
ar
X

iv
:1

80
4.

08
50

4v
1 

 [
m

at
h.

D
G

] 
 2

3 
A

pr
 2

01
8

Orbital integrals on Lorentzian symmetric spaces

Thibaut Grouy∗

Abstract

In this paper, we address the problem of determining a function
in terms of its orbital integrals on Lorentzian symmetric spaces. It
has been solved by S. Helgason [13] for even-dimensional isotropic
Lorentzian symmetric spaces via a limit formula involving the Laplace-
Beltrami operator. The result has been extended by J. Orloff [21]
for rank-one semisimple pseudo-Riemannian symmetric spaces giving
the keys to treat the odd-dimensional isotropic Lorentzian symmet-
ric spaces. Indecomposable Lorentzian symmetric spaces are either
isotropic or have solvable transvection group. We study orbital inte-
grals including an inversion formula on the solvable ones which have
been explicitly described by M. Cahen and N. Wallach [5].

Keywords : symmetric spaces; Lorentzian metrics; orbital integrals;

Riesz potentials.
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Introduction

On a pseudo-Riemannian space (M, ĝ), one defines pseudo-spherical integrals
which are parametrized by a pseudo-radial coordinate r and a sign. They are
denoted M r

± and associate to any compactly supported continuous function
f on M the functions (M r

±f) on M whose value at a point x is given by the
integrals of f over pseudo-spheres centered at x, namely

Expx(Σ±r2(x)), where Σ±r2(x) := {X ∈ TxM | ĝx(X,X) = ±r2}

and Expx is the exponential mapping at x associated to the Levi-Civita con-
nection. If the metric ĝ is Lorentzian, we integrate f over the connected com-
ponents of the pseudo-spheres at x to define its pseudo-spherical integrals at
x. When the space M is G-homogeneous for a Lie subgroup G of the isometry
group, one also defines the orbital integrals of f at any point x as the integrals

∗Département de Mathématique, Université libre de Bruxelles

Campus de la Plaine, CP 218, Boulevard du Triomphe, 1050 Brussels, Belgium

E-mail address : tgrouy@ulb.ac.be

1

http://arxiv.org/abs/1804.08504v1


of f over orbits of the isotropy group Kx of x in G, with respect to an invari-
ant measure, provided it exists. If the pseudo-spheres centered at any point
x as well as the light cone {Expx(X) | X ∈ TxM, X 6= 0, ĝx(X,X) = 0}
are orbits of Kx, then M is said to be isotropic ; in that case, the pseudo-
spherical integrals of f are equal to its orbital integrals.

If the metric ĝ is Riemannian, only the integral operators M r
+ make sense

and they are called spherical integrals. Assuming that the space M is two-
point homogeneous, they appear when the totally geodesic Radon transforms
are composed with dual transforms. An inversion formula for these Radon
transforms is obtained by applying the Laplace-Beltrami operator to the
result of this composition. The proof uses the following Darboux equation

Lx(M
r
+f)(x) = Lr(M

r
+f)(x)

where Lr is the radial part of L (see details in [13] for spaces of constant
curvature and [17] for general two-point homogeneous spaces : the compact
ones have been uniformly treated in [14] and the non-compact ones in [23]).
Spherical integrals also allow to inverse the Fourier transform defined on Rie-
mannian symmetric spaces of the non-compact type by S. Helgason in [15].
Concretely, they are used to reduce the problem to Harish-Chandra’s inver-
sion formula for the spherical Fourier transform on semisimple Lie groups
(see details in [16], chapter III).

Orbital integrals were first defined on Lie groups : they are integrals over
the conjugacy classes and they play a role in Harmonic Analysis. Indeed,
in [11], Harish-Chandra gave the Plancherel formula for a Fourier transform
he defined on any complex semisimple Lie group extending the result of
Gelfand and Naimark [9] on SL(n,C). Later, Gelfand and Graev noticed [8]
that the Plancherel formula for this Fourier transform on classical complex
Lie groups is obtained from a limit formula which expresses the value of
a function at the neutral element in terms of its orbital integrals. In [12],
Harish-Chandra gave a limit formula for the orbital integrals on any real
semisimple Lie group. Even in this case, it turns out to be useful to get a
Plancherel formula. A. Bouaziz did the same for the orbital integrals on any
real reductive Lie group G [2] and P. Harinck on the quotient GC/G where
GC is the complexified group of G [10].

We are interested in the general problem of determining a function in
terms of its orbital integrals on symmetric spaces. Like in the group case, we
expect to solve it with a limit formula. On isotropic Riemannian symmetric
spaces, the orbital integral problem is trivially solved since the orbits of the
isotropy group of any point x are the spheres centered at x and they shrink
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to the point as their radius r goes to zero. In other words,

f(x) = lim
r→0+

(M r
+f)(x).

In contrast, on isotropic Lorentzian symmetric spaces, the "limit" of the
pseudo-spheres as their pseudo-radius r goes to zero is the light cone. How-
ever, there still exists a solution to the orbital integral problem. Indeed, if
the dimension of the space n > 2 is even, the expression of a function f in
terms of its orbital integrals is given as the following limit formula due to S.
Helgason [13]

f(x) = c lim
r→0+

rn−2P (L)(M r
+f)(x),

where P is a polynomial, L is the Laplace-Beltrami operator associated to
the metric and c is a real constant. J. Orloff generalized this limit formula
to semisimple pseudo-Riemannian symmetric spaces of rank one [21]. In
this paper, we address the orbital integral problem on all other indecom-
posable Lorentzian symmetric spaces using the known classification of them.
More precisely, when the indecomposable Lorentzian symmetric space is not
isotropic, its transvection group is solvable and the orbits of the isotropy
group are parametrized by two variables. A limit formula is then obtained
for the associated orbital integrals. In summary, we get the following result.

Theorem 1. On any connected simply connected indecomposable Lorentzian
symmetric space, any compactly supported smooth function is determined in
terms of its orbital integrals via a limit formula involving invariant differen-
tial operators.

Section 1 introduces the necessary background about symmetric spaces
and gives the classification of indecomposable Lorentzian symmetric spaces
due to M. Cahen and N. Wallach [5]. Orbital integrals are defined in section
2 for semisimple pseudo-Riemannian symmetric spaces. We lay out S. Helga-
son’s determination of a function in terms of its orbital integrals via a limit
formula for even-dimensional isotropic Lorentzian symmetric spaces and J.
Orloff’s generalization which gives the keys to treat the odd-dimensional
isotropic Lorentzian symmetric spaces. The proof of these limit formulas uses
some integral operators called Riesz potentials and the Laplace-Beltrami op-
erator associated to the metric. In section 3, we give an explicit description
of the model spaces for solvable Lorentzian symmetric spaces. We com-
pute the exponential mapping at any point and determine the orbits of the
isotropy group. Section 4 presents the steps and arguments leading to a limit
formula to determine a function in terms of its orbital integrals on solvable
Lorentzian symmetric spaces.
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1 Framework of symmetric spaces

1.1 General features of symmetric spaces

We follow the description of symmetric spaces by O. Loos [20].

Definition 1. A symmetric space is a smooth manifold M endowed with a
smooth map

s : M ×M → M : (x, y) 7→ sx(y)

such that

1. ∀x ∈ M , sx is an involutive diffeomorphism,

2. ∀x ∈ M , x is an isolated fixed point of sx,

3. ∀x, y, sx ◦ sy ◦ sx = ssx(y).

The diffeomorphism sx is called a symmetry at x.

For any connected symmetric space (M,s), we define the transvection
group G(M,s) as the group generated by the automorphisms sx ◦ sy for any
x, y ∈ M . There exists a Lie group structure on G(M,s) such that it acts
transitively on M . Therefore, M is a homogeneous space.

Let us fix a base-point x0 of M . We then consider the involutive au-
tomorphism of G(M,s) defined as the conjugation by the symmetry at x0.
Then its differential at the neutral element of G(M,s), denoted by σ is an
involutive automorphism of the Lie algebra g of G(M,s). It induces a de-
composition

g = k⊕ p

into the eigenspaces k, p of σ with respect to the eigenvalues 1, −1 respec-
tively. In particular,

[p, p] = k, [p, k] ⊂ p, [k, k] ⊂ k.

Definition 2. A symmetric Lie algebra is a finite dimensional real Lie alge-
bra g endowed with an involutive automorphisme σ of g. This pair (g, σ) is
a transvection symmetric Lie algebra if, in addition, k = [p, p] where k, p are
the eigenspaces for σ with respect to the eigenvalues 1, −1 respectively.

Definition 3. A transvection symmetric Lie algebra (g, σ) is said to be
effective if one of the following equivalent conditions is satisfied

• k contains no nonzero ideal of g,

• k ∩ z(g) = {0},

• the map adg(·)|p : k → gl(p) is injective.
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The transvection symmetric Lie algebra (g, σ) defined above for a con-
nected symmetric space (M,s), where g is the Lie algebra of the transvection
group G(M) and σ the differential of the map (g 7→ sx0

◦g ◦sx0
), is effective.

Conversely, for any symmetric Lie algebra (g, σ), there exists a connected,
simply connected symmetric space (M,s) which is G-homogeneous for a Lie
subgroup G of the automorphisms of (M,s) whose Lie algebra is g and such
that the differential of the induced involution is σ.

On the other hand, there exists a unique affine connection on M such
that every symmetry is an affine transformation. This connection is com-
plete, that is every geodesic is defined on R. Therefore, at any x ∈ M , the
exponential mapping, denoted by Expx, is defined on the whole TxM . The
well-known property about the exponential mapping of a symmetric space
(M,s) is

Expx0
(X) = exp(X̄).x0, for X ∈ Tx0

M

where exp : g → G is the exponential mapping of the Lie group G and X̄ is
the unique element in p such that φ(X̄) = X using the isomorphism

φ :

{

p → Tx0
M

X̄ 7→ d
dt

∣

∣

0
exp(tX̄).x0

.

In 1959 [13], Sigurdur Helgason gave an explicit expression of the differ-
ential of the exponential mapping which is very useful for the computations.

Lemma 2. Let (M,s) be a symmetric space and x0 be a base-point of M .
If g = k⊕ p is the decomposition of the transvection Lie algebra with respect
to the natural involution, then the exponential mapping Expx0

: Tx0
M → M

associated to the canonical affine connection has differential

(

Expx0

)

∗X
= τ(exp(X))∗x0

◦
∞
∑

k=0

ad(X)
∣

∣

2k

p

(2k + 1)!
, for X ∈ Tx0

M ≃ p,

where τ(exp(X)) is the diffeomorphism defined by the action of the group
element exp(X) on M and ad the adjoint action on the Lie algebra g.

1.2 Rank of symmetric Lie algebras

In [19], Lepowsky and McCollum defined the rank of any symmetric Lie
algebra even when it is not necessarily semisimple. This requires introducing
Cartan subspaces in a very general way.

Definition 4. Let (g, σ) be a symmetric Lie algebra and let g = k⊕p be the
usual decomposition of g into the (±1)-eigenspaces of σ. A Cartan subspace
of the symmetric Lie algebra is a subspace a of p such that

a = p0a := {X ∈ p | ∀Y ∈ a, ∃n ≥ 0, ad(Y )n(X) = 0}.
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Definition 5. Let (g, σ) be a symmetric Lie algebra and a a subspace of p.
Then a is said to be a p-subalgebra if

∀X ∈ a, ad2(X)a ⊂ a.

Furthermore, it is said to be natural if there exists X0 ∈ a such that ad2(X0)
induces a nonsingular endomorphism of p/a.

Proposition 3 (Lepowsky - McCollum, 1976 [19]). Let (g, σ) be a symmetric
Lie algebra and a be a subspace of p. Then a is a Cartan subspace if and
only if a is a minimal natural p-subalgebra of p.

Theorem 4 (Lepowsky - McCollum, 1976 [19]). In any symmetric Lie alge-
bra, there exist Cartan subspaces and they all have the same dimension. We
call rank of the symmetric Lie algebra this common dimension.

1.3 Pseudo-Riemannian symmetric spaces

We need to add a compatible metric on the symmetric spaces in order to
define generalized spheres on them.

Definition 6. A pseudo-Riemannian symmetric space is a symmetric space
(M,s) endowed with a pseudo-Riemannian metric ĝ such that, for all x ∈ M ,
sx is an isometry of (M, ĝ).

On a pseudo-Riemannian symmetric space, the unique affine connection
such that every symmetry is an affine transformation is the Levi-Civita con-
nection associated to the metric.

Definition 7. A pseudo-Riemannian symmetric Lie algebra is a symmetric
Lie algebra (g, σ) endowed with a non-degenerate symmetric bilinear form
B on g such that

1. ∀X,Y ∈ g, B(σX, σY ) = B(X,Y ),

2. ∀X,Y,Z ∈ g, B(ad(Z)X,Y ) +B(X, ad(Z)Y ) = 0.

The signature of the triple (g, σ,B) is the signature of B|p×p and its dimen-
sion is the dimension of p.

Note that the transvection pseudo-Riemannian symmetric Lie algebras
are automatically effective.

Definition 8. An isomorphism of pseudo-Riemannian symmetric Lie alge-
bras (g1, σ1, B1) and (g2, σ2, B2) is a Lie algebra isomorphism α : g1 → g2
such that α ◦ σ1 = σ2 ◦ α and α∗B2 = B1.
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Theorem 5. There is one-to-one correspondence between isometry classes
of connected, simply connected pseudo-Riemannian symmetric spaces and
isomorphism classes of transvection pseudo-Riemannian symmetric Lie al-
gebras.

Definition 9. A connected pseudo-Riemannian manifold (M, ĝ) is said to be
decomposable if there exists a proper subspace V of Tx0

M which is invariant
under the holonomy group Hol(M,x0) at x0 and such that ĝx0

|V×V is non-
degenerate. Otherwise (M, ĝ) is said to be indecomposable.

Definition 10. A pseudo-Riemannian symmetric Lie algebra (g, σ,B) is said
to be decomposable if, when denoting by g = k⊕p the usual decomposition of
g with respect to σ, there exists a proper subspace q of p which is invariant
under ad(k) and such that B|q×q is non-degenerate. Otherwise (g, σ,B) is
said to be indecomposable.

The de Rham-Wu theorem [26] asserts that any decomposable connected
pseudo-Riemannian manifold which is simply connected and complete is
isometric to a product of indecomposable ones. In addition, a pseudo-
Riemannian product manifold is a symmetric space if and only if every
factor of the product is a symmetric space. Finally, a connected, simply
connected pseudo-Riemnnian symmetric space (M,s, ĝ) is indecomposable
if and only if its associated transvection pseudo-Riemannian symmetric Lie
algebra (g, σ,B) is indecomposable.

1.4 Classification of indecomposable Lorentzian symmetric

spaces

Indecomposable Lorentzian symmetric spaces fall into two categories : those
whose transvection Lie algebra is semisimple and those whose transvection
Lie algebra is solvable.

Proposition 6 (M. Cahen and N. Wallach, 1970 [5]). Let (g, σ,B) be an
indecomposable transvection Lorentzian symmetric Lie algebra. Then g is
either semisimple or solvable.

In the semisimple case, the associated Lorentzian symmetric spaces are
automatically of constant sectional curvature as ensures the following theo-
rem whose proof is based on Berger’s list [1].

Theorem 7 (M. Cahen, J. Leroy, M. Parker, F. Tricerri and L. Vanhecke,
1990 [4]). Let (g, σ,B) be a semisimple indecomposable Lorentzian symmetric
Lie algebra of dimension ≥ 3. Then the sectional curvature of the associated
Lorentzian symmetric space is constant and non-zero.

It is possible to prove this result without using Berger’s list. It involves
a result of A. J. Di Scala and C. Olmos [6] about connected Lie subgroups of
the Lorentzian group acting irreducibly on the flat Lorentzian vector space.
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Proof. Let g = k⊕p be the usual decomposition of g with respect to σ. Then
the representation

adg(·)|p : k → gl(p)

is faithful and irreducible. If dim(p) = n, the image of k by ad is contained in
o(p, B|p) ≃ o(1, n − 1). By integrating, we get a connected Lie subgroup K
of SO(1, n−1) which acts irreducibly on (R1,n−1, I1,n−1). By theorem 1.1 in
[6], K = SO0(1, n − 1). Therefore, the sectional curvature of the associated
Lorentzian symmetric space is constant and non-zero.

In dimension 2, the Lorentzian symmetric spaces are automatically of
constant sectional curvature. The classification in the semisimple case is
given by the following theorem.

Theorem 8 (S. Helgason, 1959 [13]). Any Lorentzian symmetric space with
non-zero constant sectional curvature is locally isometric to one of the two
following model spaces, up to a positive constant factor on the metric,

1. Q(+1) := {(x1, ..., xn+1) ∈ R
n+1 | x21 − x22 − ...− x2n + x2n+1 = 1},

2. Q(−1) := {(x1, ..., xn+1) ∈ R
n+1 | x21 − x22 − ...− x2n − x2n+1 = −1},

endowed with the Lorentzian metric induced by the flat metric on R
1,n.

The proof of this theorem, found in [13], relies on the fact that a pseudo-
Riemannian symmetric space is determined on a neighborhood of any point
by its metric and curvature tensor at this point. Finally, it is clear that
any Lorentzian symmetric space whose sectional curvature is constant and
non-zero is of rank one.

In the solvable case, the classification is given at the algebraic level.
Any solvable indecomposable Lorentzian symmetric Lie algebra is completely
described in a particular basis by n− 2 nonzero real numbers.

Theorem 9 (M. Cahen and N. Wallach, 1970 [5]). Let (g, σ,B) be a solv-
able indecomposable Lorentzian symmetric Lie algebra and g = k ⊕ p be the
decomposition associated to the involution σ. There exist λ1, ..., λn−2 ∈ R0

and a basis
{Z,U,W1, ...,Wn−2,K1, ...,Kn−2}

of g such that

• k = RK1 ⊕ ...⊕ RKn−2, p = RZ ⊕ RU ⊕ RW1 ⊕ ...⊕ RWn−2,

• z(g) = RZ, [U,Ki] = λiWi, [U,Wi] = −Ki, [Wj ,Ki] = λiδijZ,
[Wi,Wj ] = 0 = [Ki,Kj ],

• B(Z,Z) = 0 = B(U,U), B(Z,U) = 1, B(Wi,Wj) = −δij and B(Ki,Kj) =
−λiδij .
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Proposition 10. Let (g, σ,B) be a solvable indecomposable Lorentzian sym-
metric Lie algebra, explicitly described in theorem 9 for a certain choice of
parameters λ1, ..., λn−2 ∈ R0. The rank of this symmetric Lie algebra is equal
to 2 and any Cartan subspace is of the form

RZ ⊕ R

(

U −
n−2
∑

i=1

λiyiWi

)

for some fixed y1, ..., yn−2 ∈ R.

Proof. If a is a Cartan subspace of p, then z(g)∩p ⊂ a. Otherwise a wouldn’t
be natural. Therefore, Z ∈ a. Nonetheless, RZ 6= a because ad2(Z) doesn’t
induce a nonsingular endomorphism of p/a. Thus M is not of rank one.

Let us consider a0 = RZ ⊕ RU . It is clearly a p-subalgebra. Moreover,
it is natural since ad2(U) induces a nonsingular endomorphism of p/a. At
last, the minimality is obvious. As a conclusion, a0 is a Cartan subspace of
p and (g, σ,B) is of rank 2.

Back to the beginning of the proof, if a is any Cartan subspace of p, we
know that it is of dimension 2 and it contains Z. Then it is of the form

a = RZ ⊕ R

(

νU +

n−2
∑

i=1

µiWi

)

for some ν, µ1, ..., µn−2 ∈ R not all zero. Since ad(
∑n−2

i=1 µiWi)
2 doesn’t

induce a nonsingular endomorphism of p/a, then ν 6= 0 hence the result.

1.5 Isotropic pseudo-Riemannian symmetric spaces

On any connected pseudo-Riemannian symmetric space (M,s, ĝ), the group
of isometries, denoted by I(M, ĝ), acts transitively. Then the isotropy group
Kx of any point x ∈ M acts on the tangent space TxM in the following way

Kx × TxM → TxM : (k,X) 7→ τ(k)∗x(X)

where τ(k) is the action of k on M . The second definition below comes from
A. J. Wolf’s paper [25] and the first one is a weaker version of it.

Definition 11. Let (M,s, ĝ) be a connected pseudo-Riemannian symmetric
space. Then M is said to be quasi-isotropic if, for any x ∈ M , the pseudo-
spheres in TxM , namely

Σα(x) := {X ∈ TxM | ĝx(X,X) = α}

for any α ∈ R0, are orbits under the action of the isotropy group Kx of x in
I(M, ĝ), the group of isometries.
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Furthermore, M is said to be isotropic if it is quasi-isotropic and, for any
x ∈ M , the light cone in TxM , namely

Σ0(x) := {X ∈ TxM | ĝx(X,X) = 0, X 6= 0},

is also an orbit of the isotropy group Kx of x in I(M, ĝ).

Proposition 11 (J. Orloff, 1987 [21]). Let (M,s, ĝ) be a connected pseudo-
Riemannian symmetric space whose group of isometries is semisimple. Then
M is quasi-isotropic if and only if it is of rank one.

Note that there exist rank-one pseudo-Riemannian symmetric spaces
whose group of isometries is semisimple which are not isotropic like the
space X = SL(n,R)/GL(n−1,R) studied by M. T. Kosters and G. Van Dijk
in [18].

2 Limit formulas on Lorentzian symmetric spaces

of constant sectional curvature

We address the problem of determining a function in terms of its orbital inte-
grals on Lorentzian symmetric spaces of constant sectional curvature. These
are either the flat Lorentzian vector space or, up to a positive constant factor
on the metric, one of the two model spaces in theorem 8. S. Helgason solved
the problem when their dimension is even via a limit formula [13]. J. Orloff
extended it to rank-one semisimple pseudo-Riemannian symmetric spaces
[21] and gave the keys to treat the odd-dimensional Lorentzian symmetric
spaces of constant sectional curvature.

Definition 12. Let (M,s, ĝ) be a pseudo-Riemannian symmetric space.
Then M is said to be semisimple if there exists a Lie subgroup G of I(M, ĝ)
which is semisimple, acts transitively on M and is invariant under the con-
jugation by sx0

where x0 is a base-point of M .

2.1 Definition of orbital integrals

On the pseudo-Euclidean vector space, that is the space R
n endowed with

the flat metric of signature (p, q), the orbital integrals are defined as pseudo-
spherical integrals.

Definition 13. Let 〈., .〉 be the standard inner product of signature (p, q)
on R

n. For any function f ∈ Cc(Rn), the orbital integrals of f are the
pseudo-radial functions denoted by (M+f) and (M−f) and defined by

(M±f)(r) :=
1

rn−1

∫

Σ
±r2

f(x) dη(x), for r > 0,

10



where dη is the measure induced by the metric on the pseudo-spheres cen-
tered at 0 in R

n, namely

Σr2 := {x ∈ R
n | 〈x, x〉 = r2}, Σ−r2 := {x ∈ R

n | 〈x, x〉 = −r2}.
Let (M,s, ĝ) be a semisimple pseudo-Riemannian symmetric space whose

metric is of signature (p, q) and x0 a base-point of M . Let G be a semisimple
Lie subgroup of I(M, ĝ) which acts transitively on M and is invariant under
the conjugation by sx0

. Then the Lie algebra g of G decomposes into the
(±1)-eigenspaces of the involution given by the conjugation by sx0

g = k⊕ p

and we get the usual isomorphism φ : p → Tx0
M defined in section 1.

Following J. Orloff’s paper [21], we assume that the isotropy group K of x0
is connected and we define the orbital integrals as follows.

Definition 14. Let a be a Cartan subspace of g. For any function f ∈ Cc(M)
and any point x ∈ M , the orbital integrals of f at x are given by

(MXf)(x) :=

∫

K/HX

f(gk.Expx0
(X)) dµ(kHX),

where g ∈ G such that x = g.x0, HX is the stabilizer of X in K and dµ is
the K-invariant measure on K/HX induced by the metric on the K-orbit of
X ∈ Tx0

M providing that
[X̄, k] = a⊥

where X̄ ∈ p such that φ(X̄) = X and a⊥ is the orthogonal complement of
a in p with respect to the metric φ∗ĝx0

.

2.2 Limit formulas in the even-dimensional Lorentzian case

Let (M,s, ĝ) be a Lorentzian symmetric space of non-zero constant sectional
curvature. On the model spaces introduced in theorem 8, the group of isome-
tries is respectively O(2, n − 1) if M = Q(+1) and O(1, n) if M = Q(−1).
Therefore,

Q(+1) ≃ SO0(2, n − 1)/SO0(1, n − 1), Q(−1) ≃ SO0(1, n)/SO0(1, n − 1),

with the base-point x0 = (0, ..., 0, 1), and the orbit of any vector X ∈ Tx0
M

such that ĝx0
(X,X) 6= 0 under the action of the isotropy group K =

SO0(1, n − 1) is the connected component of a pseudo-sphere. We then
use the following notation for the orbital integrals

(M r
+f)(x) := (MXf)(x), where X = (r, 0, ..., 0) ∈ R

1,n−1 ≃ Tx0
M,

(M̃ r
+f)(x) := (MXf)(x), where X = (−r, 0, ..., 0) ∈ R

1,n−1 ≃ Tx0
M,

(M r
−f)(x) := (MXf)(x), where X = (0, ..., 0, r) ∈ R

1,n−1 ≃ Tx0
M,

(M̃ r
−f)(x) := (MXf)(x), where X = (0, ..., 0,−r) ∈ R

1,n−1 ≃ Tx0
M,

11



for any r > 0. Note that M r
−f = M̃ r

−f except when n = dim(M) = 2.

As in S. Helgason’s book [17], we focus on the model space M = Q(−1)

and the orbital integrals M r
+f to exhibit results and arguments leading to

the limit formula. Everything works in the same manner with the other
model space and the other series of orbital integrals.

Proposition 12 (S. Helgason, 1959 [13]). Let � be the Laplace-Beltrami
operator associated to the Lorentzian metric ĝ on Q(−1). For any function
f ∈ C∞

c (Q(−1)), any point x ∈ M and any pseudo-radius 0 < r < r0,

�(M r
+f)(x) = M r

+(�f)(x)

=
1

A(r)

∂

∂r

(

A(r)
∂

∂r
(M r

+f)(x)
)

.

where A(r) := sinhn−1(r).

Definition 15. For any function f ∈ Cc(Q(−1)), its Riesz potentials at any
point x ∈ Q(−1) and for any parameter λ ∈ C such that Re(λ) > n, are given
by

(Iλ+f)(x) :=
1

Hn(λ)

∫

D+
x

f(y) sinhλ−n
(
√

ĝx(Y, Y )
)

dm(y), y = Expx(Y ),

where dm is the measure induced by the metric ĝ on Q(−1), D+
x is the

connected component of {Expx(Y ) | Y ∈ TxQ(−1), ĝx(Y, Y ) > 0} containing
the vector g.Expx0

(1, 0, ..., 0) if x = g.x0 and

Hn(λ) := 2λ−1π
n−2

2 Γ
(λ

2

)

Γ
(λ+ 2− n

2

)

.

The Riesz potentials associate to a function f a one-parameter family of
integrals (Iλf) defined for λ ∈ C such that Re(λ) > n.

Proposition 13 (S. Helgason, 1959 [13]). For any function f ∈ C∞
c (Q(−1)),

any point x ∈ Q(−1) and any parameter λ ∈ C such that Re(λ) > n,

(i) �(Iλ+f)(x) = Iλ+(�f)(x),

(ii) if Re(λ) > n+ 2, �(Iλ+f)(x) = (λ− n)(λ− 1)(Iλ+f)(x) + (Iλ−2
+ f)(x),

(iii) (Iλ+f)(x) extends holomorphically to C in the λ-variable so that the
value at λ = 0 is

(I0+f)(x) = f(x).

Finally, the Riesz potentials express in terms of the orbital integrals in
the following way

(Iλ+f)(x) =
1

Hn(λ)

∫ ∞

0
(M r

+f)(x) sinh
λ−1(r)dr. (1)

This yields the desired limit formula whose proof is sketched below.
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Theorem 14 (S. Helgason, 1959 [13]). We assume n := dim(Q(−1)) > 2 to
be even. Then there exists a polynomial P and a real number c such that,
for any f ∈ C∞

c (Q(−1)),

f(x) = c. lim
r→0+

rn−2P (�)(M r
+f)(x),

where � is the associated Laplace-Beltrami operator on Q(−1).

Proof. First, when the dimension n is strictly greater than 2, the limit

lim
r→0+

rn−2(M r
+f)(x) = lim

r→0+
sinhn−2(r)(M r

+f)(x)

exists. Moreover, thanks to formula 1, the Riesz potential (Iλ+f)(x) is equal
to the following Riemann-Liouville integral

1

Γ(µ)

∫ ∞

0
F (r) sinhµ−1(r)dr,

where F (r) := sinhn−2(r)(M r
+f)(x) and µ := λ− n+ 2. We thus get

(In−2
+ f)(x) =

(4π)(2−n)/2

Γ((n − 2)/2)
lim
r→0+

F (r) =
(4π)(2−n)/2

Γ((n− 2)/2)
lim
r→0+

rn−2(M r
+f)(x).

Since n is also even, we deduce from proposition 13 the existence of a
polynomial P such that

P (�)(In−2
+ f)(x) = In−2

+ (P (�)f)(x) = f(x).

Therefore,

f(x) =
(4π)(n−2)/2

Γ((n− 2)/2)
lim
r→0+

rn−2M r
+(P (�)f))(x)

and proposition 12 leads to the limit formula.

2.3 Generalization to rank-one semisimple symmetric spaces

Let (M,s, ĝ) be a semisimple pseudo-Riemannian symmetric space whose
metric is of signature (p, q) and x0 a base-point of M . We assume that
M is of rank one. Then by proposition 11, M is quasi-isotropic. Like in
the Lorentzian case in subsection 2.2, the orbital integrals of a function
f ∈ Cc(M), namely MXf , for vectors X ∈ Tx0

M such that ĝx0
(X,X) are

then integrals over connected components of the pseudo-spheres in M . We
also adopt the following alternative notation

(M r
+f)(x) := (MXf)(x), where X = (r, 0, ..., 0) ∈ R

p,q ≃ Tx0
M,

(M r
−f)(x) := (MXf)(x), where X = (0, ..., 0, r) ∈ R

p,q ≃ Tx0
M,

for any r > 0.
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Remark 1. There exists r0 > 0 such that the exponential mapping of M at
x0 is a diffeomorphism from the open subset

{X ∈ Tx0
M | −r20 < ĝx0

(X,X) < r20}

of Tx0
M to its image. Therefore, the orbital integrals on M at the base-point

x0 are the pseudo-spherical integrals on the pseudo-Euclidean vector space
through the exponential mapping except in the Lorentzian case where Σr2 is
not connected. More precisely, whenever p > 1 and q > 1, for any function
f ∈ Cc(M) and any 0 < r < r0,

(M r
±f)(x0) = M±(f ◦ Expx0

)(r),

where we identify (Tx0
M, ĝx0

) with (Rn, 〈., .〉p,q).
In order to get a limit formula on M , J. Orloff solved the problem of

determining a function in terms of its orbital integrals on the flat space R
n

endowed with the standard inner product of signature (p, q). He studied the
generalized Riesz potentials defined below.

Theorem 15 (J. Orloff, 1987 [21]). Let D+ := {x ∈ R
n | 〈x, x〉 > 0} and

D− := {x ∈ R
n | 〈x, x〉 < 0}. For any function f ∈ S(Rn), we define its

Riesz potentials for any parameter λ ∈ C such that Re(λ) > n

Iλ+f :=
1

Hn(λ)

∫

D+

f(x)|〈x, x〉|λ−n
2 dx,

Iλ−f :=
1

Hn(λ)

∫

D−

f(x)|〈x, x〉|λ−n
2 dx,

Iλ0 f := Γ
(λ− n+ 2

2

)(

Iλ+f − cos
(λ− n+ 2

2
π
)

Iλ−f
)

,

where Hn(λ) := 2λ−1π
n−2

2 Γ
(

λ
2

)

Γ
(

λ−n+2
2

)

. Then

1. Iλ+f , Iλ−f and Iλ0 f extend to entire functions in λ,

2. Iλ+2
+ (Lf) = Iλ+f and Iλ+2

− (Lf) = −Iλ−f where L is the Laplace-
Beltrami operator associated to 〈., .〉,

3. I0+f = 2 sin(pπ
2 )f(0) and I0−f = 2 sin(q π

2 )f(0),

4. The map (f 7→ Iλ±f) is a tempered distribution for all λ,

5. For p and q both even, I00f = (−1)q/22π

(n−2

2
)!

f(0).

Theorem 16 (J. Orloff, 1987 [21]). Whenever p > 1 and q > 1, for any
function f ∈ C∞

c (Rn), we have the following limit formulas.

14



1. If p and q are both odd then

lim
r→0+

rn−2
( d2

dr2
+

n− 1

r

d

dr

)
n−2

2

(M+f)(r) = cf(0)

and

lim
r→0+

rn−2
(

− d2

dr2
− n− 1

r

d

dr

)
n−2

2

(M−f)(r) = cf(0),

2. If p is odd and q is even then

lim
r→0+

( d

dr

)n−2
rn−2(M+f)(r) = cf(0),

3. If p is even and q is odd then

lim
r→0+

( d

dr

)n−2
rn−2(M−f)(r) = cf(0),

4. If p and q are both even then

lim
r→0+

( d

dr

)n−2
rn−2(M+f)(r) + (−1)

n
2 lim
r→0+

( d

dr

)n−2
rn−2(M−f)(r) = cf(0),

where, in each equation, c is a nonzero constant independent of f .

Then the Riesz potentials and the limit formulas are lifted to the sym-
metric space M via its exponential mapping.

Theorem 17 (J. Orloff, 1987 [21]). For p > 1 and q > 1, and f ∈ C∞
c (M),

1. If p and q are both odd,

lim
r→0+

sinhn−2(r)P+(L
+
r )(M

r
+f)(x0) = cf(x0),

and
lim
r→0+

sinn−2(r)P−(L
−
r )(M

r
−f)(x0) = cf(x0),

2. If p is odd and q is even,

lim
r→0+

( d

dr

)n−2
rn−2(M r

+f)(x0) = cf(x0),

3. If p is even and q is odd,

lim
r→0+

( d

dr

)n−2
rn−2(M r

−f)(x0) = cf(x0),

4. If p and q are both even,

lim
r→0+

( d

dr

)n−2
rn−2(M r

+f)(x0)+(−1)
n
2 lim
r→0+

( d

dr

)n−2
rn−2(M r

+f)(x0) = cf(x0),

where L+
r (respectively L−

r ) is the radial part of the Laplace-Beltrami oper-
ator in polar geodesic coordinates on D+ (respectively D−), P+ and P− are
polynomials and, in each equation, c is a non-zero constant independent of
f .
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2.4 Summarizing result in the Lorentzian case

For Lorentzian symmetric spaces of constant sectional curvature, we collect
the limit formulas given by S. Helgason in the even-dimensional case and we
use the arguments of J. Orloff to get the limit formulas in odd-dimensional
case. This gives the following summarizing result.

Theorem 18 (S. Helgason, 1959 [13] - J. Orloff, 1987 [21]). Let (M,s, ĝ) be
either the flat Lorentzian vector space R

1,n−1 or one of the two model spaces
Q(+1) and Q−1 introduced in theorem 8. Let κ be the constant sectional
curvature of M . If n = dim(M), for any f ∈ C∞

c (M),

1. If n > 2 is even,

f(x) = c lim
r→0+

rn−2P κ
+(�)(M r

+f)(x)

and
f(x) = c lim

r→0+
rn−2P κ

−(�)(M r
−f)(x),

2. If n = 2,

f(x) = −1

2
lim
r→0+

r
d

dr
(M r

+f)(x)

and

f(x) = −1

2
lim
r→0+

r
d

dr
(M r

−f)(x),

3. If n is odd,

f(x) = c lim
r→0+

( d

dr

)n−2
(

rn−2(M r
+f)(x)

)

,

where P κ
+ and P κ

− are polynomials and, in each equation, c is non-zero con-
stant independent of f .

In order to prove theorem 1, taking theorem 6 into account, it remains to
look at orbital integrals on solvable indecomposable Lorentzian symmetric
spaces.

3 Solvable indecomposable Lorentzian symmetric

spaces

Let (g, σ,B) be one of the triples described in theorem 9 for a particular
choice of parameters λ1, ..., λn−2 ∈ R0. Up to isomorphism, the connected,
simply connected Lie group associated to g is the smooth manifold

G := R
2n−2
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endowed with the group law

(t, p, q, r) ∗ (t′, p′, q′, r′) := (t+ t′, (p, q, r) · ϕt(p
′, q′, r′))

for t, t′, r, r′ ∈ R, p, p′, q, q′ ∈ R
n−2, where · is the weighted Heisenberg

product given by

(p, q, r) · (p′, q′, r′) := (p + p′, q + q′, r + r′ +
1

2

n−2
∑

i=1

λi(qip
′
i − q′ipi))

and

ϕt(p
′, q′, r′) :=

(

cos.h(t
√

|λi|)p′i −
1

√

|λi|
sin.h(t

√

|λi|)q′i,

λi
√

|λi|
sin.h(t

√

|λi|)p′i + cos.h(t
√

|λi|)q′i (1≤i≤n−2), r
′
)

.

In the above formula and in the following, the notation sin.h(t
√

|λi|) (respec-
tively cos.h(t

√

|λi|)) means sin(t
√
λi) (respectively cos(t

√
λi)) when λi > 0

and sinh(t
√
−λi) (respectively cosh(t

√
−λi)) when λi < 0.

Therefore, G is a semi-direct product of R and a weighted Heisenberg
group. The connected Lie subgroup of G whose Lie algebra is k, namely the
isotropy group, is given by

K := {(t, p, q, r) ∈ G | t = q1 = ... = qn−2 = r = 0}.

Let us define π : G → R
n such that

π(t, p, q, r) :=
(

t,
λi

√

|λi|
sin.h(t

√

|λi|)pi − cos.h(t
√

|λi|)qi (1≤i≤n−2),

r +

n−2
∑

i=1

λi

2

( λi
√

|λi|
sin.h(t

√

|λi|)pi − cos.h(t
√

|λi|)qi
)

(

picos.h(t
√

|λi|) +
qi

√

|λi|
sin.h(t

√

|λi|)
))

which factors the natural projection from G onto G/K and yields an iso-
morphism between M := G/K and R

n. We use this identification in the
sequel.

The unique involutive automorphism of G whose differential is σ writes

σ̃ : G → G : (t, p, q, r) 7→ (−t, p,−q,−r).

The associated symmetric structure on M is given by

sπ(g)(π(g
′)) := π(gσ(g−1g′)), for g, g′ ∈ G.
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If we denote by (t, x1, ..., xn−2, v) the global coordinates on M identified with
R
n as above, the metric on M associated to the bilinear form B is given by

ĝ :=
(

n−2
∑

i=1

λix
2
i

)

dt⊗ dt+ dt⊗ dv + dv ⊗ dt−
n−2
∑

i=1

dxi ⊗ dxi.

As a conclusion, up to isometry, the connected, simply connected, in-
decomposable solvable Lorentzian symmetric space associated to the triple
(g, σ,B) is (M,s, ĝ). It is called a Cahen-Wallach space. In dimension 4,
it is an example of pp-waves in the Brinkmann class which are idealized
gravitational wave models in general relativity[3, 7, 24].

3.1 The exponential mapping

Proposition 19. Let (M,s, ĝ) be the Cahen-Wallach space corresponding to
parameters λ1, ..., λn−2 ∈ R0. The exponential mapping at any point y =
(t0, x0, v0) ∈ M is given by

Expy(b̄) =
(

b0 + t0,
sin.h(b0

√

|λi|)
b0
√

|λi|
bi + cos.h(b0

√

|λi|)x0,i (1≤i≤n−2),

1

2b0

(

2b0b
′ −

n−2
∑

i=1

b2i + b20

n−2
∑

i=1

λix
2
0,i

)

+

n−2
∑

i=1

b2i − b20λix
2
0,i

4b20
√

|λi|
sin.h(2b0

√

|λi|)

+

n−2
∑

i=1

bix0,i
2b0

cos.h(2b0
√

|λi|) +
(

v0 −
1

2b0

n−2
∑

i=1

bix0,i

))

for any b̄ = (b0, b1, ..., bn−2, b
′) ∈ TyM ≃ R

n such that b0 6= 0 and

Expy(0, b1, ..., bn−2, b
′) = (t0, b1 + x0,1, ..., bn−2 + x0,n−2, b

′ + v0).

Proof. The geodesic equations corresponding to the Levi-Civita connection
on M are given by











d2t
ds2 (s) = 0,
d2v
ds2

(s) + 2
∑n−2

i=1 λixi(s)
dt
ds(s)

dxi
ds (s) = 0,

d2xi
ds2 (s) + λixi(s)

(

dt
ds(s)

)2
= 0

.

The solutions γ(s) := (t(s), x1(s), ..., xn−2(s), v(s)) of these equations with
initial data

γ(0) = (t(0), x1(0), ..., xn−2(0), v(0)) = (t0, x0,1, ..., x0,n−2, v0),

γ̇(0) =
( dt

ds
(0),

dx1
ds

(0), ...,
dxn−2

ds
(0),

dv

ds
(0)

)

= (b0, b1, ..., bn−2, b
′)

are given by Expγ(0)(sγ̇(0)) as above.
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Corollary 20. Let (M,s, ĝ) be the Cahen-Wallach space corresponding to
parameters λ1, ..., λn−2 ∈ R0. For any point y = (t0, x0, v0) ∈ M , the expo-
nential mapping at y is a diffeomorphism from the open subset

{(b0, b1, ..., bn−2, b
′) ∈ TyM | ∀i ∈ {1, ..., n − 2}, λi > 0 ⇒ b0

√

λi /∈ πZ0}

of TyM to its image given by

{(t, x, v) ∈ M | ∀i ∈ {1, ..., n − 2}, λi > 0 ⇒ (t− t0)
√

λi /∈ πZ0}.

The determinant of the differential of Expy at any vector (b0, b1, ..., bn−2, b
′) ∈

TyM is equal to

n−2
∏

i=1

∣

∣

∣

sin.h(b0
√

|λi|)
b0
√

|λi|

∣

∣

∣
if b0 6= 0, and 1 otherwise.

3.2 The orbits of the isotropy group and the orbital integrals

Let us fix (0, ..., 0) as base-point of M . Then we get the following identifica-
tion T0M ≃ p

{

T0M ≃ R
n → p

(b0, b1, ..., bn−2, b
′) 7→ b0U +

∑n−2
i=1 biWi + b′Z

.

Proposition 21. The orbits under the adjoint action of the isotropy group
K in p ≃ T0M are

{(b0, b1, ..., bn−2, b
′) ∈ T0M | 2b0b′ −

n−2
∑

i=1

b2i = α, b0 = β} =: Σα,β,

{(0, γ1, ..., γn−2, b
′) | b′ ∈ R},

{(0, 0, ..., 0, β′)}

for β ∈ R0, α ∈ R, (γ1, ..., γn−2) ∈ R
n−2 \ {0} and β′ ∈ R.

Proof. The adjoint action of K on p ≃ R
n is given by

Ad(exp(p1K1 + ...+ pn−2Kn−2))(b0, b1, ..., bn−2, b
′)

=
(

b0, b1 − λ1p1b0, ..., bn−2 − λn−2pn−2b0, b
′ +

b0
2

n−2
∑

i=1

λ2
i p

2
i −

n−2
∑

i=1

λipibi

)

for (p1, ..., pn−2) ∈ R
n−2 and (b0, b1, ..., bn−2, b

′) ∈ T0M ≃ p. Once (b0, b1, ..., bn−2, b
′)

is fixed, we must distinguish the cases when b0 6= 0 and b0 = 0 to identify
the different isotropy orbits.
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Note that the stabilizer of any point X = (b0, b1, ..., bn−2, b
′) ∈ T0M ≃ R

n

such that b0 6= 0 under the action of the isotropy group K is just the neutral
element. Therefore, the K-orbit of X is diffeomorphic to K.

Definition 16. For any f ∈ Cc(M) and any point y = (t0, x0, v0) ∈ M , the
orbital integrals of f at y are given by

(MXf)(y) :=

∫

K
f(gk.Exp0(X)) dk

where g ∈ G such that y = g.0, X = (b0, b1, ..., bn−2, b
′) ∈ T0M ≃ R

n such
that b0 6= 0 and if λi > 0, b0

√
λi /∈ πZ, and dk is the invariant measure

(
∏n−2

i=1 |λi|) dp1...dpn−2 on K ≃ R
n−2.

The orbital integrals of a function f ∈ Cc(M) at y ∈ M are integrals of
f over the orbits Expy(Σ±r2,b0(y)) where

Σ±r2,b0(y) :=
{

(b̃0, b1, ..., bn−2, b
′) ∈ TyM | b̃0 = b0,

n−2
∑

i=1

λix
2
0,ib

2
0 + 2b0b

′ −
n−2
∑

i=1

b2i = ±r2
}

for r > 0 and b0 ∈ R0 such that if λi > 0, b0
√
λi /∈ πZ0. We use the following

notation for the orbital integrals

(M r,b0
+ f)(y) := (MXf)(y), where X = (b0, 0, ..., 0, r

2/2b0) ∈ T0M ≃ R
n,

(M r,b0
− f)(y) := (MXf)(y), where X = (b0, 0, ..., 0,−r2/2b0) ∈ T0M ≃ R

n,

for r > 0 and b0 ∈ R0 such that if λi > 0, b0
√
λi /∈ πZ0.

Lemma 22. For any f ∈ Cc(M), y = g.0 ∈ M , r > 0 and b0 ∈ R0 such that
if λi > 0, b0

√
λi /∈ πZ0,

(M r,b0
± f)(y) =

1

|b0|n−2

∫

Rn−2

f
(

g.Exp0

(

b0, b1, ..., bn−2,
1

2b0

(

± r2 +

n−2
∑

i=1

b2i
)

))

db1...dbn−2.

Proof. Using the expression of the action of K on T0M given in the proof of
proposition 21, we get

(M r,b0
± f)(y) =

(

n−2
∏

i=1

|λi|
)

∫

Rn−2

f
(

g.Exp0

(

b0,−λ1p1b0, ...,−λn−2pn−2b0,

1

2b0

(

± r2 +

n−2
∑

i=1

λ2
i p

2
i b

2
0

)

))

dp1...dpn−2.

Then a simple change of variables in the integral yields the result.
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4 Limit formulas on solvable Lorentzian symmetric

spaces

Let (M,s, ĝ) be the Cahen-Wallach space corresponding to parameters λ1, ..., λn−2 ∈
R0. In order to determine a function in terms of its orbital integrals on M ,
we consider invariant differential operators.

4.1 Invariant differential operators

Let us recall that M is G-homogeneous space for the connected, simply
connected Lie group G presented in section 3.

Proposition 23. The Laplace-Beltrami operator on M associated to the
Lorentzian ĝ =

∑n−2
i=1 λix

2
i dt⊗ dt+ dt⊗ dv + dv ⊗ dt−∑n−2

i=1 dxi ⊗ dxi

L :=
∂2

∂t∂v
+

∂2

∂v∂t
−

n−2
∑

i=1

λix
2
i

∂2

∂v2
−

n−2
∑

i=1

∂2

∂x2i

as well as the order-one differential operator

∂

∂v

are G-invariant.

At any point y = (t0, x0, v0) = g.0 ∈ M , we consider coordinates
(r, b0, b1, ..., bn−2) on either {Expy(b̄) | b̄ ∈ TyM, ĝy(b̄, b̄) > 0} or {Expy(b̄) |
b̄ ∈ TyM, ĝy(b̄, b̄) < 0} which are defined by

(r, b0, b1, ..., bn−2) 7→ g.Exp0

(

b0, b1, ..., bn−2,
1

2b0

(

ε r2 +

n−2
∑

i=1

b2i
)

)

,

where ǫ = 1 or −1 respectively. In this coordinates, the expression of the
two invariant differential operator in proposition 23 is

L = ε
{1

r

∂

∂r

(

r
∂

∂r

)

+
1

r

∂

∂r

(

b0
∂

∂b0

)

+
1

r
|b0|

∏n−2
i=1

sin.h(b0
√

|λi|)√
|λi|

∂

∂b0

( b0
|b0|

n−2
∏

i=1

sin.h(b0
√

|λi|)
√

|λi|
∂

∂r

)}

+ LExpy(Σε r2,b0
(y)),

∂

∂v
= ε

b0
r

∂

∂r
,

where LExpy(Σε r2,b0
(y)) is the Laplace-Beltrami operator on the isotropy or-

bit associated to the induced metric and ǫ is either 1 or −1 depending on
whether the domain is {Expy(b̄) | b̄ ∈ TyM, ĝy(b̄, b̄) > 0} or {Expy(b̄) | b̄ ∈
TyM, ĝy(b̄, b̄) < 0}.
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Proposition 24. For any f ∈ C∞
c (M), y ∈ M , r > 0 and b0 ∈ R0 such that

if λi > 0, b0
√
λi /∈ πZ0,

1. L(M r,b0
± f)(y) = M r,b0

± (Lf)(y),

2. ∂
∂v (M

r,b0
± f)(y) = M r,b0

±

(

∂f
∂v

)

(y),

3. M r,b0
±

(

∂f
∂v

)

(y) = ± b0
r

∂
∂r (M

r,b0
± f)(y).

Proof. By a theorem stated in S. Helgason’s book [13], for every G-invariant
differential operator D on M , there exists a bi-invariant differential operator
D̃ on G such that

∀f ∈ C∞(M), D̃(f ◦ π) = (Df) ◦ π,

where π : G → M is the canonical projection. Therefore, when we apply D
to the orbital integrals of a function f ∈ C∞

c (M), we get

D(M r,b0
± f)(g.0) = D̃

(

(M r,b0
± f) ◦ π

)

(g)

= D̃
{ 1

|b0|n−2

∫

Rn−2

f
(

g.Exp0

(

b0, b1, ..., bn−2,
1

2b0

(

± r2 +

n−2
∑

i=1

b2i
)

))

db1...dbn−2

}

=
1

|b0|n−2

∫

Rn−2

(Df)
(

g.Exp0

(

b0, b1, ..., bn−2,
1

2b0

(

± r2 +

n−2
∑

i=1

b2i
)

))

db1...dbn−2

because D̃ is bi-invariant. This implies the points 1 and 2. For point 3, we
use the local expression of ∂

∂v .

4.2 One-parameter generalized Riesz potentials

Let us focus on the first set of orbital integrals, namely (M r,b0
+ f). The corre-

sponding one-parameter generalized Riesz potentials are then given below.

Definition 17. For any f ∈ Cc(M), y ∈ M , b0 ∈ R0 such that if λi > 0,
b0
√
λi /∈ πZ0 and µ ∈ C such that Re(µ) > n− 1,

(Jµ,b0
+ f)(y) :=

1

Hn−1(µ)

∫ ∞

0
(M r,b0

+ f)(y)rµ−n+2dr

where Hn−1(µ) := π(n−3)/22µ−1Γ(µ/2)Γ((µ + 3− n)/2).
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Remark 2. For any y = g.0 ∈ M and fixed b0 ∈ R0 such that if λi > 0,
b0
√
λi /∈ πZ0,

(Jµ,b0
+ f)(y) =

1

|b0|n−2

1

Hn−1(µ)

∫

(D+

0
)cc

Fg,b0(u1, ..., un−1)

un−1

(
√

u2n−1 − u2n−2 − ...− u21

)µ−n+1
du1...dun−1

where Fg,b0(u1, ..., un−1) := f
(

g.Exp0
(

b0, u1, ..., un−2,
u2
n−1

2b0

))

and

(D+
0 )cc := {(u1, ..., un−1) ∈ R

n−1 | u2n−1 − u2n−2 − ...− u21 > 0, un−1 > 0}.

This means that the one-parameter generalized Riesz potentials on M turn
out to be some flat Lorentzian Riesz potentials on (Rn−1, I1,n−2).

Proposition 25. For any f ∈ C∞
c (M), y = g.0 ∈ M and fixed b0 ∈ R0 such

that if λi > 0, b0
√
λi /∈ πZ0,

1. (Jµ,b0
+ f)(y) holomorphically extends to the whole complex plane C with

respect to µ,

2. lim
µ→0

(Jµ,b0
+ f)(y) = 1

|b0|n−2Fg,b0(0, ..., 0).0 = 0,

3. ∂
∂v (J

µ,b0
+ f)(y) = Jµ,b0

+

(

∂f
∂v

)

(y) = − b0
µ−2 (J

µ−2,b0
+ f)(y).

Proof. Property 1 is true thanks to remark 2 and theorem 15 which states
that flat Lorentzian Riesz potentials can be holomorphically extended on the
whole complex plane with respect to the parameter. Property 2 also follows
from theorem 15 thanks to remark 2. Finally, we use the local expression of
the invariant differential operator

∂

∂v
=

b0
r

∂

∂r

on a dense open subset of {Expy(b̄) | b̄ ∈ TyM, ĝy(b̄, b̄) > 0} to get property
3 whenever Re(µ) > n − 1. Furthermore, it remains true for every µ ∈ C

thanks to the uniqueness of the holomorphic extensions.

Corollary 26. For any f ∈ C∞
c (M), y ∈ M , b0 ∈ R0 such that if λi > 0,

b0
√
λi /∈ πZ0 and any k ∈ N0,

∂k

∂vk
(Jµ,b0

+ f)(y) = Jµ,b0
+

(∂kf

∂vk

)

(y) =
(−b0)

k

(µ− 2)(µ − 4)...(µ − 2k)
(Jµ−2k,b0

+ f)(y).

Proposition 27. For any f ∈ C∞
c (M), y ∈ M and b0 ∈ R0 such that if

λi > 0, b0
√
λi /∈ πZ0,

J1,b0
+

(∂f

∂v

)

(y) = lim
µ→−1

−b0
µ

(Jµ,b0
+ f)(y) =

−b0Γ
(

n−1
2

)

|b0|n−2
√
πΓ

(

n
2

)f(g.Exp0(b0, 0, ..., 0)).
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Proof. We use property 3 in proposition 25 and the following change of
variables in the expression in remark 2

(u1, ..., un−1) = (r sinh(ζ)ω(θ1, ..., θn−3), r cosh(ζ))

where ζ ∈]0,+∞[ and ω(θ̄) ∈ S
n−3, to get

J1,b0
+

(∂f

∂v

)

(y) = lim
µ→−1

−b0
|b0|n−2µHn−1(µ)

∫ ∞

0

∫ ∞

0

∫

Sn−3

Fg,b0(r sinh(ζ)ω(θ̄),

r cosh(ζ)) rµ cosh(ζ) sinhn−3(ζ)dω(θ̄)dζdr.

Then the consecutive changes T = e−2ζ and r = σ
√
T lead to

lim
µ→−1

−b0Γ
(µ+1

2

)

|b0|n−2π(n−2)/2Γ(µ+ 1)Γ
(µ+3−n

2

)

∫ 1

0

∫ ∞

0

∫

Sn−3

Fg,b0

(σ

2
(1− T )ω(θ̄),

σ

2
(1 + T )

)

σ(µ+1)−121−nT (µ+1−n)/2(1 + T )(1− T )n−3dω(θ̄)dσdT

which can be seen as a double Riemann-Liouville integral. Thanks to argu-
ments found in Riesz’s paper [22], the limit is equal to

lim
ν→ 2−n

2

−b02
1−nΩn−2Γ

(

ν + n−2
2

)

|b0|n−2π(n−2)/2Γ(ν)
Fg,b0(0, ..., 0)

∫ 1

0
T ν−1(1 + T )(1− T )n−3dT

where Ωn−2 is the area of the (n−3)-dimensional standard sphere. Using Eu-
ler’s beta functions to rewrite the remaining integral and since Fg,b0(0, ..., 0) =
f(g.Exp0(b0, 0, ..., 0)), we get the expected equality.

Corollary 28. For any f ∈ C∞
c (M), y = g.0 ∈ M , b0 ∈ R0 such that if

λi > 0, b0
√
λi /∈ πZ0 and any k ∈ N0,

J2k−1,b0
+

(∂kf

∂vk

)

(y) =
Γ
(

n−1
2

)

2k−1Γ
(

n
2

)

(−b0)
k

Γ
(

2k−1
2

)

|b0|n−2
f(g.Exp0(b0, 0, ..., 0)).

4.3 Limit formulas for the orbital integrals

Lemma 29. For any function f ∈ C∞
c (M), any b0 ∈ R0 such that if λi > 0,

b0
√
λi /∈ πZ0 and any y ∈ M , the limit

lim
r
>
→0

(M r,b0
± f)(y)

exists whenever n = dim(M) > 2.

Proof. By lemma 22, if y = g.0, the orbital integrals (M r,b0
± f)(y) writes

1

|b0|n−2

∫

Rn−2

f
(

g.Exp0

(

b0, b1, ..., bn−2,
1

2b0

(

± r2 +

n−2
∑

i=1

b2i
)

))

db1...dbn−2.
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In the first series of integrals, namely (M r,b0
+ f), we apply the change of

coordinates
(b1, ..., bn−2) = r sinh(ζ)ω(θ1, ..., θn−3)

where ζ ∈]0,+∞[ and ω(θ̄) ∈ S
n−3, to get

1

|b0|n−2

∫ ∞

0

∫

Sn−3

f
(

g.Exp0

(

b0, r sinh(ζ)ω(θ̄),
r2

2b0
cosh2(ζ)

))

rn−2 sinhn−3(ζ) cosh(ζ)dω(θ̄)dζ.

Next, we define Fg,b0(u1, ..., un−1) := f
(

g.Exp0
(

b0, u1, ..., un−2,
u2
n−1

2b0

))

and
set t = r sinh(ζ) in the integral. Thus the orbital integrals write

(M r,b0
+ f)(g.0) =

1

|b0|n−2

∫ ∞

0

∫

Sn−3

Fg,b0

(

tω(θ̄),
√

r2 + t2
)

tn−3dω(θ̄)dt

and it is clear that the limit when r goes to zero exists. This remains true
with the other series of orbital integrals, namely (M r,b0

− f).

Corollary 30. Assume n = dim(M) > 3. Then, for any function f ∈
Cc(M), any y ∈ M and fixed b0 ∈ R0 such that if λi > 0, b0

√
λi /∈ πZ0,

(Jn−3,b0
+ f)(y) =

1

(4π)(n−3)/2Γ
(

n−3
2

) lim
r
>
→0

(M r,b0
+ f)(y).

Proof. The definition of one-parameter generalized Riesz potentials gives us

(Jn−3,b0
+ f)(y) = lim

µ→n−3

Γ
(µ+4−n

2

)

2n−3π(n−2)/2Γ
(µ
2

)

1

Γ(µ+ 3− n)

∫ ∞

0
F̃b0(r)r

(µ+3−n)−1dr

where F̃b0(r) := (M r,b0
+ f)(y). Since F̃b0 is a compactly supported, continuous

function whose limit when r goes to zero exists thanks to lemma 29, the limit
of the Riemann-Liouville integral above is equal to

√
π

2n−3π(n−2)/2Γ
(

n−3
2

) lim
r
>
→0

F̃b0(r).

Theorem 31. If n = dim(M) > 2 is even, for any f ∈ C∞
c (M) and y ∈ M ,

f(y) =
Γ
(

n
2

)

π(n−3)/2Γ
(

n−1
2

) lim
b0

6=
→0

lim
r
>
→0

{−b20
2r

∂

∂r

}(n−2)/2
(M r,b0

+ f)(y).

Proof. Since n = dim(M) > 2 is even, there exists k ∈ N0 such that n =
2k + 2. Let us first fix b0 ∈ R0 such that if λi > 0, −π/

√
λi < b0 < π/

√
λi.

By corollary 30,

Jn−3,b0
+

(∂kf

∂vk

)

(y) =
1

(4π)(n−3)/2Γ
(

n−3
2

) lim
r
>
→0

M r,b0
+

(∂kf

∂vk

)

(y).

25



Furthermore, thanks to property 3 in proposition 24, we get

Jn−3,b0
+

(∂kf

∂vk

)

(y) =
1

(4π)(n−3)/2Γ
(

n−3
2

) lim
r
>
→0

{b0
r

∂

∂r

}k
(M r,b0

+ f)(y).

On the other hand, by corollary 28, since n− 3 = 2k − 1,

Jn−3,b0
+

(∂kf

∂vk

)

(y) =
Γ
(

n−1
2

)

2(n−4)/2Γ
(

n
2

)

(−b0)
(n−2)/2

Γ
(

n−3
2

)

|b0|n−2
f(g.Exp0(b0, 0, ..., 0)),

hence the result.

The same kind of limit formula holds for the other series of orbital inte-
grals, namely (M r,b0

− f). In other words, the function f is also determined in

terms of (M r,b0
− f).

Theorem 32. If n = dim(M) > 2 is even, for any f ∈ C∞
c (M) and y ∈ M ,

f(y) =
Γ
(

n
2

)

π(n−3)/2Γ
(

n−1
2

) lim
b0

6=
→0

lim
r
>
→0

{−b20
2r

∂

∂r

}(n−2)/2
(M r,b0

− f)(y).

This limit formula is obtained in the same way by considering the corre-
sponding one-parameter generalized Riesz potentials

(Jµ,b0
− f)(y) :=

1

Hn−1(µ)

∫ ∞

0
(M r,b0

− f)(y)rµ−n+2dr.

Finally, we deal with the odd-dimensional case.

Theorem 33. If n = dim(M) ≥ 3 is odd, for any f ∈ C∞
c (M) and y ∈ M ,

f(y) =
Γ
(

n
2

)

π(n−2)/2Γ
(

n−1
2

) lim
b0

6=
→0

∫ ∞

0

{−b0
r

∂

∂r

}{−b20
2r

∂

∂r

}(n−3)/2
(M r,b0

+ f)(y)dr.

In the same way,

f(y) =
Γ
(

n
2

)

π(n−2)/2Γ
(

n−1
2

) lim
b0

6=
→0

∫ ∞

0

{−b0
r

∂

∂r

}{−b20
2r

∂

∂r

}(n−3)/2
(M r,b0

− f)(y)dr.

Proof. Since n = dim(M) ≥ 3 is odd, there exists k ∈ N0 such that n =
2k + 1. Let us first fix b0 ∈ R0 such that if λi > 0, −π/

√
λi < b0 < π/

√
λi.

By corollary 28, since n− 2 = 2k − 1,

Jn−2,b0
+

(∂kf

∂vk

)

(y) =
Γ
(

n−1
2

)

2(n−3)/2Γ
(

n
2

)

(−b0)
(n−1)/2

Γ
(

n−2
2

)

|b0|n−2
f(g.Exp0(b0, 0, ..., 0)).

Furthermore, by definition of the one-parameter generalized Riesz potentials,

Jn−2,b0
+

(∂kf

∂vk

)

(y) =
1

Hn−1(n− 2)

∫ ∞

0
M r,b0

+

(∂kf

∂vk

)

(y)dr
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where the integral converges due to lemma 29 and because f is compactly
supported. Thanks to property 3 in proposition 24,

Jn−2,b0
+

(∂kf

∂vk

)

(y) =
1

2n−3π(n−2)/2Γ
(

n−2
2

)

∫ ∞

0

{b0
r

∂

∂r

}k
(M r,b0

+ f)(y)dr,

hence the result. It works the same way for the other series of orbital inte-
grals, namely (M r,b0

− f).
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