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STANDARD VERSUS BOUNDED REAL LEMMA WITH

INFINITE-DIMENSIONAL STATE SPACE II:

THE STORAGE FUNCTION APPROACH

J.A. BALL, G.J. GROENEWALD, AND S. TER HORST

Abstract. For discrete-time causal linear input/state/output systems, the
Bounded Real Lemma explains (under suitable hypotheses) the contractivity
of the values of the transfer function over the unit disk for such a system
in terms of the existence of a positive-definite solution of a certain Linear
Matrix Inequality (the Kalman-Yakubovich-Popov (KYP) inequality). Recent
work has extended this result to the setting of infinite-dimensional state space
and associated non-rationality of the transfer function, where at least in some
cases unbounded solutions of the generalized KYP-inequality are required.
This paper is the second installment in a series of papers on the Bounded
Real Lemma and the KYP inequality. We adapt Willems’ storage-function
approach to the infinite-dimensional linear setting, and in this way reprove
various results presented in the first installment, where they were obtained
as applications of infinite-dimensional State-Space-Similarity theorems, rather
than via explicit computation of storage functions.

1. Introduction

This paper is the second installment, following [11], on the infinite dimen-
sional bounded real lemma for discrete-time systems and the discrete-time Kalman-
Yakubovich-Popov (KYP) inequality. In this context, we consider the discrete-time
linear system

(1.1) Σ :=

{
x(n+ 1) = Ax(n) +Bu(n),
y(n) = Cx(n) +Du(n),

(n ∈ Z)

where A : X → X , B : U → X , C : X → Y and D : U → Y are bounded linear
Hilbert space operators, i.e., X , U and Y are Hilbert spaces and the system matrix
associated with Σ takes the form

(1.2) M =

[
A B
C D

]
:

[
X
U

]
→
[

X
Y

]
.

We refer to the pair (C,A) as the output pair and to the pair (A,B) as the input
pair. In this case input sequences u = (u(n))n∈Z, with u(n) ∈ U , are mapped
to output sequences y = (y(n))n∈Z, with y(n) ∈ Y, through the state sequence
x = (x(n))n∈Z, with x(n) ∈ X . A system trajectory of the system Σ is then any
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triple (u(n),x(n),y(n))n∈Z of input, state and output sequences that satisfy the
system equations (1.1).

With the system Σ we associate the transfer function given by

(1.3) FΣ(λ) = D + λC(I − λA)−1B.

Since A is bounded, FΣ is defined and analytic on a neighborhood of 0 in C. We
are interested in the case where FΣ admits an analytic continuation to the open
unit disk D such that the supremum norm ‖FΣ‖∞ of FΣ over D is at most one, i.e.,
FΣ has analytic continuation to a function in the Schur class

S(U ,Y) =
{
F : D 7→

holo
L(U ,Y) : ‖F (λ)‖ ≤ 1 for all z ∈ D

}
.

Sometimes we also consider system trajectories (u(n),x(n),y(n))n≥n0 of the
system Σ that are initiated at a certain time n0 ∈ Z, in which case the input,
state and output at time n < n0 are set equal to zero, and we only require that
the system equations (1.1) are satisfied for n ≥ n0. Although technically such
trajectories are not system trajectories for Σ, but rather correspond to trajectories
of the corresponding singly-infinite forward-time system rather than the bi-infinite
system Σ, the transfer function of this singly-infinite forward-time system coincides
with the transfer function FΣ of Σ. Hence for the sake of the objective, determining
whether FΣ ∈ S(U ,Y), there is no problem with considering such singly infinite
system trajectories.

Before turning to the infinite-dimensional setting, we first discuss the case where
U , X , Y are all finite-dimensional. If in this case one considers the parallel situation
in continuous time rather than in discrete time, these ideas have origins in circuit
theory, specifically conservative or passive circuits. An important question in this
context is to identify which rational matrix functions, analytic on the left half-plane
(rather than the unit disk D), arise from a lossless or dissipative circuit in this way
(see e.g. Belevitch [12]).

According to Willems [28, 29], a linear system Σ as in (1.1) is dissipative (with
respect to supply rate s(u, y) = ‖u‖2−‖y‖2) if it has a storage function S : X → R+,
where S(x) is to be interpreted as a measure of the energy stored by the system
when it is in state x. Such a storage function S is assumed to satisfy the dissipation
inequality

(1.4) S(x(n+ 1))− S(x(n)) ≤ ‖u(n)‖2 − ‖y(n)‖2

over all trajectories (u(n),x(n),y(n))n∈Z of the system Σ as well as the additional
normalization condition that S(0) = 0. The dissipation inequality can be inter-
preted as saying that for the given system trajectory, the energy stored in the
system (S(x(n+ 1))− S(x(n))) when going from state x(n) to x(n+ 1) can be no
more than the difference between the energy that enters the system (‖u(n)‖2) and
the energy that leaves the system (‖y(n)‖2) at time n.

For our discussion here we shall only be concerned with the so-called scattering
supply rate s(u, y) = ‖u‖2 − ‖y‖2. It is not hard to see that a consequence of the
dissipation inequality (1.4) on system trajectories is that the transfer function FΣ

is in the Schur class S(U ,Y). The results extend to nonlinear systems as well (see
[28]), where one talks about the system having L2-gain at most 1 rather the system
having transfer function in the Schur class.
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In case the system Σ is finite-dimensional and minimal (as defined in the state-
ment of Theorem 1.1 below), one can show that the smallest storage function, the
available storage Sa, and the largest storage function, the required supply Sr, are
quadratic, provided storage functions for Σ exist. That Sa and Sr are quadratic
means that there are positive-definite matrices Ha and Hr so that Sa and Sr have
the quadratic form

Sa(x) = 〈Hax, x〉, Sr(x) = 〈Hrx, x〉
with Ha and Hr actually being positive-definite. For a general quadratic storage
function SH(x) = 〈Hx, x〉 for a positive-definite matrix H , it is not hard to see
that the dissipation inequality (1.4) assumes the form of a linear matrix inequality
(LMI):

(1.5)

[
A B
C D

]∗ [
H 0
0 IY

] [
A B
C D

]
�
[
H 0
0 IU

]
.

This is what we shall call the Kalman-Yakubovich-Popov or KYP inequality (with
solution H for given system matrix M = [A B

C D ]).
Conversely, if one starts with a finite-dimensional, minimal, linear system Σ as

in (1.1) for which the transfer function FΣ is in the Schur-class, it is possible to
show that there exist quadratic storage functions SH for the system satisfying the
coercivity condition SH(x) ≥ δ‖x‖2 for some δ > 0 (i.e., with H strictly positive-
definite). This is the storage-function interpretation behind the following result,
known as the Kalman-Yakubovich-Popov lemma.

Theorem 1.1 (Standard Bounded Real Lemma (see [1])). Let Σ be a discrete-time
linear system as in (1.1) with X , U and Y finite dimensional, say U = C

r, Y = C
s,

X = Cn, so that the system matrix M has the form

(1.6) M =

[
A B
C D

]
:

[
Cn

Cr

]
→
[
Cn

Cs

]

and the transfer function FΣ is equal to a rational matrix function of size s × r.
Assume that the realization (A,B,C,D) is minimal, i.e., the output pair (C,A) is
observable and the input pair (A,B) is controllable:

(1.7)

n⋂

k=0

KerCAk = {0} and spank=0,1,...,n−1ImAkB = X = C
n.

Then FΣ is in the Schur class S(Cr,Cs) if and only if there is an n × n positive-
definite matrix H satisfying the KYP-inequality (1.5).

There is also a strict version of the Bounded Real Lemma. The associated storage
function required is a strict storage function, i.e., a function S : X → R+ for which
there is a number δ > 0 so that

(1.8) S(x(n+ 1))− S(x(n)) + δ‖x(n)‖2 ≤ (1− δ)‖u(n)‖2 − ‖y(n)‖2

holds over all system trajectories (u(n),x(n),y(n))n∈Z , in addition to the nor-
malization condition S(0) = 0. If SH(x) = 〈Hx, x〉 is a quadratic strict storage
function, then the associated linear matrix inequality is the strict KYP-inequality

(1.9)

[
A B
C D

]∗ [
H 0
0 IY

] [
A B
C D

]
≺
[
H 0
0 IU

]
.
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In this case, one also arrives at a stronger condition on the transfer function FΣ,
namely that it has an analytic continuation to a function in the strict Schur class:

So(U ,Y) =
{
F : D 7→

holo
L(U ,Y) : sup

z∈D

‖F (z)‖ ≤ ρ for some ρ < 1

}
.

Note, however, that the strict KYP-inequality implies that A is stable, so that in
case (1.9) holds, FΣ is in fact analytic on D. This is the storage-function inter-
pretation of the following strict Bounded Real Lemma, in which one replaces the
minimality condition with a stability condition.

Theorem 1.2 (Strict Bounded Real Lemma (see [24])). Suppose that the discrete-
time linear system Σ is as in (1.1) with X , U and Y finite dimensional, say U = Cr,
Y = Cs, X = Cn, i.e., the system matrix M is as in (1.6). Assume that A is stable,
i.e., all eigenvalues of A are inside the open unit disk D, so that rspec(A) < 1 and

the transfer function FΣ(z) is analytic on a neighborhood of D. Then FΣ(z) is in
the strict Schur class So(Cr,Cs) if and only if there is a positive-definite matrix
H ∈ C

n×n so that the strict KYP-inequality (1.9) holds.

We now turn to the general case, where the state space X and the input space U
and output space Y are allowed to be infinite-dimensional. In this case, the results
are more recent, depending on the precise hypotheses.

For generalizations of Theorem 1.1, much depends on what is meant by mini-
mality of Σ, and hence by the corresponding notions of controllable and observable.
Here are the three possibilities for controllability of an input pair (A,B) which we
shall consider. The third notion involves the controllability operator Wc associ-
ated with the pair (A,B) tailored to the Hilbert space setup which in general is a
closed, possibly unbounded operator with domain D(Wc) dense in X mapping into
the Hilbert space ℓ2U (Z−) of Y-valued sequences supported on the negative integers
Z− = {−1,−2,−3, . . .}, as well as the observability operator Wo associated with
the pair (C,A), which has similar properties. We postpone precise definitions and
properties of these operators to Section 2.

For an input pair (A,B) we define the following notions of controllability:

• (A,B) is (approximately) controllable if the reachability space

(1.10) Rea (A|B) = span{ImAkB : k = 0, 1, 2, . . .}
is dense in X .

• (A,B) is exactly controllable if the reachability space Rea (A|B) is equal
to X , i.e., each state vector x ∈ X has a representation as a finite linear

combination x =
∑K

k=0 A
kBuk for a choice of finitely many input vectors

u0, u1, . . . , uK (also known as every x is a finite-time reachable state (see
[22, Definition 3.3]).

• (A,B) is ℓ2-exactly controllable if the ℓ2-adapted controllability operator
Wc has range equal to all of X : WcD(Wc) = X .

If (C,A) is an output pair, we have the dual notions of observability:

• (C,A) is (approximately) observable if the input pair (A∗, C∗) is (approx-
imately) controllable, i.e., if the observability space

(1.11) Obs (C|A) = span{ImA∗kC∗ : k = 0, 1, 2, . . .}
is dense in X , or equivalently, if ∩∞

k=0 kerCAk = {0}.
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• (C,A) is exactly observable if the observability subspace Obs (C|A) is the
whole space X .

• (C,A) is ℓ2-exactly observable if the adjoint input pair (A∗, C∗) is ℓ2-
exactly controllable, i.e., if the adjoint W∗

o of the ℓ2-adapted observability
operator Wo has full range: W∗

o D(W∗
o) = X .

Then we say that the system Σ ∼ (A,B,C,D) is

• minimal if (A,B) is controllable and (C,A) is observable,
• exactly minimal if both (A,B) is exactly controllable and (C,A) is exactly
observable, and

• ℓ2-exactly minimal if both (A,B) is ℓ2-exactly controllable and (C,A) is
ℓ2-exactly observable.

Despite the fact that the operators A, B, C and D associated with the system
Σ are all bounded, in the infinite dimensional analogue of the KYP-inequality
(1.5) unbounded solutions H may appear. We therefore have to be more precise
concerning the notion of positive-definiteness we employ. Suppose that H is a
(possibly unbounded) selfadjoint operator H on a Hilbert space X with domain
D(H) dense in X ; we refer to [26] for background and details on this class and
other classes of unbounded operators. Then we shall say:

• H is strictly positive-definite (written H ≻ 0) if there is a δ > 0 so that
〈Hx, x〉 ≥ δ‖x‖2 for all x ∈ D(H);

• H is positive-definite if 〈Hx, x〉 > 0 for all nonzero x ∈ D(H);
• H is positive-semidefinite (written H � 0) if 〈Hx, x〉 ≥ 0 for all x ∈ D(H).

We also note that any (possibly unbounded) positive-semidefinite operator H has

a positive-semidefinite square root H
1
2 ; as H = H

1
2 ·H 1

2 , we have

D(H) = {x ∈ D(H
1
2 ) : H

1
2x ∈ D(H

1
2 )} ⊂ D(H

1
2 ).

See e.g. [26] for details.
Since solutions H to the corresponding KYP-inequality may be unbounded, the

KYP-inequality cannot necessarily be written in the LMI form (1.5), but rather,
we require a spatial form of (1.5) on the appropriate domain: For a (possibly
unbounded) positive-definite operator H on X satisfying

(1.12) AD(H
1
2 ) ⊂ D(H

1
2 ), BU ⊂ D(H

1
2 ),

the spatial form of the KYP inequality takes the form:

(1.13)

∥∥∥∥
[
H

1
2 0

0 IU

] [
x
u

]∥∥∥∥
2

−
∥∥∥∥
[
H

1
2 0

0 IY

] [
A B
C D

] [
x
u

]∥∥∥∥
2

≥ 0 (x ∈ D(H
1
2 ), u ∈ U).

The corresponding notion of a storage function will then be allowed to assume +∞
as a value; this will be made precise in Section 3.

With all these definitions out of the way, we can state the following three distinct
generalizations of Theorem 1.1 to the infinite-dimensional situation.

Theorem 1.3 (Infinite-dimensional standard Bounded Real Lemma). Let Σ be
a discrete-time linear system as in (1.1) with system matrix M as in (1.2) and
transfer function FΣ defined by (1.3).

(1) Suppose that the system Σ is minimal, i.e., the input pair (A,B) is control-
lable and the output pair (C,A) is observable. Then the transfer function
FΣ has an analytic continuation to a function in the Schur class S(U ,Y) if
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and only if there exists a positive-definite solution H of the KYP-inequality
in the following generalized sense: H is a closed, possibly unbounded,
densely defined, positive-definite (and hence injective) operator on X such

that D(H
1
2 ) satisfies (1.12) andH solves the spatial KYP-inequality (1.13).

(2) Suppose that Σ is exactly minimal. Then the transfer function FΣ has an
analytic continuation to a function in the Schur class S(U ,Y) if and only
if there exists a bounded, strictly positive-definite solution H of the KYP-
inequality (1.5). In this case A has a spectral radius of at most one, and
hence FΣ is in fact analytic on D.

(3) Statement (2) above continues to hold if the “exactly minimal” hypothesis
is replaced by the hypothesis that Σ be “ℓ2-exactly minimal.”

We shall refer to a closed, densely defined, positive-definite solution H of (1.12)–
(1.13) as a positive-definite solution of the generalized KYP-inequality.

The paper of Arov-Kaashoek-Pik [6] gives a penetrating treatment of item (1)
in Theorem 1.3, including examples to illustrate various subtleties surrounding this
result—e.g., the fact that the result can fail if one insists on classical bounded
and boundedly invertible selfadjoint solutions of the KYP-inequality. We believe
that items (2) and (3) appeared for the first time in [11], where also a sketch of
the proof of item (1) is given. The idea behind the proofs of items (1)–(3) in
[11] is to combine the result that a Schur-class function S always has a contrac-
tive realization (i.e., such an S can be realized as S = FΣ for a system Σ as in
(1.1) with system matrix M in (1.2) a contraction operator) with variations of the
State-Space-Similarity Theorem (see [11, Theorem 1.5]) for the infinite-dimensional
situation under the conditions that hold in items (1)–(3); roughly speaking, under
appropriate hypothesis, a State-Space-Similarity Theorem says that two systems
Σ and Σ′ whose transfer functions coincide on a neighborhood of zero, necessarily
can be transformed (in an appropriate sense) from one to other via a change of
state-space coordinates.

In the present paper we revisit these three results from a different point of view:
we adapt Willems’ variational formulas to the infinite dimensional setting, and in
this context present the available storage Sa and required supply Sr, as well as
an ℓ2-regularized version Sr of the required supply. It is shown, under appropriate
hypothesis, that these are storage functions, with Sa and Sr being quadratic storage

functions, i.e., Sa agrees with SHa
(x) = ‖H

1
2
a x‖2 and Sr(x) = SHr

(x) = ‖H
1
2
r x‖2

for x in a suitably large subspace of X , where Ha and Hr are possibly unbounded,
positive-definite density operators, which turn out to be positive-definite solutions
to the generalized KYP-inequality. In this way we will arrive at a proof of item
(1). Further analysis of the behavior of Ha and Hr, under additional restrictions
on Σ, lead to proofs of items (2) and (3), as well as the following version of the
strict Bounded Real Lemma for infinite dimensional systems, which is a much more
straightforward generalization of the result in the finite-dimensional case (Theorem
1.2).

Theorem 1.4 (Infinite-dimensional strict Bounded Real Lemma). Let Σ be a dis-
crete-time linear system as in (1.1) with system matrix M as in (1.2) and transfer
function FΣ defined by (1.3). Assume that A is exponentially stable, i.e., rspec(A) <
1. Then the transfer function FΣ is in the strict Schur class So(U ,Y) if and only
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if there exists a bounded strictly positive-definite solution H of the strict KYP-
inequality (1.9).

Theorem 1.2 was proved by Petersen-Anderson-Jonkheere [24] for the continuous-
time finite-dimensional setting by using what we shall call an ǫ-regularization pro-
cedure to reduce the result to the standard case Theorem 1.1. In [11] we show
how this same idea can be used in the infinite-dimensional setting to reduce the
hard direction of Theorem 1.4 to the result of either of item (2) or item (3) in
Theorem 1.3. For the more general nonlinear setting, Willems [28] was primarily
interested in what storage functions look like assuming that they exist, while in
[29] for the finite-dimensional linear setting he reduced the existence problem to
the existence theory for Riccati matrix equations. Here we solve the existence prob-
lem for the more general infinite-dimensional linear setting by converting Willems’
variational formulation of the available storage Sa and an ℓ2-regularized version Sr

of his required supply Sr to an operator-theoretic formulation amenable to explicit
analysis.

This paper presents a more unified approach to the different variations of the
Bounded Real Lemma, in the sense that we present a pair of concretely defined,
unbounded, positive-definite operators Ha and Hr that, under the appropriate con-
ditions, form positive-definite solutions to the generalized KYP-inequality, and that
have the required additional features under the additional conditions in items (2)
and (3) of Theorem 1.3 as well as Theorem 1.4. We also make substantial use
of connections with corresponding objects for the adjoint system Σ∗ (see (5.1)) to
complete the analysis and arrive at some order properties for the set of all solutions
of the generalized KYP-inequality which are complementary to those in [6].

The paper is organized as follows. Besides the current introduction, the paper
consists of seven sections. In Section 2 we give the definitions of the observability
operator Wo and controllability operator Wc associated with the system Σ in
(1.1) and recall some of their basic properties. In Section 3 we define what is meant
by a storage function in the context of infinite dimensional discrete-time linear
systems Σ of the form (1.1) as well as strict and quadratic storage functions and
we clarify the relations between quadratic (strict) storage functions and solutions
to the (generalized) KYP-inequality. Section 4 is devoted to the available storage
Sa and required supply Sr, two examples of storage functions, in case the transfer
function of Σ has an analytic continuation to a Schur class function. It is shown
that Sa and an ℓ2-regularized version Sr of Sr in fact agree with quadratic storage
functions on suitably large domain via explicit constructions of two closed, densely
defined, positive-definite operators Ha and Hr that exhibit Sa and Sr as quadratic
storage functions SHa

and SHr
. In Section 5 we make explicit the theory for the

adjoint system Σ∗ and the duality connections between Σ and Σ∗. In Section 6 we
study the order properties of a class of solutions of the generalized KYP-inequality,
and obtain the conditions under which Ha and Hr are bounded and/or boundedly
invertible and thereby solutions of the classical KYP-inequality. These results are
then used in Section 7 to give proofs of Theorems 1.3 and 1.4 via the storage
function approach.

2. Review: minimality, controllability, observability

In this section we recall the definitions of the observability operator Wo and
controllability operator Wc associated with the discrete-time linear system Σ given
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by (1.1) and various of their basic properties which will be needed in the sequel.
Detailed proofs of most of these results as well as additional properties can be found
in [11, Section 2].

For the case of a general system Σ, following [11, Section 2], we define the
observability operator Wo associated with Σ to be the possibly unbounded operator
with domain D(Wo) in X given by

(2.1) D(Wo) = {x ∈ X : {CAnx}n≥0 ∈ ℓ2Y(Z+)}
with action given by

(2.2) Wox = {CAnx}n≥0 for x ∈ D(Wo).

Dually, we define the adjoint controllability operator W∗
c associated with Σ to have

domain

(2.3) D(W∗
c) = {x ∈ X : {B∗A∗(−n−1)x}n≤−1 ∈ ℓ2U(Z−)}

with action given by

(2.4) W∗
cx = {B∗A∗(−n−1)x}n≤−1 for x ∈ D(W∗

c ).

It is directly clear from the definitions of Wo and W∗
c that

(2.5) kerWo = Obs (C|A)⊥ and kerW∗
c = Rea (A|B)⊥.

We next summarize the basic properties of Wc and Wo.

Proposition 2.1 (Proposition 2.1 in [11]). Let Σ be a system as in (1.1) with
observability operator Wo and adjoint controllability operator W∗

c as in (2.1)–(2.4).
Basic properties of the controllability operator Wc are:

(1) It is always the case that Wo is a closed operator on its domain (2.1).
(2) If D(Wo) is dense in X , then the adjoint W∗

o of Wo is a closed and
densely defined operator, by a general property of adjoints of closed opera-
tors with dense domain. Concretely for the case here, D(W∗

o) contains the
dense linear manifold ℓfin,Y(Z+) consisting of finitely supported sequences
in ℓ2Y(Z+). In general, one can characterize D(W∗

o) explicitly as the set of

all y ∈ ℓ2Y(Z+) such that there exists a vector xo ∈ X such that the limit

lim
K→∞

〈x,
K∑

k=0

A∗kC∗y(k)〉X

exists for each x ∈ D(Wo) and is given by

(2.6) lim
K→∞

〈x,
K∑

k=0

A∗kC∗y(k)〉X = 〈x, xo〉X ,

with action of Wc then given by

(2.7) W∗
oy = xo

where xo is as in (2.6). In particular, ℓfin,Y(Z+) is contained in D(W∗
o)

and the observability space defined in (1.11) is given by

Obs (C|A) = W∗
oℓfin,Y(Z+).

Thus, if in addition (C,A) is observable, then W∗
o has dense range.

Dual properties of the controllability operator W∗
c are:
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(3) It is always the case that the adjoint controllability operator W∗
c is closed

on its domain (2.3).
(4) If D(W∗

c ) is dense in X , then the controllability operator Wc = (W∗
c )

∗

is closed and densely defined by a general property of the adjoint of a
closed and densely defined operator. Concretely for the case here, D(Wc)
contains the dense linear manifold ℓfin,U (Z−) of finitely supported sequences
in ℓ2U (Z−). In general, one can characterize D(Wc) explicitly as the set of
all u ∈ ℓ2U(Z−) such that there exists a vector xc ∈ X so that

lim
K→∞

〈x,
−1∑

k=−K

A−k−1Bu(k)〉X

exists for each x ∈ D(W∗
c ) and is given by

(2.8) lim
K→∞

〈x,
−1∑

k=−K

A−k−1Bu(k)〉X = 〈x, xc〉X ,

and action of Wc then given by

(2.9) Wcu = xc

where xc is as in (2.8). In particular, the reachability space Rea (A|B) is
equal to Wcℓfin,U(Z−). Thus, if in addition (A,B) is controllable, then
Wc has dense range.

For systems Σ as in (1.1), without additional conditions, it can happen that Wo

and/or W∗
c are not densely defined, and therefore the adjoints W∗

o and Wc are
at best linear relations and difficult to work with. However, our interest here is
the case where the transfer function FΣ has analytic continuation to a bounded
function on the unit disk (or even in the Schur class, i.e., norm-bounded by 1 on
the unit disk). In this case the multiplication operator

(2.10) MFΣ : f(λ) 7→ FΣ(λ)f(λ)

is a bounded operator from L2
U(T) to L2

Y(T) and hence also its compression to a
map “from past to future”

(2.11) HFΣ = PH2
Y
(D)MFΣ |H2

U
(D)⊥ ,

often called the Hankel operator with symbol FΣ, is also bounded (by ‖MFΣ‖). If
we take inverse Z-transform to represent L2(T) as ℓ2(Z), H2(D) as ℓ2(Z+) and
H2(D)⊥ as ℓ2(Z−), then the frequency-domain Hankel operator

HFΣ : H
2
U(D)

⊥ → H2
Y(D)

given by (2.11) transforms via inverse Z-transform to the time-domain Hankel
operator HFΣ with matrix representation

(2.12) HFΣ = [CAi−j−1B]i≥0,j<0 : ℓ
2
U(Z−) → ℓ2Y(Z+).

We conclude that the Hankel matrix HFΣ is bounded as an operator from ℓ2U (Z−) to
ℓ2Y(Z+) whenever FΣ has analytic continuation to anH∞ function. From the matrix
representation (2.12) we see that the Hankel matrix formally has a factorization

(2.13) HFΣ = col[CAi]i≥0 · row[A−j−1B]j<0 = Wo ·Wc.
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It can happen that HFΣ is bounded whileWo andWc are unbounded. Nevertheless,
from the fact that HFΣ is bounded one can see that Rea (A|B) is in D(Wo) and

HFΣu = Wo

(
−1∑

k=K

A−1−kBu(k)

)
∈ ℓ2Y(Z+).

for each finitely supported input string u(K), . . . ,u(−1). If we assume that (A,B)
is controllable, we conclude that Wo is densely defined. Similarly, by working with
boundedness of H∗

FΣ
one can show that boundedness of FΣ on D leads to D(W∗

c )
containing the observability space Obs (C|A); hence if we assume that (C,A) is
observable, we get that W∗

c is densely defined. With these observations in hand,
the following precise version of the formal factorization (2.13) for the case where
Wo and Wc may be unbounded becomes plausible.

Proposition 2.2 (Corollary 2.4 and Proposition 2.6 in [11]). Suppose that the
system Σ given by (1.1) has transfer function FΣ with analytic continuation to an
H∞-function on the unit disk D.

(1) Assume that D(W∗
c ) is dense in X (as is the case if (C,A) is observable).

Then D(Wo) contains ImWc = WcD(Wc) and

(2.14) HFΣ |D(Wc) = WoWc.

In particular, as ℓfin,U (Z−) ⊂ D(Wc) and Wcℓfin,U(Z−) = Rea (A|B)
(from Proposition 2.1 (4)), it follows that Rea (A|B) ⊂ D(Wo).

(2) Assume that D(Wo) is dense in X (as is the case if (A,B) is controllable).
Then D(W∗

c ) contains ImW∗
o = W∗

oD(W∗
o) and

(2.15) H
∗
FΣ

|D(W∗
o)

= W∗
cW

∗
o .

In particular, as ℓfin,Y(Z) ⊂ D(W∗
o) and W∗

oℓfin,Y(Z+) = Obs (C|A) (from
Proposition 2.1 (2)), it follows that Obs (C|A) ⊂ D(W∗

c ).
(3) In case the system matrix M = [ A B

C D ] is contractive, then Wo and Wc

also are bounded contraction operators and we have the bounded-operator
factorizations

(2.16) HFΣ = WoWc, (HFΣ)
∗ = W∗

cW
∗
o .

The following result from [11] describes the implications of ℓ2-exact controllabil-
ity and ℓ2-exact observability on the operators Wo and Wc

Proposition 2.3 (Corollary 2.5 in [11]). Let Σ be a discrete-time linear system as
in (1.1) with system matrix M as in (1.2). Assume that the transfer function FΣ

defined by (1.3) has an analytic continuation to an H∞-function on D.

(1) If Σ is ℓ2-exactly controllable, then Wo is bounded.
(2) If Σ is ℓ2-exactly observable, then Wc is bounded.
(3) Σ is ℓ2-exactly minimal, i.e., both ℓ2-exactly controllable and ℓ2-exactly

observable, then Wo and W∗
c are both bounded and bounded below.

The following result will be useful in the sequel.

Proposition 2.4. Suppose that the discrete-time linear system Σ given by (1.1)
is minimal and that its transfer function FΣ has analytic continuation to an H∞-
function on D, so (by Propositions 2.1 and 2.2) D(W∗

c ) ⊃ Obs (C|A) is dense in
X and Wc = (W∗

c )
∗ is densely defined with dense range Im (Wc) ⊃ Rea (A|B).
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(1) Suppose that (u(n),x(n),y(n))n≥n−1 is a system trajectory of Σ with ini-
tialization x(n−1) = 0. Define an input string u′ ∈ ℓfin,U(Z−) by

u′(n) =

{
0 if n < n−1,

u(n) if n−1 ≤ n < 0.

Then x(0) = Wcu
′.

(2) Suppose that u ∈ ℓ2U (Z−) is in D(Wc) and ũ ∈ U . Define a new input
string u′ ∈ ℓ2U(Z−) by

u′(n) =

{
u(n+ 1) if n < −1,

ũ if n = −1.

Then u′ ∈ D(Wc) and

Wcu
′ = AWcu+Bũ.

Proof. We start with item (1). From item (4) of Proposition 2.1 see that ℓfin,U(Z+)
is contained in D(Wc), and thus u′ ∈ D(Wc). From formula (2.8) for the action
of Wc on its domain we obtain that

(2.17) Wcu
′ =

∑

k∈Z−

A−k−1Bu′(k) =
−1∑

k=n−1

A−k−1Bu(k)

where the sum is well defined since there are only finitely many nonzero terms. By
a standard induction argument, using the input-state equation in (1.1), one verifies
that this is the formula for x(0) for a system trajectory (u(n),x(n),y(n))n≥n−1

with initialization x(n−1) = 0. This verifies (1).
As for item (2), it is easily verified that D(W∗

c ) is invariant under A
∗ and that

the following intertwining condition holds:

W∗
cA

∗|D(W∗
c )

= S−W
∗
c ,

with S− the truncated right shift operator on ℓ2U (Z−) given by

(S−u)(n) = u(n− 1) for n ∈ Z−.

The adjoint version of this is that D(Wc) is invariant under the untruncated left
shift operator S∗

− on ℓ2U(Z−)

(S∗
−u)(n) =

{
u(n+ 1) if n < −1,

0 if n = −1

and we have the intertwining condition

WcS∗
−|D(Wc) = AWc.

Next note that S∗
−u = u′−Π−1ũ, with Π−1 : U → ℓ2U(Z−) the embedding of U into

the −1-th entry of ℓ2U(Z−). This implies that

u′ = S∗
−u+Π−1ũ ∈ S∗

−D(Wc) + ℓfin,U(Z−) ⊂ D(Wc),

and

(2.18) AWcu = WcS∗
−|D(Wc)u = Wc(u

′ −Π−1ũ) = Wcu
′ −Bũ,

which provides the desired identity. �
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Remark 2.5. It is of interest to consider the shift W
(1)
c of the controllability

operator Wc to the interval (−∞, 0] in place of Z− = (−∞, 0), i.e.,

W(1)
c = Wcτ

−1

where the map τ transforms sequences u supported on Z− = (−∞, 0) to sequences
u′ supported on (−∞, 0] according to the action

(τu)(n) = u(n+ 1) for n < 0

with inverse given by

(τ−1v)(n) = v(n− 1) for n ≤ 0.

For all u ∈ ℓ2U (Z−) and ũ ∈ U , define a sequence (u, ũ) ∈ ℓ2U ((−∞, 0]) by

(u, ũ)(n) =

{
u(n) if n ∈ Z−,

ũ if n = 0.

The result of item (2) in Proposition 2.4 can be interpreted as saying: given u ∈
ℓ2U(Z−) and ũ ∈ U we have

(u, ũ) ∈ D(W(1)
c ) ⇐⇒ u ∈ D(Wc)

and in that case W
(1)
c (u, ũ) = AWcu+Bũ.

3. Storage functions

In the case of systems with an infinite dimensional state space we allow storage
functions to also attain +∞ as a value. Set [0,∞] := R+ ∪ {+∞}. Then, given a
discrete-time linear system Σ as in (1.1), we say that a function S : X → [0,∞] is
a storage function for the system Σ if the dissipation inequality

(3.1) S(x(n+ 1)) ≤ S(x(n)) + ‖u(n)‖2U − ‖y(n)‖2Y for n ≥ N0

holds along all system trajectories (u(n),x(n),y(n))n≥N0 with state initialization
x(N0) = x0 for some x0 ∈ X at some N0 ∈ Z, and S is normalized to satisfy

(3.2) S(0) = 0.

As a first result we show that existence of a storage function for Σ is a sufficient
condition for the transfer function to have an analytic continuation to a Schur class
function.

Proposition 3.1. Suppose that the system Σ in (1.1) has a storage function S.
Then the transfer function FΣ of Σ defined in (1.3) has an analytic continuation
to a function in the Schur class S(U ,Y).

The proof of Proposition 3.1 relies on the following observation, which will also
be of use in the sequel.

Lemma 3.2. Suppose that the system Σ in (1.1) has a storage function S. For
each system trajectory (u(n),x(n),y(n))n∈Z and N0 ∈ Z so that x(N0) = 0, the
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following inequalities hold for all N ∈ Z+:

S(x(N0 +N + 1)) ≤
N0+N∑

n=N0

‖u(n)‖2U −
N0+N∑

n=N0

‖y(n)‖2Y ;(3.3)

N0+N∑

n=N0

‖y(n)‖2Y ≤
N0+N∑

n=N0

‖u(n)‖2U .(3.4)

Proof. By the translation invariance of the system Σ we may assume without loss
of generality that N0 = 0, i.e., x(0) = 0. From (3.1) and (3.2) we get

S(x(1)) ≤ ‖u(0)‖2 − ‖y(0)‖2 + S(0) = ‖u(0)‖2 − ‖y(0)‖2 < ∞.

Inductively, suppose that S(x(n)) < ∞. Then (3.1) gives us

S(x(n+ 1)) ≤ ‖u(n)‖2U − ‖y(n)‖2Y + S(x(n)) < ∞.

We may now rearrange the dissipation inequality for n ∈ Z+ in the form

(3.5) S(x(n+ 1))− S(x(n)) ≤ ‖u(n)‖2 − ‖y(n)‖2 (n ∈ Z+).

Summing from n = 0 to n = N gives

0 ≤ S(x(N + 1)) ≤
N∑

n=0

‖u(n)‖2U −
N∑

n=0

‖y(n)‖2Y ,

which leads to
N∑

n=0

‖y(n)‖2Y ≤
N∑

n=0

‖u(n)‖2U for all N ∈ Z+.

These inequalities prove (3.3) and (3.4) for N0 = 0. As observed above, the case of
N0 6= 0 is then obtained by translation of the system trajectory. �

Proof of Proposition 3.1. Let u ∈ ℓ2U(Z+) and run the system Σ with input se-
quence u and initial condition x(0) = 0. From Lemma 3.2, with N0 = 0, we obtain
that for each N ∈ Z+ we have

N∑

n=0

‖y(n)‖2Y ≤
N∑

n=0

‖u(n)‖2U for all N ∈ Z+.

Letting N → ∞, we conclude that u ∈ ℓ2U (Z+) implies that the output sequence y

is in ℓ2Y(Z+) with ‖y‖2
ℓ2
Y
(Z+)

≤ ‖u‖2
ℓ2
U
(Z+)

.

Write û and ŷ for the Z-transforms of u and y, respectively, i.e., û(z) =∑∞
n=0 u(n)z

n and ŷ(z) =
∑∞

n=0 y(n)z
n. Since we have imposed zero-initial con-

dition on the state, it now follows that ŷ(z) = FΣ(z)û(z) in a neighborhood of 0.
Since u was chosen arbitrarily in ℓ2U(Z+), we see that û is an arbitrary element
of H2

U (D). Thus, the multiplication operator MFΣ : û 7→ FΣ · û maps H2
U(D) into

H2
Y(D). In particular, taking û ∈ H2

U(D) constant, it follows that FΣ has an analytic
continuation to D. Furthermore, the inequality

‖FΣû‖H2
Y
(D) = ‖ŷ‖H2

Y
(D) = ‖y‖2ℓ2

Z+
(Y) ≤ ‖u‖2ℓ2

Z+
(U) = ‖û‖2H2

U
(D),

implies that the operator norm of the multiplication operator MFΣ from H2
U (D) to

H2
Y(D) is at most 1. It is well known that the operator norm of MFΣ is the same as

the supremum norm ‖FΣ‖∞ = supz∈D
‖FΣ(z)‖. Hence we obtain that the analytic

continuation of FΣ is in the Schur class S(U ,Y). �
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We shall see below (see Proposition 4.2) that conversely, if the transfer function
FΣ admits an analytic continuation to a Schur class function, then a storage function
for Σ exists.

Quadratic storage functions. The class of storage functions associated with solutions
to the generalized KYP inequality (1.12)–(1.13) are the so-called quadratic storage
functions described next. We shall say that a storage function S is quadratic in
case there is a positive-semidefinite operator H on the state space X so that S has
the form

(3.6) S(x) = SH(x) =

{
‖H 1

2x‖2 for x ∈ D(H
1
2 ),

+∞ otherwise.

If in addition to FΣ having an analytic continuation to a Schur class function it
is assumed that Σ is minimal, it can in fact be shown (see Theorem 4.9 below) that
quadratic storage functions for Σ exist; for the finite dimensional case see [29].

Proposition 3.3. Suppose that the function S : X → [0,∞] has the form (3.6)
for a (possibly) unbounded positive-semidefinite operator H on X . Then SH is a
storage function for Σ if and only if H is a positive-semidefinite solution of the
generalized KYP-inequality (1.12)–(1.13). Moreover, S is nondegenerate in the
sense that SH(x) > 0 for all nonzero x in X if and only if H is positive-definite.

Proof. Suppose that H solves (1.12)–(1.13). It is clear that S(0) = ‖H 1
2 0‖2 =

0, so in order to conclude that S is a storage function it remains to verify the
dissipation inequality (3.1). Let (u(n),x(n),y(n))n≥N0 be a system trajectory with
state initialization x(n0) = x0 for some x0 ∈ X and N0 ∈ Z. Fix n ≥ N0.

If x(n) /∈ D(H
1
2 ), then SH(x(n)) = ∞ and the dissipation inequality (3.1) is

automatically satisfied. If x(n) ∈ D(H
1
2 ), then (1.12) implies that x(n + 1) =

Ax(n)+Bu(n) ∈ D(H
1
2 ). Thus SH(x(n+1)) < ∞. Replacing x by x(n) and u by

u(n) in (1.13) and applying (1.1) we obtain that
∥∥∥∥
[

H
1
2 0

0 IU

] [
x(n)
u(n)

]∥∥∥∥
2

−
∥∥∥∥
[

H
1
2 0

0 IY

] [
x(n+ 1)
y(n)

]∥∥∥∥
2

≥ 0.

This can be rephrased in terms of SH as

SH(x(n)) + ‖u(n)‖2 − SH(x(n+ 1))− ‖y(n)‖2 ≥ 0,

so that (3.1) appears after adding SH(x(n + 1)) on both sides.
Conversely, suppose that SH is a storage function. Take x ∈ X and u ∈ U

arbitrarily. Let (u(n),x(n),y(n))n≥0 be any system trajectory with initialization
x(0) = x and with u(0) = u. Then the dissipation inequality (3.1) with n = 0 gives
us

(3.7) SH(Ax +Bu) ≤ SH(x) + ‖u‖2 − ‖y‖2, with y = Cx+Du.

In particular, SH(x) < ∞ (equivalently, x ∈ D(H
1
2 )) implies that SH(Ax +Bu) <

∞ (equivalently, Ax + Bu ∈ D(H
1
2 )). Specifying u = 0 shows that AD(H

1
2 ) ⊂

D(H
1
2 ) and specifying x = 0 shows BU ⊂ D(H

1
2 ). Thus (1.12) holds. Bringing

‖y‖2 in (3.7) to the other side and writing out SH gives

‖H 1
2 (Ax+Bu)‖2 + ‖Cx+Du‖2 ≤ ‖H 1

2 x‖2 + ‖u‖2,
which provides (1.13). �
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We say that a function S : X → R+ = [0,∞) is a strict storage function for the
system Σ in (1.1) if the strict dissipation inequality (1.8) holds, i.e., if there exists
a δ > 0 so that

(3.8) S(x(n+ 1))− S(x(n)) + δ‖x(n)‖2 ≤ (1− δ)‖u(n)‖2 − ‖y(n)‖2 (n ≥ N0)

holds for all system trajectories {u(n),x(n),y(n)}n≥N0 , initiated at some N0 ∈ Z.
Note that strict storage functions are not allowed to attain +∞ as a value. The
significance of the existence of a strict storage function for a system Σ is that it
guarantees that the transfer function FΣ has analytic continuation to aH∞-function
with H∞-norm strictly less than 1 as well as a coercivity condition on S, i.e., we
have the following strict version of Proposition 3.1.

Proposition 3.4. Suppose that the system Σ in (1.1) has a strict storage function
S. Then

(1) the transfer function FΣ has analytic continuation to a function in H∞ on
the unit disk D with H∞-norm strictly less than 1, and

(2) S satisfies a coercivity condition, i.e., there is a δ > 0 so that

(3.9) S(x) ≥ δ‖x‖2 (x ∈ X ).

Proof. Assume that S : X → [0,∞) is a strict storage function for Σ. Then for each
system trajectory (u(n),x(n),y(n)))n≥0 with initialization x(0) = 0, the strict
dissipation inequality (3.8) gives that there is a δ > 0 so that for n ≥ 0 we have

S(x(n+ 1))− S(x(n)) ≤ −δ‖x‖2 + (1− δ)‖u(n)‖2 − ‖y(n)‖2

≤ (1− δ)‖u(n)‖2 − ‖y(n)‖2.
Summing up over n = 0, 1, 2, . . . , N for some N ∈ N for a system trajectory
(u(n),x(n),y(n))n≥0 subject to initialization x(0) = 0 then gives

0 ≤ S(x(N + 1)) = S(x(N + 1))− S(x(0)) ≤ (1− δ)
N∑

n=0

‖u(n)‖2 −
N∑

n=0

‖y(n)‖2.

By restricting to input sequences u ∈ ℓ2U (Z+), it follows that the corresponding
output sequences satisfy y ∈ ℓ2Y(Z+) and ‖y‖2

ℓ2
U
(Z+)

≤ (1 − δ)‖u‖2
ℓ2
Y
(Z+)

. Taking

Z-transform and using the Plancherel theorem then gives

‖MFΣû‖2H2
Y
(D) = ‖ŷ‖2H2

Y
(D) ≤ (1− δ)‖û‖2H2

U
(D).

Thus ‖MFΣ‖ ≤
√
1− δ < 1. This implies FΣ has analytic continuation to an

L(U ,Y)-valued H∞ function with H∞-norm at most ‖MFσ
‖ ≤

√
1− δ < 1.

To this point we have not made use of the presence of the term δ‖x(n)‖2 in the
strict dissipation inequality (3.8). We now show how the presence of this term leads
to the validity of the coercivity condition (3.9) on S. Let x0 be any state in X and
let (u(n),x(n),y(n))n≥0 be any system trajectory with initialization x(0) = x0 and
u(0) = 0. Then the strict dissipation inequality (3.8) with n = 0 gives us

δ‖x0‖2 = δ‖x(0)‖2 ≤ S(x(1)) + δ‖x(0)‖2 + ‖y(0)‖2 ≤ S(x(0)) = S(x0),

i.e., S(x0) ≥ δ‖x0‖2 for each x0 ∈ X , verifying the validity of (3.9). �

The following result classifies which quadratic storage functions SH are strict
storage functions.
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Proposition 3.5. Suppose that S = SH is a quadratic storage function for the
system Σ in (1.1). Then SH is a strict storage function for Σ if and only if H is a
bounded positive-semidefinite solution of the strict KYP-inequality (1.9). Any such
solution is in fact strictly positive-definite.

Proof. Suppose that SH is a strict storage function for Σ. Then by definition
SH(x) < ∞ for all x ∈ X . Hence D(H) = X . By the Closed Graph Theorem, it
follows that H is bounded. As a consequence of Proposition 3.4, SH is coercive
and hence H is strictly positive-definite. The strict dissipation inequality (3.8)
expressed in terms of H and the system matrix [ A B

C D ] becomes

‖H 1
2 (Ax+Bu)‖2 − ‖H 1

2x‖2 + δ‖x‖2 ≤ (1− δ)‖u‖2 − ‖Cx+Du‖2

for all x ∈ X and u ∈ U . This can be expressed more succinctly as
〈[

H 0
0 I

] [
A B
C D

] [
x
u

]
,

[
A B
C D

] [
x
u

]〉
−
〈[

H 0
0 I

] [
x
u

]
,

[
x
u

]〉

≤ −δ

〈[
x
u

]
,

[
x
u

]〉

for all x ∈ X and u ∈ U , for some δ > 0. This is just the spatial version of (1.9),
so H is a strictly positive-definite solution of the strict KYP-inequality (1.9). By
reversing the steps one sees thatH � 0 being a solution of the strict KYP-inequality
(1.9) implies that SH is a strict storage function. As a consequence of Proposition
3.4 we see that then SH satisfies a coercivity condition (3.9), so necessarily H is
strictly positive-definite. �

4. The available storage and required supply

In Proposition 3.1 we showed that the existence of a storage function (which is
allowed to attain the value +∞) for a discrete-time linear system Σ implies that
the transfer function FΣ associated with Σ is equal to a Schur class function on a
neighborhood of 0. In this section we investigate the converse direction. Specifically,
we give explicit variational formulas for three storage functions, referred to as the
available storage function Sa (defined in (4.1)) the required supply function Sr

(defined in (4.2)) and the “regularized” version Sr of the required supply (defined
in (4.18)). Let U denote the space of all functions n 7→ u(n) from the integers Z

into the input space U . Then Sa is given by

(4.1) Sa(x0) = sup
u∈U, n1≥0

n1∑

n=0

(
‖y(n)‖2 − ‖u(n)‖2

)

with the supremum taken over all system trajectories (u(n),x(n),y(n))n≥0 with
initialization x(0) = x0, while Sr is given by

(4.2) Sr(x0) = inf
u∈U, n−1<0

−1∑

n=n−1

(
‖u(n)‖2 − ‖y(n)‖2

)

with the infimum taken over all system trajectories (u(n),x(n),y(n))n≥n−1 subject
to the initialization condition x(n−1) = 0 and the condition x(0) = x0.

The proof that Sa and Sr are storage functions whenever FΣ is in the Schur class
requires the following preparatory lemma. We shall use the following notation. For
an arbitrary Hilbert space Z, write P+ and P− for the orthogonal projections onto
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ℓ2Z(Z+) and ℓ2Z(Z−), respectively, acting on ℓ2Z(Z). For integers m ≤ n, we write
P[m,n] for the orthogonal projection on the subspace of sequences in ℓ2Z(Z) with
support on the coordinate positions m,m+ 1, . . . , n.

Lemma 4.1. Let Σ be as in (1.1) and suppose that its transfer function FΣ is
in the Schur class. Then, for each system trajectory (u(n),x(n),y(n))n≥0 with
initialization x(0) = 0, the inequality

(4.3)

N∑

n=0

‖y(n)‖2 ≤
N∑

n=0

‖u(n)‖2

holds for all N ∈ Z+.

Proof. As we have already observed, the fact that FΣ is in the Schur class S(U ,Y)
implies that the multiplication operator MFΣ (2.10) has norm at most 1 as an
operator from L2

U (T) to L2
Y(T). If we apply the inverse Z-transform to the full

operator MFΣ , not just to the compression HFΣ as was done to arrive at the Hankel
operator HFΣ in (2.12), we get the Laurent operator

(4.4) LFΣ =




. . .
. . .

. . .
. . .

. . .
. . .

. . . F0 0 0 0
. . .

. . . F1 F0 0 0
. . .

. . . F2 F1 F0 0
. . .

. . . F3 F2 F1 F0
. . .

. . .
. . .

. . .
. . .

. . .
. . .




: ℓ2U (Z) → ℓ2Y(Z),

where F0, F1, F2, . . . are the Taylor coefficients of FΣ:

(4.5) Fn =

{
D if n = 0

CAn−1B if n ≥ 1.

It is convenient to write LFΣ as a 2× 2-block matrix with respect to the decompo-

sition ℓ2U(Z) =
[
ℓ2U (Z−)

ℓ2U (Z+)

]
of the domain and the decomposition ℓ2Y(Z) =

[
ℓ2Y(Z−)

ℓ2Y(Z+)

]
of

the range; the result is

(4.6) LFΣ =

[
T̃FΣ 0
HFΣ TFΣ

]
:

[
ℓ2U(Z−)
ℓ2U (Z+)

]
→
[

ℓ2Y(Z−)
ℓ2Y(Z+)

]
.

Here HFΣ : ℓ2−(U) → ℓ2+(Y) denotes the Hankel operator associated with FΣ already

introduced in (2.12), TFΣ : ℓ2+(U) → ℓ2+(Y) the Toeplitz operator associated with

FΣ, and T̃FΣ the Toeplitz operator acting from ℓ2U(Z−) to ℓ2Y(Z−) associated with
FΣ. From the assumption that FΣ is in the Schur class S(U ,Y), it follows that

MFΣ is contractive, and hence also each of the operators T̃FΣ , HFΣ , and TFΣ is
contractive. From the lower triangular form of TFΣ we see in addition that TFΣ has
the causality property:

(4.7) P[0,N ]TFΣ = P[0,N ]TFΣP[0,N ] (N ≥ 0).

Now suppose that (u(n),x(n),y(n))n≥0 is a system trajectory on Z+ with initial-
ization x(0) = 0. In this case the infinite matrix identity y = TFΣu holds formally.
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For N ∈ Z+ we have P[0,N ]u ∈ ℓ2U(Z+), and by the causality property

P[0,N ]TFΣP[0,N ]u = P[0,N ]TFΣu = P[0,N ]y.

Since TFΣ is contractive, so is P[0,N ]TFΣP[0,N ] and thus the above identity shows
that ‖P[0,N ]y‖ ≤ ‖P[0,N ]u‖, or, equivalently,

(4.8)

N∑

n=0

‖y(n)‖2 ≤
N∑

n=0

‖u(n)‖2

holds for each system trajectory (u(n),x(n),y(n))n≥0 with x(0) = 0. �

The proof of the following result is an adaptation of the proofs of Theorems 1
and 2 for the continuous time setting in [28].

Proposition 4.2. Assume that the discrete-time linear system Σ has a transfer
function FΣ which has an analytic continuation to a function in the Schur class
S(U ,Y). Define Sa and Sr by (4.1) and (4.2). Then

(1) Sa is a storage function,
(2) Sr is a storage function, and
(3) for each storage function S for Σ we have

Sa(x0) ≤ S(x0) ≤ Sr(x0) for all x0 ∈ X .

Proof. The proof consists of three parts, corresponding to the three assertions of
the proposition.

(1) To see that Sa(x0) ≥ 0 for all x0 ∈ X , choose x(0) = x0 and u(n) = 0 for n ≥
0 to generate a system trajectory (u(n),x(n),y(n))n≥0 such that

∑n1

n=0(‖y(n)‖2 −
‖u(n)‖2) =

∑n1

n=0 ‖y(n)‖2 ≥ 0 for all n1 ≥ 0. From the definition (4.1), we see
that Sa(x0) ≥ 0.

By Lemma 4.1, each system trajectory (u(n),x(n),y(n))n≥0 with initialization
x(0) = 0 satisfies the inequality

n1∑

n=0

‖y(n)‖2Y ≤
n1∑

n=0

‖u(n)‖2U (n1 ∈ Z+).

This observation leads to the conclusion that Sa(0) ≤ 0. Hence Sa(0) = 0 and thus
Sa satisfies the normalization (3.2).

Now let {ũ(n), x̃(n), ỹ(n)}n≥N0 be any system trajectory initiated at some N0 ∈
Z. We wish to show that this trajectory satisfies the dissipation inequality (3.1).
It is convenient to rewrite this condition in the form

‖ỹ(n)‖2Y − ‖ũ(n)‖2U + Sa(x̃(n+ 1)) ≤ Sa(x̃(n)) (n ∈ Z).

By translation invariance of the system equations (1.1), without loss of generality
we may take n = 0, so we need to show

(4.9) ‖ỹ(0)‖2Y − ‖ũ(0)‖2U + Sa(x̃(1)) ≤ Sa(x̃(0)).

We rewrite the definition (4.1) for Sa(x̃(1)) in the form

Sa(x̃(1)) = sup
u∈U,n1≥0

n1∑

n=0

(
‖y(n)‖2Y − ‖u(n)‖2U

)
,
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where the system trajectory (u(n),x(n),y(n))n≥0 is subject to the initialization
x(0) = x̃(1). Again making use of the translation invariance of the system equa-
tions, we may rewrite this in the form

Sa(x̃(1)) = sup
u∈U,n1≥1

n1∑

n=1

(
‖y(n)‖2Y − ‖u(n)‖2U

)
,

where (u(n),x(n),y(n))n≥0 is a system trajectory with initialization now given by
x(1) = x̃(1). Substituting this expression for S(x̃(1)), the left hand side of (4.9)
reads

‖ỹ(0)‖2Y − ‖ũ(0)‖2U + sup
u∈U,n1≥1

n1∑

n=1

(
‖y(n)‖2Y − ‖u(n)‖2U

)
.

This quantity indeed is bounded above by

Sa(x̃(0)) = sup
u∈U,n1≥0

n1∑

n=0

(
‖y(n)‖2Y − ‖u(n)‖2U

)
,

with (u(n),x(n),y(n))n≥0 a system trajectory subject to initialization x̃(0) = x(0).
Hence the inequality (4.9) follows as required, and Sa is a storage function for Σ.

(2) Let (u(n),x(n),y(n))n≥n−1 be a system trajectory with zero-initialization of
the state at n−1 < 0, subject also to x(0) = x0. Applying the result of Lemma 4.1
to this system trajectory, using the translation invariance property of Σ to get a
sum in (4.3) starting at n−1 and ending at 0, it follows that Sr(x0) ≥ 0 for all x0 in
Rea (A|B). In case x0 6∈ Rea (A|B), i.e., x0 is not reachable in finitely many steps
via some input signal u(n) (n−1 ≤ n < 0) with x(n−1) = 0, then the definition of
Sr in (4.2) gives us Sr(x) = +∞ ≥ 0. By choosing n−1 = −1 with u(−1) = 0,
we see that Sr(0) ≤ 0. Since Sr(x0) ≥ 0 for each x0 ∈ X , it follows that Sr also
satisfies the normalization (3.2).

An argument similar to that used in part 1 of the proof shows that Sr satis-
fies (3.1). Indeed, note that it suffices to show that for each system trajectory
{ũ(n), x̃(n), ỹ(n)}n≥0 we have

Sr(x̃(1)) ≤ ‖ũ(0)‖2U − ‖ỹ(0)‖2Y + Sr(x̃(0))

(4.10)

= inf
u∈U , n−1<0



‖ũ(0)‖2U − ‖ỹ(0)‖2Y +

−1∑

n=n−1

(
‖u(n)‖2U − ‖y(n)‖2Y

)




where (u(n),x(n),y(n))n≥n−1 is a system trajectory subject to the initial condition
x(n−1) = 0 and the terminal condition x(0) = x̃(0). Rewrite the definition of
Sr(x̃(1)) as

Sr(x̃(1)) = inf
u∈U, n−1<1

0∑

n=n−1

(
‖u(n)‖2U − ‖y(n)‖2Y

)
,

with the system trajectory (u(n),x(n),y(n))n∈Z subject to the initial and terminal
conditions x(n−1) = 0 and x(1) = x̃(1). Now recognize the argument of the inf
in the right-hand side of (4.10) as part of the competition in the infimum defining
Sr(x̃(1)) to deduce the inequality (4.10).
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(3) Let S be any storage function for Σ and (u(n),x(n),y(n))n≥0 any system
trajectory with initialization x(0) = x0. Iteration of the dissipation inequality (3.1)
for S along the system trajectory (u(n),x(n),y(n))n≥0 as in the proof of Lemma
3.2 yields

0 ≤ S(n1 + 1) ≤ S(x0) +

n1∑

n=0

(
‖u(n)‖2 − ‖y(n)‖2

)

or
n1∑

n=0

(
‖y(n)‖2 − ‖u(n)‖2

)
≤ S(x0).

Taking the supremum in the left-hand side of the above inequality over all such
system trajectories (u(n),x(n),y(n))n≥0 and all n1 ≥ 0 yields Sa(x0) ≤ S(x0) and
the first part of (3) is verified.

Next let x0 ∈ X be arbitrary. If (u(n),x(n),y(n))n≥n−1 is any system trajectory
with state-initialization x(n−1) = 0 and x(0) = x0, applying Lemma 3.2 with
N0 = n−1 and N = −1− n−1 gives us that

(4.11) S(x0) ≤
−1∑

n=n−1

(
‖u(n)‖2U − ‖y(n)‖2Y

)
.

Taking the infimum of the right-hand side over all such system trajectories gives
us S(x0) ≤ Sr(x0). Here we implicitly assumed that the state x0 ∈ X is reachable.
If x0 is not reachable, there are no such system trajectories, and taking the infimum
over an empty set leads to Sr(x0) = ∞, in which case S(x0) ≤ Sr(x0) is also valid.
Hence S(x0) ≤ Sr(x0) holds for all possible x0 ∈ X . This completes the verification
of the second part of (3). �

Combining Proposition 4.2 with Proposition 3.1 leads to the following.

Corollary 4.3. A discrete-time linear system Σ in (1.1) has a transfer function
FΣ with an analytic continuation in the Schur class if and only if Σ has a storage
function S.

Proof. The sufficiency is Proposition 3.1. For the necessity direction, by Proposition
4.2 we may choose S equal to either Sa or Sr. �

We next impose a minimality assumption on Σ and in addition assume that FΣ

has an analytic continuation in the Schur class S(U ,Y), i.e., we make the following
assumptions:

(4.12)

{
Σ is minimal, i.e., (C,A) is observable and (A,B) is controllable,
and FΣ has an analytic continuation to a function in S(U ,Y).

Our next goal is to understand storage functions from a more operator-theoretic
point of view. We first need some preliminaries.

Recall the Laurent operator LFΣ in (4.4). From the 2× 2-block form for LFΣ in
(4.6), we see that

(4.13)

I − LFΣL
∗
FΣ

=




D2
T̃∗

FΣ

−T̃FΣH
∗
FΣ

−HFΣT̃
∗
FΣ

D2
T∗

FΣ

− HFΣH
∗
FΣ


 ;

I − L∗
FΣ

LFΣ =

[
D2

T̃FΣ

− H∗
FΣ

HFΣ −H∗
FΣ

TFΣ

−T∗
FΣ

HFΣ D2
TFΣ

]
.
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where in general we use the notation DX for the defect operator DX = (I−X∗X)
1
2

of a contraction operator X . Since FΣ is assumed to be a Schur class function, TFΣ

and T̃FΣ are contractions, and henceDTFΣ
, DT∗

FΣ
, D

T̃FΣ
and D

T̃∗
FΣ

are well defined.

Lemma 4.4. Let the discrete-time linear system Σ in (1.1) satisfy the assumptions
(4.12). The available storage function Sa and required supply function Sr can then
be written in operator form as

Sa(x0) = sup
u∈ℓ2

U
(Z+)

‖Wox0 + TFΣu‖2ℓ2
Y
(Z+) − ‖u‖2ℓ2

U
(Z+) (x0 ∈ D(Wo))(4.14)

Sr(x0) = inf
u∈ℓfin,U(Z−), x0=Wcu

‖D
T̃FΣ

u‖2 (x0 ∈ X ),(4.15)

and Sa(x0) = +∞ for x0 6∈ D(Wo). Here Wo and Wc are the observability and
controllability operators defined via (2.1)–(2.4) and ℓfin,U (Z−) is the linear manifold
of finitely supported sequences in ℓ2U(Z−). In particular, Sr(x0) < ∞ if and only if
x0 ∈ Rea (A|B).

Proof. We shall use the notation P± and P[m,n] as introduced in the discussion
immediately preceding the statement of Lemma 4.1.

We start with Sa. For each system trajectory (u(n),x(n),y(n))n≥0 with initial-
ization x(0) = x0 and with u ∈ ℓ2U (Z+) by linearity we have

y = Wox0 + TFΣu.

Now note that, for each system trajectory (u(n),x(n),y(n))n≥0 with initialization
x(0) = x0 but with u not necessarily in ℓ2U(Z+) and with n1 ≥ 0, by the causality
property (4.7), as in the proof of Lemma 4.1 we see that we can replace u with
P[0,n1]u ∈ ℓfin,U (Z+) ⊂ ℓ2U (Z+) within the supremum in (4.1) without changing the
value. Therefore, the value of Sa at x0 can be rewritten in operator form as

Sa(x0) =

= sup
u∈ℓfin,U(Z+), n1≥0

‖P[0,n1](Wox0 + TFΣu)‖2ℓ2
Y
(Z+) − ‖P[0,n1]u‖2ℓ2

U
(Z+)(4.16)

where we use the notation ℓfin,U(Z+) for U-valued sequences on Z+ of finite support.
If x0 /∈ D(Wo) so that Wox0 /∈ ℓ2Y(Z+), the above formulas are to be interpreted

algebraically, and we may choose u = 0 and take the limit as n1 → ∞ to see that
Wo(x0) = +∞.

Now assume x0 ∈ D(Wo). Fix u ∈ ℓfin,U(Z+) and take the limit as n1 → +∞
in the right hand side of (4.16) to see that an equivalent expression for Sa(x0) is

Sa(x0) = sup
u∈ℓfin,U (Z+)

‖Wox0 + TFΣu‖2 − ‖u‖2.

Since ℓfin,U (Z+) is dense in ℓ2U (Z+) and TFΣ is a bounded operator, we see that
another equivalent expression for Sa(x0) is (4.14). This completes the verification
of (4.14).

We next look at Sr. Let (u(n),x(n),y(n))n≥n−1 be any system trajectory with
initialization x(n−1) = 0 for some n−1 < 0. Let us identify u with an element
u ∈ ℓfin,U(Z−) by ignoring the values of u on Z+ and defining u(n) = 0 for n <
n−1. Then, as a consequence of item (1) in Proposition 2.4, the constraint x(0) =
x0 in (4.2) can be written in operator form as Wcu = x0. Furthermore, since
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(u(n),x(n),y(n))n≥n−1 is a system trajectory with zero state initialization at n−1,
it follows that

y|Z−
= T̃FΣu.

We conclude that a formula for Sr equivalent to (4.2) is

Sr(x0) = inf
u∈ℓ2fin,U(Z−) : Wcu=x0

‖u‖2 − ‖T̃FΣu‖2

which in turn has the more succinct formulation (4.15). If x0 ∈ Rea (A|B), then
the infimum in (4.15) is taken over a nonempty set, so that Sr(x0) < ∞. On the
other hand, if x0 6∈ Rea (A|B), then the infimum is taken over an empty set, so
that Sr(x0) = ∞. �

To compute storage functions more explicitly for the case where assumptions
(4.12) are in place, it will be convenient to restrict to what we shall call ℓ2-regular
storage functions S, namely, storage functions S which assume finite values on
ImWc:

(4.17) x0 = Wcu where u ∈ D(Wc) ⇒ S(x0) < ∞.

We shall see in the next result that Sa is ℓ2-regular. However, unless if Rea (A|B)
is equal to the range of Wc, the required supply Sr will not be ℓ2-regular (by the
last assertion of Lemma 4.4).

To remedy this situation, we introduce the following modification Sr of the
required supply Sr, which we shall call the ℓ2-regularized required supply:

(4.18) Sr(x0) = inf
u∈D(Wc) : Wcu=x0

−1∑

n=−∞

(
‖u(n)‖2 − ‖y(n)‖2

)

where u ∈ ℓ2U (Z−) determines y ∈ ℓ2Y(Z−) via the system input/output map:

y = T̃FΣu. Thus formula (4.18) can be written more succinctly in operator form as

Sr(x0) = inf
u∈D(Wc) : Wcu=x0

‖u‖2ℓ2
U
(Z−) − ‖T̃FΣu‖2ℓ2

Y
(Z−)

= inf
u∈D(Wc),Wcu=x0

‖D
T̃FΣ

u‖2ℓ2
Y
(Z−) for x0 ∈ ImWc.(4.19)

It is clear that Sr(x0) < ∞ if and only if x0 ∈ ImWc. Since the objective in the
infimum defining Sr in (4.19) is the same as the objective in the infimum defining
Sr in (4.15) but the former infimum is taken over an a priori larger set, it follows
directly that Sr(x0) ≥ Sr(x0) for all x0 ∈ X , as can also be seen as a consequence
of Proposition 4.2 once we show that Sr is a storage function for Σ. From either
of the formulas we see that 0 ≤ Sr(x0) and that Sr(x0) < ∞ exactly when x0 is
in the range of Wc. Hence once we show that Sr is a storage function, it follows
that Sr is an ℓ2-regular storage function and is a candidate to be the largest such.
However at this stage we have only partial results in this direction, as laid out in
the next result.

Proposition 4.5. Assume that Σ is a system satisfying the assumptions (4.12)
and let the function Sr : ImWc → R+ be given by (4.19). Then:

(1) Sa and Sr are ℓ2-regular storage functions.
(2) Sr is “almost” the largest ℓ2-regular storage function in the following sense:

if S is another ℓ2-regular storage function such that either
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(a) S is D(W∗
c )-weakly continuous in the sense that: given a sequence

{xn} ⊂ ImWc and xc ∈ ImWc such that

lim
n→∞

〈x, xn〉X = 〈x, xc〉X for all x ∈ D(W∗
c ),

then limn→∞ S(xn) = S(x0), or
(b) Wc is bounded and S is continuous on X (with respect to the norm

topology on X ),
then S(x0) ≤ Sr(x0) for all x0 ∈ X .

Proof. We first prove item (1), starting with the claim for Sa. Since by assumption
Σ is minimal and FΣ has an analytic continuation to a Schur class function, by
item (1) of Proposition 2.2, ImWc ⊂ D(Wo). So on ImWc, the available storage
Sa is given by (4.14). It remains to show that for x0 ∈ ImWc the formula for
Sa(x0) in (4.14) gives a finite value. So assume x0 ∈ ImWc, say x0 = Wcu− for
a u− ∈ ℓ2U(Z−). Choose u+ ∈ ℓ2U(Z+) arbitrarily and define u ∈ ℓ2U(Z) by setting
P−u = u− and P+u = u+. Then Wox0 = WoWcu− = HFΣu−. Thus, using the
decomposition of LFΣ in (4.6) and the fact that ‖LFΣ‖ ≤ 1, we find that

‖Wox0 + TFΣu+‖2 − ‖u+‖2 = ‖HFΣu− + TFΣu+‖2 − ‖u+‖2

= ‖P+LFΣu‖2 − ‖P+u‖2 = ‖P−u‖2 + ‖P+LFΣu‖2 − ‖u‖2

≤ ‖P−u‖2 = ‖u−‖2.

Since the upper bound ‖u−‖2 is independent of the choice of u+ ∈ ℓ2U (Z+), we
can take the supremum over all u+ ∈ ℓ2U (Z+) to arrive at the inequality Sa(x0) ≤
‖u−‖2 < ∞.

Next we prove the statement of item (1) concerning Sr. By the discussion
immediately preceding the statement of the proposition, it follows that Sr is an
ℓ2-regular storage function once we show that Sr is a storage function, that is,
Sr(0) = 0 and that Sr satisfies the dissipation inequality (3.1).

If x0 = 0, we can choose u = 0 as the argument in the right hand side of (4.19)
to conclude that Sr(0) ≤ 0. As we have already seen that Sr(x0) ≥ 0 for all x0, we
conclude that Sr(0) = 0.

To complete the proof of item (1), it remains to show that Sr satisfies the
dissipation inequality (3.1). By shift invariance we may take n = N0 = 0 in (3.1). If
x(0) /∈ ImWc, then Sr(x0) = ∞ and (3.1) holds trivially. We therefore assume that
(ũ(n), x̃(n), ỹ(n))n≥0 is a system trajectory with initialization x̃(0) = x0 = Wcu−

for some u− ∈ D(Wo) and the problem is to show

Sr(x̃(1)) ≤ ‖ũ(0)‖2 − ‖ỹ(0)‖2 + Sr(x̃(0)) =

(4.20)

= inf
u∈D(Wc) : Wcu=x̃(0)

[
‖ũ(0)‖2 − ‖ỹ(0)‖2 +

−1∑

n=−∞

(
‖u(n)‖2 − ‖y(n)‖2

)
]
,

where y = T̃FΣu. As (ũ(n), x̃(n), ỹ(n))n≥0 is a system trajectory initiated at 0, we
know that x̃(1) = Ax̃(0) +Bũ(0) and ỹ(0) = Cx̃(0) +Dũ(0). On the other hand,
by translation-invariance of the system equations (1.1) we may rewrite the formula
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(4.18) for Sr(x̃(1)) as

(4.21) Sr(x̃(1)) = inf
u′∈D(W

(1)
c ) : W

(1)
c u=x̃(1)

0∑

n=−∞

(
‖u′(n)‖2 − ‖y′(n)‖2

)
,

where W
(1)
c is the shifted observability operator discussed in Remark 2.5 and where

y′ = T̃
(1)
FΣ

u′; here now u′ is supported on (−∞, 0] rather than on Z− = (−∞, 0)

and T̃
(1)
FΣ

is the shift of T̃FΣ from the interval Z− to the interval (−∞, 0]. Let us

write sequences u′ ∈ ℓ2U((−∞, 0]) in the form u′ = (v′, v′) as in Remark 2.5 where
v′ ∈ ℓ2U(Z−) and v′ ∈ U . As observed in Remark 2.5,

W(1)
c (v′, v) = AWcv

′ +Bv′.

Furthermore, from the structure of the Laurent operator LFΣ (4.6) we read off that

(4.22) T̃
(1)
FΣ

(v′, v′) =

(
T̃FΣv

′,

−1∑

k=−∞

CA−k−1Bv′(k) +Dv′

)

where the series converges at least in the weak topology of Y. For v′ ∈ D(Wc), we
know from Proposition 2.1 that Wcv

′ is given by

(4.23) Wcv
′ =

−1∑

k=−∞

A−k−1Bv′(k)

where the series converges D(W∗
c )-weakly. We also know under our standing as-

sumption (4.12) that Obs (C|A) ⊂ D(W∗
c ) (see Proposition 2.2 (2)), and hence in

particular C∗y ∈ D(W∗
c ) for all y ∈ Y. This observation combined with the formula

(4.23) implies that

CWcv
′ =

−1∑

k=−∞

CA−k−1Bv′(k)

where the series converges weakly in Y. This combined with (4.22) gives us

T̃
(1)
FΣ

(v′, u) =
(
T̃FΣv

′, CWcv
′ +Dv′

)
.

Thus the formula (4.21) for Sr(x̃(1)) can be written out in more detail as

(4.24) Sr(x̃(1)) = inf
(v′,v′)∈T ′

{
(‖v′‖2 − ‖T̃FΣv

′‖2) + ‖u‖2 − ‖CWcv
′ +Du‖2

}

where

(4.25) T ′ := {v′ ∈ D(Wc), v
′ ∈ U : AWcv

′ +Bv′ = x̃(1)}.
Note that the infimum (4.20) can be identified with the infimum (4.24) if we restrict
the free parameter (v′, v′) to lie in the subset

T = {(v′, v′) ∈ T ′ : Wcv
′ = x̃(0), v′ = ũ(0)}.

As the infimum of an objective function over a given set T is always bounded
above by the infimum of the same objective function over a smaller set T ′ ⊂ T , the
inequality (4.20) now follows as wanted.

It remains to address item (2), i.e., to show that S(x0) ≤ Sr(x0) for any other
storage function S satisfying appropriate hypotheses. If x0 /∈ ImWc, Sr(x0) = ∞
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and the desired inequality holds trivially, so we assume that x0 = Wcu for some
u ∈ D(Wc). Let us approximate u by elements of ℓfin,U(Z−) in the natural way:

uK(n) =

{
u(n) for −K ≤ n ≤ −1,

0 for n < −K

for K = 1, 2, . . . , and set xK = WcuK . We let (u(n),x(n),y(n))n≥−K be a system
trajectory with u(n) = uK(n) and with the state initialization x(−K) = 0. Then,
as x(0) will then be equal to xK , iteration of the dissipation inequality (3.1) gives
us

(4.26) S(xK) ≤
−1∑

n=−K

(
‖uK(n)‖2 − ‖T̃FΣuK(n)‖2

)
.

We seek to let K → ∞ in this inequality. As uK → u in the norm topology of

ℓ2U(Z−) and ‖T̃FΣ‖ ≤ 1 since F is in the Schur class by assumption, it is clear that
the right hand side of (4.26) converges to

‖u‖2ℓ2
U
(Z−) − ‖T̃FΣu‖2ℓ2

U
(Z−) = ‖D

T̃FΣ
u‖2ℓ2

U
(Z−)

as K → ∞. On the other hand, as a consequence of the characterization (2.8)
of the action of Wc, it follows that xK = WcuK converges to x0 = Wcu in the
D(W∗

c)-weak sense. Hence, if S is continuous with respect to the D(W∗
c )-weak

topology as described in the statement of item (a), we see that S(xK) → S(x0) as
K → ∞ and we arrive at the limiting version of inequality (4.26):

(4.27) S(x0) ≤ ‖u‖2 − ‖T̃FΣu‖2 = ‖D
T̃FΣ

u‖2ℓ2
U
(Z−).

We may now take the infimum over all u ∈ D(Wc) with Wcu = x0 to arrive at the
desired inequality S(x0) ≤ Sr(x0). This proves item (a) of (2). If Wc is bounded,
then xK = WcuK converges in norm to Wcu = x0. If S is continuous with respect
to the norm topology on X , then S(xK) → S(x0) and we again arrive at the limit
inequality (4.27), from which the desired inequality S(x0) ≤ Sr(x0) again follows.
This completes the verification of item (2) in Proposition 4.5. �

Remark 4.6. Note that the fact that Sa is ℓ2-regular can alternatively be seen from
the fact that Sr is a ℓ2-regular storage function combined with the first inequality
in item (3) of Proposition 4.2.

Collecting some of the observations on the boundedness of Sa and Sr from the
above results we obtain the following corollary. The inequalities in (4.28) follow
directly from (4.14) and (4.19).

Corollary 4.7. Assume Σ as in (1.1) is a system satisfying the assumptions (4.12).
Define Sa by (4.1) and Sr by (4.18). For x0 ∈ ImWo we have

(4.28) ‖Wox0‖2 ≤ Sa(x0) ≤ Sr(x0) ≤ ‖u−‖2

for all u− ∈ D(Wc) with x0 = Wcu−, with the last inequality being vacuous if
x0 6∈ ImWc, in which case Sr(x0) = ∞. Hence

Sr(x0) < ∞ ⇐⇒ x0 ∈ ImWc,

x0 ∈ ImWc =⇒ Sa(x0) < ∞ =⇒ x0 ∈ D(Wo).

In particular, Sr is finite-valued if and only if ImWc = X , that is, Σ is ℓ2-exactly
controllable, and Sa is finite-valued in case Σ is ℓ2-exactly controllable.
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Since FΣ is assumed to be a Schur class function, LFΣ is a contraction, so that
I − LFΣL

∗
FΣ

and I − L∗
FΣ

LFΣ are positive-semidefinite operators. We can thus
read off from the (2, 2)-entry in the right-hand side of the first identity and the
(1, 1)-entry in the right hand side of the second identity of (4.13) that

(4.29) D2
T∗

FΣ

� HFΣH
∗
FΣ

and D2
T̃FΣ

� H∗
FΣ

HFΣ .

The observability and controllability assumptions of (4.12) imply that the ob-
servability operator Wo : D(Wo) → ℓ2Y(Z+) and the controllability operator
Wc : D(Wc) → X are closed densely defined operators that satisfy the prop-
erties listed in Propositions 2.1 and 2.2. As spelled out in Proposition 2.2, the
Hankel operator HFΣ admits the factorizations

(4.30) HFΣ |D(Wc) = WoWc and H∗
FΣ

|D(W∗
o)

= W∗
cW

∗
o.

Using the Douglas factorization lemma [16] together with the factorizations
(4.30), we arrive at the following result. The proof also requires use of the Moore-
Penrose generalized inverse X† of a densely defined closed linear Hilbert-space op-
erator X : D(X) → H2, with D(X) ⊂ H1: we define X† : D(X†) = (ImX ⊕
(ImX)⊥) → H1 by

(4.31)

{
X†(Xh1) = P(KerX)⊥h1,

X†|(ImX)⊥ = 0.

Then X† is also closed and has the properties

X†X = P(KerX)⊥ |D(X), XX† = PImX |ImX⊕(ImX)⊥ .

In particular, if X is bounded and surjective, then X† is a bounded right inverse of
X , and, if X is bounded, bounded below and injective, then X† is a bounded left
inverse of X .

Lemma 4.8. Let the discrete-time linear system Σ in (1.1) satisfy the assumptions
in (4.12). Then:

(1) There exists a unique closable operator Xa with domain ImWc mapping
into (KerDT∗

FΣ
)⊥ ⊂ ℓ2Y(Z+) so that we have the factorization

(4.32) Wo|ImWc
= DT∗

FΣ
Xa.

Moreover, if we let Xa denote the closure of Xa, then Xa is injective.
(2) There exists a unique closable operator Xr with domain ImW∗

o mapping
into (KerD

T̃FΣ
)⊥ ⊂ ℓ2U(Z−) so that we have the factorization

(4.33) W∗
c |ImW∗

o
= D

T̃FΣ
Xr.

Moreover, if we let Xr denote the closure of Xr, then Xr is injective.

Proof. As statement (2) is just a dual version of statement (1), we only discuss the
proof of (1) in detail.

Apply the Douglas factorization lemma to the first of the inequalities in (4.29)
to get the existence of a unique contraction operator

Ya : ℓ2U(Z−) → (KerDT∗
FΣ

)⊥ ⊂ ℓ2Y(Z+)

such that

DT∗
FΣ

Ya = HFΣ , so that, by (4.30), DT∗
FΣ

Ya|D(Wc) = WoWc.
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If we let W†
c be the Moore-Penrose generalized inverse (4.31) of Wc, then

W†
c(x) = arg min {‖u‖2ℓ2

U
(Z−) : u ∈ D(Wc), x = Wcu} (x ∈ ImWc).

Since Wc is closed, KerWc is a closed subspace of ℓ2U(Z−) and for all u ∈ D(Wc)
with x = Wcu we have W†

c(x) = u − PKerWc
u. We next define Xa : ImWc →

ℓ2Y(Z+) by

Xa = YaW
†
c.

Then Xa is a well-defined, possibly unbounded, operator on the dense domain
D(Xa) = ImWc. Moreover we have

DT∗
FΣ

Xa = DT∗
FΣ

YaW
†
c = HFΣW

†
c = WoWcW

†
c = Wo|ImWc

.

Hence Xa provides the factorization (4.32). Furthermore, Xa = YaW
†
c implies that

ImXa ⊂ ImYa, so that ImXa ⊂ (KerDT∗
FΣ

)⊥. Moreover, from the factorization

(4.32) we see that this property makes the choice of Xa unique.

We now check that Xa so constructed is closable. Suppose that {x(k)
0 }k≥0 is

a sequence of vectors in ImWc such that limk→∞ x
(k)
0 = 0 in X -norm, while

limk→∞ Xax
(k)
0 = y in ℓ2Y(Z+)-norm. As DT∗

FΣ
is bounded, it follows that

lim
k→∞

Wox
(k)
0 = lim

k→∞
DT∗

FΣ
Xax

(k)
0 = DT∗

FΣ
y in ℓ2Y(Z+)-norm.

Since Wo is a closed operator and we have x
(k)
0 → 0 in X -norm, it follows that

DT∗
FΣ

y = 0. As ImXa ⊂ (KerDT∗
FΣ

)⊥ and Xax
(k)
0 → y, we also have that y ∈

(KerDT∗
FΣ

)⊥. It follows that y = 0, and hence Xa is closable.

Let Xa be the closure of Xa. We check that Xa is injective as follows. The vector

x0 being in D(Xa) means that there is a sequence of vectors {x(k)
0 }k≥1 contained in

D(Xa) with limk→∞ x
(k)
0 = x0 in X and limk→∞ Xax

(k)
0 = y for some y ∈ ℓ2Y(Z+).

The condition that Xax = 0 means that in addition y = 0. Since DT∗
FΣ

is bounded,

it then follows that limk→∞ DT∗
FΣ

Xax
(k)
0 = 0, or, by (4.32)

lim
k→∞

Wox
(k)
0 = 0.

As we also have limk→∞ x
(k)
0 = x0 in X and Wo is a closed operator, it follows

that x0 ∈ D(Wo) and Wox0 = 0. As Wo is injective, it follows that x0 = 0. We
conclude that Xa is injective as claimed. �

Using the closed operators Xa and Xr defined in Lemma 4.8 we now define
(possibly unbounded) positive-definite operators Ha and Hr so that the storage
functions Sa and Sr have the quadratic forms Sa = SHa

and Sr = SHr
as in (3.6).

We start with Ha. Since Xa is closed, there is a good polar factorization

Xa = Ua|Xa|
(see [26, Theorem VIII.32]); in detail, X

∗

aXa is selfadjoint with positive selfadjoint

square-root |Xa| = (X
∗

aXa)
1
2 satisfying D(|Xa|) = D(Xa), Ua is a partial isometry

with initial space equal to (KerXa)
⊥ and final space equal to ImXa so that we

have the factorization Xa = Ua|Xa|.
Now set

(4.34) Ha = X
∗

aXa, H
1
2
a = |Xa|.
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As noted in Lemma 4.8, Xa is injective, and thus Ha and H
1
2
a are injective as well,

and as a result Ua is an isometry.
We proceed with the definition of Hr. As the properties of Xr parallel those of

Xa, Xr has a good polar decomposition Xr = Ur|Xr| with |Xr| and Ur having

similar properties as |Xa| and Ua, in particular, X
∗

rXr and |Xr| are injective and
Ur is an isometry. We then define

(4.35) Hr =
(
X

∗

rXr

)−1

, H
1
2
r = |Xr|−1.

We shall also need a modification of the factorization (4.33). For u ∈ D(Wc) and
x ∈ ImW∗

o, let us note that

〈Wcu, x〉X = 〈u,W∗
cx〉ℓ2

U
(Z−) = 〈u, D

T̃FΣ
Xrx〉ℓ2

U
(Z−) (by (4.33))

= 〈D
T̃FΣ

u, Xrx〉ℓ2
U
(Z−).

The end result is that then D
T̃FΣ

u is in D(X∗
r ) andX∗

rDT̃FΣ
u = Wcu. In summary

we have the following adjoint version of the factorization (4.33):

(4.36) Wc = X∗
rDT̃FΣ

|D(Wc).

In the following statement we use the notion of a core of a closed, densely defined
operator Γ between two Hilbert spaces H and K (see [26] or [20]), namely: a dense
linear submanifold D is said to be a core for the closed, densely defined operator X
with domain D(X) in H mapping into K if, given any x ∈ D(X), there is a sequence
{xn}n≥1 of points in D such that limn→∞ xn = x and also limn→∞ Xxn = Xx.

Theorem 4.9. Let the discrete-time linear system Σ in (1.1) satisfy the assump-
tions in (4.12). Define Xa, Xa, Xr, Xr as in Lemma 4.8 and the closed operators
Ha and Hr as in the preceding discussion. Then the available storage function Sa

and required supply function Sr are given by

Sa(x0) = ‖Xax0‖2 = ‖H
1
2
a x0‖2 (x0 ∈ ImWc),(4.37)

Sr(x0) = ‖|Xr|−1x0‖2 = ‖H
1
2
r x0‖2 (x0 ∈ ImWc).(4.38)

In particular, the available storage Sa and ℓ2-regularized required supply Sr agree
with quadratic storage functions on ImWc.

Moreover, ImWc is a core for H
1
2
a and ImW∗

o is a core for H
− 1

2
r .

Proof. By Lemma 4.8, in the operator form of Sa derived in Lemma 4.4 we can
replace Wox0 by DT∗

FΣ
Xax0, leading to

(4.39) Sa(x0) = sup
u∈ℓ2

U
(Z+)

‖DT∗
FΣ

Xax0 + TFΣu‖2ℓ2
Y
(Z+) − ‖u‖2ℓ2

U
(Z+).
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For x0 ∈ ImWc and each u ∈ ℓ2U(Z+) we have

‖DT∗
FΣ

Xax0 + TFΣu‖2 − ‖u‖2 =

= ‖DT∗
FΣ

Xax0‖2 + 2Re 〈DT∗
FΣ

Xax0,TFΣu〉+ ‖TFΣu‖2 − ‖u‖2

= ‖DT∗
FΣ

Xax0‖2 + 2Re 〈DT∗
FΣ

Xax0,TFΣu〉 − ‖DTFΣ
u‖2

= ‖DT∗
FΣ

Xax0‖2 + 2Re 〈Xax0, DT∗
FΣ

TFΣu〉 − ‖DTFΣ
u‖2

= ‖DT∗
FΣ

Xax0‖2 + 2Re 〈Xax0,TFΣDTFΣ
u〉 − ‖DTFΣ

u‖2

= ‖DT∗
FΣ

Xax0‖2 + 2Re 〈T∗
FΣ

Xax0, DTFΣ
u〉 − ‖DTFΣ

u‖2

= ‖DT∗
FΣ

Xax0‖2 + ‖T∗
FΣ

Xax0‖2 − ‖T∗
FΣ

Xax0 −DTFΣ
u‖2

= ‖Xax0‖2 − ‖T∗
FΣ

Xax0 −DTFΣ
u‖2.

By construction, we have ImXa ⊂ (KerDT∗
FΣ

)⊥ = ImDT∗
FΣ

. Using that T∗
FΣ

DT∗
FΣ

=

DTFΣ
T∗
FΣ

, we obtain

T∗
FΣ

ImDT∗
FΣ

⊂ ImDTFΣ
.

Thus ImT∗
FΣ

Xa ⊂ ImDTFΣ
. Hence there is a sequence uk of input signals in ℓ2U(Z+)

so that ‖T∗
FΣ

Xax0 −DTFΣ
uk‖ → 0 as k → ∞. We conclude that for x0 ∈ ImWc

the supremum in (4.39) is given by

Sa(x0) = ‖Xax0‖2 = ‖Xax0‖2 = ‖H
1
2
a x0‖2.

Let x0 ∈ ImWc. Given a u ∈ D(Wc), by the factorization (4.36) we see that
Wcu = x0 if and only if X∗

rDT̃FΣ
u = x0. Therefore, we have

Sr(x0) = inf
u∈D(Wc), X∗

rDT̃FΣ
u=x0

‖D
T̃FΣ

u‖2 = inf
v∈D

T̃FΣ
D(Wc), X∗

rv=x0

‖v‖2.

A general property of operator closures is X
∗

r = X∗
r . Hence

(4.40) Sr(x0) = inf
v∈D

T̃FΣ
D(Wc), X

∗

rv=x0

‖v‖2.

As x0 ∈ ImWc by assumption, the factorization (4.36) gives us a u0 ∈ D(Wc) so
that

(4.41) x0 = X
∗

rDT̃FΣ
u0.

In particular, x0 has the form x0 = X
∗

rv0 with v0 ∈ D
T̃FΣ

D(Wc). From (4.41) we

see that the general solution v ∈ D(X
∗

r) of x0 = X
∗

rv is

(4.42) v = D
T̃FΣ

u0 + k where k ∈ KerX
∗

r .

By construction the target space for Xr (and Xr) is
(
KerD

T̃FΣ

)⊥
so the domain

space for X
∗

r is (KerD
T̃FΣ

)⊥ and KerX
∗

r ⊂ ImD
T̃FΣ

. Hence the infimum in (4.40)

remains unchanged if we relax the constraint v ∈ D
T̃FΣ

D(Wc) to just v ∈ D(X
∗

r),

i.e.,

(4.43) Sr(x0) = inf
v∈D(X

∗

r), X
∗

rv=x0

‖v‖2.
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In terms of the polar decomposition Xr = Ur|Xr| for Xr, we have

X
∗

r = |Xr|U∗
r

with

D(X
∗

r) = {u ∈ ImD
T̃FΣ

: U∗
r u ∈ D(|Xr|) = D(Xr)}.

Since |Xr| is injective and Ur is an isometry with range equal to (KerX
∗

r)
⊥, the

constraint |Xr|U∗
r v = X

∗

rv = x0 is equivalent to

P(KerX
∗

r)
⊥v = UrU

∗
r v = Ur|Xr|−1x0.

Since we want to minimize ‖v‖2 with P(KerX
∗

r)
⊥v equal to Ur|X

∗

r |−1x0 ∈ D(Xr),

it is clear that this is achieved at vopt = Ur|X
∗

r |−1x0, so that

Sr(x0) = ‖vopt‖2 = ‖Ur|Xr|−1x0‖2 = ‖|Xr|−1x0‖2 = ‖H
1
2
r x0‖2,

as claimed.
It remains to verify the last assertion concerning the core properties of ImWc

and ImW∗
o . By definition H

1
2
a = |Xa| where Xa is defined to be the closure of

the Xa = Xa|ImWc
. Hence ImWc by definition is a core for Xa from which it

immediately follows that ImWc is a core for H
1
2
a = |Xa|. That ImW∗

o is a core for

H
− 1

2
r = |Xr| follows in the same way via a dual analysis. �

5. The dual system Σ∗

In this section we develop a parallel theory for the dual system Σ∗ of Σ, which is
the system with system matrix equal to the adjoint of (1.2) evolving in backward-
time.

5.1. Controllability, observability, minimality and transfer function for

the dual system. With the discrete-time linear system Σ given by (1.1) with
system matrix M = [ A B

C D ] we associate the dual system Σ∗ with system matrix

M∗ =
[
A∗ C∗

B∗ D∗

]
:
[
X
Y

]
→ [XU ]. It will be convenient for our formalism here to let

the dual system evolve in backward time; we therefore define the system Σ∗ to be
given by the system input/state/output equations

(5.1) Σ∗ : =

{
x∗(n− 1) = A∗x∗(n) + C∗u∗(n),

y∗(n) = B∗x∗(n) +D∗u∗(n).

If we impose a final condition x∗(−1) = x0 and feed in an input-sequence {u(n)}n∈Z−
,

one can solve recursively to get, for n ≤ −1,
{

x∗(n) = A∗−n−1x0 +
∑−1

j=n+1 A
∗−n+jC∗u∗(j),

y∗(n) = B∗A∗−n−1x0 +
∑−1

j=n+1 B
∗A∗−n+j−1C∗u∗(j) +D∗u∗(n).

Alternatively, the Z-transform {x∗(n)}n∈Z−
7→ x̂∗(λ) =

∑−1
n=−∞ x∗(n)λ

n may be
applied directly to the system equations (5.1). Combining this with the observation
that

−1∑

n=−∞

x∗(n− 1)λn = λ

(
−1∑

n=−∞

x∗(n− 1)λn−1

)
= λ

(
−2∑

n=−∞

x∗(n)λ
n

)

= λ
(
x̂∗(λ) − x0λ

−1
)
= λx̂∗(λ)− x0.
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converts the first system equation in (5.1) to

λx̂∗(λ)− x0 = A∗x̂∗(λ) + C∗û∗(λ)

leading to the Z-transformed version of the whole system:
{

x̂∗(λ) = (λI −A∗)−1x0 + (λI −A∗)−1C∗û∗(λ),
ŷ∗(λ) = B∗(λI −A∗)−1x0 + FΣ∗(λ)û∗(λ),

where the transfer function FΣ∗(λ) for the system Σ∗ is then given by

FΣ∗(λ) = D∗ + B∗(λI −A∗)−1C∗

= D∗ + λ−1(I − λ−1A∗)−1C∗ = FΣ(1/λ)
∗(5.2)

which is an analytic function on a neighborhood of the point at ∞ in the complex
plane. Moreover, FΣ∗ has analytic continuation to a function analytic on the exte-
rior of the unit disk De := {λ ∈ C : |λ| > 1} ∪ {∞} exactly when FΣ has analytic
continuation to a function analytic on the unit disk D with equality of corresponding
∞-norms:

‖FΣ∗
‖∞,De

:= sup
λ∈De

‖FΣ∗
(λ)‖ = sup

λ∈D

‖FΣ(λ)‖ =: ‖FΣ‖∞,D.

All the analysis done up to this point for the system Σ has a dual analogue for
the system Σ∗. In particular, the observability operator W∗o for the dual system is
obtained by running the system (5.1) with final condition x∗(−1) = x0 and input
string u∗(n) = 0 for n ≤ −1, resulting in the output string {B∗A∗(−n−1)x0}n∈Z−

.

Since we are interested in a setting with operators on ℓ2, we define the observability
operator W∗o for Σ∗ to have domain

D(W)∗o = {x0 ∈ X : {B∗A∗(−n−1)x0}n∈Z−
∈ ℓ2U(Z−)}

with action given by

W∗ox0 = {B∗A∗(−n−1)x0}n∈Z−
for x0 ∈ D(W∗o).

Note that W∗o so defined is exactly the same as the adjoint controllability oper-
ator W∗

c for the original system (2.3)–(2.4), and in fact viewing this operator as
W∗o gives a better control-theoretic interpretation for this operator. Similarly it is
natural to define the adjoint controllability operator for the adjoint system (W∗c)

∗

by

D((W∗c)
∗) = {x0 ∈ X : {CAnx0}n∈Z+ ∈ ℓ2Y(Z+)} = D(Wo)

with action given by

W∗
∗cx0 = {CAnx0}n∈Z+ = Wox0.

In view of the equalities

(5.3) W∗o = W∗
c , (W∗c)

∗ = Wo, (W∗o)
∗ = Wc, W∗c = W∗

o,

one can work out the dual analogue of Proposition 2.1, either by redoing the original
proof with the backward-time system Σ∗ in place of the forward-time system Σ, or
simply by making the substitutions (5.3) in the statement of the results.

Let us now assume that FΣ has analytic continuation to a bounded analytic
L(U ,Y)-valued function on the unit disk, or equivalently, FΣ∗ has analytic contin-
uation to a bounded analytic L(Y,U)-valued function on the exterior of the unit
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disk De. Then FΣ and FΣ∗ can be identified via strong nontangential boundary-
value limits with L∞-functions on the unit circle T; the relations between these
boundary-value functions is simply

FΣ∗(λ) = FΣ(λ)
∗ (a.e. λ ∈ T)

with the consequence that the associated multiplication operators

MFΣ : L
2
U(T) → L2

Y(T), MFΣ∗ : L
2
Y(T) → L2

U(T)

given by

MFΣ : û(λ) 7→ F̂Σ(λ) · û(λ), MFΣ∗ : û∗(λ) 7→ F̂Σ∗
(λ) · û∗(λ)

are adjoints of each other:
(MFΣ)

∗ = MFΣ∗ .

Note also that MFΣ maps H2
U(D) into H2

Y(D) while MFΣ∗ = M∗
FΣ

maps (H2
Y)

⊥ :=

L2
Y(T)⊖H2

Y(D)
∼= H2

Y(De) into (H2
U )

⊥ := L2
U (T)⊖H2

U (D)
∼= H2

U (De).
It is natural to define the frequency-domain Hankel operator HFΣ∗ for the adjoint

system as the operator from H2
Y(De)

⊥ = H2
Y(D) (the past from the point of view

of the backward-time system Σ∗) to H2
U (De) = H2

U (D)
⊥ (the future from the point

of view of Σ∗) by

(5.4) HFΣ∗ = PH2
U
(D)⊥MFΣ∗ |H2

Y
(D) = (HFΣ)

∗.

After application of the inverse Z-transform, we see that the time-domain version
HFΣ∗ of the Hankel operator for Σ∗ is just the adjoint (HFΣ)

∗ of the time-domain
version of the Hankel operator for Σ, namely

HFΣ∗ = [B∗A∗(−i+j−1)C∗]i<0,j≥0 : ℓ
2
Y(Z+) → ℓ2U(Z−).

from which we see immediately the formal factorization

(5.5) HFΣ∗ = coli<0[B
∗A∗(−i−1)] · rowj≥0[A

∗jC∗] = W∗oW∗c = W∗
cW

∗
o.

With all these observations in place, it is straightforward to formulate the dual
version of Proposition 2.2, again, either by redoing the proof of Proposition 2.2
with the backward-time system Σ∗ in place of the forward-time system Σ, or by
simply substituting the identifications (5.3) and (5.4).

Note next that an immediate consequence of the identifications (5.3) is that
ℓ2-exact controllability for Σ is the same as ℓ2-exact observability for Σ∗ and ℓ2-
exact observability for Σ is the same as ℓ2-exact controllability for Σ∗. With this
observation in hand, the dual version of Proposition 2.3 is immediate.

5.2. Storage functions for the adjoint system. Let S∗ be a function from X
to [0,∞]. In parallel with what is done in Section 3, we define S∗ to be a storage
function for the system Σ∗ if

(5.6) S∗(x∗(n− 1))) ≤ S∗(x∗(n)) + ‖u∗(n)‖2 − ‖y∗(n)‖2Y for n ≤ N0

holds over all system trajectories (u∗(n),x∗(n),y∗(n))n≤N0 of the system Σ∗ in
(5.1) with state initialization x∗(N0) = x0 for some x0 ∈ X at some N0 ∈ Z, and
S∗ is normalized to satisfy

(5.7) S∗(0) = 0.

Then by redoing the proof of Proposition 3.1 with the backward-time system Σ∗

in place of the forward-time system Σ, we arrive at the following dual version of
Proposition 3.1.
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Proposition 5.1. Suppose that the system Σ∗ in (5.1) has a storage function S∗

as in (5.6) and (5.7). Then the transfer function FΣ∗ of Σ∗ defined by (5.2) has
an analytic continuation to the exterior unit disk De in the Schur class SDe

(Y,U).
Note that by the duality considerations already discussed above, an equivalent

conclusion is that FΣ has analytic continuation to the unit disk in the Schur class
S(U ,Y) over the unit disk.

We say that S∗ is a quadratic storage function for Σ∗ if S∗ is a storage function
of the form

(5.8) S∗(x) = SH∗
(x) =

{
‖H

1
2
∗ x‖2 for x ∈ D(H

1
2
∗ ),

+∞ otherwise.

whereH∗ is a (possibly) unbounded positive-semidefinite operator on X . To analyze
quadratic storage functions for Σ∗, we introduce the adjoint KYP-inequality: we say
that the bounded selfadjoint operator H on X satisfies the adjoint KYP-inequality
if

(5.9)

[
A B
C D

] [
H∗ 0
0 IU

] [
A B
C D

]∗
�
[
H∗ 0
0 IU

]
.

More generally, for a (possibly) unbounded positive-semidefinite operator H∗ on X ,

we say that H∗ satisfies the generalized KYP-inequality if, for all x ∈ D(H
1
2
∗ ) we

have

(5.10) A∗D(H
1
2
∗ ) ⊂ D(H

1
2
∗ ), C∗Y ⊂ D(H

1
2
∗ ),

and for all x∗ ∈ D(H
1
2
∗ ) and u∗ ∈ Y we have

(5.11)

∥∥∥∥∥

[
H

1
2
∗ 0
0 IY

][
x∗

u∗

]∥∥∥∥∥

2

−
∥∥∥∥∥

[
H

1
2
∗ 0
0 IU

] [
A∗ C∗

B∗ D∗

] [
x∗

u∗

]∥∥∥∥∥

2

≥ 0.

Then the dual version of Proposition 3.3 is straightforward.

Proposition 5.2. Suppose that the function S∗ has the form (5.8) for a (possibly)
unbounded positive-semidefinite operator H∗ on X . Then S∗ is a storage function
for Σ∗ if and only if H∗ is a solution of the generalized adjoint-KYP inequality
(5.10)–(5.11). In particular, S∗ is a finite-valued storage function for Σ∗ if and
only if H is a bounded positive-semidefinite operator satisfying the adjoint KYP-
inequality (5.9).

We next discuss a direct connection between positive-definite solutions H of
the KYP-inequality (1.5) and positive-definite solutions H∗ of the adjoint KYP-
inequality (5.9). First let us suppose that H is a bounded strictly positive-definite
solution of the KYP-inequality (1.5). Set

Q =

[
H

1
2 0

0 IY

] [
A B
C D

] [
H− 1

2 0
0 IU

]
.

Then the KYP-inequality (1.5) is equivalent to Q∗Q � I, i.e., the fact that the
operator Q : [XU ] →

[
X
Y

]
is a contraction operator. But then the adjoint Q∗ of Q

is also a contraction operator, i.e., QQ∗ � I. Writing out

Q∗ =

[
H− 1

2 0
0 IU

] [
A∗ C∗

B∗ D∗

] [
H

1
2 0

0 IY

]
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and rearranging gives
[
A B
C D

] [
H−1 0
0 IU

] [
A∗ C∗

B∗ D∗

]
�
[
H−1 0
0 IY

]
,

i.e., H∗ := H−1 is a solution of the adjoint KYP-inequality (5.9) for the adjoint
system Σ∗. Conversely, by flipping the roles of Σ and Σ∗ and using that Σ∗∗ = Σ,
we see that ifH∗ is a bounded, strictly positive-definite solution of the adjoint KYP-
inequality (5.9), then H := H−1

∗ is a bounded, strictly positive-definite solution of
the KYP-inequality (1.5).

The same correspondence between solutions of the generalized KYP-inequality
(1.12)–(1.13) for Σ and solutions of the generalized KYP-inequality for the adjoint
system (5.10)–(5.11) continues to hold, but the details are more delicate, as ex-
plained in the following proposition. For an alternative proof see Proposition 4.6
in [6].

Proposition 5.3. Suppose Σ in (1.1) is a linear system with system matrix M =
[A B
C D ] while Σ∗ is the adjoint system (5.1) with system matrix M∗ =

[
A∗ C∗

B∗ D∗

]
. Then

the (possibly unbounded) positive-definite operator H is a solution of the generalized
KYP-inequality (1.12)–(1.13) for Σ if and only if H−1 is a positive-definite solution
of the generalized KYP-inequality (5.10)–(1.13) for Σ∗.

Proof. Suppose that the positive-definite operator H with dense domain D(H)
in X solves the generalized KYP-inequality (1.12)–(1.13). Define an operator

Q :
[
ImH

1
2

U

]
→
[
ImH

1
2

Y

]
by

Q :

[
H

1
2 0

0 IU

] [
x
u

]
7→
[
H

1
2 0

0 IY

] [
A B
C D

] [
x
u

]

for x ∈ D(H
1
2 ) and u ∈ U . We can write the formula for Q more explicitly in terms

of x′ = H
1
2 x ∈ ImH

1
2 as

Q :

[
x′

u

]
7→
[
H

1
2 0

0 IY

] [
A B
C D

] [
H− 1

2 0
0 IU

] [
x′

u

]

for x′ ∈ ImH
1
2 and u ∈ U . The content of the generalized KYP-inequality (1.12)–

(1.13) is that Q is a well-defined contraction operator from
[
ImH

1
2

U

]
into

[
X
Y

]
and

hence has a uniquely determined contractive extension to a contraction operator
from [XU ] to

[
X
Y

]
. Let us now choose arbitrary vectors x ∈ D(H

1
2 ), x∗ ∈ D(H− 1

2 ) =

ImH
1
2 , u ∈ U , u∗ ∈ Y and set x′ = H

1
2x, x′

∗ = H− 1
2x∗. Then we compute on the

one hand
〈[

A B
C D

] [
x
u

]
,

[
x∗

u∗

]〉
=

〈[
A B
C D

] [
H− 1

2 0
0 I

] [
x′

u

]
,

[
H

1
2 x′

∗

u∗

]〉

=

〈[
H

1
2 0

0 I

] [
A B
C D

] [
H− 1

2 0
0 I

] [
x′

u

]
,

[
x′
∗

u∗

]〉

=

〈
Q

[
x′

u

]
,

[
x′
∗

u∗

]〉
=

〈[
x′

u

]
, Q∗

[
x′
∗

u∗

]〉

=

〈[
H

1
2x
u

]
, Q∗

[
H− 1

2x∗

u∗

]〉
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while on the other hand
〈[

A B
C D

] [
x
u

]
,

[
x∗

u∗

]〉
=

〈[
x
u

]
,

[
A∗ C∗

B∗ D∗

] [
x∗

u∗

]〉
.

We thus conclude that
〈[

H
1
2 0

0 I

] [
x
u

]
, Q∗

[
H− 1

2x∗

u∗

]〉
=

〈[
x
u

]
,

[
A∗ C∗

B∗ D∗

] [
x∗

u∗

]〉

for all

[
x
u

]
in D

([
H

1
2 0

0 I

])
. Hence

(5.12) Q∗

[
H− 1

2x∗

u∗

]
∈ D

([
H

1
2 0

0 I

]∗)
= D

([
H

1
2 0

0 I

])

and

(5.13)

[
H

1
2 0

0 I

]
Q∗

[
H− 1

2x∗

u∗

]
=

[
A∗ C∗

B∗ D∗

] [
x∗

u∗

]

where x∗ ∈ D(H− 1
2 ) and u∗ ∈ Y are arbitrary. From the formula (5.13) we see

that A∗ : D(H− 1
2 ) → ImH

1
2 = D(H− 1

2 ) and that C∗ : Y → ImH
1
2 = D(H− 1

2 ), i.e.,
condition (5.10) holds with H∗ = H−1. Let us now rewrite equation (5.13) in the
form

Q∗

[
H− 1

2x∗

u∗

]
=

[
H− 1

2 0
0 I

] [
A∗ C∗

B∗ D∗

] [
x∗

y∗

]
.

Using that Q∗ is a contraction operator now gives us the spatial KYP-inequality
(5.11) with H∗ = H−1. This completes the proof of Proposition 5.3. �

We next pursue the dual versions of the results of Section 4 concerning the
available storage and required supply as well as the ℓ2-regularized required supply.

First of all let us note that the Laurent operator LFΣ∗ of FΣ∗ , i.e., the inverse
Z-transform version of the multiplication operator MFΣ∗ = (MFΣ)

∗, is just the
adjoint of the Laurent operator LFΣ given by (4.4). We can rewrite LFΣ∗ in the
convenient block form

(5.14) LFΣ∗ =

[
TFΣ∗ HFΣ∗

0 T̃FΣ∗

]
=

[
(T̃FΣ)

∗ (HFΣ)
∗

0 (TFΣ)
∗

]

where the Toeplitz operators associated with the adjoint system Σ∗ are given by

TFΣ∗ = (LFΣ)
∗|ℓ2

Y
(Z−) = (T̃FΣ)

∗,

T̃FΣ∗ = Pℓ2
U
(Z+)(LFΣ)

∗|ℓ2
Y
(Z+) = (TFΣ)

∗

and where the Hankel operator for the adjoint system (already introduced as the
inverse Z-transform version of the frequency-domain Hankel operator HFΣ∗ given
by (5.4)) has the explicit representation in terms of the Laurent operator LFΣ∗ =
(LFΣ)

∗:

HFΣ∗ = Pℓ2
U
(Z−)(LFΣ)

∗|ℓ2
U
(Z+).

Let U∗ be the space of all functions n 7→ u∗(n) from the integers Z into the
input space Y for the adjoint system Σ∗. We define the available storage for the
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adjoint system S∗a by

(5.15) S∗a(x0) = sup
u∈U∗,n−1<0

n=−1∑

n=n−1

(‖y∗(n)‖2 − ‖u∗(n)‖2)

where the supremum is taken over all adjoint-system trajectories

(u∗(n),x∗(n),y∗(n))n≤−1

(specified by the adjoint-system equations (5.1) running in backwards time) with
final condition x∗(−1) = x0. Similarly, the dual required supply S∗r is given by

(5.16) S∗r(x0) = inf
u∈U , n1≥0

n1∑

n=0

(‖u∗(n)‖2 − ‖y∗(n)‖2)

where the infimum is taken over system trajectories (u∗(n),x∗(n),y∗(n))n≤n1 sub-
ject to the boundary conditions x∗(n1) = 0 and x(−1) = x0. Then one applies
the analysis behind the proof of Proposition 4.2 to the backward-time system Σ∗

in place of the forward-time system Σ to see that S∗a and S∗r are both storage
functions for Σ∗ and furthermore S∗a(x0) ≤ S∗(x0) ≤ S∗r(x0), x0 ∈ X , for any
other Σ∗-storage function S∗. We shall however be primarily interested in the
ℓ2-regularized dual required supply S∗r, rather than in S∗r, defined by

(5.17) S∗r(x0) = inf
u∈D(W∗c) : W∗cu=x0

∞∑

n=0

(
‖u∗(n)‖2 − ‖y∗(n)‖2

)
.

Furthermore, by working out the backward-time analogues of the analysis in Section
4, one can see that S∗r is also a storage function for Σ∗, and that the definitions of
S∗a and S∗r can be reformulated in a more convenient operator-theoretic form:

S∗a(x0) = sup
u∗∈ℓ2

Y
(Z−)

‖W∗ox0 + TFΣ∗u∗‖2ℓ2
U
(Z−) − ‖u∗‖2ℓ2

Y
(Z−)

= sup
u∗∈ℓ2

Y
(Z−)

‖W∗
cx0 + T̃∗

FΣ
u∗‖2ℓ2

U
(Z−) − ‖u∗‖2ℓ2

Y
(Z−) for x0 ∈ D(W∗

c )(5.18)

with S∗a(x0) = +∞ if x0 /∈ D(W∗
c ), while

S∗r(x0) = inf
u∗∈D(W∗c) : W∗cu∗=x0

‖u∗‖2ℓ2
Y
(Z+) − ‖T̃FΣ∗u∗‖2ℓ2

U
(Z+)

= inf
u∗∈D(W∗

o) : W
∗
ou∗=x0

‖u∗‖2ℓ2
Y
(Z+) − ‖T∗

FΣ
u∗‖2ℓ2

U
(Z+)

= inf
u∗∈D(W∗

o),W
∗
ou∗=x0

‖DT∗
FΣ

u∗‖2.(5.19)

By notational adjustments to the arguments in the proof of Theorem 4.9, we
arrive at the following formulas for S∗a and S∗r on ImW∗

o .

Theorem 5.4. Let the operators Xa, Xr be as in Lemma 4.8 and define operators
Ha and Hr as in (4.34) and (4.35). Then the dual available storage S∗a and the
dual ℓ2-regularized required supply are given (on a suitably restricted domain) by

S∗a(x0) = ‖Xrx0‖2 = ‖H− 1
2

r x0‖2 for x0 ∈ ImW∗
o,(5.20)

S∗r(x0) = ‖|Xa|−1x0‖2 = ‖H− 1
2

a x0‖2 for x0 ∈ ImW∗
o.(5.21)
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Let us associate extended-real-valued functions SHa
, SHr

, SH
−1
r

, SH
−1
a

with the

positive-definite operators Ha, Hr, H
−1
r , H−1

a as in (3.6). Theorems 4.9 and 5.4
give us the close relationship between these functions and the functions Sa, Sr

(storage functions for Σ) and S∗a, S∗r (storage functions for Σ∗), namely:

Sa(x) = SHa
(x), Sr(x) = SHr

(x) for x ∈ ImWc,

S∗a(x) = SH
−1
r

(x), S∗r(x) = SH
−1
a

(x) for x ∈ ImW∗
o .(5.22)

In general we do not assert that equality holds in any of the four equalities in (5.22)
for all x ∈ X . Nevertheless it is the case that SHa

and SHr
are storage functions

for Σ and SH
−1
r

and SH
−1
a

are storage functions for Σ∗, as we now explain.

Proposition 5.5. Let Ha, Hr, H
−1
r , H−1

a be the positive-definite operators as in
Theorems 4.9 and 5.4. Then the following hold:

(1) SHa
and SHr

are nondegenerate storage functions for Σ, or equivalently,
Ha and Hr are positive-definite solutions of the generalized KYP-inequality
(1.12)–(1.13) for Σ.

(2) SH
−1
r

and SH
−1
a

are storage functions for Σ∗, or equivalently, H−1
r and

H−1
a are positive-definite solutions of the generalized KYP-inequality (5.10)–

(5.11) for Σ∗.

Proof. The fact that SH is a nondegenerate storage function for Σ (respectively Σ∗)
if and only if H is a positive-definite solution of the generalized KYP-inequality for
Σ (respectively Σ∗) is a consequence of Proposition 3.3 and its dual Proposition
5.2. We shall use these formulations interchangeably.

We know that SHa
(x) = Sa(x) for x ∈ ImWc. Furthermore as a consequence

of (2.18) with ũ = 0 and of (2.17) with n−1 = −1, we see that ImWc is invariant
under A and contains ImB. Thus condition (1.12) holds with ImWc in place of

D(H
1
2 ). The facts that SHa

agrees with Sa on ImWc and that Sa is a storage
function for Σ implies that the inequality (1.13) holds for x ∈ ImWc and u ∈ U :

(5.23)

∥∥∥∥∥

[
H

1
2
a 0
0 IU

] [
x
u

]∥∥∥∥∥

2

−
∥∥∥∥∥

[
H

1
2
a 0
0 IY

][
A B
C D

] [
x
u

]∥∥∥∥∥

2

≥ 0.

As noted at the end of Theorem 4.9, ImWc is a core for H
1
2
a ; hence, given x ∈

D(Ha), there is a sequence of points {xn}n≥1 contained in ImWc such that limn→∞ xn =

x and limn→∞ H
1
2 xn = H

1
2 x. As each xn ∈ ImWc, we know that the in-

equality (5.23) holds with xn in place of x for all n = 1, 2, . . . . We may now
take limits in this inequality to see that the inequality continues to hold with

x = limn→∞ xn ∈ D(H
1
2
a ), i.e., condition (1.13) holds with Ha in place of H . Thus

H is a solution of the generalized KYP-inequality for Σ. That H−1
r is a solution

of the generalized KYP-inequality for Σ∗ now follows by applying the same anal-
ysis to Σ∗ rather than to Σ. Finally, the fact that Ha (respectively, H−1

r ) is a
positive-definite solution of the generalized KYP-inequality for Σ (respectively for
Σ∗) implies that H−1

a (respectively, Hr) is a positive-definite solution of the gen-
eralized KYP-inequality for Σ∗ (respectively, Σ) as a consequence of Proposition
5.3. �
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6. Order properties of solutions of the generalized KYP-inequality

and finer results for special cases

We have implicitly been using an order relation on storage functions, namely: we
say that S1 ≤ S2 if S1(x0) ≤ S2(x0) for all x0 ∈ X . For the case of quadratic storage
functions SH1 and SH2 where H1 and H2 are two positive-semidefinite solutions of
the generalized KYP-inequality (1.12)–(1.13), the induced ordering ≤ on positive-
semidefinite (possibly unbounded) operators can be defined as follows: given two
positive-semidefinite operators H1 with dense domain D(H1) and H2 with dense

domain D(H2) in X , we say that H1 ≤ H2 if D(H
1
2
2 ) ⊂ D(H

1
2
1 ) and

(6.1) ‖H
1
2
1 x‖2 ≤ ‖H

1
2
2 x‖2 for all x ∈ D(H

1
2
2 ).

In case H1 and H2 are bounded positive-semidefinite operators, one can see that
H1 ≤ H2 is equivalent to H1 � H2 in the sense of the inequality between quadratic
forms: 〈H1x, x〉 ≤ 〈H2x, x〉, i.e., in the Loewner partial order: H2 −H1 � 0. This
ordering ≤ on (possibly unbounded) positive-semidefinite operators has appeared
in the more general context of closed quadratic forms SH (not necessarily storage
functions for some dissipative system Σ) and associated semibounded selfadjoint
operatorsH (not necessarily solving some generalized KYP-inequality); see formula
(2.17) and the subsequent remark in the book of Kato [20]. This order has been
studied in the setting of solutions of a generalized KYP-inequality in the paper of
Arov-Kaashoek-Pik [6]. Here we offer a few additional such order properties which
follow from the results developed here. Recall that the notion of a core of a closed,
densely defined linear operator was introduced in the paragraph preceding Theorem
4.9.

Theorem 6.1. Assume that the system Σ in (1.1) satisfies the standing assumption
(4.12) and Ha and Hr are defined by (4.34) and (4.35). Let H be any positive-
definite solution of the generalized KYP-inequality (1.12)–(1.13).

(1) Assume that ImWc is a core for H
1
2 . Then we have the operator inequality

(6.2) Ha ≤ H

and furthermore ImW∗
o ⊂ D(H− 1

2 ).

(2) Assume that ImW∗
o is a core for H− 1

2 . Then we have the operator in-
equality

(6.3) H ≤ Hr

and furthermore ImWc ⊂ D(H
1
2 ).

Proof. We deal with (1) and (2) in turn.
(1) Suppose thatH is a positive-definite solution of the generalized KYP-inequality

such that ImWc is a core forH
1
2 . From Theorem 4.9, we know that Sa(x) = ‖H

1
2
a x‖

for x ∈ ImWc. Since Sa is the smallest storage function (see Proposition 4.2) and
SH is a storage function, it follows that

(6.4) ‖H
1
2
a x‖2 = Sa(x) ≤ SH(x) = ‖H 1

2x‖2 for x ∈ ImWc.

Let now x be an arbitrary point of D(H
1
2 ). Since ImWc is a core for H

1
2 , we can

find a sequence {xn}n≥1 of points in ImWc such that xn → x and H
1
2xn → H

1
2x.
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In particular H
1
2 xn is a Cauchy sequence and the inequality

‖H
1
2
a xn −H

1
2
a xm‖2 = ‖H

1
2
a (xn − xm)‖2

≤ ‖H 1
2 (xn − xm)‖2 = ‖H 1

2 xn −H
1
2 xm‖2

implies that {H
1
2
a xn}n≥1 is Cauchy as well, so converges to some y ∈ X . As Ha

is closed, we get that x ∈ D(Ha) and y = H
1
2
a x. We may then take limits in

the inequality ‖H
1
2
a xn‖2 ≤ ‖H 1

2 xn‖2 holding for all n (a consequence of (6.4)) to

conclude that ‖H
1
2
a x‖2 ≤ ‖H 1

2x‖2, i.e., Ha ≤ H , i.e., (6.2) holds.
Recall next from Corollary 4.7 that ‖Wox0‖2 ≤ Sa(x0), where we now also know

from Theorem 4.9 that Sa(x0) = ‖H 1
2x0‖2 for x0 ∈ ImWc. We thus have the chain

of operator inequalities

W∗
oWo ≤ Ha ≤ H.

By Proposition 3.4 in [5], we may equivalently write

H−1 ≤ H−1
a ≤ (W∗

oWo)
−1.

In particular D(|Wo|−1) ⊂ D(H− 1
2 ). If we introduce the polar decomposition

Wo = Uo|Wo| for Wo, we see that W∗
o = |Wo|U∗

o and hence ImW∗
o = Im |Wo|.

Thus

D(|Wo|−1) = Im |Wo| = ImW∗
o

and it follows that ImW∗
o ⊂ D(H− 1

2 ) and the verification of (1) is complete.
(2) We now suppose that H is a positive-definite solution of the generalized

KYP-inequality such that ImW∗
o is a core for H− 1

2 . By the applying the result of

part (1) to the adjoint system Σ∗, we see that H−1
r ≤ H−1 and that ImWc ⊂ H

1
2 .

If we apply the result of Proposition 3.4 in [5], we see that H−1
r ≤ H−1 implies

that (is actually equivalent to) H ≤ Hr, completing the verification of (2). �

Remark 6.2. By the last assertion in Theorem 4.9, we know that ImWc is a core

for H
1
2
a and that ImW∗

o is a core for H
− 1

2
r . Also by Proposition 5.5 we know that

Ha and Hr are positive-definite solutions of the generalized KYP-inequality for Σ.
Thus item (1) in Theorem 6.1 may be rephrased as follows:

• The set GSc consisting of all positive-definite solutionsH of the generalized

KYP-inequality (1.12)–(1.13) for Σ such that ImWc is a core for H
1
2 has

the solution Ha as a minimal element with respect to the ordering ≤.

Similarly item (2) in Theorem 6.1 may be rephrased as:

• The set GSo consisting of all positive-definite solutions H of the generalized

KYP-inequality (1.12)–(1.13) such that ImW∗
o is a core for H− 1

2 has the
solution Hr as a maximal element with respect to the ordering ≤.

It would be tempting to say:

• The set GS consisting of all positive-definite solutions H of the generalized

KYP-inequality (1.12)–(1.13) such that ImWc a core for H
1
2 and ImW∗

o

is a core for H− 1
2 has Ha as a minimal element and Hr as a maximal

element with respect to the ordering ≤.

However, while the above results imply that ImWc ⊂ D(H
1
2
r ) and that ImW∗

o ⊂
D(H

− 1
2

a ), we have not been able to show in general that ImWc is a core for H
1
2
r or
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that ImW∗
o is a core for H

− 1
2

a . Such a more satisfying symmetric statement does
hold in the pseudo-similarity framework for the analysis of solutions of generalized
KYP-inequalities (see Proposition 5.8 in [6]).

We now consider the case that Σ is not only controllable and/or observable, but
has the stronger ℓ2-exact controllability or ℓ2-exact observability condition, or both,
i.e., ℓ2-exact minimality. We first consider the implications on Ha and Hr.

Proposition 6.3. Let Σ be a system as in (1.1) such that assumption (4.12) holds.

(1) If Σ is ℓ2-exactly controllable, then Ha and Hr are bounded.
(2) If Σ is ℓ2-exactly observable, then Ha and Hr are boundedly invertible.
(3) Σ is ℓ2-exactly minimal, i.e., both ℓ2-exactly controllable and ℓ2-exactly

observable, then Ha and Hr are both bounded and boundedly invertible.

Proof. We discuss each of (1), (2), (3) in turn.
(1) Item (1) follows directly from the fact that ImWc is contained in both D(Ha)

and D(Hr) together with the Closed Graph Theorem.
(2) From the last assertion in Theorem 4.9, we know that ImWc is a core for

H
1
2
a . Then item (1) in Theorem 6.1 implies that ImW∗

o ⊂ D(H
− 1

2
a ). If ImW∗

o = X ,

the Closed Graph Theorem then gives us that H
− 1

2
a is bounded.

Also part of the last assertion of Theorem 4.9 is the statement that W∗
o is a

core for H
− 1

2
r , so in particular ImW∗

o ⊂ D(H
− 1

2
r ). Then again the Closed Graph

Theorem implies that H
− 1

2
r is bounded.

(3). Simply combine the results of items (1) and (2). �

Next we consider general positive-definite solutions to the generalized KYP-
inequality.

Proposition 6.4. Suppose that Σ is a system as in (1.1) such that assumption
(4.12) holds and that H is any positive-definite solution of the generalized KYP-
inequality.

(1) Suppose that Σ is ℓ2-exactly controllable and that ImWc ⊂ D(H
1
2 ) (as

is the case e.g. if ImW∗
o is a core for H− 1

2 ). Then H is bounded and
furthermore

Ha ≤ H.

(2) Suppose that Σ is ℓ2-exactly observable and that ImW∗
o ⊂ D(H− 1

2 ) (as

is the case e.g. if ImWc is a core for H
1
2 ). Then H−1 is bounded and

furthermore
H ≤ Hr.

(3) Suppose that Σ is both ℓ2-exactly controllable and ℓ2-exactly observable

and that either (a) ImWc ⊂ D(H
1
2 ) or (b) ImW∗

o ⊂ D(H− 1
2 ). Then H

is bounded and boundedly invertible and we have the inequality chain

(6.5) Ha ≤ H ≤ Hr.

Proof. First note that the fact that the parenthetical hypotheses in items (1) and
(2) are stronger than the given hypotheses is a consequence of the final assertions
in parts (1) and (2) of Theorem 6.1. We now deal with the rest of (1), (2), (3).

(1) If we assume that X = ImWc ⊂ D(H
1
2 ), then H

1
2 (and hence also H)

is bounded by the Closed Graph Theorem. Moreover, as ImWc = D(H
1
2 ), in
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particular ImWc is a core for H
1
2 and the inequalityHa ≤ H follows from Theorem

6.1 (1).

(2) Similarly, if we assume X = ImW∗
o ⊂ D(H− 1

2 ), then H− 1
2 is bounded by

the Closed Graph Theorem. As ImW∗
o = D(H− 1

2 ), in particular ImW∗
o is a core

for H− 1
2 and H ≤ Hr follows as a consequence of Theorem 6.1 (2).

(3) If X = ImWc ⊂ D(H
1
2 ), then in fact ImWc = D(H

1
2 ) so ImWc is a core

for H
1
2 . By Theorem 6.1, it follows that ImW∗

o ⊂ D(H− 1
2 ) and hence hypothesis

(b) is a consequence of hypothesis (a) when combined with all the other hypotheses
in (3). Similarly hypothesis (a) is a consequence of hypothesis (b). Hence there is
no loss of generality in assuming that both (a) and (b) hold. Then the verification
of (3) is completed by simply combining the results of (1) and (2). �

7. Proofs of Bounded Real Lemmas

We now put all the pieces together to give a storage-function proof of Theo-
rem 1.3.

Proof of Theorem 1.3. We are given a minimal system Σ as in (1.1) with transfer
function FΣ in the Schur class S(U ,Y).
Proof of sufficiency. For the sufficiency direction, we assume either that there
exists a positive-definite solutionH of the generalized KYP-inequality (1.12)–(1.13)
(statement (1)) or a bounded and boundedly invertible solution H of the KYP-
inequality (1.5) (statements (2) and (3)). As the latter case is a particular version
of the former case, it suffices to assume that we have a positive-definite solution of
the generalized KYP-inequality (1.12)–(1.13). We are to show that then FΣ is in
the Schur class S(U ,Y).

Given such a generalized solution of the KYP-inequality, Proposition 3.3 guaran-
tees us that SH is an (even quadratic) storage function for Σ. Then FΣ has analytic
continuation to a Schur class function by Proposition 3.1.

Proof of necessity in statement (1): We assume that Σ is minimal and that FΣ has
analytic continuation to a Schur-class function, i.e., assumption (4.12) holds. Then
Proposition 5.5 gives us two choices Ha and Hr of positive-definite solutions of the
generalized KYP-inequality (1.12)–(1.13).

Proof of necessity in statement (2): We assume that Σ is exactly controllable and
exactly observable with transfer function FΣ having analytic continuation to the
Schur class. From Proposition 2.2 (1) we see that ImWc ⊃ Rea (A|B) = X and
that D(Wo) ⊃ Rea (A|B) = X while from item (2) in the same proposition we
see that ImW∗

o ⊃ Obs (C|A) = X and that D(W∗
c ) ⊃ Obs (C|A) = X . Hence by

the Closed Graph Theorem, in fact Wc and W∗
o are bounded in addition to being

surjective. In particular Σ is ℓ2-exactly controllable and ℓ2-exactly observable, so
this case actually falls under item (3) of Theorem 1.3, which we will prove next.

Proof of necessity in statement (3): We now assume that Σ is ℓ2-exactly controllable
and ℓ2-exactly observable with FΣ having analytic continuation to a function in the
Schur class S(U ,Y) and we want to produce a bounded and boundedly invertible so-
lution H of the KYP-inequality (1.5). In particular, Σ is minimal (controllable and
observable), so Proposition 5.5 gives us two solutions Ha and Hr of the generalized
KYP-inequality. But any solution H of the generalized KYP-inequality becomes a
solution of the standard KYP-inequality (1.5) if it happens to be the case that H is
bounded. By the result of item (3) in Proposition 6.3, both Ha and Hr are bounded
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and boundedly invertible under our ℓ2-minimality assumptions. Thus in this case
Ha and Hr serve as two choices for bounded, strictly positive-definite solutions of
the KYP-inequality, as needed. �

We are now ready also for a storage-function proof of Theorem 1.4.

Proof of Theorem 1.4. The standing assumption for both directions is that Σ is a
linear system as in (1.1) with exponentially stable state operator A.

Proof of necessity: Assume that there exists a bounded strictly positive-definite
solution H of the strict KYP-inequality. By Proposition 3.5, SH is a strict stor-
age function for Σ. Then by Proposition 3.4, FΣ has analytic continuation to an
L(U ,Y)-valued H∞-function with H∞-norm strictly less than 1 as wanted. The
fact that A is exponentially stable implies that FΣ has analytic continuation to a
slightly larger disk beyond D, and the fact that H is strictly positive-definite implies
that SH has the additional coercivity property SH(x) ≥ ǫ0‖x‖2 for some ǫ0 > 0.

Proof of sufficiency: We are assuming that Σ has state operator A exponentially
stable and with transfer function FΣ in the strict Schur class. The exponential
stability of A (i.e. A has spectral radius rspec(A) < 1) means that the series

W∗
oy =

∞∑

k=0

A∗kC∗y(k) (y ∈ ℓ2Y(Z+)), Wcu =

∞∑

k=0

AkBu(k) (u ∈ ℓ2U(Z−))

are norm-convergent (not just in the weak sense as in Proposition 2.1), and hence
Wc and Wo are bounded. However it need not be the case that Wc or W∗

o be
surjective, so we are not in a position to apply part (3) of Theorem 1.3 to the system
Σ. The adjustment for handling this difficulty which also ultimately produces
bounded and boundedly invertible solutions of the strict KYP-inequality (1.9) is
what we shall call ǫ-regularization reduction. It goes back at least to Petersen-
Anderson-Jonkheere [24] for the finite dimensional case, and was extended to the
infinite dimensional case in our previous paper [11]. We recall the procedure here
for completeness and because we refer to it in a subsequent remark.

Since rspec(A) < 1, the resolvent expression (I−λA)−1 is uniformly bounded for
all λ in the unit disk D. Since we are now assuming that FΣ is in the strict Schur
class, it follows that we can choose ǫ > 0 sufficiently small so that the augmented
matrix function

(7.1) Fǫ(λ) :=




F (λ) ǫλC(I − λA)−1

ǫλ(I − λA)−1B ǫ2λ(I − λA)−1

ǫIU 0




is in the strict Schur class So(U ⊕ X ,Y ⊕ X ⊕ U). Note that

Fǫ(λ) =



D 0
0 0
ǫIU 0


+ λ




C
ǫIX
0


 (I − λA)−1

[
B ǫIX

]

and hence

(7.2) Mǫ =

[
A B

C D

]
:=




A B ǫIX
C D 0
ǫIX 0 0
0 ǫIU 0






INFINITE DIMENSIONAL BOUNDED REAL LEMMA II 43

is a realization for Fǫ(λ). Suppose that we can find a bounded and boundedly in-
vertible positive-definite operator H satisfying the KYP-inequality (1.5) associated
with the system Σǫ:

(7.3)

[
A∗ C∗

B∗ D∗

] [
H 0
0 IY⊕X⊕U

] [
A B

C D

]
�
[
H 0
0 IU⊕X

]
.

Spelling this out gives


A∗HA+ C∗C + ǫ2IX A∗HB + C∗D ǫA∗H

B∗HA+D∗C B∗HB +D∗D + ǫ2IU ǫB∗H
ǫHA ǫHB ǫ2H


 �



H 0 0
0 IU 0
0 0 IX


 .

By crossing off the third row and third column, we get the inequality
[
A∗HA+ C∗C + ǫ2IX A∗HB + C∗D

B∗HA+D∗C B∗HB +D∗D + ǫ2IU

]
�
[
H 0
0 IU

]

or [
A∗ C∗

B∗ D∗

] [
H 0
0 IY

] [
A B
C D

]
+ ǫ2

[
IX 0
0 IU

]
�
[
H 0
0 IU

]

leading us to the strict KYP-inequality (1.9) for the original system Σ as wanted.
It remains only to see why there is a bounded and boundedly invertible solution

H of (7.3). It is easily checked that the system Σǫ is exactly controllable and exactly
minimal, since B and C∗ are both already surjective; as observed in the proof of
necessity in item (2) of Theorem 1.3, since FΣǫ

is in the Schur class it then follows
that Σǫ is ℓ2-exactly controllable and ℓ2-exactly observable as well. Hence we can
appeal to either items (2) or (3) of Theorem 1.3 to conclude that indeed the KYP-
inequality (7.3) has a bounded and boundedly invertible positive-definite solution.
This is what is done in [11], where the State-Space-Similarity approach is used to
prove items (2) and (3) in Theorem 1.3 rather the storage-function approach as is
done here. �

Remark 7.1. Let Σ and FΣ satisfy the conditions of strict Bounded Real Lemma
(Theorem 1.4). Define the ǫ-augmented system Σǫ as in (7.2). We then obtain
bounded, strictly positive-definite solutions Ha,ǫ and Hr,ǫ of the strict KYP in-
equality (1.9), and consequently, by Proposition 6.4 (3) all bounded or bounded
below solutions H to the generalized KYP inequality (1.12)–(1.13) for Σǫ satisfy
Ha,ǫ ≤ H ≤ Hr,ǫ and hence are in fact bounded, strictly positive-definite solutions
to the KYP inequality (1.5) for the original system Σ. An application of Theorem
6.1 together with the observation that D being a core for the bounded operator X
on X is the same as D being dense in X leads to the conclusion that the operators
Ha and Hr associated with the original system satisfy Ha ≤ Ha,ǫ and H−1

r ≤ H−1
r,ǫ

and hence are bounded. However, this by itself is not enough to conclude that Ha

and H−1
r are also bounded below.
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