

]
=

[
γ1 γ2

] [ 0
αn
22v

]
= γ2α

n
22v, n = 0, 1, 2, . . . .

Furthermore, again using (3.12), we have α12α
n
22v = 0 for each n ≥ 0. Thus

(3.13)

[
γ2
α12

]
αn
22v = 0, n = 0, 1, 2, . . . .
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But, by assumption, Σ̃ is observable. Thus (3.13) implies that v = 0, as desired. �

Proof of Theorem 2.1. First assume F ∈ S(U ,Y) is a solution to the LTONP
interpolation problem. By Theorem 2.5, the function F admits an observable co-
isometric realization Σ = {α, β, γ, δ}. Since F is a solution of the LTONP inter-
polation problem, by Lemma 2.10, the realization Σ is Λ-preferable, up to unitary
equivalence. Hence, we may assume Σ is Λ-preferable. This implies that the system
matrix M of Σ has a decomposition as in (2.18) and M |F = ω. Now define G as
in (3.1). Then, by Lemma 3.1, the function F is given by (2.9). Moreover, since
the constraint M |F = ω is equivalent to (2.19) the fact that M |F = ω implies
G(0)|F = ω.

Conversely, assume G ∈ S(U ⊕ Z◦,Y ⊕ Z◦) with G(0)|F = ω. We show that

F given by (2.9) is a solution to the LTONP interpolation problem. Let Σ̃ =

{α̃, β̃, γ̃, δ̃} be an observable co-isometric realization of G with state space V . Then

δ̃|F = G(0)|F = ω. Note that the system matrix M̃ of Σ̃ admits a decomposition
as in (2.18), that is,

M̃ =

[
δ̃ γ̃

β̃ α̃

]
=




δ γ1 γ2
β1 α11 α12

β2 α21 α22


 :




U
Z◦

V


 →




Y
Z◦

V




By Lemma 3.1 we obtain that the system

(3.14) Σ =

{[
α11 α12

α21 α22

]
,

[
β1

β2

]
,
[
γ1 γ2

]
, δ

}

is a co-isometric realization for the function F ∈ S(U ,Y) given by (2.9). Fur-

thermore, δ̃|F = ω together with the fact that ω is unitary and M̃ a co-isometry,

implies that M̃ |F = ω. Hence Σ is a Λ-preferable realization. Then, by Lemma 2.9,
it follows that F given by (2.9) is a solution to the LTONP interpolation problem.

It remains to show that in the characterization of the solutions to the LTONP
interpolation problem given in Theorem 2.1, the functions F and G determine each
other uniquely. Clearly, F is uniquely determined by G via (2.9). Thus the proof
is complete when we show that for each solution F there exists a unique G as in
(2.10) such that (2.9) holds.

As in the second paragraph of the present proof, let G be in the Schur class
S(U ⊕ Z◦,Y ⊕ Z◦) with G(0)|F = ω, and let the system

Σ̃ =

{
α22,

[
β2 α21

]
,

[
γ2
α12

]
,

[
δ γ1
β1 α11

]}

be an observable co-isometric realization of G. Define F by (2.9). Then the system
(3.14) is a Λ-preferable co-isometric realization of F . We claim that this realization
is also observable. To see this, we use the identity (2.22). Taking adjoints in (2.22)
we see that Z◦ ⊂ ImΓ∗, where Γ is the observability operator defined by the pair
{γ, α}, i.e., as in (2.17), and hence Ker Γ ⊂ V . In other words, condition (3.9)

in Lemma 3.2 is satisfied. But then, since Σ̃ is observable, using Lemma 3.2, we
conclude that the system Σ is also observable.

Now assume G′ ∈ S(U ⊕ Z◦,Y ⊕ Z◦) with G′(0)|F = ω is such that F is also
given by (2.9) with G replaced by G′. Let

Σ̃′ =

{
α′
22,

[
β′
2 α′

21

]
,

[
γ′
2

α′
12

]
,

[
δ′ γ′

1

β′
1 α′

11

]}
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be an observable co-isometric realization for G′. Then

Σ′ =

{[
α′
11 α′

12

α′
21 α′

22

]
,

[
β′
1

β′
2

]
,
[
γ′
1 γ′

2

]
, δ′

}

is a Λ-preferable co-isometric realization for F , which is observable by the same
argument as used for Σ. Since all observable, co-isometric realizations of F are
unitarily equivalent, by Theorem 2.5, we obtain that there exists a unitary operator
U from the state space Z◦⊕V of Σ to the state space Z◦⊕V ′ of Σ′ such that (2.35)
holds, where

α =

[
α11 α12

α21 α22

]
, β =

[
β1

β2

]
, γ =

[
γ1 γ2

]
,

α′ =

[
α′
11 α′

12

α′
21 α′

22

]
, β′ =

[
β′
1

β′
2

]
, γ′ =

[
γ′
1 γ′

2

]
.

By Corollary 2.12, we obtain that U |Z◦ = IZ◦
and U maps V onto V ′. Let Ũ =

U |V : V → V ′. Then (2.35) takes the form

[
α11 α12

Ũα21 Ũα22

]
=

[
α′
11 α′

12Ũ

α′
21 α′

22Ũ

]
,

[
β′
1

β′
2

]
=

[
β1

Ũβ2

]
,

[
γ′
1 γ′

2Ũ
]
=

[
γ1 γ2

]
.

This yields

Ũα22 = α′
22Ũ , Ũ

[
β2 α21

]
=

[
β2 α21

]
,

[
γ2
α12

]
=

[
γ′
2

α′
12

]
Ũ .

However, this shows that the realizations Σ̃ and Σ̃′ of G and G′, respectively,
are unitarily equivalent. Hence G = G′. We conclude that there exists only one
G ∈ S(U ⊕ Z◦,Y ⊕ Z◦) with G(0)|F = ω such that F is also given by (2.9). �

We conclude this section with the construction of an observable co-isometric
realization of the central solution F◦ introduced in Remark 2.2. Decompose ωPF

as

(3.15) ωPF =

[
δ◦ γ◦
β◦ α◦

]
:

[
U
Z◦

]
→

[
Y
Z◦

]
.

Then we know from (2.11) in Corollary 2.3 that

(3.16) F◦(λ) = δ◦ + λγ◦(I − λα◦)
−1β◦.

However, (3.15) does not provide an observable co-isometric realization of F◦.

Lemma 3.3. Assume that the Pick operator Λ is non-negative. Let ωPF decompose
as in (3.15), and define

(3.17) M =

[
δ γ
β α

]
=




δ◦ γ◦ ΠYE
∗
G′

β◦ α◦ ΠZ◦
E∗

G′

0 0 S∗
G′


 :




U
Z◦

ℓ2+(G
′)


 →




Y
Z◦

ℓ2+(G
′)


 .

Here ΠZ◦
and ΠY are the orthogonal projections of Y ⊕ Z◦ onto Z◦ and Y respec-

tively. Then {α, β, γ, δ} is a Λ-preferable observable co-isometric realization of F◦.
Moreover, KerM = G.
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Proof. Since F ⊕G = U ⊕Z◦ and F ′ ⊕G′ = Y ⊕Z◦, the system matrix M can be
rewritten as

(3.18) M =



ω 0 0
0 0 E∗

G′

0 0 S∗
G′


 :




F
G

ℓ2+(G
′)


 →




F ′

G′

ℓ2+(G
′)


 .

The fact that

(3.19) ω : F → F ′ and

[
E∗

G′

S∗
G′

]
: ℓ2+(G

′) →

[
G′

ℓ2+(G
′)

]

are both unitary maps, implies that M is a co-isometry. Moreover, we have

δ◦ + λ
[
γ◦ ΠYE

∗
G′

](
I − λ

[
α◦ ΠZ◦

E∗
G′

0 S∗
G′

])−1 [
β◦

0

]
=

= δ◦ + λγ◦(I − λα◦)
−1β◦ = F◦(λ).

Here ΠZ◦
is the orthogonal projection from Y ⊕ Z◦ = F ′ ⊕ G′ onto the subspace

Z◦. Hence M is the system matrix of a co-isometric realization of F◦. It is also
clear from (3.18) that the realization Σ = {α, β, γ, δ} of F◦ is Λ-preferable.

To prove that Σ is observable, let Γ be the observability operator for the pair
{γ, α}. Note that

Γ∗ =
[
γ∗ α∗γ∗ (α∗)2γ∗ · · ·

]
: ℓ2+(Y) →

[
Z◦

ℓ2+(G
′)

]
.

Furthermore, we have

γ∗ =

[
γ∗
◦

EG′ΠG′

]
: Y →

[
Z◦

ℓ2+(G
′)

]
, α∗ =

[
α∗
◦ 0

EG′ΠG′ SG′

]
on

[
Z◦

ℓ2+(G
′)

]
.

Here ΠG′ is the orthogonal projection from Y ⊕Z◦ = F ′ ⊕G′ onto the subspace G′.
Let Xobs be the closure of the range of Γ

∗. We have to prove that Xobs = Z◦⊕ℓ2+(G
′).

Next observe that Xobs is an invariant subspace for α∗. By Lemma 2.9 we have

Π∗
Z◦

Λ
1
2 = Γ∗W ∗. From the latter identity together with the fact that the range of

Λ is dense in Z◦, we conclude that Z◦ is a subspace of Xobs. It follows that

γ∗
◦y ∈ Z◦ ⊂ Xobs and γ∗

◦y + EG′ΠG′y = γ∗y ∈ Xobs, y ∈ Y.

These inclusions show that EG′ΠG′Y is a subset of Xobs. Next we prove that
EG′ΠG′Z◦ is a subset of Xobs. To do this recall that Xobs is invariant under the
operator α∗. But then the relation Z◦ ⊂ Xobs implies that α∗Z◦ is a subset of Xobs.
Hence

(3.20)

[
{0}

EG′ΠG′Z◦

]
⊂ Xobs

∨[
α∗
◦

EG′ΠG′

]
Z◦ ⊂ Xobs

∨
α∗Z◦ ⊂ Xobs.

Here L
∨
K denotes the closure of the linear hull of the linear spaces L and K.

We know now that both EG′ΠG′Y and EG′ΠG′Z◦ are contained in Xobs. Hence
{0} ⊕ EG′G′ is a subspace for Xobs. But then

Xobs ⊃

∞∨

n=0

α∗n

[
{0}

EG′G′

]
=

∞∨

n=0

[
{0}

Sn
G′EG′G′

]
=

∞∨

n=0

[
{0}

ℓ2+(G
′)

]
.

So Xobs contains the whole state space Z◦⊕ ℓ2+(G
′). Therefore {γ, α} is observable,

and M is a Λ-preferable observable co-isometric systems matrix.
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Finally, from (3.18) and the fact that the operators in (3.19) are unitary it follows
that KerM = G. �

4. The case when the Pick operator is strictly positive and the

proof of Theorem 1.1

In this section we prove Theorem 1.1. Throughout {W, W̃ , Z} is a data set for a
LTONP interpolation problem, and we assume that the Pick operator Λ is strictly
positive. We start with a lemma that proves the first statements in Theorem 1.1
and presents a useful formula for the unitary operator ω determined by the data

set {W, W̃ , Z}.

Lemma 4.1. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem, and
assume that the Pick operator Λ is strictly positive. Then

(i) P is strictly positive and Λ−1 − P−1 is nonnegative,
(ii) Z∗ is pointwise stable, in particular, its spectral radius is less than or equal

to one,

(iii) B̃B̃∗ + Λ = BB∗ + ZΛZ∗ and this operator is strictly positive.

Moreover, the unitary operator ω : F → F ′ determined by the data set {W, W̃ , Z}
is given by

(4.1) ωPF =

[
B∗

Λ
1
2Z∗

]
K

[
B̃ Λ

1
2

]
:

[
U
Z

]
→

[
Y
Z

]

with K = (BB∗ + ZΛZ∗)−1 = (B̃B̃∗ + Λ)−1.

Proof. Since Λ = P − P̃ is strictly positive and P̃ ≥ 0, we have P = Λ + P̃ ≥ Λ.
Thus P ≥ Λ, and the operator P is also strictly positive. But then P ≥ Λ implies

Λ−1 ≥ P−1. To see this, note that P ≥ Λ yields I − P− 1
2ΛP− 1

2 ≥ 0, and hence
Λ

1
2P− 1

2 is a contraction. Taking adjoints, we see that P− 1
2Λ

1
2 is also a contraction,

and thus I − Λ
1
2P−1Λ

1
2 is non-negative. Multiplying both sides with Λ− 1

2 we
obtain Λ−1 ≥ P−1 as desired. Finally, note that Λ−1 − P−1 is not necessarily

strictly positive. For example, choose W̃ = 0, then Λ = P and Λ−1 − P−1 = 0.
To see that Z∗ is pointwise stable, note that P = WW ∗ is strictly positive by

item (i). From ZW = WSY it follows that S∗
YW

∗ = W ∗Z∗. Because P = WW ∗

is strictly positive, ‖W ∗x‖2 = (WW ∗x, x) ≥ ǫ‖x‖2 for some ǫ > 0 and all x in Z.
Thus the range H of W ∗ is closed and W ∗ can be viewed as and invertible operator
from Z onto H. In particular, the identity S∗

YW
∗ = W ∗Z∗ shows that H is an

invariant subspace for the backward shift S∗
Y and Z∗ is similar to S∗

Y |H. So the
spectral radius of Z∗ is less than or equal to one. Since S∗

Y |H is pointwise stable,
Z∗ is also pointwise stable.

The identity in the first part of item (iii) follows from (2.2). Since BB∗ +Λ ≥ Λ
and Λ is strictly positive, the operator BB∗ + Λ is also strictly positive, which
proves the second part of item (iii). Finally, formula (4.1) is a direct corollary of

Lemma A.6 by applying this lemma with K1 =
[
B̃ Λ

1
2

]
and K2 =

[
B ZΛ

1
2

]
,

see (2.3), and with N = B̃B̃∗ + Λ = BB∗ + ZΛZ∗. �

Using formula (4.1) we obtain the following explicit formula for the central so-
lution F◦.
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Theorem 4.2. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem,
and assume that the Pick operator Λ is strictly positive. Then the central solution
F◦ is given by

(4.2) F◦(λ) = B∗(B̃B̃∗ + Λ)−1(IZ − λT )−1B̃, where T = ΛZ∗(B̃B̃∗ + Λ)−1.

Moreover, the spectral radius rspec(T ) of T is at most 1. Finally, if Z is finite
dimensional, then T is exponentially stable , that is, rspec(T ) < 1.

Proof. Because Λ is strictly positive, Z◦ = Z. Let G◦ be the function identically
equal to ωPF . Using (4.1) we see that

G◦(λ) =

[
B∗KB̃ B∗KΛ

1
2

Λ
1
2Z∗KB̃ Λ

1
2Z∗KΛ

1
2

]
:

[
U
Z

]
→

[
Y
Z

]
.

Hence, by Theorem 2.1, the central solution F◦ (see also Corollary 2.3 and Remark
2.2) is given by

F◦(λ) = B∗KB̃ + λB∗KΛ
1
2

(
I − λΛ

1
2Z∗KΛ

1
2

)−1

Λ
1
2Z∗KB̃.

Using Λ
1
2

(
I − λΛ

1
2Z∗KΛ

1
2

)−1

= (I − λΛZ∗K)
−1

Λ
1
2 , we have

F◦(λ) = B∗KB̃ + λB∗K (I − λΛZ∗K)
−1

ΛZ∗KB̃

= B∗KB̃ +B∗K (I − λΛZ∗K)−1
(
I − (I − λΛZ∗K)

)
B̃

= B∗K (I − λΛZ∗K)−1 B̃.

Since K = (B̃B̃∗ + Λ)−1, this proves (4.2).

Since G◦(λ) = ωPF is a contraction, its component A = PZωPF |Z = Λ
1
2Z∗KΛ

1
2

is also a contraction. Because T = Λ
1
2 (Λ

1
2Z∗KΛ

1
2 )Λ− 1

2 is similar to A, it follows
that rspec(T ) = rspec(A) ≤ 1.

Now assume that Z is finite dimensional, and λ is an eigenvalue for T on the
unit circle. Because T is similar to A, it follows that Ax = λx for some nonzero x
in Z. In particular, ‖Ax‖ = ‖λx‖ = ‖x‖. Since A is contained in the lower right
hand corner of ωPF and ω is unitary, we have ωPF (0 ⊕ x) = 0 ⊕ λx. To see this
notice that

‖x‖2 ≥ ‖ωPF(0 ⊕ x)‖2 = ‖PUωPF (0⊕ x)‖2 + ‖Ax‖2 = ‖PUωPF (0⊕ x)‖2 + ‖x‖2.

Hence PUωPF(0⊕ x) = 0 and ωPF(0⊕ x) = 0⊕Ax = 0⊕ λx. Since ω is a unitary

operator, 0⊕ x must be in F . So 0⊕ x = B̃∗ξ⊕Λ
1
2 ξ for some nonzero ξ in Z, that

is, x = Λ
1
2 ξ. This with the definition of ω in (2.6) readily implies that

[
0

λΛ
1
2 ξ

]
=

[
0
λx

]
= ωPF

[
0
x

]
= ωPF

[
B̃∗

Λ
1
2

]
ξ =

[
B∗

Λ
1
2Z∗

]
ξ.

In other words, λΛ
1
2 ξ = Λ

1
2Z∗ξ, or equivalently, λξ = Z∗ξ. This says that Z∗

has an eigenvalue on the unit circle. However, Z is finite dimensional and Z∗n

converges to zero. Hence Z∗ is exponentially stable , and thus all the eigenvalues
of Z∗ are contained in the open unit disc. Therefore λ cannot be an eigenvalue for
Z∗ and T must be exponentially stable . �
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Lemma 4.3. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem
and assume the Pick operator Λ is strictly positive. Further, let C : Z → E and
D : Y → E form an admissible pair of complementary operators, i.e., such that
(1.6) and (1.7) holds. Then the operators τ1 and τ2 given by

(4.3) τ1 =

[
I

−Λ− 1
2 B̃

]
R◦ : U →

[
U
Z

]
, τ2 =

[
D∗

Λ− 1
2PC∗

]
Q◦ : E →

[
Y
Z

]
,

with R◦ and Q◦ given by (1.14), are isometries, the range of τ1 is G and the range
of τ2 is G′.

Proof. We split the proof into two parts. In the first part we deal with τ1 and in
the second part with τ2.

Part 1. Using the definition of R◦ in (1.14), we have

τ∗1 τ1 = R◦

[
I −B̃∗Λ− 1

2

] [ I

−Λ− 1
2 B̃

]
R◦ = R◦

(
I + B̃∗Λ−1B̃

)
R◦ = IU .

Thus τ1 is an isometry. In particular, the range of τ1 is closed. Furthermore, note
that

τ∗1

[
B̃∗

Λ
1
2

]
= R◦

[
I −B̃∗Λ− 1

2

] [
B̃∗

Λ
1
2

]
= R◦(B̃

∗ − B̃∗) = 0.

Recall that in the present case, when Λ is strictly positive, we have

F = Im

[
B̃∗

Λ
1
2

]
and G = F⊥ = Ker

[
B̃ Λ

1
2

]
.

The fact that B̃B̃∗+Λ is strictly positive, implies that the range of the previous 2×1
operator matrix is closed. It follows that F ⊂ Ker τ∗1 , and hence Im τ1 ⊂ F⊥ = G.
To prove that Im τ1 = G, consider the operator

(4.4) N =

[
R◦ B̃∗

−Λ− 1
2 B̃R◦ Λ

1
2

]
:

[
U
Z

]
→

[
U
Z

]
.

This operator matrix is invertible because the operator Λ
1
2 and the Schur com-

plement N× of Λ
1
2 in N are both invertible. To see that N× is invertible, note

that

N× = R◦ + B̃∗Λ− 1
2Λ− 1

2 B̃R◦ = (I + B̃∗Λ−1B)R◦ = R−1
◦ .

Next observe that the first column of N is the operator τ1 while the range of the
second column of N is F . Since N is invertible, ImN = U ⊕Z = G ⊕F . It follows
that G must be included in the range of the first column of N , that is, G ⊂ Im τ1.
But then Im τ1 = G.

Part 2. First observe that Q◦ is also given by

(4.5) Q◦ = (DD∗ + CPΛ−1PC∗)−
1
2 .

To see this, note that (1.6) implies that DD∗ + CPC∗ = IE , and thus

DD∗ + CPΛ−1PC∗=IE − CPC∗ + CPΛ−1PC∗=IE + CP
(
Λ−1 − P−1

)
PC∗.

Using the definition of τ2 in (4.3) and the formula for Q◦ in (4.5), we obtain

τ∗2 τ2 = Q◦

[
D CPΛ− 1

2

] [ D∗

Λ− 1
2PC∗

]
Q◦ = Q◦(DD∗ + CPΛ−1PC∗)Q◦ = IE .
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Thus τ2 is an isometry. In particular, the range of τ2 is closed. From the identity
(1.6) we know that BD∗ + ZPC∗ = 0. This implies that

τ∗2

[
B∗

Λ
1
2Z∗

]
= Q◦

[
D CPΛ− 1

2

] [ B∗

Λ
1
2Z∗

]
= Q◦(BD∗ + CPZ∗) = 0.

Recall that in the present strictly positive case

F ′ = Im

[
B∗

Λ
1
2Z∗

]
so that G′ = F ′⊥ = Ker

[
B ZΛ

1
2

]
.

We conclude that F ′ ⊂ Ker τ∗2 , and hence Im τ2 ⊂ F ′⊥ = G′. To prove Im τ2 = G′

we take y ∈ Y and z ∈ Z, and assume that y ⊕ z ∈ G′ and y ⊕ z ⊥ Im τ2. In other
words, we assume that

(4.6)

[
y
z

]
⊥ F ′ = Im

[
B∗

Λ
1
2Z∗

]
and

[
y
z

]
⊥ Im τ2 = Im

[
D∗

Λ− 1
2PC∗

]
.

But then
[
B Z

] [ y

Λ
1
2 z

]
= 0 and

[
D CPΛ−1

] [ y

Λ
1
2 z

]
= 0.

In other words,

(4.7)

[
D CPΛ−1

B Z

] [
y

Λ
1
2 z

]
=

[
0
0

]
.

Now observe that

(4.8)

[
D CPΛ−1

B Z

] [
D∗ B∗

PC∗ PZ∗

]
=

[
Q−2

◦ ⋆
0 P

]

where ⋆ represents an unspecified entry. The identities (1.6) and (1.7) imply that
the operator matrix

[
D∗ B∗

PC∗ PZ∗

]
=

[
I 0
0 P

] [
D∗ B∗

C∗ Z∗

]

is invertible. Because Q◦ and P are both invertible, the matrix on the right hand
side of (4.8) is invertible. So the operator matrix on the left hand side of (4.8) or

(4.7) is invertible. Thus y⊕Λ
1
2 z = 0. Since Λ

1
2 is invertible, both y and z are zero.

This can only happen when G′ = Im τ2. �

Corollary 4.4. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem
and assume the Pick operator Λ is strictly positive. Then all functions G in S(U ⊕
Z,Y ⊕ Z) with G(0)|F = ω are given by

G(λ) =

[
G11(λ) G12(λ)
G21(λ) G22(λ)

]
=(4.9)

=

[
B∗KB̃ +D∗Q◦X(λ)R◦ B∗KΛ

1
2 −D∗Q◦X(λ)R◦B̃

∗Λ− 1
2

Λ
1
2 Z∗KB̃ + Λ− 1

2 PC∗Q◦X(λ)R◦ Λ
1
2Z∗KΛ

1
2 − Λ− 1

2PC∗Q◦X(λ)R◦B̃
∗Λ− 1

2

]

with X is an arbitrary Schur class function in S(U , E). Moreover, G and X deter-
mine each other uniquely. Furthermore, we have

(4.10)
G12(λ) = (B∗ −G11(λ)B̃

∗)Λ− 1
2 ,

G22(λ) = Λ
1
2 (Z∗ − Λ− 1

2G21(λ)B̃
∗)Λ− 1

2 .
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Proof. The fact that ω : F → F ′ is unitary implies that G ∈ S(U ⊕ Z,Y ⊕ Z)

satisfies G(0)|F = ω if and only if G(λ) = ωPF + X̃(λ)PG , λ ∈ D, for some

X̃ ∈ S(G,G′). Since the operators τ1 and τ2 introduced in Lemma 4.3 are isometries

with ranges equal to G and G′, respectively, it follows (see Lemma A.5) that X̃ is

in S(G,G′) if and only if X̃(λ) = τ2X(λ)τ∗1 , λ ∈ D, for a X ∈ S(U , E), namely

X(λ) ≡ τ∗2 X̃(λ)τ1. Hence the Schur class functions G ∈ S(U ⊕ Z,Y ⊕ Z) with
G(0)|F = ω are characterized by G(λ) = ωPF + τ2X(λ)τ∗1 with X ∈ S(U , E). It is

clear from the above constructions that G and X̃ determine each other uniquely,

and that X̃ and X determine each other uniquely. Hence G and X determine each
other uniquely. Using the formulas for ωPF and τ1 and τ2 obtained in Lemmas 4.1
and 4.3 we see that ωPF + τ2X(λ)τ∗1 coincides with the right-hand side of (4.9).

It remains to derive (4.10). Note that

K = (Λ + B̃B̃∗)−1 = Λ−1 − Λ−1B̃R2
◦B̃

∗Λ−1.

This implies that

KB̃ = Λ−1B̃(I −R2
◦B̃

∗Λ−1B̃) = Λ−1B̃R2
◦,

KΛ = (Λ−1 − Λ−1B̃R2
◦B̃

∗Λ−1)Λ = I − Λ−1B̃R2
◦B̃

∗ = I −KB̃B̃∗.

Summarising we have

(4.11) KB̃ = Λ−1B̃R2
◦ and KΛ = I −KB̃B̃∗.

We now obtain that

G12(λ) =
(
B∗KΛ−D∗Q◦X(λ)R◦B̃

∗
)
Λ− 1

2

=
(
B∗ −B∗KB̃B̃∗ −D∗Q◦X(λ)R◦B̃

∗
)
Λ− 1

2

=
(
B∗ −

(
B∗KB̃ +D∗Q◦X(λ)R◦

)
B̃∗

)
Λ− 1

2

=
(
B∗ −G11(λ)B̃

∗
)
Λ− 1

2 ,

and

G22(λ) = Λ
1
2

(
Z∗KΛ− Λ−1PC∗Q◦X(λ)R◦B̃

∗
)
Λ− 1

2

= Λ
1
2

(
Z∗ − Z∗KB̃B̃∗ − Λ−1PC∗Q◦X(λ)R◦B̃

∗
)
Λ− 1

2

= Λ
1
2

(
Z∗ −

(
Z∗KB̃ + Λ−1PC∗Q◦X(λ)R◦

)
B̃∗

)
Λ− 1

2

= Λ
1
2

(
Z∗ − Λ− 1

2G21(λ)B̃
∗
)
Λ− 1

2 ,

as claimed. �

Proof of Theorem 1.1. The first statements in Theorem 1.1 are covered by Lemma
4.1. Clearly the operators Q◦ and R◦ are well defined. Since the spectral radius of
Z is at most one, the operator-valued functions Υij , i, j = 1, 2, given by (1.10) –
(1.13) are well defined and analytic on D. Given these functions it remains to prove
the main part of the theorem describing all solutions of the LTONP interpolation
problem by (1.9).
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Let X ∈ S(U ,Y) be an arbitrary Schur class function. Define G in S(U ⊕Z,Y⊕
Z) by G(λ) = ωPF + τ2X(λ)τ∗1 , λ ∈ D, where τ1 and τ2 are given by (4.3). Hence
G is given by (4.9) and we have (4.10). Set

F (λ) = G11(λ) + λG12(λ)
(
I − λG22(λ)

)−1

G21(λ), λ ∈ D.

By item (ii) in Lemma 4.1 the spectral radius of Z is at most one, and hence
the same holds true for spectral radius of Z∗. Thus I − λZ∗ is invertible for each
λ ∈ D. Now fix a λ ∈ D. Since G ∈ S(U ⊕ Z,Y ⊕ Z), we have G22 ∈ S(Z,Z) and
thus I − λG22(λ) is invertible. Notice that

I − λG22(λ) = Λ
1
2

(
I − λZ∗ + λΛ− 1

2G21(λ)B̃
∗
)
Λ− 1

2

= Λ
1
2 (I − λZ∗)

(
I + λ(I − λZ∗)−1Λ− 1

2G21(λ)B̃
∗
)
Λ− 1

2 .

The above identity shows that I+λ(I−λZ∗)−1Λ− 1
2G21(λ)B̃

∗ is invertible. Applying
the rule that I +AB is invertible if and only if I +BA is invertible, we obtain that

the operator I + λB̃∗(I − λZ∗)−1Λ− 1
2G21(λ) is invertible. Next, using the rule

(I +AB)−1A = A(I +BA)−1 we obtain

(I − λG22(λ))
−1

G21(λ) =

= Λ
1
2

(
I + λ(I − λZ∗)−1Λ− 1

2G21(λ)B̃
∗
)−1

(I − λZ∗)−1Λ− 1
2G21(λ)

= Λ
1
2 (I − λZ∗)−1Λ− 1

2G21(λ)
(
I + λB̃∗(I − λZ∗)−1Λ− 1

2G21(λ)
)−1

.

From the first identity in (4.10) we obtain

λG12(λ)Λ
1
2 (I − λZ∗)−1Λ− 1

2G21(λ) =

= λ
(
B∗ −G11(λ)B̃

∗
)
(I − λZ∗)−1Λ− 1

2G21(λ)

= λB∗(I − λZ∗)−1Λ− 1
2G21(λ) − λG11(λ)B̃

∗(I − λZ∗)−1Λ− 1
2G21(λ)

= λB∗(I − λZ∗)−1Λ− 1
2G21(λ) +G11(λ)+

−G11(λ)
(
I + λB̃∗(I − λZ∗)−1Λ− 1

2G21(λ)
)
.

Summarising we have shown that

(I − λG22(λ))
−1

G21(λ) = Λ
1
2 (I − λZ∗)−1Λ− 1

2G21(λ)Ξ(λ)

λG12(λ)Λ
1
2 (I − λZ∗)−1Λ− 1

2G21(λ) =

= G11(λ) + λB∗(I − λZ∗)−1Λ− 1
2G21(λ)−G11(λ)Ξ(λ)

−1,

where Ξ(λ) =
(
I + λB̃∗(I − λZ∗)−1Λ− 1

2G21(λ)
)−1

.
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It follows that

F (λ) = G11(λ) + λG12(λ) (I − λG22(λ))
−1

G21(λ)

= G11(λ) + λG12(λ)Λ
1
2 (I − λZ∗)−1Λ− 1

2G21(λ)Ξ(λ)

= G11(λ) +
(
G11(λ) + λB∗(I − λZ∗)−1Λ− 1

2G21(λ)
)
Ξ(λ) −G11(λ)

=
(
G11(λ) + λB∗(I − λZ∗)−1Λ− 1

2G21(λ)
)
×

×
(
I + λB̃∗(I − λZ∗)−1Λ− 1

2G12(λ)
)−1

.

To prove the parametrization of solutions through (1.9) it remains to show that

G11(λ) + λB∗(I − λZ∗)−1Λ− 1
2G21(λ) = (Υ12(λ) + Υ11(λ)X(λ))R◦,(4.12)

I + λB̃∗(I − λZ∗)−1Λ− 1
2G12(λ) = (Υ22(λ) + Υ21(λ)X(λ))R◦.(4.13)

Note that these two identities show that F is given by (1.9) and, combined with
Theorem 2.1, this yields that all solutions to the LTONP interpolation problem are
given by (1.9). Hence we have proved Theorem 1.1 once these two identities are
established.

Using (4.11) we obtain that

(I − λZ∗)−1Λ− 1
2G21(λ) =

= (I − λZ∗)−1Z∗KB̃ + (I − λZ∗)−1Λ−1PC∗Q◦X(λ)R◦

=
(
(I − λZ∗)−1Z∗Λ−1B̃R◦ + (I − λZ∗)−1Λ−1PC∗Q◦X(λ)

)
R◦.

Therefore, we have

I + λB̃∗(I − λZ∗)−1Λ− 1
2G21(λ) = I+

+
(
λB̃∗(I − λZ∗)−1Z∗Λ−1B̃R◦ + λB̃∗(I − λZ∗)−1Λ−1PC∗Q◦X(λ)

)
R◦

=
(
R−1

◦ + λB̃∗(I − λZ∗)−1Z∗Λ−1B̃R◦ +Υ21(λ)X(λ)
)
R◦.

(4.14)

From the definition R◦ in (1.14) it follows that R−2
◦ − B̃∗Λ−1B̃ = IU , and hence

R−1
◦ + λB̃∗(I − λZ∗)−1Z∗Λ−1B̃R◦ =

= R−1
◦ + B̃∗(I − λZ∗)−1 (I − (I − λZ∗)) Λ−1B̃R◦

= R−1
◦ − B̃∗Λ−1B̃R◦ + B̃∗(I − λZ∗)−1Λ−1B̃R◦

=
(
R−2

◦ − B̃∗Λ−1B̃
)
R◦ + B̃∗(I − λZ∗)−1Λ−1B̃R◦

= R◦ + B̃∗(I − λZ∗)−1Λ−1B̃R◦ = Υ22(λ).(4.15)

Inserting the identity (4.15) in (4.14) we obtain the identity (4.13).
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We proceed with the left hand side of (4.12).

G11(λ) + λB∗(I − λZ∗)−1Λ− 1
2G21(λ) = B∗KB̃ +D∗Q◦X(λ)R◦+

+ λB∗
(
(I − λZ∗)−1Z∗Λ−1B̃R◦ + (I − λZ∗)−1Λ−1PC∗Q◦X(λ)

)
R◦

= B∗Λ−1B̃R2
◦ + λB∗(I − λZ∗)−1Z∗Λ−1B̃R2

◦+

+
(
D∗Q◦ + λB∗(I − λZ∗)−1Λ−1PC∗Q◦

)
X(λ)R◦

= B∗Λ−1B̃R2
◦ + λB∗(I − λZ∗)−1Z∗Λ−1B̃R2

◦ +Υ11(λ)X(λ)R◦.(4.16)

Next we compute

B∗Λ−1B̃R2
◦ + λB∗(I − λZ∗)−1Z∗Λ−1B̃R2

◦ =

= B∗Λ−1B̃R2
◦ +B∗(I − λZ∗)−1 (I − (I − λZ∗)) Λ−1B̃R2

◦

= B∗Λ−1B̃R2
◦ −B∗Λ−1B̃R2

◦ +B∗(I − λZ∗)−1Λ−1B̃R2
◦

= B∗(I − λZ∗)−1Λ−1B̃R2
◦ = Υ12(λ)R◦.(4.17)

Inserting the identity (4.17) in (4.16) we obtain the identity (4.12). Hence we have
shown that all solutions are obtained through (1.9).

To complete the proof we show that the map X 7→ F given by (1.9) is one-
to-one. This is a direct consequence of the uniqueness claims in Corollary (4.4)
and Theorem 2.1. Indeed, by Corollary (4.4), the map X 7→ G from S(U , E) to
S(U ⊕Z◦,Y⊕Z◦) given by (4.9) is one-to-one, and each G obtained in this way has
G(0)F = ω. By Theorem 2.1, the mapG 7→ F from the set of G ∈ S(U⊕Z◦,Y⊕Z◦)
with G(0)|F = ω to the set of solutions in S(U ,Y) given by (2.9) is also one-to-one.
Since the map X 7→ F defined here is the composition of these two maps, it follow
that this map is one-to-one as well. �

5. Proof of Theorem 1.2

We begin with a general remark concerning the formulas for the functions Υij ,
1 ≤ i, j ≤ 2, appearing in Theorem 1.1.

Let {W, W̃ , Z} be a LTONP data set, and assume that the associate Pick op-
erator Λ is strictly positive. Then Z∗ is pointwise stable. Using the definitions of

B = WEY and B̃ = W̃EU (see in (1.4) and (1.5)) with the intertwining relations

S∗
YW

∗ = W ∗Z∗ and S∗
UW̃

∗ = W̃ ∗Z∗ (see (1.1)), we obtain

B∗(I − λZ∗)−1 = E∗
YW

∗(I − λZ∗)−1 = E∗
Y(I − λS∗

Y)
−1W ∗ (λ ∈ D),

B̃∗(I − λZ∗)−1 = E∗
UW̃

∗(I − λZ∗)−1 = E∗
U (I − λS∗

U )
−1W̃ ∗ (λ ∈ D).

It follows that the formulas (1.10) – (1.13) can be rewritten as follows:

Υ11(λ) = D∗Q◦ + λE∗
Y (I − λS∗

Y)
−1W ∗Λ−1PC∗Q◦,(5.1)

Υ12(λ) = E∗
Y(I − λS∗

Y)
−1W ∗Λ−1B̃R◦,(5.2)

Υ21(λ) = λE∗
U (I − λS∗

U )
−1W̃ ∗Λ−1PC∗Q◦,(5.3)

Υ22(λ) = R◦ + E∗
U (I − λS∗

U )
−1W̃ ∗Λ−1B̃R◦.(5.4)
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Proof of Theorem 1.2. As before let {W, W̃ , Z} be a LTONP data set, and as-
sume that the associate Pick operator Λ is strictly positive. Note that

WW ∗ = Λ+ W̃W̃ ∗ ≫ 0.

Hence P = WW ∗ is also strictly positive. It follows that the operator A =

W ∗P−1W̃ in (1.15) is well-defined. Finally, it is noted that WA = W̃ .
We first show that A is strictly contractive following arguments similar to the

ones used in [19, Remark II.1.4]. Note that

I −A∗A = I − W̃ ∗P−1WW ∗P−1W̃ = I − W̃ ∗P−1W̃

= I −
(
W̃ ∗P− 1

2

)(
P− 1

2 W̃
)
.

Put W0 = P− 1
2W and W̃0 = P− 1

2 W̃ . Then I −A∗A = I − W̃ ∗
0 W̃0. Furthermore,

I − W̃0W̃
∗
0 =I − P− 1

2 W̃W̃ ∗P− 1
2 = P− 1

2

(
P − W̃W̃ ∗

)
P− 1

2

=P− 1
2ΛP− 1

2 ≫ 0.

Thus W̃ ∗
0 is a strict contraction, and hence the same holds true for W̃0. We conclude

that

I −A∗A = I − W̃ ∗
0 W̃0 ≫ 0,

and A is a strict contraction.
From the above calculations it follows that I − A∗A is invertible and we can

obtain the inverse of I −A∗A by using the standard operator identity:

(5.5) (I −ML)−1 = I +M(I − LM)−1L.

Indeed, we have

(I −A∗A)−1 = (I − W̃ ∗
0 W̃0)

−1 = I + W̃ ∗
0

(
I − W̃0W̃

∗
0

)−1

W̃0

= I + W̃ ∗P− 1
2

(
I − P− 1

2 W̃W̃ ∗P− 1
2

)−1

P− 1
2 W̃

= I + W̃ ∗
(
P − W̃W̃ ∗

)−1

W̃ = I + W̃ ∗Λ−1W̃ .

This readily implies that

(5.6) (I −A∗A)−1 = I + W̃ ∗Λ−1W̃ .

Next we derive formulas (1.20) and (1.21). We begin with Q◦. Note that

A(I −A∗A)−1A∗ = W ∗P−1W̃
(
I + W̃ ∗Λ−1W̃

)
W̃ ∗P−1W

= W ∗P−1W̃W̃ ∗P−1W +W ∗P−1W̃W̃ ∗Λ−1W̃W̃ ∗P−1W

= W ∗P−1(P − Λ)P−1W +W ∗P−1(P − Λ)Λ−1(P − Λ)P−1W

= W ∗P−1(P − Λ)P−1W +W ∗P−1(P − Λ)Λ−1W+

−W ∗P−1(P − Λ)P−1W

= W ∗P−1(P − Λ)Λ−1W = W ∗Λ−1W −W ∗P−1W.

In other words,

(5.7) A(I −A∗A)−1A∗ = W ∗Λ−1W −W ∗P−1W.
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Thus

WA(I −A∗A)−1A∗W ∗ = PΛ−1P − P = P
(
Λ−1 − P−1

)
P.

Combining this with Q◦ =
(
I + CP (Λ−1 − P−1)PC∗

)− 1
2 (see (1.14)) yields the

formula Q◦ =
(
I + CWA (I −A∗A)−1 A∗W ∗C∗

)− 1
2

for Q◦ in (1.20).

We proceed by deriving formula (1.21). According to the right hand side of
(1.14) and using the identity (5.6) we have

R◦ =
(
IU + B̃∗Λ−1B̃

)− 1
2

=
(
IU + E∗

UW̃
∗Λ−1W̃EU

)− 1
2

=
(
E∗

U

(
I + W̃ ∗Λ−1W̃

)
EU

)− 1
2

=
(
E∗

U (I −A∗A)−1EU

)− 1
2 .

We conclude that (1.21) is proved.
It remains to show that formulas (1.10) - (1.13) can be rewritten as (1.16) –

(1.19), respectively. To do this we use the remark preceding the present proof. In
other words we may assume that the functions Υij , 1 ≤ i, j ≤ 2, are given by (5.1)
– (5.4). Then, to derive (1.16) – (1.19), it suffices to show that

W ∗Λ−1P = (I −AA∗)−1W ∗, W ∗Λ−1B̃ = A(I −A∗A)−1EU ,(5.8)

W̃ ∗Λ−1P = A∗(I −AA∗)−1W ∗, W̃ ∗Λ−1B̃ = (I −A∗A)−1EU − EU .(5.9)

Obviously, the first three identities are enough to derive formulas (1.16), (1.17), and
(1.18) from the formulas (5.1), (5.2), and (5.3), respectively. To see that a similar
result holds true for the second identity in (5.9), note that this second identity in
(5.9) implies that

Υ22(λ) = R◦ + E∗
U (I − λS∗

U )
−1W̃ ∗Λ−1B̃R◦

= R◦ + E∗
U (I − λS∗

U )
−1

(
(I −A∗A)−1 − I

)
EUR◦

= R◦ + E∗
U (I − λS∗

U )
−1(I −A∗A)−1EUR◦ − E∗

U (I − λS∗
U )

−1EUR◦

= R◦ − E∗
UEUR◦ + E∗

U (I − λS∗
U )

−1(I −A∗A)−1EUR◦

= E∗
U (I − λS∗

U )
−1(I −A∗A)−1EUR◦,

which proves (1.19).
It remains to prove the four identities in (5.8) and (5.9). Note that the second

identity in (5.9) follows from (5.6). Indeed,

W̃ ∗Λ−1B̃ = W̃ ∗Λ−1W̃EU =
(
(I −A∗A)−1 − I

)
EU = (I −A∗A)−1EU − EU .

To prove the other identities we first use (5.6) to show that

A(I −A∗A)−1 = W ∗P−1W̃
(
I + W̃ ∗Λ−1W̃

)

= W ∗P−1W̃ +W ∗P−1W̃W̃ ∗Λ−1W̃

= W ∗P−1W̃ +W ∗P−1(P − Λ)Λ−1W̃

= W ∗P−1W̃ +W ∗Λ−1W̃ −W ∗P−1W̃

= W ∗Λ−1W̃ .(5.10)
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Since W ∗Λ−1B̃ = W ∗Λ−1W̃EU , formula (5.10) yields the second identity in (5.8).
Next, using the general identity (5.5) and the identity (5.7), we see that

(5.11) (I −AA∗)−1 = I +A(I −A∗A)−1A∗ = I +W ∗Λ−1W −W ∗P−1W.

It follows that

(I −AA∗)−1W ∗ = W ∗ +W ∗Λ−1WW ∗ −W ∗P−1WW ∗

= W ∗ +W ∗Λ−1P −W ∗P−1P

= W ∗Λ−1P.(5.12)

This proves the first identity in (5.8). Finally, using (5.12), we have

A∗(I −AA∗)−1W ∗ = A∗W ∗Λ−1P = W̃ ∗P−1WW ∗Λ−1P = W̃ ∗Λ−1P.

Hence the first identity in (5.9) is proved. �

6. Proof of Proposition 1.3 and the quotient formula for the

central solution

Throughout this section {W, W̃ , Z} is a data set for a LTONP interpolation

problem, and we assume that Λ = WW ∗ − W̃W̃ ∗ is strictly positive.
The section consists of three subsections. In the first subsection we show that

the function Υ22 defined by (1.13) is outer, and we derive a quotient formula for the
central solution. In the second subsection we prove our statement concerning the
J-contractiveness of the coefficient matrix contained in Proposition 1.3. The final
statement in Proposition 1.3 about Υ−1

22 being a Schur class function is covered by
the final part of Proposition 6.3. The third subsection consists of a few remarks
about the case when the operator Z is exponentially stable .

6.1. The quotient formula. First notice that the formulas (1.22) and (1.23) di-
rectly follow from the identities (5.1) – (5.4). Let us prove this for (1.22). Since W ∗

and W̃ ∗ are bounded linear operators from Z into ℓ2+(Y) and ℓ2+(U), respectively,

it follows that W ∗Λ−1PC∗Q◦ and W̃ ∗Λ−1PC∗Q◦ are bounded linear operators
mapping E into ℓ2+(Y) and ℓ2+(U), respectively. Thus

W ∗Λ−1PC∗Q◦x ∈ ℓ2+(Y) and W̃ ∗Λ−1PC∗Q◦x ∈ ℓ2+(U) (x ∈ E).

But then, applying (1.25) for Y and for U in place of Y, we see that the inclusions
in (1.22) are proved. Similar arguments prove (1.23).

Proposition 6.1. The function Υ22 defined by (1.19) is outer and for each λ ∈ D

the operator Υ22(λ) is invertible and

(6.1) Υ22(λ)
−1 = R◦ − λR◦B̃

∗
(
I − λZ∗(Λ + B̃B̃∗)−1Λ

)−1

Z∗Λ−1B̃R2
◦.

In particular, the spectrum of Z∗(Λ + B̃B̃∗)−1Λ is contained in the closed unit
disc. Furthermore, the function Υ22(λ)

−1 belongs to H∞(U ,U), that is, Υ22(λ)
−1

is uniformly bounded on the open unit disk. Finally, if Z is finite dimensional, then

both Z∗ and Z∗(Λ+ B̃B̃∗)−1Λ are exponentially stable , and Υ22(λ) is an invertible
outer function.
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Proof. From Theorem 4.2 we know that the operator T = ΛZ∗(Λ + B̃B̃∗)−1 has

spectral radius less than or equal to one. Since Z∗(Λ + B̃B̃∗)−1Λ = Λ−1TΛ is

similar to T , we see that the operator Z∗(Λ + B̃B̃∗)−1Λ also has spectral radius

less than or equal to one. In particular, I−λZ∗(Λ+ B̃B̃∗)−1Λ is invertible for each
λ ∈ D. The remaining part of the proof is done in four steps.

Step 1. In this part we show that for each λ ∈ D the operator Υ22(λ) is invertible
and that its inverse is given by (6.1). The invertibility of Υ22(λ) we already know
from Theorem 1.1; see the paragraph directly after Theorem 1.1. Here the main
point is to prove the identity (6.1). To do this notice that

Υ22(λ)R
−1
◦ = I + B̃∗(I − λZ∗)−1Λ−1B̃

= I + B̃∗Λ−1B̃ + λB̃∗(I − λZ∗)−1Z∗Λ−1B̃.

Recall the following state space identity when D is invertible:
(
D + λC(I − λA)−1B

)−1
= D−1 − λD−1C

(
I − λ(A−BD−1C)

)−1
BD−1.

Using this with R2
◦ = (I + B̃∗Λ−1B̃)−1, we see that

(6.2) R◦Υ22(λ)
−1 = R2

◦ − λR2
◦B̃

∗Y (λ)−1Z∗Λ−1B̃R2
◦,

where

Y (λ) = I − λ
(
Z∗ − Z∗Λ−1B̃R2

◦B̃
∗
)
= I − λZ∗

(
I − Λ−1B̃R2

◦B̃
∗
)

= I − λZ∗
(
I − Λ−1B̃(I + B̃∗Λ−1B̃)−1B̃∗

)

= I − λZ∗
(
I − Λ−1B̃B̃∗(I + Λ−1B̃B̃∗)−1

)

= I − λZ∗
(
I −

[
(I + Λ−1B̃B̃∗)− I

]
(I + Λ−1B̃B̃∗)−1

)

= I − λZ∗
(
I + Λ−1B̃B̃∗

)−1

= I − λZ∗
(
Λ + B̃B̃∗

)−1

Λ.

Inserting this formula for Y (λ) into (6.2) we obtain the inverse formula for Υ22(λ)
in (6.1).

Step 2. We proceed by proving that the function Υ22(λ) is outer. To accomplish

this we use that Υ22(λ) is also given by (1.19), with A = W ∗P−1W̃ as in (1.15), and
we apply Lemma A.11 in Subsection A.5 in the Appendix. Using P = ZPZ∗+BB∗

and the fact that P is strictly positive, we see that

I = P− 1
2ZP

1
2P

1
2Z∗P− 1

2 + P− 1
2BB∗P− 1

2 .

In particular, P− 1
2ZP

1
2 is a contraction. Hence

I ≥
(
P− 1

2ZP
1
2

)∗

P− 1
2ZP

1
2 = P

1
2Z∗P−1ZP

1
2 .

Multiplying both sides by P− 1
2 , we see that

(6.3) Z∗P−1Z ≤ P−1.

Using this with A∗A = W̃ ∗P−1W̃ and W̃SU = ZW̃ , we obtain

S∗
UA

∗ASU = S∗
UW̃

∗P−1W̃SU = W̃ ∗Z∗P−1ZW̃ ≤ W̃ ∗P−1W̃ = A∗A.
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Therefore S∗
UA

∗ASU ≤ A∗A. But then, according to Lemma A.11 in Subsection
A.5, the function

(6.4) Φ(λ) := E∗
U (I − λS∗

U )
−1(I −A∗A)−1EU , λ ∈ D,

is outer. Because R◦ is invertible, it follows that the function Υ22(λ) = Φ(λ)R◦ is
outer too.

Step 3. Let Φ be given by (6.4). Since Υ22(λ) is invertible for each λ ∈ D and R◦

is invertible, the operator Φ(λ) is also invertible for each λ ∈ D. But then the final
part of Lemma A.11 tells us that the function Φ(λ)−1 belongs to H∞(U ,U). But
then Υ22(λ)

−1 = R−1
◦ Φ(λ)−1 also belongs to H∞(U ,U).

Step 4. Finally, assume Z is finite dimensional. Since Z∗(Λ+ B̃B̃∗)−1Λ is similar

to T = ΛZ∗(Λ + B̃B̃∗)−1, we have rspec(Z
∗(Λ + B̃B̃∗)−1Λ) = rspec(T ) < 1; note

that rspec(T ) < 1 follows from Theorem 4.2. Furthermore, Z∗ is pointwise stable,
by part (ii) of Lemma 4.1, which implies all eigenvalues of Z∗ are contained in
D. Hence rspec(Z) = rspec(Z

∗) < 1. This yields that Υ22 is an invertible outer
function. �

The next proposition shows that for the strictly positive case the definition of
the central solution F◦ to the LTONP interpolation problem given in Remark 2.2
coincides with the one given in the paragraph directly after Theorem 1.1. The
proposition also justifies the title of this subsection.

Proposition 6.2. Let F◦ be the central solution of the LTONP problem with data

set {W, W̃ , Z}. If the Pick operator Λ is strictly positive, then F◦ is given by the
quotient formula:

(6.5) F◦(λ) = Υ12(λ)Υ22(λ)
−1, λ ∈ D.

In other words, when the free parameter X in (1.9) is zero, then the resulting
function is the central solution.

Proof. By using (1.11) and (1.13), we obtain

Υ12(λ)Υ22(λ)
−1 = B∗(I − λZ∗)−1Λ−1B̃

(
I + B̃∗(I − λZ∗)−1Λ−1B̃

)−1

= B∗
(
I + (I − λZ∗)−1Λ−1B̃B̃∗

)−1

(I − λZ∗)−1Λ−1B̃

= B∗
(
Λ− λΛZ∗ + B̃B̃∗

)−1

B̃

= B∗(Λ +BB∗)−1
(
I − λΛZ∗(Λ +BB∗)−1

)−1
B̃

= F◦(λ).

The last equality follows from formula (4.2) for the central solution F◦(λ) in The-
orem 4.2. �

Proposition 6.3. Let F◦ be the central solution of the LTONP problem with data

set {W, W̃ , Z}, with the Pick operator Λ being strictly positive, and let Υ−1
22 be

given by (1.19). Then the functions F◦ and Υ−1
22 are both uniformly bounded on

D in operator norm, and the corresponding Toeplitz operators satisfy the following
identity:

(6.6) I − T ∗
F◦
TF◦

= T ∗

Υ−1

22

TΥ−1

22
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Furthermore, both F◦ and Υ−1
22 are Schur class functions.

Proof. Since F◦ is a solution to the LTONP interpolation problem, F◦ is a Schur
class function. In particular, the function F◦ is uniformly bounded on D in operator
norm. The latter also holds true for Υ−1

22 by Proposition 6.1.
Let us assume that (6.6) is proved. Since F◦ is a Schur class function, it follows

that TF◦
is a contraction. But then the identity (6.6) implies that ‖T ∗

Υ−1

22

TΥ−1

22
‖ ≤ 1.

Hence the Toeplitz operator TΥ−1

22
is a contraction too. The latter implies that Υ−1

22

is a Schur class function. Thus the final statement of the proposition is proved.
It remains to prove (6.6). Recall that Υ22 = ΦR◦, where the function Φ is

given by (6.4) and R◦ =
(
E∗

U (I −A∗A)−1EU

)− 1
2 . Here A = W ∗P−1W̃ , and hence

WA = W̃ . We claim that

(6.7) 〈SYAh,Af〉 = 〈ASUh,Af〉, h, f ∈ ℓ2+(U).

Using ZW = WSY and ZW̃ = W̃SU , we obtain

〈SYAh,Af〉 = 〈WSYAh, P
−1W̃f〉 = 〈ZWAh, P−1W̃f〉

= 〈ZW̃h, P−1W̃f〉 = 〈W̃SUh, P
−1W̃f〉

= 〈WASUh, P
−1W̃f〉 = 〈ASUh,Af〉.

This yields (6.7).
Next, let x ∈ ℓ2+(U) be of compact support, that is, x has only a finite number

of non-zero entries. We shall show that for any such x we have

(6.8) ‖TΦx‖
2 − ‖TF◦

TΦx‖
2 = ‖TΥ−1

22
TΦx‖

2.

Recall that the central solution F◦ is given by the quotient formula (6.5) F◦(λ) =
Υ12(λ)Υ22(λ)

−1, where Υ12 and Υ22 are defined in (1.17) and (1.19), respectively.
Thus F◦(λ)Υ22(λ) = Υ12(λ) for each λ ∈ D. By eliminating R◦ in the definitions
of Υ12 and Υ22, we see that

F◦(λ)E
∗
U (I − S∗

U )
−1D−2

A EU = E∗
Y(I − S∗

Y)
−1AD−2

A EU ,

where DA = (I − A∗A)
1
2 . So for x = {xn}

∞
n=0 in ℓ2+(U) with compact support, we

have

‖TF◦
TΦx‖

2 = ‖TF◦

∞∑

n=0

S
n
UD

−2

A EUxn‖
2 = ‖

∞∑

n=0

S
n
YAD

−2

A EUxn‖
2

= 〈

∞∑

n=0

S
n
YAD

−2

A EUxn,

∞∑

m=0

S
m
Y AD

−2

A EUxm〉

=
∑

n≥m

〈Sn
YAD

−2

A EUxn, S
m
Y AD

−2

A EUxm〉+

+
∑

n<m

〈Sn
YAD

−2

A EUxn, S
m
Y AD

−2

A EUxm〉.

=
∑

n≥m

〈Sn−m
Y AD

−2

A EUxn, AD
−2

A EUxm〉+

+
∑

n<m

〈AD
−2

A EUxn, S
m−n
Y AD

−2

A EUxm〉.
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Using the fact that A∗AD−2

A = (D−2

A − I) we obtain

∑

n>m

〈Sn−m
Y AD

−2

A EUxn, AD
−2

A EUxm〉 =
∑

n>m

〈AS
n−m
U D

−2

A EUxn, AD
−2

A EUxm〉

=
∑

n>m

〈AS
n−m
U D

−2

A EUxn, AD
−2

A EUxm〉

=
∑

n>m

〈Sn−m
U D

−2

A EUxn, (D
−2

A − I)EUxm〉

=
∑

n>m

〈Sn−m
U D

−2

A EUxn, D
−2

A EUxm〉 =
∑

n>m

〈Sn
UD

−2

A EUxn, S
m
U D

−2

A EUxm〉.

A similar computation gives
∑

n<m

〈Sn
YAD

−2

A EUxn, S
m
Y AD

−2

A EUxm〉 =
∑

n<m

〈Sn
UD

−2

A EUxn, S
m
U D

−2

A EUxm〉.

For m = n we have

〈AD
−2

A EUxn, AD
−2

A EUxn〉 = 〈AD
−2

A EUxn, AD
−2

A EUxn〉

= 〈D−2

A EUxn, (D
−2

A − I)EUxn〉

= 〈D−2

A EUxn, D
−2

A EUxn〉 − 〈D−2

A EUxn, EUxn〉

= 〈D−2

A EUxn, D
−2

A EUxn〉 − 〈R−1
◦ xn, xn〉.

Putting the above computations together gives

‖TF◦
TΦx‖

2 =

∞∑

n,m=0

〈Sn
UD

−2

A EUxn, S
m
U D

−2

A EUxm〉 −

∞∑

n=0

〈R−2
◦ xn, xn〉

= 〈TΦx, TΦx〉 −
∞∑

n=0

‖R−1
◦ xn‖

2 = ‖TΦx‖
2 − ‖T

R
−1
◦

x‖2

= ‖TΦx‖
2 − ‖T

R
−1
◦

TΦ−1TΦx‖
2 = ‖TΦx‖

2 − ‖T
Υ

−1
22

TΦx‖
2
.

Here T
R

−1
◦

denotes the diagonal Toeplitz operator with the operator R−1
◦ on the main

diagonal. We proved (6.8) for all x in ℓ2+(U) with compact support. The fact that Φ is
outer implies that TΦ maps the compact support sequences in ℓ2+(U) to a dense subset of
ℓ2+(U). Therefore

‖v‖2 − ‖TF◦
v‖2 = ‖T

Υ
−1
22

v‖2, v ∈ ℓ
2
+(U).

In other words, I − T ∗
F◦

TF◦
= T−∗

Υ22
T−1

Υ22
, and (6.6). �

6.2. J-contractiveness of the coefficient matrix. Throughout this section let

{W, W̃ , Z} be a data set for a LTONP interpolation problem. Assume Λ = P − P̃
is strictly positive. Define Υij , i, j = 1, 2, as in (1.10)–(1.13). Now set

(6.9) Υ(λ) =

[
Υ11(λ) Υ12(λ)
Υ21(λ) Υ22(λ)

]
(λ ∈ D).

Furthermore, set

J1 =

[
IY 0
0 −IU

]
and J2 =

[
IE 0
0 −IU

]
.

The following theorem is the main result of this section.
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Theorem 6.4. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem.

Assume Λ = P − P̃ is strictly positive. Then for each λ ∈ D the operator Υ(λ) is
J-contractive, that is, Υ(λ)∗J1Υ(λ) ≤ J2. More precisely, for each λ ∈ D we have

Υ(λ)∗J1Υ(λ) = J2+(6.10)

− (1− |λ|2)

[
Q◦CPΛ−1

R◦B̃
∗Λ−1Z

]
(I − λZ∗)−∗Λ(I − λZ∗)−1×

×
[
Λ−1PC∗Q◦ Z∗Λ−1B̃R◦

]
.

Furthermore, for each λ on the unit circle that is not in the spectrum of Z the
operator Υ(λ) is J-unitary, that is, Υ(λ)∗J1Υ(λ) = J2.

Remark 6.5. Theorem 6.4 can be also used to show that Υ−1
22 is a function in

S(U ,U). Indeed, the inequality Υ(λ)∗J1Υ(λ) ≤ J2, implies that

Υ12(λ)
∗Υ12(λ)−Υ22(λ)

∗Υ22(λ) ≤ −I (λ ∈ D).

Thus I ≤ Υ22(λ)
∗Υ22(λ) for each λ in D. Proposition 6.1 shows that Υ22(λ) is

invertible for λ in D. Hence Υ22(λ)
−∗Υ22(λ)

−1 ≤ I for λ in D. Therefore Υ22(λ)
−1

is a contraction for all λ in D. In other words, Υ22(λ)
−1 is a function in S(U ,U).

Before we prove this result it is useful to first derive the following two lemmas.
The first lemma provides a state space realization for the coefficient matrix-function
Υ, the second lemma derives a number of useful identities of the operators involved
in the realization.

Lemma 6.6. The function Υ in (6.9) is given by

(6.11) Υ(λ) =
(
D̂ + λĈ(I − λZ∗)−1B̂

)[
Q◦ 0
0 R◦

]
, λ ∈ D,

where B̂, Ĉ and D̂ are the operators given by

B̂ =
[
Λ−1PC∗ Z∗Λ−1B̃

]
, Ĉ =

[
B∗

B̃∗

]
, D̂ =

[
D∗ B∗Λ−1B̃

0 I + B̃∗Λ−1B̃

]
.

Proof. By writing out the right-hand side of (6.11) in 2 × 2 block matrix form,
we see that the left upper block and left lower block coincide with Υ11 and Υ21 in
(1.10) and (1.12), respectively. It remains to show that Υ12 in (1.11) and Υ22 in
(1.13) can be written as

Υ12(λ) = (B∗Λ−1B̃ + λB∗(I − λZ∗)−1Z∗Λ−1B̃)R◦;

Υ22(λ) = (I + B̃∗Λ−1B̃ + λB̃∗(I − λZ∗)−1Z∗Λ−1B̃)R◦.

In both cases this is a direct consequence of the fact that

(I − λZ∗)−1 = I + λ(I − λZ∗)−1Z∗. �

Lemma 6.7. With B̂, Ĉ, D̂ and J1 defined as above, we have the following iden-
tities:

D̂∗J1D̂ =

[
Q−2

◦ 0
0 −R−2

◦

]
− B̂∗ΛB̂(6.12)

Ĉ∗J1Ĉ = Λ− ZΛZ∗ and D̂∗J1Ĉ = −B̂∗ΛZ∗,(6.13)
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Proof. Recall that

BB∗ − B̃B̃∗ = Λ− ZΛZ∗.

The identities in (6.13) follow from this identity and the following straightforward
computations:

Ĉ∗J1Ĉ = BB∗ − B̃B̃∗ = Λ− ZΛZ∗,(6.14)

D̂∗J1Ĉ =

[
D 0

B̃∗Λ−1B I + B̃∗Λ−1B̃

] [
B∗

−B̃∗

]

=

[
DB∗

B̃∗Λ−1(BB∗ − Λ − B̃B̃∗)

]

=

[
−CPZ∗

−B̃∗Λ−1ZΛZ∗

]
= −

[
CPΛ−1

B̃∗Λ−1Z

]
ΛZ∗ = −B̂∗ΛZ∗.(6.15)

In establishing the first identity on the last line we used DB∗ + CPZ∗ = 0, which
follows from (1.6). Using DD∗ + CPC∗ = I from (1.6), we have

D̂∗J1D̂ =

[
D 0

B̃∗Λ−1B I+B̃∗Λ−1B̃

][
D∗ B∗Λ−1B̃

0 −(I + B̃∗Λ−1B̃)

]

=

[
DD∗ DB∗Λ−1B̃

B̃∗Λ−1BD∗ B̃∗Λ−1BB∗Λ−1B̃ − (I + B̃∗Λ−1B̃)2

]

=

[
I − CPC∗ −CPZ∗Λ−1B̃

−B̃∗Λ−1ZPC∗ B̃∗Λ−1BB∗Λ−1B̃ − (I + B̃∗Λ−1B̃)2

]
.

Next observe that

I − CPC∗ = I + CP (Λ−1 − P−1)PC∗ − CPΛ−1PC∗ = Q−2
◦ − CPΛ−1PC∗

and

(I + B̃∗Λ−1B̃)2 = (I + B̃∗Λ−1B̃) + B̃∗Λ−1B̃(I + B̃∗Λ−1B̃)

= R−2
◦ + B̃∗Λ−1(Λ + B̃B̃∗)Λ−1B̃

= R−2
◦ + B̃∗Λ−1(ZΛZ∗ +BB∗)Λ−1B̃

= R−2
◦ + B̃∗Λ−1ZΛZ∗Λ−1B̃ + B̃∗Λ−1BB∗Λ−1B̃.

Hence

(I + B̃∗Λ−1B̃)2 − B̃∗Λ−1BB∗Λ−1B̃ = R−2
◦ + B̃∗Λ−1ZΛZ∗Λ−1B̃.

Using these identities we obtain that

D̂∗J1D̂ =

[
Q−1

◦ 0
0 −R−2

◦

]
−

[
CPΛ−1PC∗ CPZ∗Λ−1B̃

B̃∗Λ−1ZPC∗ B̃∗Λ−1ZΛZ∗Λ−1B̃

]

=

[
Q−1

◦ 0
0 −R−2

◦

]
−

[
CPΛ−1

B̃∗Λ−1Z

]
Λ
[
Λ−1PC∗ Z∗Λ−1B̃

]
.

This shows that (6.12) holds as well. �
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Proof of Theorem 6.4. Fix a λ ∈ D. In order to prove (6.10), we multiply the

left hand side of (6.10) from both sides by
[
Q◦ 0
0 R◦

]−1

. Then, by using (6.11), we

obtain

[
Q◦ 0
0 R◦

]−1

Υ(λ)∗J1Υ(λ)

[
Q◦ 0
0 R◦

]−1

=

= (D̂∗ + λB̂∗(I − λZ)−1Ĉ∗)J1(D̂ + λĈ(I − λZ∗)−1B̂)

= D̂∗J1D̂ + λB̂∗(I − λZ)−1Ĉ∗J1D̂ + λD̂∗J1Ĉ(I − λZ∗)−1B̂+

+ |λ|2B̂∗(I − λZ)−1Ĉ∗J1Ĉ(I − λZ∗)−1B̂

= D̂∗J1D̂ − λB̂∗(I − λZ)−1ZΛB̂ − λB̂∗ΛZ∗(I − λZ∗)−1B̂+

+ |λ|2B̂∗(I − λZ)−1(Λ − ZΛZ∗)(I − λZ∗)−1B̂

= D̂∗J1D̂ − B̂∗(I − λZ)−1×

×
(
λZΛ(I − λZ∗) + λ(I − λZ)ΛZ∗ − |λ|2(Λ − ZΛZ∗)

)
(I − λZ∗)−1B̂.

Note that

λZΛ(I − λZ∗) + λ(I − λZ)ΛZ∗ − |λ|2(Λ − ZΛZ∗) =

= −(|λ|2Λ− λZΛ− λΛZ∗ + |λ|2ZΛZ∗)

= −(I − λZ)Λ(I − λZ∗) + (I − |λ|2)Λ.

Inserting this identity into the above computation yields

[
Q◦ 0
0 R◦

]−1

Υ(λ)∗J1Υ(λ)

[
Q◦ 0
0 R◦

]−1

=

= D̂∗J1D̂ + B̂∗ΛB̂ − (1− |λ|2)B̂∗(I − λZ)−1Λ(I − λZ∗)−1B̂

=

[
Q−2

◦ 0
0 −R−2

◦

]
− (1 − |λ|2)B̂∗(I − λZ)−1Λ(I − λZ∗)−1B̂.

Multiplying the resulting identity from both sides by
[
Q◦ 0
0 R◦

]
yields (6.10).

By taking limits the final statement directly follows from (6.10). �

6.3. The case when Z is exponentially stable. We conclude this section with a
few remarks about the case when Z is exponentially stable . Note that this happens
when Z is finite dimensional. Recall that Z is exponentially stable if rspec(Z), the
spectral radius of Z, is strictly less than one.

Proposition 6.8. Assume that the operator Z is exponentially stable . Then the

operator Z∗(Λ+ B̃B̃∗)−1Λ is also exponentially stable , and therefore the functions
Υij(λ), i, j = 1, 2, the central solutions F◦ and the function Υ22(λ)

−1 are analytic
on |λ| < 1 + ǫ for some ǫ > 0. Furthermore,

(6.16) I − F◦(λ)
∗F◦(λ) = Υ22(λ)

−∗Υ22(λ)
−1, |λ| = 1.

Finally, TF◦
is a strict contraction.
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Proof. We first show that Z∗(Λ + B̃B̃∗)−1Λ is exponentially stable . Notice that

Λ
1
2

(
Z∗(Λ + B̃B̃∗)−1Λ

)
Λ− 1

2 = Λ
1
2Z∗Λ− 1

2Λ
1
2 (Λ + B̃B̃∗)−1Λ

1
2

= Λ
1
2Z∗Λ− 1

2

(
I + Λ− 1

2 B̃B̃∗Λ− 1
2

)−1

.

Hence Λ
1
2

(
Z∗(Λ + B̃B̃∗)−1Λ

)
Λ− 1

2 and Λ
1
2Z∗Λ− 1

2

(
I + Λ− 1

2 B̃B̃∗Λ− 1
2

)−1

are sim-

ilar. In particular, they have the same spectrum. Furthermore, Λ − ZΛZ∗ =

BB∗ − B̃B̃∗ can be rewritten as

I − Λ− 1
2ZΛ

1
2Λ

1
2Z∗Λ− 1

2 = Λ− 1
2BB∗Λ− 1

2 − Λ− 1
2 B̃B̃∗Λ− 1

2 .

Replacing Λ− 1
2ZΛ

1
2 by Z and Λ− 1

2B by B and Λ− 1
2 B̃ by B̃, we see that without

loss of generality we may assume that Λ = I.
So we assume that

(6.17) rspec(Z) < 1 and I − ZZ∗ + B̃B̃∗ = BB∗ ≥ 0.

We have to show that Z∗(I + B̃B̃∗)−1 is exponentially stable . By consulting (4.1)

with Λ = I, we see that ΠZωPF |Z = Z∗(I + B̃B̃∗)−1. Hence Z∗(I + B̃B̃∗)−1 is a
contraction, and thus,

(6.18) rspec(Z
∗(I + B̃B̃∗)−1) ≤ 1.

Next consider the auxiliary operator

(6.19) Y = I + B̃∗(I − Z∗)−1B̃ : U → U .

We shall show that Y is invertible. The idea of the proof is taken from [38], page
128. One computes that

Y Y ∗ = {I + B̃∗(I − Z∗)−1B̃}{I + B̃∗(I − Z)−1B̃}

= I + B̃∗(I − Z∗)−1B̃ + B̃∗(I − Z)−1B̃+

+ B̃∗(I − Z∗)−1B̃B̃∗(I − Z)−1B̃

= I + B̃∗(I − Z∗)−1{(I − Z) + (I − Z∗) + B̃B̃∗}(I − Z)−1B̃.

Now use the second part of (6.17) and

ZZ∗ − I = (I − Z)(I − Z∗)− (I − Z∗)− (I − Z).

It follows that

(I − Z) + (I − Z∗) + B̃B̃∗ = (I − Z)(I − Z∗) + I − ZZ∗ + B̃B̃∗

= (I − Z)(I − Z∗) +BB∗ ≥ 0.

Hence Y Y ∗ ≥ I, and Y Y ∗ is strictly positive. In a similar fashion one computes
that

Y ∗Y = I + B̃∗(I − Z)−1{(I − Z∗) + (I − Z) + B̃B̃∗}(I − Z∗)−1B̃

= I + B̃∗(I − Z)−1{(I − Z)(I − Z∗) +BB∗}(I − Z∗)−1B̃ ≥ I.

Thus Y ∗Y is also strictly positive. Since both Y ∗Y and Y Y ∗ are strictly positive,
we conclude that the operator Y defined by (6.19) is invertible.

Since Y defined by (6.19) is invertible, it follows that I + (I − Z∗)−1B̃B̃∗ is
invertible. Here we used the fact that the nonzero spectrum of the product of two

operators are the same. Multiplying by I−Z∗ on the left shows that I−Z∗+ B̃B̃∗
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is also invertible. Multiplying by (I + B̃B̃∗)−1 on the right implies that I −Z∗(I +

B̃B̃∗)−1 is invertible. In other words,

(6.20) 1 /∈ σ
(
Z∗(I + B̃B̃∗)−1

)
.

Recall that σ(A) denotes the spectrum of an operator A. Now take λ ∈ T, and
notice that the conditions in (6.17) remain valid if Z is replaced by λZ. Thus (6.20)
yields

1 /∈ σ
(
λ−1Z∗(I + B̃B̃∗)−1

)
.

It follows that λ /∈ σ(Z∗(I + B̃B̃∗)−1). Since λ is an arbitrary element of T, we

conclude that σ(Z∗(I + B̃B̃∗)−1) ∩ T is empty, and hence using (6.18) we obtain

that the spectral radius of Z∗(I + B̃B̃∗)−1 is strictly less than one.

Since both Z and Z∗(Λ + B̃B̃∗)−1Λ are exponentially stable , it is clear from
(1.10) to (1.13), (4.2) and (6.1) that the functions Υij(λ), i, j = 1, 2, the central
solutions F◦ and the function Υ22(λ)

−1 are analytic on |λ| < 1 + ǫ for some ǫ > 0.
Next we prove (6.16). Fix λ ∈ T. Since rspec(Z) < 1, the final statement of

Theorem 6.4 tells is that

Υ12(λ)
∗Υ12(λ)−Υ22(λ)

∗Υ22(λ) = −IU .

Multiplying the latter identity from the right by Υ22(λ)
−1 and from the left by

Υ22(λ)
−∗ and using the quotient formula (6.5) we see that

F◦(λ)
∗F◦(λ)− I = −Υ22(λ)

−∗Υ22(λ)
−1,

which proves (6.16).
Finally, using (6.16), we see that ‖TF◦

‖ = supλ∈D
‖F◦(λ)‖ < 1, and hence TF◦

is
a strict contraction. �

Corollary 6.9. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem,

and let Λ = P − P̃ be strictly positive. If in addition Z is finite dimensional, then
the operator Z is exponentially stable , and the functions Υij(λ), i, j = 1, 2, the
central solutions F◦, and the function Υ22(λ)

−1 are rational operator functions with
no poles on the closed unit disk and the factorization in (6.16) is a right canonical
factorization. in the sense of [25, Section XXIV3]. In other words, Υ22 is invertible
outer, that is, TΥ22

is invertible and its inverse is TΥ−1

22
.

Proof. From Theorem 1.1 we know that Z is exponentially stable , But for a
finite dimensional space pointwise stable is equivalent to exponentially stable .
Furthermore, since Z is finite dimensional, formulas (1.10) – (1.13) imply that the
functions Υij(λ), i, j = 1, 2, are rational. Similarly, (4.2) and (6.1) show that F◦

and Υ22(λ)
−1 are rational operator functions. Recall (see Proposition 6.8) that

Υ22(λ) and Υ22(λ)
−1 are both analytic at each point of the closed unit disc, which

implies that the factorization in (6.16) is a right canonical factorization and Υ22 is
invertible outer. �

7. Maximal entropy principle

For a function F ∈ S(U ,Y) we define the entropy to be the cost function σF

defined by the following optimization problem:

(7.1) σF (u) = inf
{
‖u− E∗

UT
∗
Fh‖

2 + 〈(I − TFT
∗
F )h, h〉 | h ∈ ℓ2+(Y)

}
,
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where u is a vector in U . Note that the above problem is precisely the optimiza-
tion problem in (A.45) with C = TF . Due to the equivalence of the optimization
problems in (A.45) and (A.48), the entropy σF is also given by

(7.2) σF (u) = inf
{
‖DTF

(EUu− SUe)‖
2
| e ∈ ℓ2+(U)

}
, u ∈ U .

This is precisely the notion of entropy that is used in the commutant lifting setting
presented in [19, Section IV.7]. Furthermore, if ‖F‖∞ = ‖TF‖ < 1, then by (A.47)
the entropy for F is determined by

(7.3) σF (u) =
〈(

E∗
U (I − T ∗

FTF )
−1EU

)−1
u, u

〉

In the band method theory on the maximal entropy principle the operatorE∗
U (I−

T ∗
FTF )

−1EU appears as the multiplicative diagonal of the function I − F (λ)∗F (λ),
λ ∈ T, assuming the Fourier coefficients of F are summable in operator norm; see
Sections I.3 and II.3 in [29], and Section XXXIV.4 in [26]. For further information
on the multiplicative diagonal we refer to Subsection A.7.

In this section the function F is assumed to belong to the set of all solutions to
a LTONP interpolation problem. The following theorem is the maximal entropy
principle for this set of F ’s.

Theorem 7.1. Assume that the LTONP interpolation problem with given data set

{W, W̃ , Z} is solvable, i.e., the Pick matrix Λ is nonnegative. Let F◦ in S(U ,Y) be
the central solution to this LTONP interpolation problem. Then F◦ is the unique
maximal entropy solution, that is, if F ∈ S(U ,Y) is any other solution to the
LTONP interpolation problem, then

(7.4) σF (u) ≤ σF◦
(u) (u ∈ U).

Moreover, we have σF (u) = σF◦
(u) for all u ∈ U if and only if F = F◦, and the

entropy for the central solution is given by

(7.5) σF◦
(u) = 〈PG(u⊕ 0), (u⊕ 0)〉 (u ∈ U),

where G is the Hilbert space given by the first part of (2.7). Finally, if Λ is strictly
positive, then the entropy for the central solution is also determined by

(7.6) σF◦
(u) =

〈(
I + B̃∗Λ−1B̃

)−1

u, u

〉
(u ∈ U).

The above theorem is a more detailed version of Theorem IV.7.1 in [19] special-
ized for the LTONP interpolation problem. For related earlier results see [29] [26]
and Section XXXV in [26].

The proof of Theorem 7.1 is new. It will be given after the next result, which
characterizes the entropy function σF of any F ∈ S(U ,Y) in terms of an observable
co-isometric realization.

Lemma 7.2. Let Σ = {α, β, γ, δ} be an observable co-isometric realization of F ∈
S(U ,Y), and let MΣ be the associated system matrix. Set MΣ = ImM∗

Σ. Then

(7.7) σF (u) = 〈PM⊥

Σ
τUu, τUu〉 (u ∈ U).

Here τU is the embedding operator of U into U ⊕ X .
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Proof. Fix F ∈ S(U ,Y), and let Σ = {α, β, γ, δ} be an observable co-isometric
realization of F with system matrix MΣ, and put M = ImM∗

Σ where MΣ is given
by (2.16). Since MΣ is a co-isometry, the range of M∗

Σ is closed. Thus M is a
subspace of U ⊕ X . We set

(7.8) ρF (u) = 〈PM⊥

Σ
τUu, τUu〉 (u ∈ U).

We have to prove σF = ρF . Since all observable co-isometric realizations of F are
unitarily equivalent, see Theorem 2.5, the definition of ρF is independent of the
choice of the observable co-isometric realization of F . Hence it suffices to show
σF = ρF for a particular choice of Σ.

Observe that F is a solution to the LTONP interpolation problem with data set
{Iℓ2

+
(Y), TF , SY}. Indeed, with

W = Iℓ2
+
(Y), W̃ = TF , Z = SY

the identities (1.1) and (1.2) are automatically fulfilled. Moreover, in this case F is
the unique solution, and hence F is the central solution associated with the data set
{Iℓ2

+
(Y), TF , SY}. But then we can apply Lemma 3.3 to obtain a special observable

co-isometric realization of F . To do this let us denote the subspaces F in (2.4) and

G in (2.7) associated with our data set {Iℓ2
+
(Y), TF , SY} by F̂ and Ĝ, respectively.

In this case the associate Pick operator Λ̂ is given by Λ̂ = I − TFT
∗
F = D2

T∗

F
. Note

that F̂ is given by

(7.9) F̂ = Im

[
E∗

UT
∗
F

DT∗

F

]
.

Now let Σ̂ be the observable co-isometric realization obtained by applying Lemma

3.3. Then (3.18) tells us that (M∗

Σ̂
)⊥ = KerMΣ̂ = Ĝ. Thus ρF (u) = 〈P

Ĝ
τu, τu〉.

Using (7.9) and the projection theorem we then obtain for each u ∈ U that

ρF (u) = 〈P
Ĝ
τUu, τUu〉 = inf

{
‖τUu− f‖ | f ∈ F̂

}

= inf

{∥∥∥∥
[

u
0

]
−

[
E∗

UT
∗
F

DT∗

F

]
h

∥∥∥∥ | h ∈ ℓ2+(Y)

}

= inf
{
‖u− E∗

UT
∗
Fh‖

2 + 〈(I − TFT
∗
F ) h, h〉 | h ∈ ℓ2+(Y)

}
= σF (u).

Thus we proved σF = ρF for a particular choice of Σ, which completes the proof. �

Remark 7.3. Note that the formula for σF in (7.8) can be rewritten directly in
terms of the system matrix MΣ as

σF (u) = inf

{∥∥∥∥
[
u
0

]
−M∗

Σh

∥∥∥∥
2

| h ∈ Y ⊕ X

}
(u ∈ U).

Proof of Theorem 7.1. We shall prove Theorem 7.1 using the formula for σF

given in Lemma 7.2.
First we derive the formula (7.3) for the central solution. From the proof of

Lemma 7.2, using Lemma 3.3, we know that

σF◦
(u) = 〈PGτUu, τUu〉 = 〈PG

[
u
0

]
,

[
u
0

]
〉, u ∈ U ,

which yields (7.3).
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Let F ∈ S(U ,Y) be a solution to the LTONP interpolation problem with data

{W, W̃ , Z}, and let Σ = {α, β, γ, δ} be a Λ-preferable, observable, co-isometric
realization of F . Then σF is given by (7.7) with M⊥

Σ = KerMΣ, the null space of
the system matrix MΣ. The fact that Σ is Λ-preferable implies that M∗

Σ|F
′ = ω∗.

Hence F = Imω∗ ⊂ ImM∗
Σ, so that M⊥ ⊂ F⊥ = G ⊕ V with V = X ⊖ Z◦. Hence

PM⊥ ≤ PG⊕V . Since U ⊥ V , both seen as subspaces of U ⊕ X , we have

σF (u) =
〈
PM⊥

Σ
τUu, τUu

〉
≤ 〈PG⊕VτUu, τUu〉 =

= 〈PGτUu, τUu〉 = σF◦
(u) (u ∈ U).

Hence the entropy σF◦
(u) of the central solution F◦ is maximal among all solutions

to the LTONP interpolation problem for the data set {W, W̃ , Z}.
Next we show that F◦ is the unique solution to the LTONP interpolation problem

for the data set {W, W̃ , Z} that maximizes the entropy. Hence, assume that the
entropy of the solution F is maximal, that is, σF (u) = 〈PGτUu, τUu〉 for each u ∈ U .
Then

‖PM⊥

Σ
τUu‖

2 = 〈PM⊥

Σ
τUu, τUu〉 = σF (u) =

= 〈PGτUu, τUu〉 = ‖PGτUu‖
2 (u ∈ U).

We will first show that KerMΣ = M⊥
Σ = G. Observe that for u in U we have

‖PFτUu‖
2 = ‖u‖ − ‖PGτUu‖

2 = ‖u‖ − ‖PM⊥

Σ
τUu‖

2 = ‖PMΣ
τUu‖

2.

Because MΣ|F = ω, it follows that F is a subspace of ImM∗
Σ = MΣ. This yields

‖PL⊥τUu‖
2 = ‖PFτUu‖

2 + ‖PL⊥⊖FτUu‖
2.

Thus PL⊥⊖FτUu = 0. Hence PFτUu = PL⊥τUu holds for all u ∈ U . Then

PGτUu = τUu− PFτUu = τUu− PMΣ
τUu = PM⊥

Σ
τUu (u ∈ U).

In what follows the symbol H
∨
K stands for closed linear hull of the spaces H and

K. By consulting (2.4) and noting that Z◦ is the closure of ImΛ
1
2 , we see that

U
∨

F =

[
U
0

]∨[
B̃∗

Λ
1
2

]
Z = U ⊕ Z◦.

Hence F ⊕ G = U ⊕ Z◦ = U
∨

F and we obtain that

G = PG(F ⊕ G) = PGU = PM⊥

Σ
U ⊂ M⊥

Σ .

Therefore G is a subset of M⊥
Σ . Set V = X ⊖ Z◦, with X being the state space of

Σ. Write M⊥
Σ = G ⊕ L. Since F ⊥ M⊥

Σ , we have

L ⊂ (U ⊕ X )⊖ (F ⊕ G) = (U ⊕ X ) ⊖ (U ⊕ Z◦) = V .

Because G ⊂ M⊥
Σ = KerMΣ, we have

MΣ| (U ⊕ Z◦) = MΣ| (F ⊕ G) = ωPF .

Therefore, MΣ has a block operator decomposition of the form

MΣ =

[
δ γ
β α

]
=




δ◦ γ◦ M1

β◦ α◦ M2

0 0 M3


 :




U
Z◦

V


 →




Y
Z◦

V




where {α◦, β◦, γ◦, δ◦} form the system matrix for ωPF ; see (3.15). Let x ∈ L ⊂ V .
We have MΣx = 0, and thus, Mjx = 0 for j = 1, 2, 3. But then αx = 0 and
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γx = 0. Hence γαkx = 0 for each k. The fact that Σ is an observable realization
then implies that x = 0. Thus L = {0} and we obtain that KerMΣ = M⊥

Σ = G.
Using the fact thatM∗

Σ is an isometry withM∗
Σ|F

′ = ω∗ and G = M⊥
Σ = KerMΣ,

we see that M∗
Σ admits a matrix decomposition of the form

M∗
Σ =

[
ω∗PF ′ 0
PG′ U+

]
:

[
Y ⊕ Z◦

V

]
→

[
U ⊕ Z◦

V

]
.

Because M∗
Σ| (Y ⊕ Z◦) is an isometry, without loss of generality we can assume that

the lower left hand corner of M∗
Σ is given by PG′ . Moreover, U+ is an isometry on

V . Since M∗
Σ is an isometry and G = KerMΣ, we have

(7.10) V = G′ ⊕ Im (U+).

In particular, G′ is a wandering subspace for the isometry U+ and we have⊕∞
n=0U

n
+G

′ ⊂
V . Because the systems matrix MΣ is observable, Z◦⊕V =

∨∞
n=0 α

∗nγ∗Y. Observe
that α∗ admits a lower triangular matrix decomposition of the form:

α∗ =

[
⋆ 0
PG′ U+

]
on

[
Z◦

V

]
.

Furthermore, γ∗Y is a subset of Z◦ ⊕ G′. For y in Y, we have

α∗nγ∗y =

[
⋆∑n−2

k=0 U
k
+PG′ ⋆+Un−1

+ PG′γ∗y

]
.

The observability condition implies that V = ⊕∞
n=0U

n
+G

′. Therefore U+ can be
viewed as the unilateral shift SG′ . In other words, the realization Σ of F is unitarily
equivalent to the realization of the central solution obtained in Lemma 3.3. Hence
F = F◦. So the maximal solution is unique.

To conclude the proof it remains to show that (7.6) holds. Assume that Λ is
strictly positive. Recall that the operator τ1 in (4.3) is an isometry from U into
U ⊕ Z whose range equals G. Hence τ1τ

∗
1 = PG is the orthogonal projection onto

G. In other words,

(7.11) PG = τ1τ
∗
1 =

[
I

−Λ− 1
2 B̃

]
R2

◦

[
I −B̃Λ− 1

2

]
, where R2

◦ = (I + B̃∗ΛB̃)−1.

So for u in U , we have

σF◦
(u) = 〈PGτUu, τUu〉 = 〈τ1τ

∗
1 (u⊕ 0), (u⊕ 0)〉 = 〈R2

◦u, u〉.

In other words, (7.6) holds. �

Remark 7.4. Consider the LTONP interpolation problem with data {W, W̃ , Z}.
Moreover, assume that Λ is strictly positive and Z is exponentially stable . Let F◦

be the central solution. Then, by Proposition 6.8, the operator TF◦
is a strict con-

traction, and thus (7.3) holds with TF◦
in place of TF . Using (6.16) in Proposition

6.8 we see that

σF◦
(u) =

〈
(E∗

UT
∗

Υ−1

22

TΥ−1

22
E−1

U )−1u, u
〉

=
〈
(Υ−1

22 (0)
∗Υ−1

22 (0)u, u
〉
= ‖Υ−1

22 (0)u‖
2, u ∈ D

On the other hand, according to (7.6), we have

σF◦
(u) =

〈
(IU + B̃∗Λ−1B̃)−1u, u

〉
, u ∈ D.
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Hence

sF◦
(u) = ‖Υ22(0)

−1u‖2 =
〈
(IU + B̃∗Λ−1B̃)−1u, u

〉
, u ∈ D.

If U is finite dimensional, then the later identity can be rewritten as

det[(IU + B̃∗Λ−1B̃)−1] = exp

(
1

2π

∫ 2π

0

ln det[I − F◦(e
iθ)∗F◦(e

iθ)]dθ

)
.

For more details, in particular concerning the connections with spectral factoriza-
tion, we refer to Subsection A.7.

8. Commutant lifting as LTONP interpolation

In the second paragraph after Proposition 1.3 we have seen that in the strictly
positive case the LTONP interpolation problem is a commutant lifting problem.
In this section we go in the reverse direction. We consider a large subclass of
commutant lifting problems, and we show that this class of problems is equivalent
to the class of LTONP interpolation problems. This equivalence will allow us to
reformulate Theorem 1.2 as a theorem describing all solutions of a suboptimal
commutant lifting problem (see Theorem 8.1 below).

Our starting point is the quadruple {A◦, SU , T
′, SY} as the given commutant

lifting data set. Here A◦ is an operator mapping ℓ2+(U) into H′, where H′ is an

invariant subspace for S∗
Y . In particular, H′ is a subspace of ℓ2+(Y), and ℓ2+(Y)⊖H′

is invariant under SY . Furthermore, T ′ is the compression of SY to H′, that is, T ′ =
ΠH′SYΠ

∗
H′ , where ΠH′ is the orthogonal projection of ℓ2+(Y) onto H′. The data

set satisfies the intertwining relation A◦SU = T ′A◦. Note that we do not assume
the minimality condition

∨
n≥0 S

n
YH

′ = ℓ2+(Y), which often plays a simplifying role
in proofs.

Given the lifting data set {A◦, SU , T
′, SY}, the commutant lifting problem is to

find all F ∈ S(U ,Y) such that

TF =

[
A◦

⋆

]
: ℓ2+(U) →

[
H′

ℓ2+(Y)⊖H′

]
.

If the problem is solvable, then necessarily A◦ is a contraction.
To reformulate this commutant lifting problem as a LTONP interpolation prob-

lem, put

(8.1) Z = H′, Z = T ′, W = ΠZ : ℓ2+(Y) → Z, W̃ = A◦ : ℓ2+(U) → Z.

Here ΠZ is the orthogonal projection of ℓ2+(Y) onto Z = H′. With W , W̃ and Z

given by (8.1) it is straightforward to check that ZW = WSY and ZW̃ = W̃SU .
Thus the conditions in (1.1) are satisfied. Moreover, the solutions to the LTONP
interpolation problem with this data set with data {W,W,Z} are precisely the
solutions to the commutant lifting problem with data set with data {W,W,Z}; see
the second paragraph after Proposition 1.3. Since S∗

Y is pointwise stable, it is also
clear that Z∗ is pointwise stable. Note that in this case

P = ΠZΠ
∗
Z = IZ , P̃ = A◦A

∗
◦ and Λ = P − P̃ = I −A◦A

∗
◦,(8.2)

B = ΠZEY and B̃ = A◦EU .(8.3)

So the commutant lifting problem with data {A◦, SU , T
′, SY} is solvable if and only

if Λ is positive, or equivalently, A◦ is a contraction. Finally, it is noted that one
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can use Theorem 2.1 to find all solutions to this commutant lifting problem when
‖A◦‖ ≤ 1.

Notice that KerW = ℓ2+(Y) ⊖ H′. By the Beurling-Lax-Halmos theorem there

exists an inner function Θ ∈ S(E ,Y) such that ℓ2+(Y) ⊖ H′ = KerW = ImTΘ,
which allows us to define:

(8.4) C = E∗
ET

∗
ΘSYΠ

∗
Z : Z → E and D = Θ(0)∗ : Y → E .

Note C and D defined above are precisely equal to the operators C and D defined

by (1.8) provided the data set {W, W̃ , Z} is the one defined by the commutant
lifting setting (8.1). It follows that the operators C and D in (8.4) is an admissible

pair of complementary operators determined by the data set {W, W̃ , Z} defined by
(8.1).

Using the above connections we can apply Theorem 1.2 to obtain the following
theorem which describes all solutions of the commutant lifting problem with data
{A◦, SU , T

′, SY} for the case when the operator A◦ is a strict contraction. Note
that in this case the operator A defined by (1.15) is equal to the operator

(8.5) A = Π∗
H′A◦ = Π∗

ZA◦ : ℓ2+(U) → ℓ2+(Y).

Hence using ΠZΠ
∗
Z = IZ , we also have ΠZA = A◦.

Theorem 8.1. Let {A◦, SU , T
′, SU} be a commutant lifting data set. Assume A◦

is a strict contraction. Then all solutions F to the commutant lifting problem for
the data set {A◦, SU , T

′, SU} are given by

(8.6) F (λ) =
(
Υ11(λ)X(λ) + Υ12(λ)

)(
Υ21(λ)X(λ) + Υ22(λ)

)−1
, λ ∈ D,

where the free parameter X is an arbitrary Schur class function, X ∈ S(U , E), and
the coefficients Υi,j, 1 ≤ i, j ≤ 2, are the analytic functions on D defined by

Υ11(λ) = D∗Q◦ + λE∗
Y(I − λS∗

Y)
−1Π∗

H′(I −A◦A
∗
◦)

−1C∗Q◦,(8.7)

Υ12(λ) = E∗
Y

(
I − λS∗

Y

)−1
Π∗

H′A∗
0(I −A∗

◦A◦)
−1EUR◦,(8.8)

Υ21(λ) = λE∗
U (I − λS∗

U )
−1A∗

◦(I −A◦A
∗
◦)

−1C∗Q◦,(8.9)

Υ22(λ) = E∗
U

(
I − λS∗

U

)−1
(I −A∗

◦A◦)
−1EUR◦.(8.10)

Here C and D are the operators defined by (8.4), and

Q◦ =
(
IE + CA◦

(
I −A∗

◦A◦

)−1
A∗

◦C
∗
)− 1

2

,(8.11)

R◦ =
(
E∗

U

(
I −A∗

◦A◦

)−1
EU

)− 1
2

,(8.12)

and these operators are strictly positive.

Proof. The above theorem is a direct corollary of Theorems 1.1 and 1.2. Indeed, in
the present setting A = Π∗

ZA◦ and ΠZA = A◦ while the operatorW ∗ = Π∗
Z = Π∗

H′ .
This implies that

(I −A∗A)−1 = (I −A∗
◦A◦)

−1, WA(I −A∗A)−1A∗W ∗ = A◦(I −A∗
◦A◦)

−1A∗
◦.



ALL SOLUTIONS TO AN OPERATOR NEVANLINNA-PICK INTERPOLATION PROBLEM 49

It follows that in this case the operators Q◦ and R◦ in Theorem 1.2 are given by
(8.11) and (8.12), respectively. Furthermore,

A(I −A∗A)−1 = Π∗
H′A◦(I −A∗

◦A◦)
−1,

(I −AA∗)−1W ∗ = (I −AA∗)−1Π∗
H′ = Π∗

H′(I −A◦A
∗
◦)

−1,

A∗(I −AA∗)−1W ∗ = A∗
◦ΠH′Π∗

H′(I −A◦A
∗
◦)

−1 = A∗
◦(I −A◦A

∗
◦)

−1.

The latter identities show that in this case the formulas for the function Υij , 1 ≤
i, j ≤ 2, in Theorem 1.2 can be rewritten as in (8.7) – (8.10), which completes the
proof. �

9. The Leech problem revisited

In this section we discuss the Leech problem and show how it appears as a
special case of our LTONP interpolation problem. We will also show that our first
main result, Theorem 1.1, after some minor computations, provides the ‘infinite
dimensional state space’ characterization of the solutions to the Leech problem
given in Theorem 3.1 in [24], without any ‘minimality’ condition. It is noted that
in [24] these formulas are used to derive algorithms in the rational case. The paper
by R.B. Leech [40] where this problem originated from was eventually published in
2014; see [35] for some background on the history of this paper.

The data set for the Leech problem consists of two functions G ∈ H∞(Y,V) and
K ∈ H∞(U ,V), for Hilbert spaces U , Y and V , and the aim is to find Schur class
functions F ∈ S(U ,Y) such that GF = K. In terms of Toeplitz operators, we seek
F ∈ S(U ,Y) such that TGTF = TK . To convert the Leech problem to a LTONP
interpolation problem, set Z = ℓ2+(V) and define

(9.1) W = TG : ℓ2+(Y) → Z, W̃ = TK : ℓ2(U) → Z, Z = SV : Z → Z.

In this setting,

(9.2) P = TGT
∗
G and P̃ = TKT ∗

K .

Since TG and TK are analytic Toeplitz operators they intertwine the unilateral for-

ward shifts on the appropriate ℓ2+-spaces. This shows that the triple {W, W̃ , Z} sat-
isfies the conditions of being a LTONP data set; see (1.1). Moreover, the solutions to

the LTONP interpolation problem associated with the data set {W, W̃ , Z} coincide
with the solutions to the Leech problem for the functions G and K. Furthermore,
note that Z∗ = S∗

V is pointwise stable, but does not have spectral radius less than

one, as required in Section 1.4 of [19]. The solution criterion WW ∗ − W̃W̃ ∗ ≥ 0
from the LTONP interpolation problem translates to the known solution criterion
for the Leech problem, namely TGT

∗
G − TKT ∗

K ≥ 0.

Note that in this setting B = TGEY and B̃ = TKEU . On can use Theorem
2.1 to find a parametrization of all solutions to the Leech problem when Λ =
TGT

∗
G−TKT ∗

K ≥ 0. From Theorem 1.1, we now obtain the following characterization
of the solutions to the Leech problem under the condition that Λ = TGT

∗
G − TKT ∗

K

is strictly positive.

Theorem 9.1. Let G ∈ H∞(Y,V) and K ∈ H∞(U ,V), and assume that TGT
∗
G −

TKT ∗
K is strictly positive. Let Θ ∈ S(E ,Y), for some Hilbert space E, be the inner
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function such that ImTΘ = KerTG. Then the solutions F to the Leech problem
associated with G and K are given by

(9.3) F (λ) =
(
Υ11(λ)X(λ) + Υ12(λ)

)(
Υ21(λ)X(λ) + Υ22(λ)

)−1

,

where the free parameter X is an arbitrary Schur class function, X ∈ S(U , E), and
the coefficients in (9.3) are the analytic functions on D given by

Υ11(λ) = Θ(0)∗Q◦ − λE∗
Y(I − λS∗

Y)
−1T ∗

G(TGT
∗
G − TKT ∗

K)−1NQ◦,

Υ12(λ) = E∗
Y(I − λS∗

Y)
−1T ∗

G(TGT
∗
G − TKT ∗

K)−1TKEUR◦,

Υ21(λ) = −λE∗
U (I − λS∗

U )
−1T ∗

K(TGT
∗
G − TKT ∗

K)−1NQ◦,

Υ22(λ) = R◦ + E∗
U (I − λS∗

U )
−1T ∗

K(TGT
∗
G − TKT ∗

K)−1TKEUR◦.

Here N = −TGS
∗
YTΘEE = S∗

VTGEYΘ(0) and Q◦ and R◦ are the strictly positive
operators given by

Q◦ =
(
IE +N∗((TGT

∗
G − TKT ∗

K)−1 − (TGT
∗
G)

−1)N
)− 1

2 : E → E ,

R◦ = (IU + E∗
UT

∗
K(TGT

∗
G − TKT ∗

K)−1TKEU )
− 1

2 : U → U .

Moreover, the parametrization given by (1.9) is proper, that is, the map X 7→ F is
one-to-one.

Proof. The formulas for Υi,j , 1 ≤ i, j ≤ 2, follow directly from those in (1.10)–
(1.13) after translation to the current setting, that is, using Λ = TGT

∗
G − TKT ∗

K

with P = TGT
∗
G and B = TGEY and B̃ = TKEU . Using (A.28) with W = TG

we arrive at PC∗ = TGS
∗
YTΘEE = −N . For the second formula for N , namely

N = S∗
VTGEYΘ(0), see Lemma 2.1 in [24]. �

This characterization of the solutions to the Leech problem is almost identical
to that obtained in Theorem 3.1 in [24], for the case U = Cp, Y = Cp, V = Cm and
under the ‘minimality’ condition that for no nonzero x ∈ Cp the function z 7→ G(z)x
is identically equal to zero. Note that the operators Q◦ and R◦ above coincide with
∆−1

1 and ∆−1
0 of Theorem 3.1 in [24], respectively. However, in the definition of

∆1 in [24, eqn. (3.7)] it should have been ((TGT
∗
G − TKT ∗

K)−1 − (TGT
∗
G)

−1) rather
than ((TGT

∗
G − TKT ∗

K)−1 − (TGT
∗
G)

−1)−1. To see that Υ12 and Υ22 in Theorem
9.1 indeed coincide with those in Theorem 3.1 in [24], use that (I − λS∗

V)
−1 =

I + λ(I − λS∗
V)

−1S∗
V , so that

Υ12(λ) = E∗
YT

∗
G(TGT

∗
G − TKT ∗

K)−1TKEUR◦+

λE∗
YT

∗
G(I − λS∗

V )
−1S∗

V(TGT
∗
G − TKT ∗

K)−1TKEUR◦

Υ22(λ) = R◦ + E∗
UT

∗
K(TGT

∗
G − TKT ∗

K)−1TKEUR◦

+ λE∗
UT

∗
K(I − λS∗

V)
−1S∗

V(TGT
∗
G − TKT ∗

K)−1TKEUR◦

= R−1
◦ + λE∗

UT
∗
K(I − λS∗

V)
−1S∗

V(TGT
∗
G − TKT ∗

K)−1TKEUR◦,

where the last identity follows because

(IU + E∗
UT

∗
K(TGT

∗
G − TKT ∗

K)−1TKEU )R◦ = R−2
◦ R◦ = R−1

◦ .

The Toeplitz-corona problem corresponds to the special case of the Leech prob-
lem where U = V and K = IU is identically equal to the identity operator on U . In
view of the connection made between the LTONP interpolation problem and the
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commutant lifting problem in Section 8, we refer to Proposition A.5 in [24], where
the Toeplitz-corona is identified as a special case of the commutant lifting problem
discussed in Section 8. Although Proposition A.5 in [24] is proven only for the case
where U and Y are finite dimensional, one easily sees that the result caries over
to the infinite dimensional case. We present the result here rephrased in terms of
the LTONP interpolation problem, and add a proof for completeness. Note that

with K is identically equal to IU we have W̃ = Iℓ2
+
(U). Hence W̃ is invertible. The

converse is also true.

Proposition 9.2. Let {W, W̃ , Z} as in (1.1) be a data set for a LTONP interpo-

lation problem where W̃ is invertible. Then there exists a function G ∈ H∞(Y,U)

such that with K ≡ IY the operators W , W̃ and Z are given by (9.1), with V = Y, up
to multiplication with an invertible operator from Z to ℓ2+(U). In fact, G is defined

by TG = W̃−1W , or equivalently, W = W̃TG and W̃ = W̃TI and Z = W̃SUW̃
−1.

Proof. Let {W, W̃ , Z} be a data set for a LTONP interpolation problem with W̃

invertible. Then ZW = WSY and SUW̃
−1 = W̃−1Z, so that

SUW̃
−1W = W̃−1ZW = W̃−1WSY .

This shows W̃−1W is a Toeplitz operator TG with defining function G ∈ H∞(Y,U).
It is also clear that for K ≡ IY we have

TK = Iℓ2
+
(U) = W̃−1W̃ and W̃−1ZW̃ = W̃−1W̃SU = SU . �

Appendix A.

This appendix consists of seven subsections containing standard background ma-
terial that is used throughout the paper. Often we added proofs for the sake of
completeness.

A.1. Stein equation. In this section, we present some standard results concerning
discrete time Stein equations.

Lemma A.1. Let Z be an operator on Z such that Z∗ is pointwise stable. Let α
be an operator on X such that supn≥0 ‖α

n‖ < ∞ while Ξ is an operator mapping
X into Z. Assume that the Stein equation

(A.1) Ω− ZΩα = Ξ

has a solution Ω mapping X into Z. Then the solution to this Stein equation is
unique.

Proof. If Ω1 is another operator satisfying Ω1−ZΩ1α = Ξ, then subtracting these
two Stein equations yields

Ω− Ω1 = Z
(
Ω− Ω1

)
α.

Applying this identity recursively, we have Ω−Ω1 = Zn
(
Ω−Ω1

)
αn for all integers

n ≥ 0. By taking the adjoint, we obtain Ω∗ −Ω∗
1 = α∗n

(
Ω∗ −Ω∗

1

)
Z∗n. Since Z∗ is

pointwise stable and supn≥0 ‖α
n‖ < ∞, for each z ∈ Z we have

‖(Ω∗ − Ω∗
1)z‖ = ‖α∗n

(
Ω∗ − Ω∗

1

)
Z∗nz‖ ≤ ‖α∗n‖‖

(
Ω∗ − Ω∗

1

)
‖‖Z∗nz‖ → 0.

Hence Ω∗ = Ω∗
1, or equivalently, Ω = Ω1. Therefore the solution to the Stein

equation Ω = ZΩα+ Ξ is unique. �
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Let Z be an operator on Z such that Z∗ is pointwise stable. Assume that W is
an operator mapping ℓ2+(Y) into Z such that ZW = WSY . Let B be the operator
mapping Y into Z defined by B = WEY . Then P = WW ∗ is the unique solution
to the Stein equation

(A.2) P = ZPZ∗ +BB∗.

Lemma A.1 guarantees that the solution to this Stein equation is unique. Moreover,
using ZW = WSY , we obtain

P = WW ∗ = W
(
SYS

∗
Y + EYE

∗
Y

)
W ∗ = ZWW ∗Z∗ +BB∗ = ZPZ∗ +BB∗.

Hence P = WW ∗ satisfies the Stein equation (A.2). Notice that
[
EY SYEY S2

YEY S3
YEY · · ·

]
= I,

the identity operator on ℓ2+(Y). Using this with ZW = WSY , we see that

W = W
[
EY SYEY S2

YEY · · ·
]
=

[
B ZB Z2B · · ·

]
.

In particular, P = WW ∗ =
∑∞

n=0 Z
nBB∗Z∗n. Motivated by this analysis we

present the following result.

Lemma A.2. Let Z be an operator on Z such that Z∗ is pointwise stable. Let
B be an operator mapping Y into Z. If P is a solution to the Stein equation
P = ZPZ∗ + BB∗, then P is the only solution to this Stein equation. Moreover,
P = WW ∗ where W is the operator mapping ℓ2+(Y) into Z given by

(A.3) W =
[
B ZB Z2B · · ·

]
: ℓ2+(Y) → Z.

Finally, ZW = WSY and WEY = B.

Proof. By recursively using P = ZPZ∗ +BB∗, we obtain

P = BB∗ + ZPZ∗ = BB∗ + Z (BB∗ + ZPZ∗)Z∗

= BB∗ + ZBB∗Z∗ + Z2 (BB∗ + ZPZ∗)Z∗2 + · · ·

=

n∑

j=0

ZjBB∗Z∗j + Zn+1PZ∗n+1,

where n is any positive integer. Because Z∗ is pointwise stable, the uniform bound-
edness principle implies that sup{‖Zn‖ : n ≥ 0} < ∞. Thus Zn+1PZ∗n+1 con-
verges to zero pointwise as n tends to infinity. Therefore P =

∑∞
j=0 Z

jBB∗Z∗j with

pointwise convergence. Moreover, W in (A.3) is a well defined bounded operator
and P = WW ∗. Clearly, ZW = WSY and B = WEY . �

A.2. The Douglas factorization lemma for K1K
∗
1 = K2K

∗
2 . In this subsection

we review a variant of the Douglas factorization lemma; for the full lemma see,
e.g., [26, Lemma XVII.5.2]. The results presented are used in Sections 2 and 4.
Consider the two Hilbert space operators and related subspaces given by:

K1 : H1 → Z and F = ImK∗
1 ⊂ H1,(A.4)

K2 : H2 → Z and F ′ = ImK∗
2 ⊂ H2.(A.5)

The following two lemmas are direct corollaries of the Douglas factorisation lemma.

Lemma A.3. Let K1 and K2 be two operators of the form (A.4) and (A.5). Then
the following are equivalent.
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(i) The operators K1K
∗
1 = K2K

∗
2 .

(ii) There exists a unitary operator ω : F → F ′ such that

(A.6) ωK∗
1 = K∗

2 or equivalently K2ω = K1|F .

(iii) There exists an operator ω : F → F ′ such that

(A.7) K2K
∗
2 = K2ωK

∗
1 and K2ωK

∗
1 = K1K

∗
1 .

In this case ω is unitary.

If Part (ii) or (iii) holds, then the operator ω is uniquely determined. Finally, each
of the identities in (A.6) separately can be used as the definition of ω.

Remark A.4. The operator products in (A.6) and (A.7) have to be understood
pointwise. For instance, the first identity in (A.6) just means that ωK∗

1x = K∗
2x

for each x ∈ Z. Note that for each x ∈ Z we have K∗
1x ∈ F , and thus ωK∗

1x is well
defined and belongs to F ′. On the other hand, K∗

2x also belongs to F ′, and hence
ωK∗

1x = K∗
2x makes sense. This remark also implies to the other identities in this

subsection.

Let us sketch a proof of Lemma A.3. One part of the Douglas factorization lemma
says that if A and B are two operator acting between the appropriate spaces, then
AA∗ ≤ BB∗ if and only if there exists a contraction C from the closure of the range
of B∗ to the closure of the range of A∗ satisfying A∗ = CB∗. Moreover, in this case,
the operator C is unique. If K1K

∗
1 = K2K

∗
2 , then there exists a contraction ω such

that K∗
2 = ωK∗

1 . Because K1K
∗
1 = K2K

∗
2 , it follows that ω is an isometry from F

onto F ′. Since ω is onto, ω is unitary. On the other hand, if K∗
2 = ωK∗

1 where ω
is unitary, then K1K

∗
1 = K2K

∗
2 . Therefore Parts (i) and (ii) are equivalent.

Clearly, Part (ii) implies that Part (iii) holds. Assume that Part (iii) holds. Then
by the first identity in (A.7) and the fact that K2 is zero on H2 ⊖F ′, we see that
ωK∗

1 = K∗
2 . Similarly, using the second identity in (A.7) and F = ImK∗

1 , we obtain
K2ω = K1|F . This yields Part (ii). Therefore Parts (i) to (iii) are equivalent.

Lemma A.5. Let K1 and K2 be two operators of the form (A.4) and (A.5). As-
sume K1K

∗
1 = K2K

∗
2 and let ω : F → F ′ be the unitary map uniquely determined by

(A.7). Let τ1 : U1 → H1 and τ2 : U2 → H2 be isometries such that Im τ1 = H1 ⊖F
and Im τ2 = H2 ⊖F ′. Then all contractions Y : H1 → H2 such that

(A.8) K2K
∗
2 = K2Y K∗

1 and K2Y K∗
1 = K1K

∗
1 .

are given by Y = τ2Xτ∗1 + Π∗
F ′ωΠF where X is any contraction mapping U1 into

U2. Moreover, the map X → Y is one-to-one.

Recall that V is a right inverse of U if UV = I. Next we assume that N :=
K1K

∗
1 = K2K

∗
2 is strictly positive. Then both K1 and K2 are right invertible, the

operator K∗
1N

−1 is a right inverse of K1 and the operator K∗
2N

−1 is a right inverse
of K2. Indeed, we have

K1K
∗
1N

−1 = K1K
∗
1 (K1K

∗
1 )

−1 = IZ ,

K2K
∗
2N

−1 = K2K
∗
2 (K2K

∗
2 )

−1 = IZ .

Furthermore, a direct computation shows that the orthogonal projections PF onto
F and PF ′ onto F ′ are respectively given by

(A.9) PF = K∗
1N

−1K1 and PF ′ = K∗
2N

−1K2.
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Lemma A.6. Let K1 and K2 be two operators of the form (A.4) and (A.5). As-
sume that K1K

∗
1 = K2K

∗
2 and N = K1K

∗
1 = K2K

∗
2 is strictly positive. Then the

unique operator ω : F → F ′ satisfying (A.7) is given by

(A.10) ωPF = K∗
2N

−1K1.

Proof. Using the first identity in (A.9) and next the first identity in (A.6) we see
that

ωPFh = ω(K∗
1N

−1K1)h = (ωK∗
1 )N

−1K1h = K∗
2N

−1K1h, h ∈ H1,

and (A.10) is proved. �

A.3. Construction of complementary operators. This subsection deals with
the construction of operators C and D satisfying (1.6) and (1.7) assuming the
operators Z and B are given. As in Section 1 the operators Z and B are Hilbert
space operators, Z : Z → Z and B : Y → Z. Moreover, we assume that Z∗ is
pointwise stable, and P is a strictly positive operator on Z satisfying the Stein
equation

(A.11) P − ZPZ∗ = BB∗.

The fact that P is strictly positive, Z∗ is pointwise stable and satisfies (A.11)
implies that

W =
[
B ZB Z2B · · ·

]
: ℓ2+(Y) → Z

defines a bounded linear operator and P = WW ∗. Moreover, as in Section 1, we
have

(A.12) ZW = WSY and B = WEY : Y → Z.

Finally, note that P is not necessarily equal to WW ∗ when Z∗ is not pointwise
stable. For example, if Z is unitary, and P = I, then B = 0 and W = 0.

To see that W is a well-defined operator, consider the auxiliary operators

(A.13) B1 = P− 1
2B : Y → Z and Z1 = P− 1

2ZP
1
2 : Z → Z.

Multiplying the Stein equation P − ZPZ∗ = BB∗ by P− 1
2 on the left and right

yields I − Z1Z
∗
1 = B1B

∗
1 , and hence

(A.14)

[
B∗

1

Z∗
1

]
: Z →

[
Y
Z

]

is an isometry. In particular, the operator in (A.14) is a contraction. But then we
can apply Lemma A.10 to show that

(A.15) K :=




B∗
1

B∗
1Z

∗
1

B∗
1 (Z

∗
1 )

2

...


 : ℓ2+(Y) → Z

is a well defined bounded linear operator and ‖K‖ ≤ 1. Note that the adjoint of K
is the operator K∗ given by

K∗ =
[
B1 Z1B1 Z2

1B1 · · ·
]
: ℓ2+(Y) → Z.

Using the definitions of B1 and Z1 in (A.13) we see that

Zn
1 B1 =

(
P− 1

2ZP
1
2

)n

P− 1
2B =

(
P− 1

2ZnP
1
2

)
P− 1

2B = P− 1
2ZnB.
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Thus P
1
2K∗ = W , and hence W is a well defined operator from ℓ2+(Y) into Z. It is

emphasized that because P is strictly positive, the operator Z∗ must be pointwise
stable; see the first part of the proof of Lemma 3.1. The latter implies that the
solution of the Stein equation P = ZPZ∗ + BB∗ is unique (see Lemma A.1), and
thus P = WW ∗.

As mentioned in the Introduction (in the paragraph after formulas (1.6) and
(1.7)) there are various ways to construct admissible pairs of complementary oper-
ators. One such construction, using the Beurling-Lax-Halmos theorem, was given
in the Introduction. The next proposition provides an alternative method which
has the advantage that it can be readily used in Matlab in the finite dimensional
case.

Proposition A.7. Let Z : Z → Z and B : Y → Z be Hilbert space operators,
where Z∗ is pointwise stable. Moreover, assume that P is strictly positive operator
satisfying the Stein equation P = ZPZ∗ + BB∗. Then there exists a Hilbert space
E and Hilbert space operators C : Z → E and D : Y → E such that

[
D C
B Z

] [
IY 0
0 P

] [
D∗ B∗

C∗ Z∗

]
=

[
IE 0
0 P

]
,(A.16)

[
D∗ B∗

C∗ Z∗

] [
IE 0
0 P−1

] [
D C
B Z

]
=

[
IY 0
0 P−1

]
.(A.17)

One such a pair of operators can be constructed in the following way. Let ϕ be any
isometry from some space E0 onto the null space of

[
B ZP

1
2

]
of the form

(A.18) ϕ =

[
ϕ1

ϕ2

]
: E0 →

[
Y
Z

]
.

Define the operators C0 and D0 by

(A.19) C0 = ϕ∗
2P

− 1
2 : Z → E0 and D0 = ϕ∗

1 : Y → E0.

Finally, all operators C : Z → E and D : Y → E satisfying (A.16) and (A.17) are
given by

(A.20) C = UC0 and D = UD0 with U : E0 → E any unitary operator.

Proof. Let Z1 and B1 be the operators defined by equation (A.13). Note that
Z1Z

∗
1 + B1B

∗
1 = I, the identity operator on Z. Furthermore, the two identities

(A.16) and (A.17) are equivalent to the statement that the operator

(A.21) M :=

[
D CP

1
2

B1 Z1

]
:

[
Y
Z

]
→

[
E
Z

]

is unitary. Notice that
[
B ZP

1
2

]
and

[
B1 Z1

]
have the same null space. By

construction the operator

(A.22)

[
ϕ∗
1 ϕ∗

2

B1 Z1

]
:

[
Y
Z

]
→

[
E0
Z

]

is unitary. So choosing D = ϕ∗
1 and C = ϕ∗

2P
− 1

2 yields a system {Z,B,C,D}
satisfying (A.16) and (A.17). It easily follows that (A.16) and (A.17) remain true
when C and D are multiplied with a unitary operator on the left side. Hence (A.16)
and (A.17) holds for C and D as in (A.20).



56 A.E. FRAZHO, S. TER HORST, AND M.A. KAASHOEK

Let {Z,B,C,D} be any system satisfying (A.16) and (A.17). Because M is
unitary the two operators

ϕ =

[
ϕ1

ϕ2

]
: E0 →

[
Y
Z

]
and V =

[
D∗

P
1
2C∗

]
: E →

[
Y
Z

]

are isometries whose ranges are equal to the null space of
[
B ZP

1
2

]
. Therefore,

ϕϕ∗ = V V ∗ is equal to the orthogonal projection onto the null space of
[
B ZP

1
2

]
.

Hence there exists a unitary operator U from E0 onto E satisfying
[
ϕ1

ϕ2

]
=

[
D∗

P
1
2C∗

]
U ;

use the special case of the Douglas factorization presented in Lemma A.3. Thus,

Uϕ∗
1 = D and Uϕ∗

2P
− 1

2 = C. �

Proposition A.8. Let Z : Z → Z and B : Y → Z be Hilbert space operators
where Z∗ is pointwise stable. Moreover, assume that P is strictly positive operator
satisfying the Stein equation P = ZPZ∗ +BB∗. Let C : Z → E and D : Y → E be
Hilbert space operators such that (A.16) and (A.17) are satisfied. Put

(A.23) Θ(λ) = D∗ + λB∗(I − λZ∗)−1C∗.

Then Θ ∈ S(E ,Y) and Θ is inner. Moreover,

(A.24) KerW = ImTΘ, C = E∗
ET

∗
ΘSYW

∗P−1, D = Θ(0)∗,

where W =
[
B ZB Z2B · · ·

]
mapping ℓ2+(Y) into Z is the operator determined

by (A.12).

Proof. The fact Θ ∈ S(E ,Y) and Θ is inner is a direct consequence of (A.16) and
the pointwise stability of Z∗. Indeed, from (A.16) we obtain that the realization of
Θ given by the system matrix M∗, with M as in (A.21), has an isometric system

matrix and a pointwise stable state matrix Z∗
1 = P

1
2Z∗P− 1

2 , so that the claim
follows from Theorem III.10.1 in [19]. For completeness, we present a proof. Let
Θ(λ) =

∑∞

n=0 λnΘn be the Taylor series expansion for Θ. Note that Θ(0) = D∗

and Θn = B∗(Z∗)n−1C∗ for all integers n ≥ 1. Let Φ be the operator defined by

(A.25) Φ =




Θ0


Θ1

Θ2

Θ3

...






=

[
D∗

W ∗C∗

]
: E →

[
Y

ℓ2+(Y)

]
.

Because W is a bounded operator mapping ℓ2+(Y) into Z, it follows that Φ is a well
defined operator. In fact, Φ is an isometry. To see this observe that (A.16) yields,

Φ∗Φ = DD∗ + CWW ∗C∗ = DD∗ + CPC∗ = I.

Hence Φ is an isometry. Moreover, ΦE is a wandering subspace for the unilateral
shift SY , that is, {Sn

YΦE}
∞
n=0 forms a set of orthogonal subspaces. To see this it

is sufficient to show that ΦE is orthogonal to Sn
YΦE for all integers n ≥ 1. Using
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S∗
YW

∗ = W ∗Z∗, with n ≥ 1, we obtain

(
Sn
YΦ

)∗
Φ = Φ∗(S∗

Y)
nΦ =

[
D CW

]
(S∗

Y)
n

[
D∗

W ∗C∗

]

=
[
D CW

] [B∗(Z∗)n−1C∗

W ∗(Z∗)nC∗

]

= DB∗(Z∗)n−1C∗ + CWW ∗(Z∗)nC∗

= (DB∗ + CPZ∗) (Z∗)n−1C∗ = 0.

The last equality follows from (A.16). Therefore {Sn
YΦE}

∞
0 forms a set of orthogonal

subspaces.
The Toeplitz matrix TΘ is determined by

TΘ =
[
Φ SYΦ S2

YΦ · · ·
]
.

Because Φ is an isometry and ΦE is a wandering subspace for SY , it follow that all
the columns {Sn

YΦ}
∞
0 are isometric and orthogonal. Therefore T ∗

ΘTΘ = I and Θ is
an inner function.

Now let us show that KerW = ImTΘ. To this end, note that

(A.26) TΘEE = Φ =

[
D∗

W ∗C∗

]
: E →

[
Y

ℓ2+(Y)

]
.

Because P = WW ∗ is strictly positive the range of W ∗ is closed. Moreover, one
can directly verify that W ∗P−1W is the orthogonal projection onto the range of
W ∗. Hence I −W ∗P−1W is the orthogonal projection onto KerW . Since TΘ is an
isometry TΘT

∗
Θ is an orthogonal projection. We claim that I −W ∗P−1W = TΘT

∗
Θ,

and thus, KerW = ImTΘ. To this end, notice that TΘT
∗
Θ is the unique solution to

the Stein equation

(A.27) TΘT
∗
Θ = SYTΘT

∗
ΘS

∗
Y + TΘEEE

∗
ET

∗
Θ.

Because S∗
Y is pointwise stable, the solution TΘT

∗
Θ to this Stein equation is unique;

see Lemma A.1. Moreover, using W =
[
B ZW

]
with (A.17), we have

I −W ∗P−1W − SY

(
I −W ∗P−1W

)
S∗
Y

= EYE
∗
Y + SYW

∗P−1WS∗
Y −W ∗P−1W

=

[
I 0
0 W ∗P−1W

]
−

[
B∗

W ∗Z∗

]
P−1

[
B ZW

]

=

[
I −B∗P−1B −B∗P−1ZW
−W ∗Z∗P−1B W ∗P−1W −W ∗Z∗P−1ZW

]

=

[
D∗D D∗CW

W ∗C∗D W ∗C∗CW

]
= TΘEEE

∗
ETΘ.

So I −W ∗P−1W is also the solution to the Stein equation (A.27). Because S∗
Y is

pointwise stable, the solution to this Stein equation is unique. Therefore TΘTΘ =
I −W ∗P−1W and KerW = ImTΘ.

It remains to prove the second and third identity in (A.24). Using (A.26) we see
that

E∗
ET

∗
ΘSYW

∗P−1 =
[
D CW

] [ 0
W ∗P−1

]
CWW ∗P−1 = CPP−1 = C.
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This proves the second identity in (A.24). The third follows by taking λ = 0 in
(A.23). �

Proposition A.9. Let Z : Z → Z and B : Y → Z be Hilbert space operators
where Z∗ is pointwise stable. Moreover, assume that P is strictly positive operator
satisfying the Stein equation P = ZPZ∗ + BB∗. Let Θ ∈ S(E ,Y) be any inner
function such that KerW = ImTΘ, where W is the operator appearing in (A.12).
Then the operators

(A.28) C := E∗
ET

∗
ΘSYW

∗P−1 : Z → E and D := Θ(0)∗ : Y → E .

form an admissible pair of complementary operators determined by {B,Z}, that is,
with this choice of C and D the identities (A.16) and (A.17) are satisfied.

Proof. Notice that S∗
YTΘEE is orthogonal to ImTΘ. To see this simply observe

that

T ∗
ΘS

∗
YTΘEE = S∗

ET
∗
ΘTΘEE = S∗

EEE = 0.

Because ImTΘ = KerW , we see that the range of S∗
YTΘEE is contained in the

range of W ∗. Since P = WW ∗ is strictly positive, the range of W ∗ is closed and
W ∗ is one to one. Hence KerW ∗ = {0}. By another implication of the Douglas
factorization lemma, see e.g., [26, Lemma XVII.5.2], we obtain that there exists a
unique operator C mapping Z into E such that S∗

YTΘEE = W ∗C∗. By taking the
adjoint we have CW = E∗

ET
∗
ΘSY . Hence

C = CWW ∗P−1 = E∗
ET

∗
ΘSYW

∗P−1.

In other words, C is determined by the first equation in (A.28). By taking the
Fourier transform we get

Θ(λ) = E∗
Y(I − λS∗

Y)
−1TΘEE = Θ(0) + λE∗

Y(I − λS∗
Y)

−1S∗
YTΘEE

= D∗ + λE∗
Y(I − λS∗

Y)
−1W ∗C∗ = D∗ + λB∗(I − λZ∗)−1C∗.

In other words, Θ(λ) = D∗ + λB∗(I − λZ∗)−1C∗ and (A.24) holds.
To derive (A.16) recall that W ∗C∗ = S∗

YTΘEE . Hence

DD∗ + CPC∗ = Θ(0)∗Θ(0) + CWW ∗C∗

= E∗
ET

∗
ΘEYE

∗
YTΘEE + E∗

ET
∗
ΘSYS

∗
YTΘEE

= E∗
ET

∗
ΘTΘEE = I.

Hence DD∗ + CPC∗ = I. Moreover,

BD∗ + ZPC∗ =
[
B ZW

] [ Θ(0)
W ∗C∗

]
=

[
B ZW

] [ Θ(0)
S∗
YTΘEE

]

= WTΘEE = 0.

Thus BD∗ + ZPC∗ = 0. This with P = BB∗ + ZPZ∗, yields (A.16).
To obtain (A.17), notice that TΘ admits a decomposition of the form

TΘ =

[
D∗ 0

W ∗C∗ TΘ

]
:

[
E

ℓ2+(E)

]
→

[
Y

ℓ2+(Y)

]
.
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Because KerW = ImTΘ and W ∗P−1W is the orthogonal projection onto the range
of W ∗, we have TΘT

∗
Θ = I −W ∗P−1W . Using W =

[
B ZW

]
, we obtain

[
I −B∗P−1B −B∗P−1ZW
−W ∗Z∗P−1B I −W ∗Z∗P−1ZW

]
= I −

[
B∗

W ∗Z∗

]
P−1

[
B ZW

]

= I −W ∗P−1W = TΘT
∗
Θ =

[
D∗D D∗CW

W ∗C∗D W ∗C∗CW + TΘT
∗
Θ

]

=

[
D∗D D∗CW

W ∗C∗D W ∗C∗CW + I −W ∗P−1W

]
.

By comparing the upper left hand corner of the first and last matrices, we have
D∗D + B∗P−1B = I. Because W is onto, comparing the upper right hand corner
shows that D∗C+B∗P−1Z = 0. Since W ∗ is one to one, comparing the lower right
hand corner shows that P−1 = ZP−1Z∗ + C∗C. This yields (A.17). Therefore
{C,D} is an admissible pair of complementary operators. �

Alternative proof of Proposition A.9. To gain some further insight, let us de-
rive Proposition A.9 as a corollary of Proposition A.8 using the uniqueness part of
the Beurling-Lax-Halmos theorem; see [21, Theorem 3.1.1].

Let C̃ : Z → Ẽ and D̃ : Y → Ẽ be Hilbert space operators such that (A.16) and

(A.17) are satisfied with C̃ and D̃ in place of C and D, respectively. Set

Θ̃(λ) = D̃∗ + λB∗(I − λZ∗)−1C̃∗.

Then, by Proposition A.8, the function Θ̃ is inner and KerW = ImTΘ̃. Thus
ImTΘ̃ = ImTΘ, and hence using the uniqueness part of the Beurling-Lax-Halmos

theorem there exists a unitary operator U from Ẽ onto E such that

Θ(λ)U = Θ̃(λ) (λ ∈ D).

Now put C = UC̃ and D = UD̃. From the final part of Proposition A.7 we know
{C,D} form an admissible pair of complementary operators determined by {B,Z}.

It remains to show that C and D are given by (A.28). From the second and
third identity in (A.24) we know that

(A.29) C̃ = E∗

Ẽ
T ∗

Θ̃
SYW

∗P−1 and D̃ = Θ̃(0)∗.

Since U : Ẽ → E is unitary we have UE∗

Ẽ
T ∗

Θ̃
= E∗

ET
∗
Θ. Thus the first identity in

(A.29) shows that C = UC̃ is given by the first identity in (A.28). Similarly, we
have

D = UD̃ = UΘ̃(0)∗ = U
(
Θ(0)U

)∗
= Θ(0)∗,

which proves the second identity in (A.28). �

An example. Let M be a subspace of ℓ2+(Y) invariant under the block forward
shift SY . The Beurling-Lax-Halmos theorem [21, Theorem 3.1.1] tells us that there
exist a Hilbert space E and an inner function Θ ∈ S(E ,Y) such that M = ImTΘ.
Moreover, if Ψ is an inner function in S(E◦,Y) satisfyingM = ImTΨ, then Θ(λ)U =
Ψ(λ) where U is a constant unitary operator mapping E◦ into E .

We shall derive this result as a special case of Proposition A.8. Put Z = ℓ2+(Y)⊖
M, and define

(A.30) Z = ΠZSYΠ
∗
Z : Z → Z and B = ΠZEY : Y → Z.
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Note that Z is the compression of SY to Z, and Z is an invariant subspace for S∗
Y .

Let W be the operator mapping ℓ2+(Y) onto Z defined by W = ΠZ . Since M is an
invariant subspace for SY , we have

SY =

[
Z 0
⋆ ⋆

]
:

[
Z
M

]
→

[
Z
M

]

where ⋆ represents an unspecified entry. In particular, this implies that

WSY =
[
I 0

] [Z 0
⋆ ⋆

]
=

[
Z 0

]
= Z

[
I 0

]
= ZW.

Hence ZW = WSY . By construction B = WEY . Thus I = WW ∗ is the unique
solution to the Stein equation P = ZPZ∗ +BB∗.

The fact that W = ΠZ implies that KerW = ℓ2+(Y) ⊖ Z = M. But then
Proposition A.8 tells us that there exist a Hilbert space E and an inner function
Θ ∈ S(E ,Y) such M = ImTΘ which is the Beurling-Lax-Halmos result. Moreover,
Propositions A.7 and A.8 together provide a procedure to construct Θ .

To prove the uniqueness, assume that Ψ is another inner function in S(E◦,Y) sat-
isfying M = ImTΨ. Because TΘ and TΨ are two isometries whose range equals M,
it follows that TΘT

∗
Θ = TΨT

∗
Ψ = PM, the orthogonal projection onto M. Accord-

ing to the variant of the Douglas factorization lemma discussed in the preceding
subsection (see Lemma A.3) we have TΘV = TΨ where V is a unitary operator
from ℓ2+(E◦) onto ℓ2+(E). Because SYTΘ = TΘSE and SYTΨ = TΨSE◦

, we see that
SEV = V SE◦

. So V is a lower triangular unitary Toeplitz operator. Hence V = TU

where U is a constant function on D whose value is a unitary operator, also denoted
by U , mapping E◦ into E . Therefore Θ(λ)U = Ψ(λ).

A.4. Construction of a co-isometric realization. In Section 2 an important
role is played by the classical fact that an operator-valued function F is a Schur
class function if and only if F admits an observable co-isometric realization (see
Theorem 2.5). The “if part” in this theorem is straightforward and holds true for
any contraction. Indeed, assume that

(A.31) M =

[
δ γ
β α

]
:

[
U
X

]
→

[
Y
X

]

is a contraction. Then α is a contraction, and thus (I − λα)−1 is well defined for
all λ in the open unit disc D. Hence F (λ) = δ + λγ(I − λα)−1β is analytic in D.
Now observe that for u in U , we have

[
F (λ)u

(I − λα)−1βu

]
=

[
δ γ
β α

] [
u

λ(I − λα)−1βu

]
.

Using the fact that M is contraction, we see that

‖F (λ)u‖2 ≤ ‖F (λ)u‖2 + ‖(I − λα)−1βu‖2(1− |λ|2) ≤ ‖u‖2.

Hence ‖F (λ)‖ ≤ 1 for each λ ∈ D. Therefore F is in the Schur class S(U ,Y).
The only “only if part” is much less trivial and has a long and interesting history

(see the paragraph directly after Theorem 2.5). Here we present an alternative proof
of the “only if part” inspired by the proof of Theorem 2.1; see the end of this section
for more details.
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Proof of the “only if” part of Theorem 2.5. Let F ∈ S(U ,Y), and let T =
TF be the block Toeplitz operator mapping ℓ2+(U) into ℓ2+(Y) defined by F . The
fact that F is a Schur class function implies that T is a contraction, and hence

the defect operator DT∗ = (I − TT ∗)
1
2 is well defined. With T we associate the

following two auxiliary operators:

K =
[
EY SYDT∗

]
:

[
Y

ℓ2+(Y)

]
→ ℓ2+(Y),

L =
[
TEU DT∗

]
:

[
U

ℓ2+(Y)

]
→ ℓ2+(Y).

Here DT∗ is the positive square root of I − TT ∗.

Part 1. We first show that there exists a co-isometry M mapping U ⊕ ℓ2+(Y) into

Y ⊕ ℓ2+(Y) such that KM = L. To see this, note that

KK∗ = EYE
∗
Y + SY(I − TT ∗)S∗

Y = EYE
∗
Y + SYS

∗
Y − TSUS

∗
UT

∗

= Iℓ2
+
(Y) − TSUS

∗
UT

∗;

LL∗ = TEUE
∗
UT

∗ + (I − TT ∗) = Iℓ2
+
(Y) − T (I − EUE

∗
U )T

∗

= Iℓ2
+
(Y) − TSUS

∗
UT

∗.

Thus KK∗ = LL∗. It follows (apply Lemma A.3 with K1 = K and K2 = L)
that there exists a unique unitary operator τ1 mapping ImK∗ onto ImL∗ such
τ1K

∗f = L∗f for each f ∈ ℓ2+(Y). Furthermore,
[
y x

]
⊤ ∈ KerK if and only if

y = 0 and x ∈ KerDT∗ . The latter implies that the operator τ2 from KerK to
KerL defined by

τ2

[
0
x

]
=

[
0
x

]
, x ∈ KerDT∗

is a well defined isometry from KerK to KerL. Since

ImK∗ ⊕KerK = Y ⊕ ℓ2+(Y) and ImL∗ ⊕ KerL = U ⊕ ℓ2+(Y).

It follows that N = τ1⊕ τ2 is an isometry from Y ⊕ ℓ2+(Y) into U ⊕ ℓ2+(Y) such that
NK∗ = L∗. But then M = N∗ is a co-isometry from U ⊕ ℓ2+(Y) into Y ⊕ ℓ2+(Y)
such that KM = L.

We partition M as a 2 × 2 operator matrix using the Hilbert space direct sums
U ⊕ ℓ2+(Y) and Y ⊕ ℓ2+(Y), as follows:

M =

[
δ γ
β α

]
:

[
U

ℓ2+(Y)

]
→

[
Y

ℓ2+(Y)

]
.

Finally, using this decomposition with KM = L, we obtain

[
EY SYDT∗

] [δ γ
β α

]
=

[
TEU DT∗

]
.

Part 2. We show that F is given by the state space realization

(A.32) F (λ) = δ + λγ(I − λα)−1β (λ ∈ D).

Since M is a co-isometry, M is a contraction, and hence the operator
[
γ α

]
⊤ is

also a contraction. But then we can apply Lemma 3.1 in [20] (see Lemma A.10
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below) to show that the observability operator

(A.33) Γ :=




γ
γα
γα2

...


 : Z → ℓ2+(Y)

is well defined and a contraction. Note that

(A.34) Γ− SYΓα = EYγ.

Furthermore, the identity KM = L is equivalent to

(A.35) TEU = EYδ + SYDT∗β and DT∗ = EYγ + SYDT∗α.

Using the second identity in (A.35) along with (A.34) we see that

DT∗ − Γ = (EYγ + SYDT∗α)− (EYγ + SYΓα) = SY(DT∗ − Γ)α

= Sn
Y(DT∗ − Γ)αn, n = 0, 1, 2, · · · .(A.36)

Since α is a contraction and S∗
Y is pointwise stable, it follows that for each f ∈ ℓ2+(Y)

we have

(DT∗ − Γ∗)f = (α∗)n
(
DT∗ − Γ∗

)
(S∗

Y)
nf → 0 (n → ∞).

But then we have Γ = DT∗ . Thus, by the first identity in (A.35), we obtain

TEU = EYδ + SYDT∗β = EYδ + SYΓβ

=




δ
0
0
0
...



+




0
γ
γα
γα2

...



β.

Since the first column of T is given by the Fourier coefficients F0, F1, F2, . . . of the
Schur class function F , we conclude that

F0 = δ and Fn = γαn−1β, n = 1, 2, . . . .

This proves (A.32). �

Lemma A.10. ([20, Lemma 3.1]) Assume that
[
γ α

]
⊤ is a contraction mapping

Z into Y⊕Z. Then the observability operator Γ = col
[
γαj

]∞
j=0

is also a contraction

mapping Z into ℓ2+(Y).

Proof. Because
[
γ α

]
⊤ is a contraction, I ≥ γ∗γ + α∗α. By recursively using

this fact, we obtain

I ≥ γ∗γ + α∗α ≥ γ∗γ + α∗ (γ∗γ + α∗α)α

≥ γ∗γ + α∗γ∗γα+ α∗2 (γ∗γ + α∗α)α2 · · ·

≥

n∑

j=0

α∗jγ∗γαj + α∗n+1αn+1, n = 0, 1, 2, . . . .

In particular, I ≥
∑n

0 α
∗jγ∗γαj for any integer n ≥ 0. Therefore I ≥ Γ∗Γ and Γ is

a contraction. �
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A.5. Outer functions. The first lemma presented in this section plays an impor-
tant role in the proof of Proposition 6.1. Recall that an operator-valued function
Φ whose values are operators mapping U into Y is called outer if Φ is analytic on
D, for each u ∈ U the function Φ(·)u is in H2(Y), and Φ(·)U is cyclic with respect
to the forward shift on H2(Y). The latter is equivalent to the following condition:

(A.37)
∨

n≥0

Sn
Y




Φ0

Φ1

Φ2

...


U = ℓ2+(Y) where Φ(λ) =

∞∑

j=0

λjΦj .

The following result has its roots in [19] and its proof is presented for the sake of
completeness.

Lemma A.11. Let A be a strict contraction mapping ℓ2+(U) into an auxiliary
Hilbert space H′ satisfying the inequality S∗

UA
∗ASU ≤ A∗A. Then

Φ(λ) = E∗
U (I − λS∗

U )
−1(I −A∗A)−1EU , λ ∈ D,

is an outer function. Furthermore, there exists a function Ψ ∈ H∞(U ,U) such that
Ψ(λ)Φ(λ)u = u for each u ∈ U and λ ∈ D. In particular, if Φ(λ) is invertible for
each λ ∈ D, then Φ(λ)−1 is in H∞(U ,U).

We shall derive the above lemma as a corollary of the following somewhat more
general lemma.

Lemma A.12. Let Ω be a strictly positive operator on ℓ2+(U), and assume that Ω ≤
S∗
UΩSU . Then the function Φ(λ) = E∗

U (I − λS∗
U )

−1Ω−1EU is outer. Furthermore,
there exists a function Ψ ∈ H∞(U ,U) such that Ψ(λ)Φ(λ)u = u for each u ∈ U
and λ ∈ D. In particular, iif Φ(λ) is invertible for each λ ∈ D, then Φ(λ)−1 is in
H∞(U ,U).

The additional invertibility condition appearing in the final sentences of the
above two lemmas is always fulfilled if U is finite dimensional; see Remark 3.2.3 in
[21]. Moreover, this invertibility condition is also satisfied if Φ = Υ22, where Υ22 is
given by (1.19).

Proof of Lemma A.11. Put Ω = I −A∗A. Since S∗
UA

∗ASU ≤ A∗A, we have

Ω = I −A∗A ≤ I − S∗
UA

∗ASU = S∗
U (I −A∗A)SU = S∗

UΩSU .

Applying the Lemma A.12 with Ω = I −A∗A yields the desired result. �

Proof of Lemma A.12. Notice that

Ω
1
2Ω

1
2 = Ω ≤ S∗

UΩSU =
(
Ω

1
2SU

)∗

Ω
1
2SU .

According to the Douglas factorization lemma there exists a contraction C mapping

the subspace M = Ω
1
2SUℓ2+(U) into ℓ2+(U) satisfying CΩ

1
2SU = Ω

1
2 . We extend C

to the whole space ℓ2+(U) by setting C|M⊥ = 0. So C is a well defined contraction

on ℓ2+(U). The remaining part of the proof is split into two parts.

Part 1. In this part we show that the function Φ(λ) is outer. Assume that h is
a vector in ℓ2+(U) which is orthogonal to Sn

UΩ
−1EUU for all integer n ≥ 0. We

have to show that h = 0. Since h is orthogonal Sn
UΩ

−1EUU for all n ≥ 0, we
obtain Ω−1S∗n

U h is orthogonal to EUU for all n ≥ 0. So there exists a vector hn
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in ℓ2+(U) such that Ω−1S∗n
U h = SUhn. Multiplying on the left by Ω

1
2 shows that

Ω− 1
2S∗n

U h = Ω
1
2SUhn is a vector in M for all n ≥ 0. We claim that

(A.38) C∗Ω− 1
2S∗n+1

U h = Ω− 1
2S∗n

U h (for all integers n ≥ 0).

To see this notice that for g in ℓ2+(U), we have

〈C∗Ω− 1
2S∗n+1

U h,Ω
1
2SUg〉 = 〈Ω− 1

2S∗n+1
U h,CΩ

1
2SUg〉

= 〈Ω− 1
2S∗n+1

U h,Ω
1
2 g) = (S∗n+1

U h, g〉

= 〈S∗n
U h, SUg〉 = 〈Ω− 1

2S∗n
U h,Ω

1
2SUg〉.

Since Ω
1
2SUℓ

2
+(U) is dense in M and Ω− 1

2S∗n
U h ∈ M, we obtain (A.38). The

recursion relation in (A.38) implies that

Ω− 1
2h = C∗Ω− 1

2S∗
Uh = C∗2Ω− 1

2S∗2
U h = · · · = C∗nΩ− 1

2S∗n
U h.

In other words, Ω− 1
2h = C∗nΩ− 1

2S∗n
U h for all integers n ≥ 0. Because C is a

contraction, we have

‖Ω− 1
2 h‖ = ‖C∗nΩ− 1

2S∗n
U h‖ ≤ ‖Ω− 1

2S∗n
U h‖ → 0 (n → ∞).

Since Ω− 1
2 is invertible, h = 0. So the closed linear span of {Sn

UΩ
−1EUU}

∞
0 equals

ℓ2+(U) and the function Φ is outer.

Part 2. In this part we prove the remaining claims. In order to do this, let L
be the linear space of all sequences u = {uj}

∞
j=0, uj ∈ U for j = 0, 1, 2, . . ., with

compact support. The latter means that uj 6= 0 for a finite number of indices j
only. Note that L ⊂ ℓ2+(U) and that L is invariant under the forward shift SU .

Given L we consider the linear map M from L into ℓ2+(U) defined by

Mu =
[
Ω−1EU SUΩ

−1EU S2
UΩ

−1EU · · ·
]
u =

∞∑

j=0

Sj
UΩ

−1EUuj.

If we identify ℓ2+(U) with the Hardy space H2(U) using the Fourier transform,
then L is just the space of all U-valued polynomials, and M is the operator of
multiplication by Φ acting on the U-valued polynomials.

We shall show that there exists ǫ > 0 such that ‖Mu‖ ≥ ǫ‖u‖ for each u =
{uj}

∞
j=0. Note that

‖Ω
1
2Mu‖2 =

∥∥∥∥∥Ω
1
2

∞∑

j=0

S
j
UΩ

−1
EUuj

∥∥∥∥∥

2

=

〈
Ω

∞∑

j=0

S
j
UΩ

−1
EUuj ,

∞∑

k=0

S
k
UΩ

−1
EUuk

〉

=

〈
Ω

(
Ω−1

EUu0 + SU

∞∑

j=0

S
j
UΩ

−1
EUuj+1

)
,Ω−1

EUu0 + SU

∞∑

k=0

S
k
UΩ

−1
EUuk+1

〉
.

Set ∆ = E∗
UΩ

−1EU . Using the fact that E∗
USU = 0 and S∗

UΩSU ≥ Ω we obtain
that
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‖Ω
1
2Mu‖2 = 〈∆u0, u0〉+

〈
S∗
UΩSU

∞∑

j=0

Sj
UΩ

−1EUuj+1,

∞∑

k=0

Sk
UΩ

−1EUuk+1

〉

≥ 〈∆u0, u0〉+

〈
Ω

∞∑

j=0

Sj
UΩ

−1EUuj+1,

∞∑

k=0

Sk
UΩ

−1EUuk+1

〉

= ‖∆
1
2u0‖

2 + ‖Ω
1
2MS∗

Uu‖
2.

Applying the above computation to S∗
Uu instead of u, and continuing recursively

we obtain that

(A.39) ‖Ω
1
2Mu‖2 ≥

∞∑

j=0

‖∆
1
2uj‖

2.

Since ∆ is strictly positive, there exists a ǫ1 > 0 such that ‖∆
1
2uj‖ ≥ ǫ1‖uj‖ for all

j = 0, 1, 2, . . .. But then the inequality (A.39) shows that

‖Mu‖2 ≥ ‖Ω
1
2 ‖−1‖Ω

1
2Mu‖2 ≥ ‖Ω

1
2 ‖−1

∞∑

j=0

‖∆
1
2uj‖

2

≥ ǫ21‖Ω
1
2 ‖−1

∞∑

j=0

‖uj‖
2 ≥ ǫ21‖Ω

1
2 ‖−1‖u‖2

= ǫ2‖u‖2, where ǫ = ǫ1‖Ω
1
2 ‖−

1
2 .(A.40)

We conclude that M is bounded from below.
Next, put R = ML ⊂ ℓ2+(U). Then M maps L in a one-to-one way onto

R. By T we denote the corresponding inverse operator. Then the result of the
previous paragraph tells us that ‖Tf‖ ≤ ǫ−1‖f‖ for each f ∈ R. The fact that Φ
is outer implies that R is dense in ℓ2+(U). It follows that T extends to a bounded
linear operator from ℓ2+(U) into ℓ2+(U) which we also denote by T . Recall that L is
invariant under the forward shift SU . Since SUMu = MSUu for each u ∈ L, we also
have SUTf = TSUf for each f ∈ R. But then the fact that T is a bounded linear
operator on ℓ2+(U) implies by continuity that SUTg = TSUg for each g ∈ ℓ2+(U). It
follows that T is a (block) lower triangular Toeplitz operator. Let Ψ ∈ H∞(U ,U)
be its defining function, i.e., T = TΨ. Since TMu = u for each u ∈ L, we have

(A.41) Ψ(λ)Φ(λ)u = u, u ∈ U , λ ∈ D.

Now if Φ(λ) is invertible for each λ ∈ D, then it is clear that Φ(λ)−1 = Ψ(λ) is in
H∞(U ,U). �

Observe that for the case when dim U < ∞ the identity (A.41) implies that Φ(λ)
is invertible for each λ ∈ D without using Remark 3.2.3. in [21].

Remark A.13. It is interesting to consider the special case when Ω is a strictly
positive Toeplitz operator on ℓ2+(U). In this case Ω = S∗

UΩSU , and the proof of
Lemma A.12 yields a classical result on spectral factorization; see, e.g., Proposition

10.2.1 in [21]. Indeed, put Ψ(λ) =
(
E∗

UΩ
−1EU

) 1
2 Φ(λ)−1 where, as before, Φ(λ) =

E∗
U (I − λS∗

U )
−1Ω−1EU . The fact that Ω is a strictly positive Toeplitz operator

then implies that Φ(λ) is invertible for each λ ∈ D, and Ψ(λ) and Ψ(λ)−1 are both
functions in H∞(U ,U). Moreover, Ψ is the outer spectral factor for Ω, that is,
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Ω = T ∗
ΨTΨ and Ψ is an outer function. To prove the latter using elements of the

proof of Lemma A.12, observe that in this setting, we have equality in (A.39), that
is,

‖Ω
1
2TΦu‖

2 =

∞∑

j=0

‖∆
1
2uj‖

2 for all u in ℓ2+(U) with compact support.

Because T−1
Φ is a bounded operator, we have ‖Ω

1
2u‖2 = ‖∆

1
2T−1

Φ u‖2 for all u in
ℓ2+(U). In other words, Ω = T ∗

ΨTΨ. Since Ω is strictly positive and Φ is outer, TΨ

is well defined bounded invertible operator. Hence Ψ and Ψ−1 are both functions
in H∞(U ,U), and Ψ is the outer spectral factor for Ω. See Section 10.2 in [21] for
further details.

A.6. An operator optimization problem. The results in this subsection pro-
vide background material for Section 7. We begin with an elementary optimization
problem. Let A1 : H → U and A2 : H → R be a Hilbert space operators, where
ImA2 = R and R ⊂ H. With these two operators we associate a cost function
σ(u) on U , namely

(A.42) σ(u) = inf{‖u−A1h‖
2 + ‖A2h‖

2 | h ∈ H}, u ∈ U .

To understand the problem better let A be the operator given by:

A =

[
A1

A2

]
: H →

[
U
R

]
and put A = ImA.

Then by the projection theorem

σ(u) = inf

{∥∥∥∥
[
u
0

]
−Ah

∥∥∥∥
2

| h ∈ H

}
=

∥∥∥∥(I − PA)

[
u
0

]∥∥∥∥
2

.

Here PA is the orthogonal projection on U ⊕ R with range A = ImA. Next, let
ΠU be the orthogonal projection of U ⊕ R onto U , and thus Π∗

U is the canonical
embedding of U into U ⊕R. Using this notation we see that

σ(u) =

∥∥∥∥(I − PA)

[
u
0

]∥∥∥∥
2

= ‖(I − PA)Π
∗
Uu‖

2

= 〈ΠUPA⊥Π∗
Uu, u〉, u ∈ U .(A.43)

In particular, σ(u) = 〈ΠUPA⊥Π∗
Uu, u〉 is quadratic function in u. Here A⊥ is the

orthogonal complement of A in U ⊕R.
The case when A∗

2A2 is strictly positive is of particular interest. In case A∗
2A2

is strictly positive, A∗A = A∗
1A1 + A∗

2A2 is also strictly positive. It follows that
PA = A(A∗A)−1A∗. Moreover, we have

ΠUPA⊥Π∗
U = IU −ΠUPAΠ

∗
U = IU −ΠUA(A

∗A)−1A∗Π∗
U

= IU −A1(A
∗
1A1 +A∗

2A2)
−1A∗

1

= IU −A1

(
IH + (A∗

2A2)
−1A∗

1A1

)−1

(A∗
2A2)

−1A∗
1

= IU −
(
IU +A1(A

∗
2A2)

−1A∗
1

)−1

A1(A
∗
2A2)

−1A∗
1

=
(
IU +A1(A

∗
2A2)

−1A∗
1

)−1

.
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Thus when A2 is strictly positive, then the cost function is given by

(A.44) σ(u) = 〈(IU + A1(A
∗
2A2)

−1A∗
1)

−1u, u〉, u ∈ U .

A special choice of A1 and A2. Let C be a contraction from the Hilbert space E
into the Hilbert space H, let U be a subspace of E , and let R = DC∗ where DC∗ is
the closure of the range of the defect operator DC∗ = (IH − CC∗)

1
2 . Put

A1 = τ∗UC
∗ : H → U and A2 = DC∗ : H → R.

Here τU is the canonical embedding of U into E . Thus CτU maps U into H. In this
case the cost function σ is given by

(A.45) σ(u) = inf{‖u− τ∗UC
∗h‖2 + 〈(I − CC∗)h, h〉 | h ∈ H}, u ∈ U .

Furthermore, the operator A is given by

(A.46) A =

[
τ∗UC

∗

DC∗

]
| H →

[
U
R

]
, where R = DC∗ .

Finally, if C is a strict contraction, then DC∗ is invertible and R = H. Using (A.44)
it follows that

σ(u) = 〈
(
IU + τ∗UC

∗(IH − CC∗)−1CτU
)
u, u〉

= 〈τ∗U
(
IE + C∗(IH − CC∗)−1C

)
τUu, u〉

= 〈τ∗U
(
IE + (IE − C∗C)−1C∗C

)
τUu, u〉

= 〈τ∗U
(
IE + (IE − C∗C)−1(C∗C − IE + IE )

)
τUu, u〉

= 〈τ∗U (IE − C∗C)−1τUu, u〉, u ∈ U .

Thus in this case the cost function is given by

(A.47) σ(u) = 〈(IE − C∗C)−1u, u〉, u ∈ U ⊂ E .

The next lemma shows that additional information on E ⊖ U yields alternative
formulas for the cost function.

Lemma A.14. Let V be an isometry on E such that ImV = E ⊖U . Then the cost
function σ defined by (A.45) is also given by

(A.48) σ(u) = inf{‖DC(τUu− V e)‖2 | u ∈ E}, u ∈ U .

Proof. To prove the lemma we shall use the so-called rotation matrix R associated
with the contraction C. Recall (see, e.g., the paragraph after Proposition 1.2 in
[26, Section XXVII.1] that

(A.49) R =

[
C∗ DC

DC∗ −C

]
:

[
H
DC

]
→

[
E

DC∗

]

is a unitary operator. As before, let A be the operator given in (A.46). Using
(A.46) one sees that f ⊕ g is a vector in A⊥ if and only if f ⊕ g ∈ U ⊕ DC∗ and
f ⊕ g is orthogonal to A, that is,

0 =

〈[
f
g

]
,

[
τ∗UC

∗

DC∗

]
h

〉
=

〈[
τUf
g

]
,

[
C∗

DC∗

]
h

〉
=

〈[
f
g

]
,

[
C∗

DC∗

]
h

〉
, h ∈ H.

Thus f ⊕ g is a vector in A⊥ if and only if f ⊕ g ∈ U ⊕DC∗ and f ⊕ g is orthogonal
to the range of the first column of the operator matrix R. Since R is unitary, we
conclude that f ⊕ g ∈ A⊥ if and only if f ⊕ g ∈ U ⊕ DC∗ and is contained in
the range of the second column of R. In other words, f ⊕ g ∈ A⊥ if and only if
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f ⊕ g ∈ U ⊕DC∗ and f = DCv and g = −Cv for some v ∈ DC . Clearly, DCv ∈ U if
and only if DCv is orthogonal to U⊥ = E ⊖ U . However, DCv is orthogonal to U⊥

if and only if v is orthogonal to DCU
⊥, or equivalently, v is in DC ⊖DCU

⊥. Since
DCU

⊥ = DCV E , we have

(ImA)⊥ =

[
DC

−C

]
(DC ⊖DCV E) =

[
DC

−C

]
D,

where D = DC ⊖DCV E . Therefore the orthogonal projection PA⊥ is given by

PA⊥

[
u
0

]
=

[
DC

−C

]
PD

[
DC −C∗

] [τUu
0

]
, u ∈ U .

Notice that D⊥ = DCV E . Using (A.43) it follows that

σ(u) =

〈
PA⊥

[
u
0

]
,

[
u
0

]〉
= 〈PDDCτUu,DCτUu〉

= ‖PDDCτUu‖
2 = inf{‖DCτUu− d‖2 | d ∈ D

⊥}

= inf{‖DCτUu−DCV e‖2 | e ∈ E}.

Therefore the cost function σ in the two optimization problems (A.45) and (A.48)
are the same. �

A.7. A connection to prediction theory and multiplicative diagonals. Let
TR be a non-negative Toeplitz operator on ℓ2+(U) with symbol R in L∞(U ,U). Then
a classical prediction problem is solve the following optimization problem:

(A.50) σ(u) = inf{〈TR(EUu− SUh), EUu− SUh〉 : h ∈ ℓ2+(U)}

where u is a specified vector in U ; see Helson-Lowdenslager [31, 32].
Recall that a non-negative Toeplitz operator TR on ℓ2+(U) with defining function

R in L∞(U ,U) admits an outer spectral factor if there exists an outer function Ψ
in H∞(U , E) such that TR = T ∗

ΨTΨ, or equivalently, R(eiθ) = Ψ(eiθ)∗Ψ(eiθ) almost
everywhere. In this case, the outer spectral factor Ψ for R is unique up to a unitary
constant on the left. In other words, if Φ in H∞(U ,V) is another outer function
satisfying TR = T ∗

ΦTΦ, then Ψ(λ) = UΦ(λ) where U is a constant unitary operator
mapping V onto E . Finally, it is noted that not all non-negative Toeplitz operators
admit an outer spectral factor. For example, if R(eiθ) = 1 for 0 ≤ θ ≤ π and zero
otherwise, then TR is a non-negative Toeplitz operator on ℓ2+ and does not admit
an outer spectral factor. For further results concerning outer spectral factorization
see [43, 21]. Following some ideas in Sz.-Nagy-Foias [43], we obtain the following
result.

Proposition A.15. Assume that TR admits an outer spectral factorization TR =
T ∗
ΨTΨ where Ψ is an outer function in H∞(U , E). Then the function σ in (A.50)

is also given by σ(u) = ‖Ψ(0)u‖2 for each u ∈ U . Moreover, the cost function σ is
independent of the outer spectral factor Ψ chosen for R.
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Proof. Observe that in this case

σ(u) = inf{〈T ∗
ΨTΨ(EUu− SUh), EUu− SUh〉 : h ∈ ℓ2+(U)}

= inf{‖TΨ(EUu− SUh)‖
2 : h ∈ ℓ2+(U)}

= inf{‖EEE
∗
ETΨEUu+ SES

∗
ETΨEUu− TΨSUh‖

2 : h ∈ ℓ2+(U)}

= inf{‖EEΨ(0)u+ SES
∗
ETΨEUu− SETΨh‖

2 : h ∈ ℓ2+(U)}

= inf{‖Ψ(0)u‖2 + ‖SES
∗
ETΨEUu− SETΨh‖

2 : h ∈ ℓ2+(U)}

= ‖Ψ(0)u‖2 + inf{‖S∗
ETΨEUu− TΨh‖

2 : h ∈ ℓ2+(U)} = ‖Ψ(0)u‖2.

The last equality follows from the fact that Ψ is outer, that is, the range of TΨ is
dense in ℓ2+(E). Therefore

(A.51) σ(u) = ‖Ψ(0)u‖2 = 〈Ψ(0)∗Ψ(0)u, u〉, u ∈ U .

The final statement follows from the fact that the outer spectral factor Ψ for R
is unique up to a unitary constant on the left. �

If U is finite dimensional, then R admits an outer spectral factor Ψ in H∞(U ,U)
if and only if

(A.52)
1

2π

∫ 2π

0

ln det[R(eiθ)]dθ > −∞.

In this case, the classical Szegö formula tells us that

(A.53) det[Ψ(0)∗Ψ(0)] = exp

(
1

2π

∫ 2π

0

ln det[R(eiθ)]dθ

)

where det[T ] is the determinant of a finite dimensional operator with respect to
any basis.

The following proposition is well known. The equality in (A.54) follows by a
standard Schur complement computation.

Proposition A.16. If TR is a strictly positive operator on ℓ2+(U), then TR admits
an outer spectral factor Ψ in H∞(U ,U) and

(A.54) σ(u) = ‖Ψ(0)u‖2 = 〈
(
E∗

UT
−1
R EU

)−1
u, u〉, u ∈ U .

Moreover, Ψ(λ)−1 is also a function in H∞(U ,U).

When TR is strictly positive, then R also admits a factorization of the form:

R(eiθ) = Ψ(eiθ)∗Ψ(eiθ) = Ψ◦(e
iθ)∗∆Ψ◦(e

iθ)

where Ψ◦ is an outer function in H∞(U ,U) satisfying Ψ◦(0) = I and ∆ is a strictly
positive operator on U . In fact, ∆ = Ψ(0)∗Ψ(0) and Ψ◦(λ) = Ψ(0)−1Ψ(λ). The fac-
torization R(eiθ) = Ψ◦(e

iθ)∗∆Ψ◦(e
iθ) where Ψ◦ is an outer function in H∞(U ,U)

satisfying Ψ◦(0) = I is unique. Moreover, ∆ is called the (right) multiplicative
diagonal of R. In this setting, σ(u) = 〈∆u, u〉. Finally, it is noted that the mul-
tiplicative diagonal is usually mentioned in the framework of the Wiener algebra
(see Remark A.17 below).

Now assume that F is a Schur function in S(U ,Y). Then I − T ∗
FTF is a non-

negative Toeplitz operator on ℓ2+(U). In this case, the optimization problem in
(A.48) with V = SU is equivalent to

(A.55) σ(u) = inf{〈(I − T ∗
FTF )(EUu− SUh), EUu− SUh〉 : h ∈ ℓ2+(U)}
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where u is a specified vector in U . Assume that I − F ∗F admits an outer spectral
factor, that is, I − T ∗

FTF = T ∗
ΨTΨ for some outer function Ψ in H∞(U , E). Then

the corresponding cost function σ(u) = ‖Ψ(0)u‖2.
If TF is a strict contraction, or equivalently, ‖F‖∞ < 1, then I − T ∗

FTF is a
strictly positive operator on ℓ2+(U). Hence I − T ∗

FTF admits an outer spectral Ψ
factor in H∞(U ,U) and Ψ(λ)−1 is also in H∞(U ,U). Choosing R = I − F ∗F in
(A.54), yields

(A.56) σ(u) = ‖Ψ(0)u‖2 = 〈
(
E∗

U (I − T ∗
FTF )

−1EU

)−1
u, u〉.

Finally, if U is finite dimensional, then

(A.57) det[Ψ(0)∗Ψ(0)] = exp

(
1

2π

∫ 2π

0

ln det[I − F (eiθ)∗F (eiθ)]dθ

)
.

Remark A.17. Let H be a Hilbert spaces, and WH(T) we denote the operator
Wiener algebra on the unite circle which consists of all L(H,H)-valued functions
on T of the form

F (λ) =

∞∑

j=−∞

λjFj , λ ∈ T,

where Fj ∈ L(H,H) for each j and
∑∞

j=−∞ ‖Fj‖ < ∞. By WH,+(T) we denote the

subalgebra of WH(T) consisting of all F in WH(T) with Fj = 0 for each j ≤ −1.
Now assume that F (λ) is strictly positive for each λ ∈ D. Then there exists a
unique function Ψ in WH,+(T) and a unique strictly positive operator ∆(F ) on H
such that Ψ is invertible in WH,+(T), its index zero Fourier coefficient Ψ0 = IH,
and

F (λ) = Ψ(λ)∗∆(F )Ψ(λ), λ ∈ T.

The operator ∆(F ) is called the (right) multiplicative diagonal of F . It is known
that ∆(F ) is also given by

∆(F ) =
(
E∗

HT−1
F EH

)−1
.

See [29] where the notion of multiplicative diagonal is introduced in a ⋆-algebra
setting, and Sections XXXIV.4 and XXXV.1 in [26] for further information.
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[1] V.M. Adamjan, D.Z. Arov, and M.G. Krěın, Infinite Hankel block matrices and related
problems of extension (Russian), Izv. Akad. Nauk Armjan. SSR Ser. Mat. 6 (1971), no. 2–3,
87–112.

[2] J. Agler and J.E. McCarthy, Nevanlinna-Pick interpolation on the bidisk, J. reine angew.
Math. 506 (1999), 191–204.

[3] J. Agler and J.E. McCarthy, Pick interpolation and Hilbert function spaces, American Math-
ematical Society, 2002.



ALL SOLUTIONS TO AN OPERATOR NEVANLINNA-PICK INTERPOLATION PROBLEM 71

[4] T. Ando, De Branges spaces and analytic operator functions, Sapporo, Japan, 1990.
[5] D.Z. Arov and H. Dym, J-contractive matrix-valued functions and related topics, Encyclo-

pedia of Mathematics and its Applications 116, Cambridge University Press, 2008.
[6] D.Z. Arov and L.Z. Grossman, Scattering matrices in the theory of unitary extensions of

isometric operators, Math. Nachr. 157 (1992), 105123.
[7] J.A. Ball, Linear systems, operator model theory and scattering: multivariable generaliza-

tions, in: Operator theory and its applications (Winnipeg, MB, 1998), pp. 151–178, Fields
Inst. Commun. 25, Amer. Math. Soc., Providence, RI, 2000.

[8] J.A. Ball and V. Bolotnikov, Interpolation problems for Schur multipliers on the Drury-
Arveson space: from Nevanlinna-Pick to Abstract Interpolation Problem, Integr equ. oper.
theory 62 (2008), 301–349.

[9] J.A. Ball and V. Bolotnikov, Weighted Bergman Spaces: Shift-Invariant Subspaces and In-
put/State/Output Linear Systems, Integr. Equ. Oper. Theory 76 (2013), 301–356.

[10] J.A. Ball, V. Bolotnikov, and Q. Fang, Multivariable backward-shift-invariant subspaces and
observability operators, Multidim Syst Sign Process 18 (2007), 191–248

[11] J.A. Ball and A. Kheifets, The inverse commutant lifting problem. I.: Coordinate-free for-
malism, Integral Equ. Oper. Theory 70 (2011), 17-62.

[12] J.A. Ball and T.T. Trent, Unitary colligations, reproducing kernel Hilbert spaces, and
Nevanlinna-Pick interpolation in several variables, J. Funct. Anal. 157 (1998), 1–61.

[13] J.A. Ball, T.T. Trent and V. Vinnikov, Interpolation and commutant lifting for multipliers
on reproducing kernel Hilbert spaces, Oper. Theory Adv. Appl. 122 (2002), 89–138.

[14] L. de Branges and J. Rovnyak, Square summable power series, Holt, Rinehart and Winston,
New York-Toronto, Ont.-London, 1966.

[15] L. de Branges and J. Rovnyak, Canonical models in quantum scattering theory, in: Pertur-
bation Theory and its Applications in Quantum Mechanics (Proc. Adv. Sem. Math. Res.
Center, U.S. Army, Theoret. Chem. Inst., Univ. of Wisconsin, Madison, Wis., 1965), pp.
295392, Wiley, New York, 1966.

[16] M. Cotlar and C. Sadosky, On the Helson-Szegö theorem and a related class of modified
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des opérateurs de l’espace Hilbertien, Acta Sci Math. 7 (1956), 295–302.

Department of Aeronautics and Astronautics, Purdue University, West Lafayette,

IN 47907, USA

E-mail address: frazho@ecn.purdue.edu

Department of Mathematics, Unit for BMI, North-West University, Private Bag

X6001-209, Potchefstroom 2520, South Africa

E-mail address: sanne.terhorst@nwu.ac.za

Department of Mathematics, VU University Amsterdam, De Boelelaan 1081a, 1081

HV Amsterdam, The Netherlands

E-mail address: m.a.kaashoek@vu.nl


	1. Introduction
	2. Operator Nevanlinna-Pick interpolation and co-isometric realizations
	2.1. Preliminaries from realization theory
	2.2. Solutions of the LTONP interpolation problem and -preferable realizations

	3. Proof of Theorem ??
	4. The case when the Pick operator is strictly positive and the proof of Theorem ??
	5. Proof of Theorem ??
	6. Proof of Proposition ?? and the quotient formula for the central solution
	6.1. The quotient formula
	6.2. J-contractiveness of the coefficient matrix
	6.3. The case when Z is exponentially stable 

	7. Maximal entropy principle
	8. Commutant lifting as LTONP interpolation
	9. The Leech problem revisited
	Appendix A. 
	A.1. Stein equation
	A.2. The Douglas factorization lemma for K1 K1*=K2 K2*
	A.3. Construction of complementary operators
	A.4. Construction of a co-isometric realization
	A.5. Outer functions
	A.6. An operator optimization problem
	A.7. A connection to prediction theory and multiplicative diagonals

	References

