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STANDARD VERSUS STRICT BOUNDED REAL LEMMA WITH

INFINITE-DIMENSIONAL STATE SPACE III:

THE DICHOTOMOUS AND BICAUSAL CASES

J.A. BALL, G.J. GROENEWALD, AND S. TER HORST

Abstract. This is the third installment in a series of papers concerning the
Bounded Real Lemma for infinite-dimensional discrete-time linear input/state/output
systems. In this setting, under appropriate conditions, the lemma characterizes
when the transfer function associated with the system has contractive values
on the unit circle, expressed in terms of a Linear Matrix Inequality, often re-
ferred to as the Kalman-Yakubovich-Popov (KYP) inequality. Whereas the
first two installments focussed on causal systems with the transfer functions
extending to an analytic function on the disk, in the present paper the system
is still causal but the state operator is allowed to have nontrivial dichotomy
(the unit circle is not contained in its spectrum), implying that the transfer
function is analytic in a neighborhood of zero and on a neighborhood of the
unit circle rather than on the unit disk. More generally, we consider bicausal
systems, for which the transfer function need not be analytic in a neighbor-
hood of zero. For both types of systems, by a variation on Willems’ storage-
function approach, we prove variations on the standard and strict Bounded
Real Lemma. We also specialize the results to nonstationary discrete-time
systems with a dichotomy, thereby recovering a Bounded Real Lemma due to
Ben-Artzi–Gohberg-Kaashoek for such systems.

1. Introduction

This is the third installment in a series of papers on the bounded real lemma for
infinite-dimensional discrete-time linear systems and the related Kalman-Yakubovich-
Popov (KYP) inequality. We consider discrete-time input-state-output linear sys-
tems determined by the following equations

(1.1) Σ :=

{
x(n+ 1) = Ax(n) +Bu(n),
y(n) = Cx(n) +Du(n),

(n ∈ Z)

where A : X → X , B : U → X , C : X → Y and D : U → Y are bounded linear
Hilbert space operators i.e., X , U and Y are Hilbert spaces and the system matrix
associated with Σ takes the form

(1.2) M =

[
A B
C D

]
:

[
X
U

]
→

[
X
Y

]
.
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Associated with the system Σ is the transfer function

(1.3) FΣ(z) = D + zC(I − zA)−1B

which necessarily defines an analytic function on some neighborhood of the origin in
the complex plane with values in the space L(U ,Y) of bounded linear operators from
U to Y. The Bounded Real Lemma is concerned with the question of characterizing
(in terms of A,B,C,D) when FΣ has analytic continuation to the whole unit disk D

such that the supremum norm of F over the unit disk ‖F‖∞,D := sup{‖F (z)‖ : z ∈
D} satisfies either (i) ‖FΣ‖∞,D ≤ 1 (standard version), or (ii) ‖FΣ‖∞,D < 1 (strict
version).

We first note the following terminology which we shall use. Given a selfadjoint
operator H on a Hilbert space X , we say that

(i) H is strictly positive-definite (H ≻ 0) if there is a δ > 0 so that 〈Hx, x〉 ≥
δ‖x‖2 for all x ∈ X .

(ii) H is positive-definite if 〈Hx, x〉 > 0 for all 0 6= x ∈ X .
(iii) H is positive-semidefinite (H � 0) if 〈Hx, x〉 ≥ 0 for all x ∈ X .

Given two selfadjoint operatorsH,K on X , we writeH ≻ K orK ≺ H ifK−H ≻ 0
and similarly for H � K or K � H . Note that if X is finite-dimensional, then
strictly positive-definite and positive-definite are equivalent. Then the standard
and strict Bounded Real Lemmas for the finite-dimensional setting (where X , U ,
Y are all finite-dimensional and one can view A,B,C,D as finite matrices) are as
follows.

Theorem 1.1. Suppose that we are given X , U , Y, M = [A B
C D ], and FΣ as in

(1.1), (1.2), (1.3), with X , U , Y all finite-dimensional Hilbert spaces. Then:

(1) Standard Bounded Real Lemma (see [1]): Assume that (A,B) is
controllable (i.e. spank≥0{ImAkB} = X ) and (C,A) is observable (i.e.⋂

k≥0 kerCAk = {0}). Then ‖FΣ‖∞,D ≤ 1 if and only if there exists a

positive-definite matrix H satisfying the Kalman-Yakubovich-Popov (KYP)
inequality:

(1.4)

[
A B
C D

]∗ [
H 0
0 IY

] [
A B
C D

]
�

[
H 0
0 IU

]
.

(2) Strict Bounded Real Lemma (see [18]): Assume that all eigenvalues of
A are in the unit disk D. Then ‖FΣ‖∞,D < 1 if and only if there exists a
positive-definite matrix H so that

(1.5)

[
A B
C D

]∗ [
H 0
0 IY

] [
A B
C D

]
≺

[
H 0
0 IU

]
.

Infinite-dimensional versions of the standard Bounded Real Lemma have been
studied by Arov-Kaashoek-Pik [2] and the authors [6, 7], while infinite-dimensional
versions of the strict Bounded Real Lemma have been analyzed by Yakubovich
[23, 24], Opmeer-Staffans [17] and the authors [6, 7].

In this paper we wish to study the following variation of the Bounded Real
Lemma, which we shall call the dichotomous Bounded Real Lemma. Given the
system with system matrix M = [ A B

C D ] and associated transfer function FΣ as
in (1.1), (1.2), (1.3), we now assume that the operator A admits dichotomy, i.e.,
we assume that A has no spectrum on the unit circle T. Under this assump-
tion it follows that the transfer function FΣ in (1.3) can be viewed as an analytic
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L(U ,Y)-valued function on a neighborhood of the unit circle T. The dichotomous
Bounded Real Lemma is concerned with the question of characterizing in terms
of A,B,C,D when it is the case that ‖FΣ‖∞,T := sup{‖F (z)‖ : z ∈ T} satisfies
either ‖FΣ‖∞,T ≤ 1 (standard version) or (ii) ‖FΣ‖∞,T < 1 (strict version). For the
finite-dimensional case we have the following result.

Theorem 1.2. Suppose that we are given X , U , Y and M = [ A B
C D ] and FΣ as in

(1.1), (1.2), (1.3), with X , U , Y all finite-dimensional Hilbert spaces and with A
having no eigenvalues on the unit circle T. Then:

(1) Finite-dimensional standard dichotomous Bounded Real Lemma:
Assume that Σ is minimal ((A,B) is controllable and (C,A) is observ-
able). Then the inequality ‖FΣ‖∞,T ≤ 1 holds if and only if there exists
an invertible selfadjoint matrix H which satisfies the KYP-inequality (1.4).
Moreover, the dimension of the spectral subspace of A over the unit disk
is equal to the number of positive eigenvalues (counting multiplicities) of
H and the dimension of the spectral subspace of A over the exterior of the
closed unit disk is equal to the number of negative eigenvalues (counting
multiplicities) of H.

(2) Finite-dimensional strict dichotomous Bounded Real Lemma: The
strict inequality ‖FΣ‖∞,T < 1 holds if and only if there exists an invertible
selfadjoint matrix H which satisfies the strict KYP-inequality (1.5). More-
over, the inertia of A (the dimensions of the spectral subspace of A for the
disk and for the exterior of the closed unit disk) is related to the inertia
of H (dimension of negative and positive eigenspaces) as in the standard
dichotomous Bounded Real Lemma (item (1) above).

We note that Theorem 1.2 (2) appears as Corollary 1.2 in [10] as a corollary of
more general considerations concerning input-output operators for nonstationary
linear systems with an indefinite metric; to make the connection between the result
there and the strict KYP-inequality (1.5), one should observe that a standard Schur-
complement computation converts the strict inequality (1.5) to the pair of strict
inequalities

I −B∗HB −D∗D ≻ 0,

H −A∗HA− C∗C − (A∗HB + C∗D)Z−1(B∗HA+D∗C) ≻ 0

where Z = I −B∗HB −D∗D.

We have not located an explicit statement of Theorem 1.2 (1) in the literature; this
will be a corollary of the infinite-dimensional standard dichotomous Bounded Real
Lemma which we present in this paper (Theorem 7.1 below).

Note that if F = FΣ is a transfer function of the form (1.3), then necessarily F is
analytic at the origin. One approach to remove this restriction is to designate some
other point z0 where F is to be analytic and adapt the formula (1.3) to a realization
“centered at z0” (see [5, page 141] for details): e.g. for the case z0 = ∞, one can use
F (z) = D+C(zI−A)−1B. To get a single chart to handle an arbitrary location of
poles, one can use the bicausal realizations used in [4] (see [8] for the nonrational
operator-valued case); for the setting here, where we are interested in a rational
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matrix functions analytic on a neighborhood of the unit circle T, we suppose that

(1.6) M+ =

[
Ã+ B̃+

C̃+ D̃

]
:

[
X+

U

]
→

[
X+

Y

]
, M− =

[
Ã− B̃−

C̃− 0

]
:

[
X−

U

]
→

[
X−

Y

]

are two system matrices with spectrum of A+, σ(A+), and of A−, σ(Ã−), contained
in the unit disk D and that F (z) is given by

(1.7) F (z) = D̃ + zC̃+(I − zÃ+)
−1B̃+ + C̃−(I − z−1Ã−)

−1B̃−.

We shall give an interpretation of (1.7) as the transfer function of a bicausal expo-
nentially stable system in Section 3 below. In any case we can now pose the question
for the rational case where all spaces X±, U , Y in (1.6) are finite-dimensional: char-
acterize in terms of M+ and M− when it is the case that ‖F‖∞,T ≤ 1 (standard
case) or ‖F‖∞,T < 1 (strict case). To describe the result we need to introduce the
bicausal KYP-inequality to be satisfied by a selfadjoint operator

(1.8) H =

[
H− H0

H∗
0 H+

]
on X =

[
X−

X+

]

given by
[

I 0 Ã∗
−C̃∗

−

0 Ã∗
+ C̃∗

+

0 B̃∗
+ B̃∗

−C̃∗
−+D̃∗

][
H− H0 0
H∗

0 H+ 0
0 0 I

] [
I 0 0
0 Ã+ B̃+

C̃−Ã− C̃+ C̃−B̃−+D̃

]

�

[
Ã∗

− 0 0

0 I 0
B̃∗

− 0 I

] [
H− H0 0
H∗

0 H+ 0
0 0 I

] [
Ã− 0 B̃−

0 I 0
0 0 I

]
(1.9)

as well as the strict bicausal KYP-inequality: for some ǫ > 0 we have
[

I 0 Ã∗
−C̃∗

−

0 Ã∗
+ C̃∗

+

0 B̃∗
+ B̃∗

−C̃∗
−+D̂∗

] [
H− H0 0
H∗

0 H+ 0
0 0 I

] [
I 0 0
0 Ã+ B̃+

C̃−Ã− C̃− C̃−B̃−+D̃

]
+ ǫ2

[
Ã∗

−Ã− 0 Ã∗
−B̃−

0 I 0
B̃∗

−Ã− 0 B̃∗
−B̃−+I

]

�

[
Ã∗

− 0 0

0 I 0
B̃∗

− 0 I

][
H− H0 0
H∗

0 H+ 0
0 0 I

] [
Ã− 0 B̃−

0 I 0
0 0 I

]
.

(1.10)

We say that the system matrix-pair (M+,M−) is controllable if both (Ã+, B̃+) and

(Ã−, Ã−B̃−) are controllable, and that (M+,M−) is observable if both (C̃+, Ã+)

and (C̃−Ã−, Ã−) are observable. We then have the following result.

Theorem 1.3. Suppose that we are given X+, X−, U , Y, M+, M− as in (1.6)

with X+, X−, U , Y finite-dimensional Hilbert spaces and both A+ and Ã− having
spectrum inside the unit disk D. Further, suppose that F is the rational matrix
function with no poles on the unit circle T given by (1.7). Then:

(1) Finite-dimensional standard bicausal Bounded Real Lemma: As-
sume that (M+,M−) is controllable and observable. Then we have ‖F‖∞,T ≤
1 if and only there exists an invertible selfadjoint solution H as in (1.8) of
the bicausal KYP-inequality (1.9). Moreover H+ ≻ 0 and H− ≺ 0.

(2) Finite-dimensional strict bicausal Bounded Real Lemma: The strict
inequality ‖F‖∞,T < 1 holds if and only if there exists an invertible self-
adjoint solution H as in (1.8) of the strict bicausal KYP-inequality (1.10).
Moreover, in this case H+ ≻ 0 and H− ≺ 0.
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We have not located an explicit statement of these results in the literature; they
also are corollaries of the infinite-dimensional results which we develop in this paper
(Theorem 7.3 below).

The goal of this paper is to explore infinite-dimensional analogues of Theorems
1.2 and 1.3 (both standard and strict versions). For the case of trivial dichotomy
(the stable case where σ(A) ⊂ D in Theorem 1.2), we have recently obtained
such results via two distinct approaches: (i) the State-Space-Similarity theorem
approach (see [6]), and (ii) the storage-function approach (see [7]) based on the
work of Willems [21, 22]. Both approaches in general involve additional complica-
tions in the infinite-dimensional setting. In the first approach (i), one must deal
with possibly unbounded pseudo-similarity rather than true similarity transforma-
tions, as explained in the penetrating paper of Arov-Kaashoek-Pik [3]; one of the
contributions of [6] was to identify additional hypotheses (exact or ℓ2-exact control-
lability and observability) which guarantee that the pseudo-similarities guaranteed
by the Arov-Kaashoek-Pik theory can in fact be taken to be bounded and bound-
edly invertible. In the second approach (ii), no continuity properties of a storage
function are guaranteed a priori and in general one must allow a storage function
to take the value +∞; nevertheless, as shown in [7], it is possible to show that
the Willems available storage function Sa and a regularized version of the Willems
required supply Sr (at least when suitably restricted) have a quadratic form com-
ing from a possibly unbounded positive-definite operator (Ha and Hr respectively)
which leads to a solution (in an adjusted generalized sense required for the for-
mulation of what it should mean for an unbounded operator to be a solution) of
the KYP-inequality. Again, if the system satisfies an exact or ℓ2-exact controllabil-
ity/observability hypothesis, then we get finite-valued quadratic storage functions
and associated bounded and boundedly invertible solutions of the KYP-inequality.

It seems that the first approach (i) (involving the State-Space-Similarity theo-
rem with pseudo-similarities) does not adapt well in the dichotomous setting, so
we here focus on the second approach (ii) (computation of extremal storage func-
tions). For the dichotomous setting, there again is a notion of storage function
but now the storage functions S can take values on the whole real line rather
than just positive values, and quadratic storage functions should have the form
S(x) = 〈Hx, x〉 (at least for x restricted to some appropriate domain) with H
(possibly unbounded) selfadjoint rather than just positive-definite. Due to the less
than satisfactory connection between closed forms and closed operators for forms
not defined on the whole space and not necessarily semi-bounded (see e.g. [20, 15]),
it is difficult to make sense of quadratic storage functions in the infinite-dimensional
setting unless the storage function is finite-valued and the associated self-adjoint
operator is bounded. Therefore, for the dichotomous setting here we deal only with
the case where ℓ2-exact controllability/observability assumptions are imposed at
the start, and we are able to consider only storage functions S which are finite
real-valued with the associated selfadjoint operators in an quadratic representation
equal to bounded operators. Consequently our results require either the strict in-
equality condition ‖F‖∞,T < 1 on the transfer function F , or an ℓ2-exact or exact
controllability/observability assumption on the operators in the system matrices.
Consequently, unlike what is done in [6, 7] for the causal trivial-dichotomy set-
ting, the present paper has nothing in the direction of a Bounded Real Lemma
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for a dichotomous or exponentially dichotomous system under only (approximate)
controllability and observability assumptions for the case where ‖F‖∞,T = 1.

The paper is organized as follows. Apart from the current introduction, the
paper consists of seven sections. In Sections 2 and 3 we introduce the dichotomous
systems and bicausal systems, respectively, studied in this paper and derive various
basic results used in the sequel. Next, in Section 4 we introduce the notion of a
storage function for discrete-time dichotomous linear systems as well as the available
storage Sa and required supply Sr storage functions in this context and show that
they indeed are storage functions (pending the proof of a continuity condition which
is obtained later from Theorem 5.2). In Section 5 we show, under certain conditions,
that Sa and Sr are quadratic storage functions by explicit computation of the
corresponding invertible selfadjoint operators Ha and Hr. The results of Sections 4
and 5 are extended to bicausal systems in Section 6. The main results of the present
paper, i.e., the infinite-dimensional versions of Theorems 1.2 and 1.3, are proven in
Section 7. In the final section, Section 8, we apply our Dichotomous Bounded Real
Lemma to discrete-time, nonstationary, dichotomous l inear systems and recover a
result of Ben-Artzi–Gohberg–Kaashoek [10].

2. Dichotomous system theory

We assume that we are given a system Σ as in (1.1) with system matrix M =
[A B
C D ] and associated transfer function FΣ as in (1.3) with A having dichotomy.
As a neighborhood of the unit circle T is in the resolvent set of A, by definition
of A having a dichotomy, we see that FΣ(z) is analytic and uniformly bounded in
z on a neighborhood of T. One way to make this explicit is to decompose FΣ in
the form FΣ = FΣ,+ +FΣ,− where FΣ,+(z) is analytic and uniformly bounded on a

neighborhood of the closed unit disk D and where FΣ,−(z) is analytic and uniformly

bounded on a neighborhood of the closed exterior unit disk De as follows.
The fact that A admits a dichotomy implies there is a direct (not necessarily

orthogonal) decomposition of the state space X = X++̇X− so that with respect to
this decomposition A has a block diagonal matrix decomposition of the form

(2.1) A =

[
A− 0
0 A+

]
:

[
X−

X+

]
→

[
X−

X+

]

where A+ := A|X+ ∈ L(X+) has spectrum inside the unit disk D and A− := A|X−
∈

L(X−) has spectrum in the exterior of the closed unit disk De = C\D. It follows
that A+ is exponentially stable, rspec(A+) < 1, and A− is invertible with inverse

A−1
− exponentially stable. Occasionally we will view A+ and A− as operators acting

on X and, with some abuse of notation, write A−1
− for what is really a generalized

inverse of A−:

A−1
−

∼=

[
A−1

− 0
0 0

]
:

[
X−

X+

]
→

[
X−

X+

]

i.e., the Moore-Penrose generalized inverse of A− in case the decomposition X−+̇X+

is orthogonal—the meaning will be clear from the context. Now decompose B and
C accordingly:

(2.2) B =

[
B−

B+

]
: U →

[
X−

X+

]
and C =

[
C− C+

]
:

[
X−

X+

]
→ Y.
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We may then write

FΣ(z) = D + zC(I − zA)−1B

= D + z
[
C− C+

] [I − zA− 0
0 I − zA+

]−1 [
B−

B+

]

= D + zC−(I − zA−)
−1B− + zC+(I − zA+)

−1B+

= −C−A
−1
− (z−1I −A−1

− )−1B− +D + zC+(I − zA+)
−1B+

= FΣ,−(z) + FΣ,+(z)

where

(2.3) FΣ,−(z) = −C−A
−1
− (I − z−1A−1

− )−1B− = −
∞∑

n=0

C−(A
−1
− )n+1B−z

−n

is analytic on a neighborhood of De, with the series converging in operator norm
on De due to the exponential stability of A−1

− , and where

(2.4) FΣ,+(z) = D + zC+(I − zA+)
−1B+ = D +

∞∑

n=1

C+A
n−1
+ B+z

n

is analytic on a neighborhood of D, with the series converging in operator norm on
D due to the exponential stability of A+. Furthermore, from the convergent-series
expansions for FΣ,+ in (2.4) and for FΣ,− in (2.3) we read off that FΣ has the
convergent Laurent expansion on the unit circle T

FΣ(z) =
∞∑

n=−∞

Fnz
n

with Laurent coefficients Fn given by

(2.5) Fn =





D − C−A
−1
− B− if n = 0,

C+A
n−1
+ B+ if n > 0,

−C−A
n−1
− B− if n < 0.

As ‖FΣ‖∞,T := sup{‖FΣ(z)‖ : z ∈ T} < ∞, it follows that FΣ defines a bounded
multiplication operator:

MFΣ : L2
U(T) → L2

Y(T), MFΣ : f(z) 7→ FΣ(z)f(z)

with ‖MFΣ‖ = ‖FΣ‖∞,T. If we write this operator as a block matrixMFΣ = [MFΣ ]ij
(−∞ < i, j < ∞) with respect to the orthogonal decompositions

L2
U(T) =

∞⊕

n=−∞

znU , L2
Y(T) =

∞⊕

n=−∞

znY

for the input and output spaces for MFΣ , it is a standard calculation to verify that
[MFΣ ]ij = Fi−j , i.e., the resulting bi-infinite matrix [MFΣ ]ij is the Laurent matrix
LFΣ associated with FΣ given by

(2.6) LFΣ = [Fi−j ]
∞
i,j=−∞

where Fn is as in (2.5). Another expression of this identity is the fact that
MFΣ : L

2
U (T) → L2

Y(T) is just the frequency-domain expression of the time-domain

operator LFΣ : ℓ2U(Z) → ℓ2Y(Z), i.e., if we let û(z) =
∑∞

n=−∞ u(n)zn in L2
U(T) be
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the bilateral Z-transform of u in ℓ2U (Z) and similarly let ŷ(z) =
∑∞

n=−∞ y(n)zn in

L2
Y(T) be the bilateral Z-transform of y in ℓ2Y(Z), then we have the relationship

(2.7) y = LFΣu ⇐⇒ ŷ(z) = FΣ(z) · û(z) for almost all z ∈ T.

We now return to analyzing the system-theoretic properties of the dichotomous
system (1.1). Associated with the system operators A,B,C,D are the diagonal
operators A,B, C,D acting between the appropriate ℓ2-spaces indexed by Z:

(2.8)
A = diagk∈Z

[A] : ℓ2X (Z) → ℓ2X (Z), B = diagk∈Z
[B] : ℓ2U(Z) → ℓ2X (Z),

C = diagk∈Z
[C] : ℓ2X (Z) → ℓ2Y(Z), D = diagk∈Z

[D] : ℓ2Y(Z) → ℓ2U(Z).

We also introduce the bilateral shift operator

S : ℓ2X (Z) → ℓ2X (Z), S : {x(k)}k∈Z 7→ {x(k − 1)}k∈Z

and its inverse
S−1 = S∗ : {x(k)}k∈Z 7→ {x(k + 1)}k∈Z.

We can then rewrite the system equations (1.1) in aggregate form

(2.9) Σ :=

{
S−1x = Ax+ Bu,
y = Cx+Du,

We shall say that a system trajectory (u,x,y) = {(u(n),x(n),y(n)}n∈Z is ℓ2-
admissible if all of u, x, and y are in ℓ2: u = {u(n)}n∈Z ∈ ℓ2U (Z), x = {x(n)}n∈Z ∈
ℓ2X (Z), y = {y(n)}n∈Z ∈ ℓ2Y(Z). Note that the constant-diagonal structure of A,
B, C, D implies that each of these operators intertwines the bilateral shift operator
on the appropriate ℓ2(Z)-space:

(2.10) AS = SA, BS = SB, CS = SC, DS = SD

where S is the bilateral shift operator on ℓ2W withW is any one of U , X , Y depending
on the context.

It is well known (see e.g. [9, Theorem 2]) that the operator A admitting a di-
chotomy is equivalent to S−1 −A being invertible as an operator on ℓ2X (Z). Hence
the dichotomy hypothesis enables us to solve uniquely for x ∈ ℓ2X (Z) and y ∈ ℓ2Y(Z)

for any given u ∈ ℓ2U(Z):

(2.11)
x = (S−1 −A)−1Bu = (I − SA)−1SBu =: TΣ, isu,

y = (D + C(S−1 −A)−1B)u = (D + C(I − SA)−1SB)u =: TΣu.

where

TΣ, is = (S−1 −A)−1B : ℓ2U (Z) → ℓ2X (Z)(2.12)

TΣ = D + C(S−1 −A)−1B : ℓ2U(Z) → ℓ2Y(Z)(2.13)

are the respective input-state and input-output maps. In general the input-output
map TΣ in (2.13) is not causal. Given an ℓ2U (Z)-input signal u, rather than specifi-
cation of an initialization condition on the state x(0), as in standard linear system
theory for systems running on Z+, in order to specify a uniquely determined state
trajectory x for a given input trajectory u, the extra information required to solve
uniquely for the state trajectory x in the dichotomous system (1.1) or (2.9) is
the specification that x ∈ ℓ2X (Z), i.e., that the resulting trajectory (u,x,y) be
ℓ2-admissible.

Next we express various operators explicitly in terms of A±, B±, C± and D.
The following lemma provides the basis for the formulas derived in the remainder
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of the section. In fact this lemma amounts to the easy direction of the result of
Ben-Artzi–Gohberg–Kaashoek [9, Theorem 2] mentioned above.

Lemma 2.1. Let Σ be the dichotomous system (1.1) with A decomposing as in
(2.1). Then (S−1 −A)−1 = (I −SA)−1S acting on ℓ2X (Z) is given explicitly as the
following block matrix with rows and columns indexed by Z

(2.14) [(S−1 −A)−1]ij =

{
Ai−j−1

+ for i > j,

−Ai−j−1
− for i ≤ j

, with A0
+ = PX+ .

Proof. Via the decompositionX = X−+̇X+, we can identify ℓ2X (Z) with ℓ2X−
(Z)+̇ℓ2X+

(Z).

Write S+ for the bilateral shift operator and A+ for the block diagonal operator
with A+ diagonal entries, both acting on ℓ2X+

(Z), and write S− for the bilateral

shift operator and A− for the block diagonal operator with A− diagonal entries,
both acting on ℓ2X−

(Z). Then with respect to the above decomposition of ℓ2X (Z) we

have

(I − SA)−1 =

[
I − S−A− 0

0 I − S+A+

]−1

=

[
(I − S−A−)

−1 0
0 (I − S+A+)

−1

]
.

Since A+ has its spectrum in D, so do A+ and S+A+, and thus

(I − S+A+)
−1 =

∞∑

k=0

(S+A+)
k =

∞∑

k=0

Sk
+A

k
+

where we make use of observation (2.10) to arrive at the final infinite-series ex-
pression. Similarly, A−1

− has spectrum in D implies that A−1
− and A−1

− S−1
− have

spectrum in D, and hence

(I − S−A−)
−1 = (S−A−)

−1((S−A−)
−1 − I)−1

= −A−1
− S−1

− (I − (S−A−)
−1)−1 = −A−1

− S−1
−

∞∑

k=0

(S−A−)
−k

= −A−1
− S−1

−

∞∑

k=0

A−k
− S−k

− = −

∞∑

k=1

A−k
− S−k

− .

Inserting the formulas for (I − S+A+)
−1 and (I − S−A−)

−1 in the formula for
(I −SA)−1, multiplying with S from the left and writing out in block matrix form
we obtain the desired formula for (I − SA)−1S = (S−1 −A)−1. �

We now compute the input-output map TΣ and input-state map TΣ, is explicitly.

Proposition 2.2. Let Σ be the dichotomous system (1.1) with A decomposing as
in (2.1) and B and C as in (2.2). The input-output map TΣ : ℓ2U (Z) → ℓ2Y(Z) and

input-state map TΣ, is : ℓ
2
U(Z) → ℓ2X (Z) of Σ are then given by the following block

matrix, with row and columns indexed over Z:

[TΣ]ij =





C+A
i−j−1
+ B+ if i > j,

D − C−A
−1
− B− if i = j,

−C−A
i−j−1
− B− if i < j,

[TΣ, is]ij =

{
Ai−j−1

+ B+ if i > j,

−Ai−j−1
− B− if i ≤ j.
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In particular, TΣ is equal to the Laurent operator LFΣ of the transfer function FΣ

given in (2.6), and for u ∈ ℓ2U(Z) and y ∈ ℓ2Y(Z) with bilateral Z-transform notation
as in (2.7),

(2.15) y = TΣu ⇐⇒ ŷ(z) = FΣ(z) · û(z) for almost all z ∈ T.

Proof. Recall that TΣ can be written as TΣ = D+C(I−SA)−1SB = D+C(S−1−
A)−1B. The block matrix formula for TΣ now follows directly from the block matrix
formula for (S−1 − A)−1 obtained in Lemma 2.1. Comparison of the formula for
[TΣ]ij with the formula (2.5) for the Laurent coefficients {Fn}n∈Z of FΣ shows that
TΣ = LFΣ as operators from L2

U (T) to L2
Y(T). Finally the identity (2.15) follows

upon combining the identity LFΣ = TΣ with the general identity (2.7). �

It is convenient to also view TΣ = LFΣ as a block 2 × 2 matrix with respect
to the decomposition ℓ2U (Z) = ℓ2U (Z−) ⊕ ℓ2U (Z+) for the input-signal space and
ℓ2Y(Z) = ℓ2Y(Z−)⊕ ℓ2Y(Z+) for the output-signal space. We can then write

(2.16) LFΣ =

[
T̃FΣ H̃FΣ

HFΣ TFΣ

]
:

[
ℓ2U(Z−)
ℓ2U (Z+)

]
→

[
ℓ2Y(Z−)
ℓ2Y(Z+)

]

where

[T̃FΣ ]ij : i<0,j<0 =





C+A
i−j−1
+ B+ for 0 > i > j,

D − C−A
−1
− B− for i = j < 0,

−C−A
i−j−1
− B− for i < j < 0,

[TFΣ ]ij : i≥0,j≥0 =





C+A
i−j−1
+ B+ for i > j ≥ 0,

D − C−A
−1
− B− for i = j ≥ 0,

−C−A
i−j−1
− B− for 0 ≤ i < j

(2.17)

are noncausal Toeplitz operators, and

[H̃FΣ ]ij : i<0,j≥0 = −C−A
i−j−1
− B− for i < 0, j ≥ 0,

[HFΣ ]ij : i≥0, j<0 = C+A
i−j−1
+ B+ for i ≥ 0, j < 0(2.18)

are Hankel operators.
Next we consider the observability and controllability operators of Σ. For any

integer n, let Πn : ℓ2X (Z) → X be the projection onto the nth component of ℓ2X (Z).
We then define the controllability operator Wc and observability operator Wo

associated with the system Σ as

Wc : ℓ
2
U(Z) → X , Wcu = Π0x = Π0TΣ, isu = Π0(S

−1 −A)−1Bu,

Wo : X → ℓ2Y(Z), Wox = C(I − SA)−1Π∗
0x.

Lemma 2.3. Let Σ be the dichotomous system (1.1) with A decomposing as in
(2.1) and B and C as in (2.2). Let the observability operator Wo and controllability
operator Wc decompose as

Wc =
[
W+

c W−
c

]
: ℓ2U(Z) =

[
ℓ2U (Z−)
ℓ2U(Z+)

]
→ X ,

Wo =

[
W−

o

W+
o

]
: X →

[
ℓ2Y(Z−)
ℓ2Y(Z+)

]
.
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Then W+
c and W−

c are given by

W+
c = rowj<0[A

−j−1
+ B+], W−

c = rowj≥0[−A−j−1
− B−],(2.19)

and W+
c maps into X+ and W−

c into X−. Furthermore, W+
o and W−

o are given
by

W+
o = coli : i≥0[C+A

i
+], W−

o = coli : i<0[−C−A
i
−],(2.20)

and (W+
o )

∗ maps into X+ and (W−
o )

∗ maps into X−. Finally, the Hankel operators

H̃F−
and HF+ in (2.18) have the following factorizations:

(2.21) H̃FΣ = W−
o W

−
c , HFΣ = W+

o W
+
c .

Proof. The formulas in (2.19) follow directly by restricting the matrix representa-
tion of TΣ, is obtained in Proposition 2.2 to the zero-indexed row. Since A± and B±

map into X±, it follows directly that W±
c maps into X±. The analogous statements

for Wo follow by similar arguments, now using (2.14) to compute the zero-indexed

column of C(I−SA)−1 explicitly. The factorization formulas for H̃FΣ andHFΣ follow
directly from an inspection of the entries in the block matrix decompositions. �

Remark 2.4. Let (u,x,y) be an ℓ2-admissible trajectory for the system Σ. Then
x(0) = Π0x = Wcu ∈ ImWo. In fact, by shift invariance of the system Σ we have
x(n) ∈ ImWc for each n ∈ Z, because

x(n) = Πnx = Π0S
−nx = Π0S

−n(I − SA)−1SBu

= Π0(I − SA)−1SBS−nu = WcS
−nu,

which holds since S−n commutes with S, A and B.

Another topic playing a prominent role in the theory of causal linear systems (see
[12]) is that of controllability and observability. For a causal system Σ of the form
(1.1) we say that Σ (or the input pair (A,B)) is controllable if spank≥0ImAkB = X ,
which in case Wc is bounded is equivalent to Wc having dense range, while Σ (or
the output pair (C,A)) is said to be observable if

⋂
k≥0 kerCAk = {0}, which in

turn is equivalent to KerWo = {0} in case Wo is bounded.
Note that if Σ in (1.1) is a system having a dichotomy with associated decompo-

sition (2.1) and (2.2), then the assumed exponential stability of the operators A+

and A−1
− implies that the associated controllability operators W−

c : ℓ2U (Z+) → X−

and W+
c : ℓ2U(Z−) → X+ as well as the observability operators W+

o : X+ → ℓ2Y(Z+)

and W−
o : X− → ℓ2Y(Z−) are all bounded. We then say that Σ (or the pair (A,B))

is controllable if Wc has dense range and that Σ (or the pair (C,A)) is observable
if KerWo = {0}. With (A,B,C) decomposed as in (2.1) and (2.2), we see from
Lemma 2.3 that controllability of Σ is equivalent to

(2.22) (A+, B+) controllable and (A−1
− , A−1

− B−) controllable,

hence to spank≥0ImAk
+B+ = X+ and spank≥1ImA−k

− B− = X−, while Σ being
controllable is equivalent to

(2.23) (C+, A+) observable and (C−A
−1
− , A−1

− ) observable,

hence to
⋂

k≥0 kerC+A
k
+ = {0} and

⋂
k≥1 kerC−A

−k
− = {0}.
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We shall have need for stronger controllability/observability notions for a di-
chotomous system defined as follows. We shall say that Σ (or (A,B)) is dichoto-
mously ℓ2-exactly controllable if

(2.24) ImW+
c = X+ and ImW−

c = X−, or equivalently ImWc = X .

Similarly, we say that Σ (or (C,A)) is dichotomously ℓ2-exactly observable if

(2.25) Im (W+
o )

∗ = X+ and Im (W−
o )

∗ = X−, or equivalently ImW∗
o = X .

In case Σ is both dichotomously ℓ2-exactly controllable and dichotomously ℓ2-
exactly observable, we shall say simply that Σ is dichotomously ℓ2-exactly minimal.
We note that these notions for the stable (non-dichotomous) case played a key role
in the results of [6, 7].

Remark 2.5. In that case that X is finite dimensional, the notion of controllabil-
ity (respectively, observability) for dichotomous systems introduced here coincides
with the more standard notion, namely, that spank≥0ImAkB = X (respectively,⋂

k≥0 kerCAk = {0}). Indeed, to see that this is the case, note that it suffices to

show that (A−1
− , A−1

− B−) being a controllable pair is equivalent to (A−, B−) being
a controllable pair. Since the two statements are symmetric, it suffices to prove
only one direction. Hence, assume the pair (A−, B−) is controllable. Since X is
finite dimensional, this implies there is a positive integer n such that

X = Im
[
B− A−B− · · · An−1

− B−

]

= ImAn
−

[
A−n

− B− A−n+1
− B− · · · A−1

− B−

]

= An
− Im

[
A−1

− B− · · · A−n+1
− B− A−n

− B−

]
.

Thus X = Im
[
A−1

− B− · · · A−n+1
− B− A−n

− B−

]
, and we obtain that (A−1

− , A−1
− B−)

is a controllable pair. For the notions of observability the claim follows by a duality
argument.

If X is infinite-dimensional, it is not clear whether the two notions coincide.
Let us discuss here only the situation for controllability as that for observability
is similar. Let A ∈ L(X ) and B ∈ L(X ,U) where now both X and U are allowed
to be infinite-dimensional Hilbert spaces. If (A,B) is a controllable pair, then, by
definition, for a given x ∈ X and ǫ > 0, there is an N = N(x, ǫ) ∈ N and vectors

u0, u1, . . . , uN ∈ U so that ‖
∑N

k=0 A
kBuk − x‖ < ǫ. Similarly, given x ∈ X , N ∈ N

and ǫ > 0, there is a Ñ = Ñ(x,N, ǫ) ∈ N so that there exist vectors u′
0, u

′
1, . . . , u

′
Ñ

∈

U so that ‖
∑Ñ

k=0 AkBu′
k − AN+1x‖ < ǫ/‖(A−1)N+1‖. Let us say that the pair

(A,B) is uniformly controllable if it is possible to take Ñ(x,N(x, ǫ), ǫ) = N(x, ǫ),
i.e., if: given x ∈ X and ǫ > 0 there is an N = Nx,ǫ ∈ N so that there is a choice
of u0, u1, . . . , uN ∈ U so that

∥∥∥∥∥

N∑

k=0

AkBuk −AN+1x

∥∥∥∥∥ <
ǫ

‖(A−1)N+1‖
.

Note that the notions of uniform controllability and controllability are equivalent in
the finite-dimensional case—take Nx,ǫ = dimX and then use the Cayley-Hamilton

theorem to approximate AN+1x exactly by a vector of the form
∑N

k=0 A
kBuk

(N = dimX ). In the infinite-dimensional case arguably the condition appears
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to be somewhat contrived and is difficult to check; nevertheless it is what is needed
for the following result.

Proposition. Assume that A is invertible and that the input pair (A,B) is uni-

formly controllable. Then (A−1, A−1B) is controllable.

Proof. Let x ∈ X and ǫ > 0. Let N = Nx,ǫ as in the uniformly-controllable
condition: thus there exist vectors u0, u1, . . . , uN ∈ U so that

∥∥∥∥∥

N∑

k=0

AkBuk −AN+1x

∥∥∥∥∥ <
ǫ

‖(A−1)N+1‖
.

Rewrite this as
∥∥∥∥∥A

N+1

(
N∑

k=0

(A−1)kA−1BuN−k − x

)∥∥∥∥∥ <
ǫ

‖(A−1)N+1‖

from which we get
∥∥∥∥∥

N∑

k=0

(A−1)kA−1BuN−k − x

∥∥∥∥∥

=

∥∥∥∥∥(A
−1)N+1 · AN+1

(
N∑

k=0

(A−1)kA−1BuN−k − x

)∥∥∥∥∥

< ‖(A−1)N+1‖ ·
ǫ

‖(A−1)N+1‖
= ǫ.

As x ∈ X and ǫ > 0 are arbitrary, we conclude that (A−1, A−1B) is controllable. �

The following ℓ2-admissible-trajectory interpolation result will be useful in the
sequel.

Proposition 2.6. Suppose that Σ is a dichotomous linear system as in (1.1),
(2.1), (2.2), and that we are given a vector u ∈ U and x ∈ X . Assume that Σ
is dichotomously ℓ2-exactly controllable. Then there exists an ℓ2-admissible system
trajectory (u,x,y) for Σ such that

u(0) = u, x(0) = x.

Proof. As Σ is ℓ2-exactly controllable, we know that W−
c and W+

c are surjective.
Write x = x++x− with x± ∈ X±. u− ∈ ℓ2U (Z−) so thatW

+
c u− = x+. Choose u− ∈

ℓ2U(Z−) so that W+
c u− = x+. Next solve for x′

− so that x− = A−1
− x′

− −A−1
− B−u,

i.e., set

(2.26) x′
− := A−x− +A−B−u.

Use the surjectivity of the controllability operator W−
c to find u+ ∈ ℓ2U(Z+) so that

W−
c u+ = x′

−. We now define a new input signal u by

u(n) =





u−(n) if n < 0,

u if n = 0,

u+(n− 1) if n ≥ 1.
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Since u+ and u− are ℓ2-sequences, we obtain that u ∈ ℓ2U(Z). Now let (u,x,y) be
the ℓ2-admissible system trajectory determined by the input sequence u. Clearly
u(0) = u. So it remains to show that x(0) = x. To see this, note that

x(0) = Wcu = W+
c u− +W−

c (
[
u 0 · · ·

]
+ Su+)

= x+ −A−1
− B−u+A−1

− W−
c u+ = x+ −A−1

− B−u+A−1
− x′

−

= x+ + x− = x. �

3. Bicausal systems

Even for the setting of rational matrix functions, it is not the case that a ra-
tional matrix function F which is analytic on a neighborhood of the unit circle T

necessarily has a realization of the form (1.3), as such a realization for F implies
that F must be analytic at the origin. What is required instead is a slightly more
general notion of a system, which we will refer to as a bicausal system, defined as
follows.

A bicausal system Σ consists of a pair of input-state-output linear systems Σ+

and Σ− with Σ+ running in forward time and Σ− running in backward time

Σ− :

{
x−(n) = Ã−x−(n+ 1) + B̃−u(n),

y−(n) = C̃−x−(n)
(n ∈ Z)(3.1)

Σ+ :

{
x+(n+ 1) = Ã+x+(n) + B̃+u(n),

y+(n) = C̃+x+(n) + D̃u(n)
(n ∈ Z)(3.2)

with Σ− having state space X− and state operator Ã− on X− exponentially stable

(i.e., σ(Ã−) ⊂ D) and Σ+ having state space X+ and Ã+ on X+ exponentially

stable (σ(Ã+) ⊂ D). A system trajectory consists of a triple {u(n),x(n),y(n)}n∈Z

such that

u(n) ∈ U , x(n) =
[
x−

x+

]
∈
[
X−

X+

]
, y(n) = y−(n) + y+(n) with y±(n) ∈ Y

such that (u,x−,y−) is a system trajectory of Σ− and (u,x+,y+) is a system
trajectory of Σ+. We say that the system trajectory (u,x,y) = (u,

[
x−

x+

]
,y−+y+)

is ℓ2-admissible if all system signals are in ℓ2:

u ∈ ℓ2U(Z), x+ ∈ ℓ2X+
(Z), x− ∈ ℓ2X−

(Z), y± ∈ ℓ2Y(Z).

Due to the assumed exponential stability of Ã+, given u ∈ ℓ2U (Z), there is a uniquely
determined x+ ∈ ℓ2X+

(Z) and y+ ∈ ℓ2Y(Z) so that (u,x+,y+) is an ℓ2-admissible

system trajectory for Σ+ and similarly for Ã− due to the assumed exponential

stability of Ã−. The result is as follows.

Proposition 3.1. Suppose that Σ = (Σ+,Σ−) is a bicausal system, with Ã+ expo-

nentially stable as an operator on X+ and Ã− exponentially stable as an operator
on X−. Then:

(1) Given any u ∈ ℓ2U(Z), there is a unique x+ ∈ ℓ2X+
(Z) satisfying the first

system equation in (3.2), with the resulting input-state map TΣ+,is mapping
ℓ2U (Z) to ℓ2X+

(Z) given by the block matrix

(3.3) [TΣ+,is]ij =

{
Ãi−j−1

+ B̃+ for i > j,

0 for i ≤ j.
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The unique output signal y+ ∈ ℓ2Y(Z) resulting from the system equations

(3.2) with given input u ∈ ℓ2U(Z) and resulting uniquely determined state
trajectory x+ in ℓ2X+

(Z) is then given by y+ = TΣ+u with TΣ+ : ℓ2U(Z) →

ℓ2Y(Z) having block matrix representation given by

(3.4) [TΣ+ ]ij =





C̃+Ã
i−j−1
+ B̃+ for i > j,

D̃ for i = j,

0 for i < j.

Thus TΣ+,is and TΣ+ are block lower-triangular (causal) Toeplitz operators.

(2) Given any u ∈ ℓ2U(Z), there is a unique x− ∈ ℓ2X−
(Z) satisfying the first

system equation in (3.1), with resulting input-state map TΣ−,is : ℓ
2
U(Z) →

ℓ2X+
(Z) having block matrix representation given by

(3.5) [TΣ−,is]ij =

{
0 for i > j,

Ãj−i
− B̃− for i ≤ j.

The unique output signal y− ∈ ℓ2Y(Z) resulting from the system equations

(3.1) with given input u ∈ ℓ2U(Z) and resulting uniquely determined state
trajectory x− in ℓ2X+

(Z) is then given by y = TΣ−
u with TΣ−

: ℓ2U (Z) →

ℓ2Y(Z) having block matrix representation given by

(3.6) [TΣ−
]ij =

{
0 for i > j,

C̃−Ã
j−i
− B̃− for i ≤ j.

Thus TΣ−,is and TΣ−
are upper-triangular (anticausal) Toeplitz operators.

(3) The input-state map for the combined bicausal system Σ = (Σ+,Σ−) is then
given by

TΣ,is =

[
TΣ−,is

TΣ+,is

]
: ℓ2U (Z) → ℓ2X (Z) =

[
ℓ2X−

(Z)

ℓ2X+
(Z)

]

with block matrix entries (with notation using the natural identifications
X+

∼=
[

0
X+

]
and X−

∼=
[
X−

0

]
)

(3.7) [TΣ,is]ij =

{
Ãi−j−1

+ B̃+ for i > j,

Ãj−i
− B̃− for i ≤ j.

Moreover, the input-output map TΣ : ℓ2U(Z) → ℓ2Y(Z) of Σ is given by

TΣ = TΣ+ + TΣ−
: ℓ2U(Z) → ℓ2Y(Z),

having block matrix decomposition given by

(3.8) [TΣ]ij =





C̃+Ã
i−j−1
+ B̃+ for i > j,

D̃ + C̃−B̃− for i = j,

C̃−Ã
j−i
− B̃− for i < j.

(4) For u ∈ ℓ2U (Z) and y ∈ ℓ2Y(Z), û and ŷ be the respective bilateral Z-
transforms

u(z) =

∞∑

n=−∞

u(n)zn ∈ L2
U(T), y(z) =

∞∑

n=−∞

y(n)zn ∈ L2
U(T).
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Then

y = TΣu ⇐⇒ ŷ(z) = FΣ(z) · û(z) for almost all z ∈ T

where FΣ(z) is the transfer function of the bicausal system Σ given by

(3.9)

FΣ(z) = C̃−(I − z−1Ã−)
−1B̃− + D̃ + zC̃+(I − zÃ+)

−1B̃+

=
∞∑

n=1

C̃−Ã
n
−B̃−z

−n + (D̃ + C̃−B̃−) +
∞∑

n=1

C̃+Ã
n
+B̃+z

n.

Furthermore, the Laurent operator LFΣ : ℓ2U(Z) → ℓ2Y(Z) associated with
the function FΣ ∈ L∞

L(U ,Y)(T) as in (2.6) is identical to the input-output

operator TΣ for the bicausal system Σ

(3.10) LFΣ = TΣ,

and hence also, for u ∈ ℓ2U(Z) and y ∈ ℓ2Y(Z) and notation as in (2.7),

(3.11) y = TΣu ⇐⇒ ŷ(z) = FΣ(z) · û(z) for almost all z ∈ T.

Proof. We first consider item (1). Let us rewrite the system equations (3.2) in
aggregate form

(3.12) Σ+ :

{
S−1x+ = Ã+x+ + B̃+u

y+ = C̃+x+ + D̃u

where

(3.13)

Ã+ = diagk∈Z[Ã+] ∈ L(ℓ2X+
),

B̃+ = diagk∈Z[B̃+] ∈ L(ℓ2U (Z), ℓ
2
X+

(Z)),

C̃+ = diagk∈Z[C̃+] ∈ L(ℓ2X+
(Z), ℓ2Y(Z)),

D̃ = diagk∈Z
[D] ∈ L(ℓ2U (Z), ℓ

2
Y(Z)).

The exponential stability assumption on Ã+ implies that Ã+ has trivial exponential
dichotomy (with state-space X− = {0}). As previously observed (see [9]), the

exponential dichotomy of Ã+ implies that we can solve the first system equation
(3.12) of Σ+ uniquely for x+ ∈ ℓ2X+

(Z):

(3.14) x+ = (S−1 − Ã+)
−1B̃+u =: TΣ+,isu

and item (1) follows. From the general formula (2.14) for (S−1−A)−1 in (2.14), we
see that for our case here the formula for the input-state map TΣ+,is for the system
Σ+ is given by (3.3). From the aggregate form of the system equations (3.12) we
see that the resulting input-output map TΣ+ : ℓ2U(Z) → ℓ2Y(Z) is then given by

TΣ+ = D̃ + C̃(S−1 − Ã+)
−1B̃+ = D̃ + C̃TΣ+,is.

The block matrix decomposition (3.4) for the input-output map TΣ+ now follows
directly from plugging in the matrix decomposition (3.3) for TΣ+,is into this last
formula.

The analysis for item (2) proceeds in a similar way. Introduce operators

(3.15)

Ã− = diagk∈Z
[Ã−] ∈ L(ℓ2X−

),

B̃− = diagk∈Z[B̃−] ∈ L(ℓ2U (Z), ℓ
2
X−

(Z)),

C̃− = diagk∈Z[C̃−] ∈ L(ℓ2X−
(Z), ℓ2Y(Z)),
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Write the system (3.1) in the aggregate form

(3.16) Σ− :

{
x− = Ã−S

−1x− + B̃−u

y− = C̃−x−.

As Ã− is exponentially stable, so also is Ã− and we may compute (I − Ã−S
−1)−1

via the geometric series, using also that Ã− and S−1 commute as observed in (2.10),

(I − Ã−S
−1)−1 =

∞∑

k=0

Ãk
−S

−k

from which we deduce the block matrix representation

[(I − Ã−S
−1)−1]ij =

{
0 for i > j,

Ãj−i
− for i ≤ j.

We next note that we can solve the first system equation in (3.15) for x− in
terms of u:

x− = (I −A−S
−1)−1B̃u =: TΣ−,isu.

Combining this with the previous formula for the block-matrix entries for (I −

Ã−S
−1)−1 leads to the formula (3.5) for the matrix entries of TΣ−,is. From the

second equation for the system (3.16) we see that then y− is uniquely determined
via the formula

y− = C̃−x− = C̃−TΣ−,isu.

Plugging in the formula (3.5) for the block matrix entries of TΣ−,is then leads to
the formula (3.6) for the block matrix entries of the input-output map TΣ−

for the
system Σ−.

Item (3) now follows by definition of the input-output map TΣ of the bicausal
system Σ as the sum TΣ = TΣ,−+TΣ,+ of the input-output maps for the anticausal
system Σ− and the causal system Σ+ along with the formulas for TΣ,± obtained in
items (1) and (2).

We now analyze item (4). Define FΣ by either of the equivalent formulas in (3.9).

Due to the exponential stability of Ã+ and Ã−, we see that FΣ is a continuous
L(U ,Y)-valued function on the unit circle T, and hence the multiplication operator
MFΣ : f(z) 7→ FΣ(z) · f(z) is a bounded operator from L2

U(T) into L2
Y(T). From

the second formula for FΣ(z) in (3.9) combined with the formula (3.8) for the block
matrix entries of TΣ, we see that the Laurent expansion for F (z) =

∑∞
n=−∞ Fnz

n on
T is given by Fn = [TΣ]n,0 and that the Laurent matrix [LFΣ ]ij = Fi−j is the same
as the matrix for the input-output operator [TΣ]ij . We now see the identity (3.10)
as an immediate consequence of the general identity (2.7). Finally, the transfer-
function property (3.11) follows immediately from (3.10) combined with the general
identity (2.7). �

Remark 3.2. From the form of the input-output operator TΣ and transfer function
FΣ of the dichotomous system Σ in (1.1)–(1.2) that were obtained in Proposition 2.2
with respect to the decompositions of A in (2.1) and of B and C in (2.2) it follows
that a dichotomous system can be represented as a bicausal system (3.2)–(3.1) with

(3.17)
(C̃+, Ã+, B̃+, D̃) = (C+, A+, B+, D),

(C̃−, Ã−, B̃−) = (C−, A
−1
− ,−A−1

− B−).
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The extra feature that a bicausal system coming from a dichotomous system has is

that Ã− is invertible. In fact, if the operator Ã− in a bicausal system (3.2)-(3.1) is
invertible, it can be represented as a dichotomous system (1.1) as well, by reversing
the above transformation. Indeed, one easily verifies that if Σ = (Σ+,Σ−) is a

bicausal system given by (3.2)-(3.1) with Ã− invertible, then the system (1.1) with

A =

[
Ã+ 0

0 Ã−1
−

]
, B =

[
B̃+

−Ã−1
− B̃−

]
, C =

[
C̃+ C̃−

]
, D = D̃

is a dichotomous system whose input-output operator and transfer function are
equal the input-output operator and transfer function from the original bicausal
system.

To a large extent, the theory of dichotomous system presented in Section 2
carries over to bicausal systems, with proofs that can be directly obtained from
the translation between the two systems given above. We describe here the main
features.

The Laurent operator LFΣ = TΣ can again be decomposed as in (2.16) where

now the Toeplitz operators T̃FΣ and TFΣ are given by

(3.18)

[TFΣ ]ij : i<0,j<0 =





C̃−Ã
j−i
− B̃− for i < j < 0,

D̃ + C̃−B̃− for i = j < 0,

C̃+Ã
i−j−1
+ B̃+ for j < i < 0,

[TFΣ ]ij : i≥0,j≥0 =





C̃−Ã
j−i
− B̃− for 0 ≤ i < j,

D̃ + C̃−B̃− for 0 ≤ i = j,

C̃+Ã
i−j−1
+ B̃+ for 0 ≤ j < i,

while the Hankel operators H̃FΣ and HFΣ are given by

(3.19) [H̃FΣ ]ij:i<0,j≥0 = C̃−Ã
j−i
− B̃−, [HFΣ ]ij : i≥0,j<0 = C̃+Ã

i−j−1
+ B̃+.

For the subsystems Σ+ and Σ− we define controllability operatorsW+
c and W−

c ,
respectively, as well as observability operators W+

o and W−
o , respectively, just as

in the case of regular forward-time and backward-time systems:

(3.20)

W+
c = rowj∈Z−

[Ã−j−1
+ B̃+] : ℓ

2
U (Z−) → X+,

W−
c = rowj∈Z+ [Ã

j
−B̃−] : ℓ

2
U(Z+) → X−,

W+
o = coli∈Z+ [C̃+Ã

i
+] : X+ → ℓ2Y(Z+),

W−
o = coli∈Z−

[C̃−Ã
−i
− ] : X− → ℓ2Y(Z−).

Setting X = X++̇X−, we put these operators together to define the controllability
operator Wc and observability operator Wo of the bicausal system Σ via

(3.21)

Wc =
[
W+

c W−
c

]
:

[
ℓ2U(Z−)
ℓ2U (Z+)

]
→ X ,

Wo =

[
W−

o

W+
o

]
: X →

[
ℓ2Y(Z−)
ℓ2Y(Z+)

]
.

The fact that Ã+ and Ã− are both stable implies that all the operators W±
c , Wc,

W±
o and Wo are bounded. Then it is now easily checked that we still recover
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factorizations of the Hankel operators as before:

(3.22) H̃FΣ = W−
o W

−
c , HFΣ = W+

o W
+
c .

For the bicausal system Σ = (Σ+,Σ−) given by (3.2)–(3.1) we say that Σ is
controllable (respectively, observable) whenever the two systems Σ+ and Σ− are
both controllable (respectively, observable), i.e., ImW+

c dense in X+ and ImW−
c

dense in X−, or equivalently, ImWc dense in X (respectively, KerW+
o = {0} and

KerW−
o = {0}, or equivalently, KerWo = {0}). Analogously, we say that Σ is

ℓ2-exactly controllable (respectively, ℓ2-exactly observable) whenever ImWc = X
(respectively, ImW∗

o = X ).
An exception to the general rubric that the theory of dichotomous systems carries

over directly to the theory of bicausal systems is the following analogue of the ℓ2-
admissible-trajectory interpolation result (Proposition 2.6), which has a somewhat
different form for the bicausal setting.

Proposition 3.3. Let Σ = (Σ−,Σ+) be a bicausal linear system as in (3.1) and

(3.2) with Ã− exponentially stable on X− and Ã+ exponentially stable on X+ and
suppose that Σ is ℓ2-exactly controllable in the bicausal sense. Then given any
vectors x− ∈ X−, x+ ∈ X+, u ∈ U , there is an ℓ2-admissible system trajectory
(u,x− ⊕ x+,y) for Σ satisfying the interpolation conditions

(3.23) x−(1) = x−, x+(0) = x+, u(0) = u.

Proof. By the ℓ2-exact controllability assumption, we can find u− ∈ ℓ2U (Z−) so
that W+

c u = x+. Similarly, we can find u+ ∈ ℓ2U(Z+) so that W−
c u+ = x−. Define

a input signal u ∈ ℓ2U (Z) by

u(n) =





u−(n) if n < 0,

u if n = 0,

u+(n− 1) if n > 0.

Now it is simple direct check that the ℓ2-admissible trajectory (u,x,y) determined
by the input u has the desired interpolation properties (3.23).

The proof is close to that of the the corresponding result for the dichotomous
setting, Proposition 2.6. The key difference is that we must use x−(1) rather than
x−(0) as a free parameter since in general we are not able to solve the equation

x− = Ã−x−(1) − Ã−B̃−u for x−(1) (the analogue of equation (2.26)) since Ã−

need not be invertible in the bicausal setting. �

4. Storage functions

Let Σ be the dichotomous system given by (1.1). A storage function for the
system Σ is a function S : X → R so that

(1) S is continuous at 0:

{xn}n∈N ⊂ X , lim
n→∞

xn = 0 in X =⇒ lim
n→∞

S(xn) = S(0) in R,

(2) S satisfies the energy-balance relation:

(4.1) S(x(n+ 1))− S(x(n)) ≤ ‖u(n)‖2U − ‖y(n)‖2Y (n ∈ Z)

along all ℓ2-admissible system trajectories (u,x,y) of Σ, and
(3) S satisfies the normalization condition S(0) = 0.
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We further say that S is a strict storage function for Σ if S is a storage function for
Σ with condition (4.1) replaced by the stronger condition: there is a ǫ > 0 so that

(4.2) S(x(n+ 1))− S(x(n)) + ǫ2‖x(n)‖2 ≤ (1− ǫ2)‖u(n)‖2U − ‖y(n)‖2Y (n ∈ Z)

along all ℓ2-admissible system trajectories (u,x,y) of Σ.
Then we have the following result.

Proposition 4.1. Suppose that the dichotomous system (1.1) has a storage func-
tion S. Then the input-output map TΣ is contractive, i.e., ‖TΣ‖ ≤ 1. In case Σ
has a strict storage function S, the input-output map is a strict contraction, i.e.,
‖TΣ‖ < 1.

Proof. Let S be a storage function for Σ. Take u ∈ ℓ2U(Z). Define x by x = TΣ,isu
and y by y = TΣu, where TΣ,is and TΣ are as in (2.12)–(2.13), so (u,x,y) is an
ℓ2-admissible system trajectory. If we sum (4.1) from n = −N to n = N we get

S(x(N + 1))− S(x(−N)) ≤

N∑

n=−N

‖u(n)‖2U −

N∑

n=−N

‖y(n)‖2Y .

Taking the limit as N → ∞ and using the fact that both x(−N) → 0 and x(N) → 0
as N → ∞, since x ∈ ℓ2X (Z), we obtain from the continuity of S at 0 and the
normalization condition S(0) = 0 that both S(xN+1) → 0 and S(x(−N)) → 0 as
N → ∞. Hence taking the limit as N → ∞ in the preceding estimate gives

0 ≤ ‖u‖2ℓ2
U
(Z) − ‖y‖2ℓ2

Y
(Z) = ‖u‖2ℓ2

U
(Z) − ‖TΣu‖

2
ℓ2
Y
(Z).

Since u was chosen arbitrarily in ℓ2U(Z), it follows that ‖TΣ‖ ≤ 1.
If Σ has a strict storage function we see that there is an ǫ > 0 so that

S(x(n+ 1))− S(x(n)) ≤ S(x(n+ 1))− S(x(n)) + ǫ2‖x(n)‖2

≤ (1− ǫ2)‖u(n)‖2 − ‖y(n)‖2

so in particular we have

S(x(n+ 1)− S(x(n)) ≤ (1− ǫ2)‖u(n)‖2 − ‖y(n)‖2.

Summing this last inequality from n = −N to n = N leaves us with

S(x(N + 1))− S(x(−N)) ≤ (1 − ǫ2)

N∑

n=−N

‖u(n)‖2U −

N∑

n=−N

‖y(n)‖2Y .

Taking the limit as N → ∞ and using again the fact that both x(−N) → 0 and
x(N) → 0 as N → ∞ along ℓ2-admissible system trajectories then gives us

0 ≤ (1− ǫ2)‖u‖2ℓ2
U
(Z) − ‖y‖2ℓ2

Y
(Z) = (1− ǫ2)‖u‖2ℓ2

U
(Z) − ‖TΣu‖

2
ℓ2
Y
(Z)

and we are able to conclude that ‖TΣ‖
2 ≤ 1− ǫ2 < 1. �

To get further results on storage functions for dichotomous systems, we shall
assume from now on that the transfer function FΣ is contractive on the unit circle
(‖FΣ‖∞,T ≤ 1) as well as that Σ is dichotomously ℓ2-exactly minimal (see (2.24)–
(2.25)), i.e.,

(4.3) ‖FΣ‖∞,T ≤ 1, ImWc = X , ImW∗
o = X .
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Remark 4.2. A particular consequence of assumption (4.3) is that Σ is ℓ2-exactly
controllable. As a consequence of Proposition 2.6 we then see that the second
condition (4.1) in the definition of storage function can be replaced by the localized
version: given u ∈ U and x ∈ X we have the inequality

(4.4) S(Ax+Bu)− S(x) ≤ ‖u‖2 − ‖Cx+Du‖2

for the standard case, and

(4.5) S(Ax+Bu)− S(x) + ǫ2‖x‖2 ≤ (1− ǫ2)‖u‖2 − ‖Cx+Du‖2

for the strict case. Once we have this formulation, we also see that we could
equally well replace the phrase ℓ2-admissible system trajectories simply with system
trajectories in (4.1) and (4.2).

With all the assumptions (4.3) in force, we now define two candidate storage
functions, referred to as the available storage and required supply functions for the
dichotomous linear system (1.1), namely

Sa(x0) = sup
u∈ℓ2

U
(Z) : Wcu=x0

∞∑

n=0

(
‖y(n)‖2 − ‖u(n)‖2

)
(xo ∈ ImWc)(4.6)

Sr(x0) = inf
u∈ℓ2

U
(Z) : Wcu=x0

−1∑

n=−∞

(
‖u(n)‖2 − ‖y(n)‖2

)
(xo ∈ ImWc)(4.7)

where y is the output signal determined by (2.13).
In order to show that Sa and Sr are storage functions, we shall need multiple

applications of the following elementary patching lemma.

Lemma 4.3. Suppose that (u′,x′,y′) and (u′′,x′′,y′′) are two ℓ2-admissible system
trajectories of the system Σ such that x′(0) = x′′(0) =: x0. Define a new triple of
signals (u,x,y) by

u(n) =

{
u′(n) if n < 0,

u′′(n) if n ≥ 0,
x(n) =

{
x′(n) if n ≤ 0,

x′′(n) if n > 0,

y(n) =

{
y′(n) if n < 0,

y′′(n) if n ≥ 0.
(4.8)

Then (u,x,y) is again an ℓ2-admissible system trajectory.

Proof. We must verify that (u,x,y) satisfy the system equations (1.1) for all
n ∈ Z. For n < 0 this is clear since (u′,x′,y′) is a system trajectory. Since
x′(0) = x′′(0), we see that this holds for n = 0. That it holds for n > 0 follows easily
from the fact that (u′′,x′′,y′′) is a system trajectory. Finally note that (u′,x′,y′)
and (u′′,x′′,y′′) both being ℓ2-admissible implies that (u,x,y) is ℓ2-admissible. �

Our next goal is to show that Sa and Sr are storage functions for Σ, and among
all storage functions they are the minimum and maximum ones. We postpone the
proof of Step 4 in the proof of items (1) and (2) in the following proposition to
Section 5 below.

Proposition 4.4. Let Σ be a dichotomous linear system as in (1.1) such that (4.3)
holds. Then:

(1) Sa is a storage function for Σ.
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(2) Sr is a storage function for Σ.

(3) If S̃ is any other storage function for Σ, then

Sa(x0) ≤ S̃(x0) ≤ Sr(x0) for all x0 ∈ X .

Proof of (1) and (2). The proof proceeds in several steps.
Step 1: Sa and Sr are finite-valued on X . Let x0 ∈ X = ImWc. By the
ℓ2-exact controllability assumption, there is a u0 ∈ ℓ2U(Z) so that x0 = Wcu0. Let
(u0,x0,y0) be the unique ℓ

2-admissible system trajectory of Σ defined by the input
u0. Then

Sa(x0) ≥

∞∑

n=0

‖y0(n)‖
2 − ‖u0(n)‖

2 ≥ −‖u0‖
2 > −∞

and similarly
Sr(x0) ≤ ‖u0‖

2 < ∞.

It remains to show Sa(x0) < ∞ and Sr(x0) > −∞.
Let (u,x,y) be any ℓ2-admissible system trajectory of Σ with x(0) = x0. Let

(u0,x0,y0) be the particular ℓ2-admissible system trajectory with x(0) = x0 as
chosen above. Then by Lemma 4.3 we may piece together these two trajectories to
form a new ℓ2-admissible system trajectory (u′,x′,y′) of Σ defined as follows:

u′(n) =

{
u0(n) if n < 0

u(n) if n ≥ 0
, x′(n) =

{
x0(n) if n ≤ 0

x(n) if n > 0
,

y′(n) =

{
y0(n) if n < 0,

y(n) if n ≥ 0
.

Since ‖TΣ‖ ≤ 1 and (u′,x′,y′) is a system trajectory, we know that

+∞∑

n=−∞

‖y′(n)‖2 = ‖y′‖2 = ‖TΣu
′‖2 ≤ ‖u′‖2 =

+∞∑

n=−∞

‖u′(n)‖2.

Let us rewrite this last inequality in the form

∞∑

n=0

‖y(n)‖2 −
∞∑

n=0

‖u(n)‖2 ≤
−1∑

n=−∞

‖u0(n)‖
2 −

−1∑

n=−∞

‖y0(n)‖
2 < ∞.

It follows that the supremum of the left hand side over all ℓ2-admissible trajectories
(u,x,y) of Σ with x(0) = x0 is finite, i.e., Sa(x0) < ∞.

A similar argument shows that Sr(x0) > −∞ as follows. Given an arbitrary
ℓ2-admissible system trajectory (u,x,y) with x(0) = x0, Lemma 4.3 enables us to
form the composite ℓ2-admissible system trajectory (u′′,x′′,y′′) of Σ defined by

u′′(n) =

{
u(n) if n < 0

u0(n) if n ≥ 0
, x′′(n) =

{
x(n) if n ≤ 0

x0(n) if n > 0
,

y′′(n) =

{
y(n) if n < 0,

y0(n) if n ≥ 0
.

Then the fact that
∑+∞

n=−∞ ‖y′′(n)‖2 ≤
∑∞

n=−∞ ‖u′′(n)‖2 gives us that

−1∑

n=−∞

‖u(n)‖2 −

−1∑

n=−∞

‖y(n)‖2 ≥

∞∑

n=0

‖y0(n)‖
2 −

∞∑

n=0

‖u0(n)‖
2 > −∞
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and it follows from the definition (4.7) that Sr(x0) > −∞. By putting all these
pieces together we see that both Sa and Sr are finite-valued on X = ImWc.
Step 2: Sa(0) = Sr(0) = 0. This fact follows from the explicit quadratic form for
Sa and Sr obtained in Theorem 5.2 below, but we include here an alternative more
conceptual proof to illustrate the ideas. By noting that (0, 0, 0) is an ℓ2-admissible
system trajectory, we see from the definitions of Sa in (4.6) and Sr in (4.7) that
Sa(0) ≥ 0 and Sr(0) ≤ 0. Now let (u,x,y) be any ℓ2-admissible system trajectory
such that x(0) = 0. Another application of Lemma 4.3 then implies that (u′,x′,y′)
given by

(u′(n),x′(n),y′(n)) =

{
(0, 0, 0) if n < 0,

(u(n),x(n),y(n)) if n ≥ 0

is also an ℓ2-admissible system trajectory. From the assumption that ‖TΣ‖ ≤ 1 we
get that

0 ≤

∞∑

n=−∞

(‖u′(n)‖2U − ‖y′(n)‖2Y) =

∞∑

n=0

(‖u(n)‖2U − ‖y(n)‖2Y),

so

(4.9)

∞∑

n=0

(‖y(n)‖2Y − ‖u(n)‖2U) ≤ 0

whenever (u,x,y) is an ℓ2-admissible system trajectory with x(0) = 0. From the
definition in (4.6) we see that Sa(0) is the supremum over all such expressions on
the left hand side of (4.9), and we conclude that Sa(0) ≤ 0. Putting this together
with the first piece above gives Sa(0) = 0.

Similarly, note that if (u,x,y) is an ℓ2-admissible trajectory with x(0) = Wcu =
0, then again by Lemma 4.3

(u′′(n),x′′(n),y′′(n)) =

{
(u(n),x(n),y(n)) if n < 0,

(0, 0, 0) if n ≥ 0

is also an ℓ2-admissible system trajectory. Since ‖TΣ‖ ≤ 1 we get

0 ≤

∞∑

n=−∞

(‖u′′(n)‖2U − ‖y′′(n)‖2Y) =

−1∑

n=−∞

(‖u(n)‖2U − ‖y(n)‖2Y)

From the definition (4.7) of Sr(0) it follows that Sr(0) ≥ 0. Putting all these pieces
together, we arrive at Sa(0) = Sr(0) = 0.
Step 3: Both Sa and Sr satisfy the energy balance inequality (4.1). For
x0 ∈ X , set

−→
U x0 = {ũ ∈ ℓ2U(Z) : x̃(0) = Wcũ = x0},

Also, for any Hilbert space W let P+ on ℓ2W(Z) be the orthogonal projection on
ℓ2W(Z+) and P− = I − P+. Then we can write Sa(x0) and Sr(x0) as

Sa(x0) = sup
ũ∈

−→
U x0

‖P+ỹ‖
2 − ‖P+ũ‖

2 and Sr(x0) = inf
ũ∈

−→
U x0

‖P−ũ‖
2 − ‖P−ỹ‖

2,

where ỹ = TΣũ is the output of Σ defined by the input ũ ∈ ℓ2U(Z). In general, if
ũ ∈ ℓ2U(Z) is an input trajectory, then the corresponding uniquely determined ℓ2-
admissible state and output trajectories are denoted by x̃ := TΣ,isũ and ỹ := TΣũ.
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Now let (u,x,y) be an arbitrary fixed system trajectory for the dichotomous
system Σ and fix n ∈ Z. Set

−→
U ∗ = {ũ ∈ ℓ2U(Z) : x̃(0) = x(n), ũ(0) = u(n)}.

Note that
−→
U ∗ is nonempty by simply quoting Proposition 2.6. Observe that

−→
U ∗ ⊂

−→
U x(n). For an ℓ2-admissible system trajectory (ũ, x̃, ỹ) with ũ ∈

−→
U ∗ we have

ỹ(0) = y(n) and x̃(1) = x(n + 1). Furthermore, (S∗ũ,S∗x̃,S∗ỹ) is also an ℓ2-
admissible system trajectory of Σ and

(S∗x̃)(0) = x̃(1) = x(n+ 1).

Hence

S∗−→U ∗ = {S∗ũ : ũ ∈
−→
U ∗} ⊂

−→
U x(n+1).

Next, since ỹ(0) = y(n) and ũ(0) = u(n) we have

‖P+ỹ‖
2 − ‖P+ũ‖

2 = ‖P+S
∗ỹ‖2 − ‖P+S

∗ũ‖2 + ‖y(n)‖2 − ‖u(n)‖2

and

‖P−S
∗ũ‖2 − ‖P−S

∗ỹ‖2 = ‖P−ũ‖
2 − ‖P−ỹ‖

2 + ‖u(n)‖2 − ‖y(n)‖2.

We thus obtain that

Sa(x(n)) = sup
ũ∈

−→
U

x(n)

‖P+ỹ‖
2 − ‖P+ũ‖ ≥ sup

ũ∈
−→
U ∗

‖P+ỹ‖
2 − ‖P+ũ‖

2

= ‖y(n)‖2 − ‖u(n)‖2 + sup
ũ∈

−→
U ∗

‖P+S
∗ỹ‖2 − ‖P+S

∗ũ‖2

= ‖y(n)‖2 − ‖u(n)‖2 + sup
ũ∈S∗

−→
U ∗

‖P+ỹ‖
2 − ‖P+ũ‖

2,

and similarly for Sr we have

Sr(x(n + 1)) = inf
ũ∈

−→
U

x(n+1)

‖P−ũ‖
2 − ‖P−ỹ‖

2

= inf
S∗ũ∈

−→
U

x(n+1)

‖P−S
∗ũ‖2 − ‖P−S

∗ỹ‖2

≤ inf
S∗ũ∈S∗

−→
U ∗

‖P−S
∗ũ‖2 − ‖P−S

∗ỹ‖2

= inf
ũ∈

−→
U ∗

‖P−S
∗ũ‖2 − ‖P−S

∗ỹ‖2

= ‖u(n)‖2 − ‖y(n)‖2 + inf
ũ∈

−→
U ∗

‖P−ũ‖
2 − ‖P−ỹ‖

2.

To complete the proof of this step it remains to show that

Sa(x(n + 1)) = sup
ũ∈S∗

−→
U ∗

‖P+ỹ‖
2 − ‖P+ũ‖

2 =: sa,

Sr(x(n)) = inf
ũ∈

−→
U ∗

‖P−ũ‖
2 − ‖P−ỹ‖

2 =: sr.(4.10)

We start with Sa. Since S∗−→U ∗ ⊂
−→
U x(n+1) we see that

sa ≤ Sa(x(n+ 1)).
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To show that also sa ≥ Sa(x(n + 1)), let (ũ, x̃, ỹ) be an ℓ2-admissible system

trajectory with ũ ∈
−→
U x(n+1). The problem is to show

(4.11)

∞∑

n=0

(‖ỹ(n)‖2 − ‖ũ(n)‖2) ≤ sa.

Toward this goal, let (û, x̂, ŷ) be any ℓ2-admissible trajectory with û ∈ S∗−→U ∗. We
then patch the two system trajectories together by setting

ũ′(k) =

{
û(k) if k < 0

ũ(k) if k ≥ 0
, x̃′(k) =

{
x̂(k) if k ≤ 0

x̃(k) if k > 0
,

ỹ′(k) =

{
ŷ(k) if k < 0,

ỹ(k) if k ≥ 0
.

Clearly the input, state and output trajectories are all ℓ2-sequences. Note that
(û, x̂, ŷ) and (ũ, x̃, ỹ) are both ℓ2-admissible system trajectories. Note that û(−1) =
u(n), x̂(−1) = x(n), ŷ(−1) = y(n) and x̂(0) = x(n+ 1), we see that

x̂(0) = Ax̂(−1) +Bû(−1) = Ax(n) +Bu(n) = x(n+ 1) = x̃(0).

We can now apply once again Lemma 4.3 to conclude that (ũ′, x̃′, ỹ′) is also an

ℓ2-admissible trajectory for Σ. Furthermore, we have ũ′ ∈ S∗−→U ∗, P+ỹ = P+ỹ
′ and

P+ũ = P+ũ
′. Thus

‖P+ỹ‖
2 − ‖P+ũ‖

2 = ‖P+ỹ
′‖2 − ‖P+ũ

′‖2 ≤ sup
ũ∈S∗

−→
U ∗

‖P+ỹ‖
2 − ‖P+ũ‖

2 =: sa.

Taking the supremum on the left-hand side over all ℓ2-admissible system trajectories

with ũ ∈
−→
U x(n+1) then yields Sa(x(n + 1)) ≤ sa, and the first equality in (4.10)

holds as required.
To prove the second equality in (4.10) we follow a similar strategy, which we

will only sketch here. The inclusion
−→
U ∗ ⊂

−→
U x(n) shows sr is an upper bound.

Any (ũ, x̃, ỹ) be ℓ2-admissible system trajectory with ũ ∈
−→
U x(n) can be patched

together with an ℓ2-admissible system trajectory with input sequence from
−→
U ∗ to

form a new ℓ2-admissible system trajectory (ũ′, x̃′, ỹ′) with ũ′ in
−→
U ∗, P−ũ = P−ũ

′

and P−ỹ = P−ỹ
′, so that

‖P−ũ‖
2 − ‖P−ỹ‖

2 = ‖P−ũ
′‖2 − ‖P−ỹ

′‖2 ≥ inf
ũ∈

−→
U ∗

‖P−ũ‖
2 − ‖P−ỹ‖

2 =: sr

which then yields that sr is also a lower bound for Sr(x(n)) as required.
Step 4: Both Sa and Sr are continuous at 0. This is a consequence of the
explicit quadratic form obtained for Sa and Sr in Theorem 5.2 below.

Proof of (3). Let S̃ be any storage function for Σ. Let x0 ∈ ImWc and let (u,x,y)

be any ℓ2-admissible dichotomous system trajectory for Σ with x(0) = x0. Then S̃
satisfies the energy balance relation

(4.12) S̃(x(n + 1))− S̃(x(n)) ≤ ‖u(n)‖2U − ‖y(n)‖2Y .
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Summing from n = 0 to n = N then gives

S̃(x(N + 1))− S̃(x0) = S̃(x(N + 1))− S̃(x(0))

≤
N∑

n=0

(
‖u(n)‖2U − ‖y(n)‖2Y

)
.(4.13)

As x ∈ ℓ2X (Z) and S̃ as part of being a storage function is continuous at 0 with

S̃(0) = 0, we see from x(N + 1) → 0 that S̃(x(N + 1)) → S̃(0) = 0 as N → ∞.
Hence letting N → ∞ in (4.13) gives

−S̃(x0) ≤
∞∑

n=0

(
‖u(n)‖2U − ‖y(n)‖2Y

)
.

But by definition, the infimum of the right-hand side of this last expression over
all system trajectories (u,x,y) of Σ such that x(0) = x0 is exactly −Sa(x0). We

conclude that −S̃(x0) ≤ −Sa(x0), and thus Sa(x0) ≤ S̃(x0) for any x0 ∈ ImWc.
Similarly, if we sum up (4.12) from n = −N to n = −1 we get

S̃(x0)− S̃(x(−N)) = S̃(x(0))− S̃(x(−N)) ≤

−1∑

n=−N

(‖u(n)‖2U − ‖y(n)‖2Y).

Letting N → ∞ in this expression then gives

S̃(x0) ≤

−1∑

n=−∞

(‖u(n)‖2U − ‖y(n)‖2Y).

But by definition the infimum of the right-hand side of this last inequality over
all ℓ2-admissible system trajectories (u,x,y) with x(0) = x0 is exactly equal to

Sr(x0). We conclude that S̃(x0) ≤ Sr(x0). This completes the proof of part (3) of
Proposition 4.4. �

Quadratic storage functions and spatial KYP-inequalities: the dichoto-
mous setting. Let us say that a function S : X → R is quadratic if there exists
a bounded selfadjoint operator H on X such that S(x) = SH(x) := 〈Hx, x〉 for all
x ∈ X . Trivially any function S = SH of this form satisfies conditions (1) and (3)
in the definition of storage function (see the discussion around (4.1)). To charac-
terize which bounded selfadjoint operators H give rise to S = SH being a storage
function, as we are assuming that our blanket assumption (4.3) is in force, we may
quote the result of Remark 4.2 to substitute the local version (4.4) ((4.5)) of the
energy-balance condition in place of the original version (4.1) (respectively (4.2) for
the strict case). Condition (4.4) applied to SH leads us to the condition

〈H(Ax+Bu), Ax+Bu〉 − 〈Hx, x〉 ≤ ‖u‖2 − ‖Cx+Du‖2,

or equivalently

〈H(Ax+Bu), Ax+Bu〉+ 〈Cx+Du,Cx+Du〉 ≤ 〈Hx, x〉+ 〈u, u〉 .

holding for all x ∈ X and u ∈ U . In a more matricial form, we may write instead
〈[

H 0
0 I

] [
x
u

]
,

[
x
u

]〉

−

〈[
H 0
0 I

] [
A B
C D

] [
x
u

]
,

[
A B
C D

] [
x
u

]〉
≥ 0(4.14)
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for all x ∈ X and u ∈ U . Hence H satisfies the spatial version (4.14) of the KYP-
inequality (1.4). By elementary Hilbert-space theory, namely, that a selfadjoint
operator X on a complex Hilbert space is uniquely determined by its associated
quadratic form x 7→ 〈Xx, x〉, it follows that H solves the KYP-inequality (1.4), but
now for an infinite-dimensional setup.

If we start with the strict version (4.5) of the local energy-balance condition, we
arrive at the following criterion for the quadratic function SH to be a strict storage
function for the system Σ, namely the spatial version of the strict KYP-inequality:

〈[
H 0
0 I

] [
x
u

]
,

[
x
u

]〉

−

〈[
H 0
0 I

] [
A B
C D

] [
x
u

]
,

[
A B
C D

] [
x
u

]〉
≥ ǫ

∥∥∥∥
[

x
u

]∥∥∥∥
2

,(4.15)

and hence also the strict KYP-inequality in operator form (1.5), again now for the
infinite-dimensional setting. Following the above computations in reversed order
shows that the spatial KYP-inequality (4.14) and strict spatial KYP-inequality
(4.15) imply that SH is a storage function and strict storage function, respectively.

Proposition 4.5. Let Σ be a dichotomous linear system as in (1.1). Let H be a
bounded, self adjoint operator on X . Then SH is a quadratic storage function for Σ
if and only if H is a solution of the KYP-inequality (1.4). Moreover, SH is a strict
quadratic storage function if and only if H is a solution of the strict KYP-inequality
(1.5).

5. The available storage and required supply

We assume throughout this section that the dichotomous linear system Σ satisfies
the standing assumption (4.3). Under these conditions we shall show that the
available storage Sa and required supply Sr are quadratic storage functions and we
shall obtain explicit formulas for the associated selfadjoint operators Ha and Hr

satisfying the KYP-inequality (1.4).
The assumption that ‖FΣ‖∞,T ≤ 1 implies that the associated Laurent operator

LFΣ in (2.6) is a contraction, so that the Toeplitz operators TFΣ and T̃FΣ (2.17) are
also contractions. Thus I − LFΣL

∗
FΣ

and I − L∗
FΣ

LFΣ are both positive operators.
Writing out these operators in terms of the operator matrix decomposition (2.16)
we obtain

(5.1)

I − LFΣL
∗
FΣ

=




D2
T̃∗

FΣ

− H̃FΣH̃
∗
FΣ

−T̃FΣH
∗
FΣ

− H̃FΣT
∗
FΣ

−HFΣT̃
∗
FΣ

− TFΣH̃
∗
FΣ

D2
T∗

FΣ

− HFΣH
∗
FΣ




I − L∗
FΣ

LFΣ =

[
D2

T̃Σ
− H∗

ΣHFΣ −H∗
FΣ

TFΣ − T̃∗
FΣ

H̃FΣ

−T∗
FΣ

HFΣ − H̃∗
FΣ

T̃FΣ D2
TΣ

− H̃∗
ΣH̃FΣ

]
.

In particular, from I − LFΣL
∗
FΣ

and I − L∗
FΣ

LFΣ being positive operators we read
off that

(5.2) D2
T∗

F

� HFΣH
∗
FΣ

, D2
T̃∗

FΣ

� H̃FΣH̃
∗
FΣ

, D2
T̃Σ

� H∗
ΣHFΣ , D2

TΣ
� H̃∗

ΣH̃FΣ .

Applying Douglas’ Lemma [11] along with the factorizations in (2.21) enables us
to prove the following result.
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Lemma 5.1. Assume the dichotomous system Σ in (1.1) satisfies (4.3). Then
there exist unique injective bounded linear operators Xo,+, Xo,−, Xc,+ and Xc,−

such that

Xo,+ : X+ → ℓ2U (Z+), W+
o = DT∗

FΣ
Xo,+, ImXo,+ ⊂ ImDT∗

FΣ
,(5.3)

Xo,− : X− → ℓ2U (Z−), W−
o = D

T̃∗
FΣ

Xo,−, ImXo,− ⊂ ImD
T̃∗

FΣ

,(5.4)

Xc,+ : X+ → ℓ2Y(Z+), (W+
c )

∗ = D
T̃FΣ

Xc,+, ImXc,+ ⊂ ImD
T̃FΣ

,(5.5)

Xc,− : X− → ℓ2Y(Z−), (W−
c )

∗ = DTFΣ
Xc,−, ImXc,− ⊂ ImDTFΣ

.(5.6)

Proof. We give the details of the proof only for Xo,+ as the other cases are similar.
The argument is very much like the proof of Lemma 4.8 in [7] where the argument
is more complicated due the unbounded-operator setting there.

Since D2
T∗

FΣ

� HFΣHFΣ , the Douglas factorization lemma [11] implies the exis-

tence of a unique contraction operator Yo,+ : ℓ2U(Z−) → ℓ2U (Z+) with

W+
o W

+
c = HFΣ = DT∗

FΣ
Yo,+ and ImYo,+ ⊂ ImDT∗

FΣ
.

As ImWc = X+, the Open Mapping Theorem guarantees that W+
c has a bounded

right inverse W+†
c := W+∗

c (W+
c W

+∗
c )−1. Moreover, u = W+†

c x is the least norm
solution of the equation W+

c u = x:

W+†
c (x) = arg min {‖u‖2ℓ2

U
(Z−) : u ∈ D(W+

c ), x = W+
c u} (x ∈ ImW+

c ).

We now define Xo,+ by

Xo,+ = Yo,+W
+†
c .

We then observe

DT∗
FΣ

Xo,+ = DT∗
FΣ

Yo,+W
+†
c = HFΣW

+†
c = W+

o W
+
c W

+†
c = W+

o

giving the factorization (5.3) as wanted. Moreover, the factorization Xo,+ =

Yo,+W
+†
c implies that ImXo,+ ⊂ ImYo,+ ⊂ ImDT∗

FΣ
; this property combined with

the factorization (5.3) makes the choice of Xo,+ unique. Moreover, the containment

ImXo,+ ⊂ ImDT∗
FΣ

combined with the injectivity of W+
o forces the injectivity of

Xo,+. �

We are now ready to analyze both the available storage function Sa and the
required supply function Sr for a system meeting hypotheses (4.3).

Theorem 5.2. Suppose that Σ is a dichotomous discrete-time linear system as in
(1.1) which satisfies hypotheses (4.3). Then Sa = SHa

and Sr = SHr
are qua-

dratic storage functions with associated selfadjoint operators Ha and Hr bounded
and boundedly invertible on X , and Sa and Sr are given by

Sa(x0) = ‖Xo,+(x0)+‖
2 −

∥∥PaT
∗
FXo,+(x0)+ − PaDTF

W−†
c (x0)−

∥∥2(5.7)

Sr(x0) =
∥∥∥PrT̃

∗
FXo,−(x0)− − PrDT̃F

W+†
c (x0)+

∥∥∥
2

− ‖Xo,−(x0)−‖
2(5.8)

with x0 = (x0)+ ⊕ (x0)− the decomposition of x0 with respect to the direct sum
X = X++̇X−, the operators Xo,+ and Xo,− as in Lemma 5.1 and

W−†
c = W−∗

c (W−
c W

−∗
c )−1, W+†

c = W+∗
c (W+

c W
+∗
c )−1,

Pa = P(DTF
KerW−

c )⊥ , Pr = P(D
T̃F

KerW+
c )⊥ .
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In particular, Sa and Sr are continuous.
If we assume that the decomposition X = X−+̇X+ inducing the decompositions

(2.1) and (2.2) is actually orthogonal, which can always be arranged via an invertible
similarity-transformation change of coordinates in X if necessary, then with respect
to the the orthogonal decomposition X = X− ⊕X+, Ha and Hr are given explicitly
by

Ha =

[
X∗

o,+(I − TFPaT
∗
F )Xo,+ X∗

o,+TFPaDTF
W−†

c

W−†∗
c DTF

PaT
∗
FXo,+ −W−†∗

c DTF
PaDTF

W−†
c

]
,(5.9)

Hr =

[
W+†∗

c D
T̃F

PrDT̃F

W+†
c −W+†∗

c D
T̃F

PrT̃
∗
FXo,−

−X∗
o,−T̃FPrDT̃F

W∗†
c −X∗

o,−(I − T̃FPrT̃
∗
F )Xo,−

]
.(5.10)

Furthermore, the dimension of the spectral subspace of A over the unit disk agrees
with the dimension of the spectral subspace of Ha and Hr over the positive real line
(= dimX+), and the dimension of the spectral subspace of A over the exterior of
the closed unit disk agrees with the dimension of the spectral subspace of Ha and
Hr over the negative real line (= dimX−).

Proof. To simplify notation, in this proof we write simply F rather than FΣ.
We start with the formula for Sa. Fix x0 ∈ ImWc. Let (u,x,y) be any system

trajectory of Σ such that x0 = Wcu.
The first step in the calculation of Sa is to reformulate the formula from the

definition (4.6) in operator-theoretic form:

(5.11) Sa(x0) = sup
u : Wcu=x0

‖(LFu)|Z+‖
2
ℓ2
Y
(Z+) − ‖u|Z+‖

2
ℓ2
U
(Z+).

From the formulas (2.16), (2.17), and (2.18) for LF , in more detail we have

Sa(x0) = sup
u+,u− : W+

c u−=(x0)+,W
−
c u+=(x0)−

‖HF+u− + TFu+‖
2 − ‖u+‖

2.

where u− ∈ ℓ2U(Z−) and u+ ∈ ℓ2U(Z+) and where x0 = (x0)− + (x0)+ is the
decomposition of x0 into X− and X+ components. Recalling the factorization HF =
W+

o W
+
c from (2.18) as well as the constraint on u−, we rewrite the objective

function in the formula for Sa(x0) as

‖HFu− + TFu+‖
2 − ‖u+‖

2 = ‖W+
o (x0)+ + TFu+‖

2 − ‖u+‖
2.

Furthermore, by assumption W+
c is surjective, so there is always a u− ∈ ℓ2U(Z−)

which achieves the constraint W+
c u− = (x0)+. In this way we have eliminated the

parameter u− and the formula for Sa(x0) becomes

(5.12) Sa(x0) = sup
u+∈ℓ2

U
(Z+) : W−

c u+=(x0)−

‖W+
o (x0)+ + TFu+‖

2 − ‖u+‖
2.

By Lemma 5.1 there is a uniquely determined injective linear operator Xo,+ from

X+ to ImDT∗
F

so that W+
o = DT∗

F
Xo,+. Then the objective function in (5.12)
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becomes

‖W+
o (x0)+ + TFu+‖

2 − ‖u+‖
2 =

= ‖DT∗
F
Xo,+ + TFu+‖

2 − ‖TFu+‖
2 − ‖DTF

u+‖
2

= ‖DT∗
F
Xo,+(x0)+‖

2 + 2Re〈DT∗
F
Xo,+(x0)+,TFu+〉 − ‖DTF

u+‖
2

= ‖DT∗
F
Xo,+(x0)+‖

2 + 2Re〈Xo,+(x0)+,TFDTF
u+〉 − ‖DTF

u+‖
2

= ‖DT∗
F
Xo,+(x0)+‖

2 + 2Re〈T∗
FXo,+(x0)+, DTF

u+〉 − ‖DTF
u+‖

2

= ‖DT∗
F
Xo,+(x0)+‖

2 + ‖T∗
FXo,+(x0)+‖

2 − ‖T∗
FXo,+(x0)+ −DTF

u+‖
2

= ‖Xo,+(x0)+‖
2 − ‖T∗

FXo,+(x0)+ −DTF
u+‖

2.

In this way we arrive at the decoupled formula for Sa(x0):

(5.13) Sa(x0) = ‖Xo,+(x0)+‖
2 − inf

u+ : W−
c u+=(x0)−

‖T∗
FXo,+(x0)+ −DTF

u+‖
2.

By assumption W−
c is surjective and hence W−

c is right invertible with right in-
verse equal to W−∗

c (W−
c W

−∗
c )−1. In particular, the minimal-norm solution u0

+ of
W−

c u+ = (x0)− is given by

u0
+ = W−∗

c (W−
c W

−∗
c )−1(x0)− = W−†

c (x0)−

and then any other solution has the form

u+ = u0
+ + v+ where v+ ∈ KerW−

c .

By standard Hilbert space theory, it then follows that

inf
u+ : W−

c u+=(x0)−

‖T∗
FXo,+(x0)+ −DTF

u+‖
2

=
∥∥∥P(DTF

KerW−
c )⊥

(
T∗
FXo,+(x0)+ −DTF

u0
+

)∥∥∥
2

=
∥∥Pa

(
T∗
FXo,+(x0)+ −DTF

W−†
c (x0)−

)∥∥2

and we arrive at the formulas (5.7) for Sa. A few more notational manipulation
leads to the explicit formula (5.9) for Ha when X = X−+̇X+ is an orthogonal
decomposition.

In a similar vein, the formula (4.7) for Sr can be written in operator form as

Sr(x0) = inf
u : Wcu=x0

‖u−‖
2 − ‖Pℓ2

Y
(Z−)LFu‖

2.
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Then the objective function can be written as

‖u−‖
2 − ‖Pℓ2

Y
(Z−)LFu‖

2 = ‖u−‖
2 − ‖H̃Fu+ + T̃Fu−‖

2

= ‖u−‖
2 − ‖W−

o W
−
c u+ + T̃Fu−‖

2 = ‖u−‖
2 − ‖W−

o (x0)− + T̃Fu−‖
2

= ‖u−‖
2 − ‖D

T̃∗
F

Xo,−(x0)− + T̃Fu−‖
2

= ‖u−‖
2 − ‖D

T̃∗
F

Xo,−(x0)−‖
2 − 2Re〈D

T̃∗
F

Xo,−(x0)−, T̃Fu−〉 − ‖T̃Fu−‖
2

= −‖D
T̃∗

F

Xo,−(x0)−‖
2 − 2Re〈Xo,−(x0)−, DT̃∗

F

T̃Fu−〉+ ‖D
T̃F

u−‖
2

= −‖D
T̃∗

F

Xo,−(x0)−‖
2 − 2Re〈T̃∗

FXo,−(x0)−, DT̃F

u−〉+ ‖D
T̃F

u−‖
2

= −‖D
T̃∗

F

Xo,−(x0)−‖
2 − ‖T̃∗

FXo,−(x0)
−‖2 + ‖T̃∗

FXo,−(x0)− −D
T̃F

u−‖
2

= −‖Xo,−(x0)−‖
2 + ‖T̃∗

FXo,−(x0)− −D
T̃F

u−‖
2

where now u+ is eliminated and the constraint on the free parameter u− isW+
c u− =

(x0)+. Thus

Sr(x0) = −‖Xo,−(x0)−‖
2 + inf

u− : W+
c u−=(x0)+

‖T̃∗
FXo,−(x0)− −D

T̃F

u−‖
2.

We note that all possible solutions u− of the constraint W+
c u− = (x0)+ are given

by

u− = W+∗
c (W+

c W
+∗
c )−1(x0)+ + v− = W+†

c (x0)+ + v− where v− ∈ KerW+
c .

Then standard Hilbert-space theory leads to the formulas (5.8) for Sr; a little more
careful manipulation leads to the explicit form (5.10) for Hr.

We next wish to verify that Ha and Hr are invertible. This follows as an ap-
plication of results referred to as inertial theorems; as these results are well known
for the finite-dimensional settings (see e.g. [16]) but not so well known for the
infinite-dimensional settings, we go through the results in some detail here.

As a consequence of Proposition 4.5, we know that Ha is a solution of the KYP-
inequality (1.4). From the (1,1)-entry of (1.4) we see in particular that

Ha −A∗HaA− C∗C � 0.

Write Ha as a block operator matrix with respect to the direct sum decomposition
X = X++̇X− as

(5.14) Ha =

[
Ha− Ha0

H∗
a0 Ha+

]
on

[
X−

X+

]
.

We can then rewrite the above inequality as

[
Ha− Ha0

H∗
a0 Ha+

]
−

[
A∗

− 0
0 A∗

+

] [
Ha− Ha0

H∗
a0 Ha+

] [
A− 0
0 A+

]
�

[
C∗

−

C∗
+

] [
C− C+

]
.

From the diagonal entries of this block-operator inequality we get

−Ha− +A∗−1
− Ha−A

−1
− � A∗−1

− C∗
−C−A

−1
− , Ha+ −A∗

+Ha+H+A+ � C∗
+C+.
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An inductive argument then gives

−Ha− �
N∑

n=1

A∗−nC∗
−C−A

−n
− −A∗−N

− Ha−A
−N
− ,

Ha+ �

N∑

n=0

A∗n
+ C∗

+C+A
n
+ +A∗N+1

+ Ha+A
N+1
+ .

As both A−1
− and A+ are exponentially stable, we may take the limit as N → ∞

in both of the above expressions to get

−Ha− � (W−
o )

∗W−
o , Ha+ � (W+

o )
∗W+

o .

By the dichotomous ℓ2-exactly observable assumption, both operators (W−
o )

∗ and
(W+

o )
∗ are surjective, and hence (W−

o )
∗W−

o and (W+
o )

∗W+
o are also surjective.

Thus we can invoke the Open Mapping Theorem to get that both (W−
o )

∗W−
o

and (W+
o )

∗W+
o are bounded below. We conclude that both Ha+ and −Ha− are

strictly positive-definite, i.e., there is an ǫ > 0 so that Ha+ � ǫI and Ha− � −ǫI.
In particular, both Ha+ and Ha− are invertible.

It remains to put all this together to see thatHa andHr are invertible. We do the
details for Ha as the proof for Hr is exactly the same. By Schur complement the-
ory (see e.g. [12]), applied to the block matrix decomposition of Ha in (5.14), given
that the operator Ha+ is invertible (as we have already verified), then Ha is also
invertible if and only if the Schur complement S(Ha;Ha+) := Ha− −Ha0H

−1
a+H∗

a0

is invertible. But we have already verified that both Ha− and −Ha+ are strictly
positive-definite. Hence the Schur complement is the sum of a strictly positive-
definite operator and an at worst positive-semidefinite operator, and hence is itself
strictly positive-definite and therefore also invertible. We next note the block diag-
onalization of Ha associated with the Schur-complement computation:

[
Ha− Ha0

H∗
a0 Ha+

]
=

[
I Ha0H

−1
a+

0 I

] [
S(Ha;Ha+) 0

0 Ha+

] [
I 0

H−1
a+H

∗
a0 I

]
.

Thus Ha is congruent with
[
S(Ha;Ha+) 0

0 Ha−

]
where we have seen that

S(Ha;Ha+) ≻ 0 on X+, Ha− ≺ 0 on X−.

In this way we arrive at the (infinite-dimensional) inertial relations between H and
A: the dimension of the spectral subspace of A over the unit disk is the same as the
dimension of the spectral subspace of H over the positive real axis, namely dimX+,
and the dimension of the spectral subspace of A over the exterior of the unit disk
is the same as the dimension of the spectral subspace of H over the negative real
axis, namely dimX−. �

Remark 5.3. Rather than the full force of assumption (4.3), let us now only
assume that ‖FΣ‖∞,T ≤ 1. A careful analysis of the proof shows that Ha and
Hr each being bounded requires only the dichotomous ℓ2-exact controllability as-
sumption (surjectivity of Wc). The invertibility of each of Ha and Hr requires in
addition the dichotomous ℓ2-exact observability assumption (surjectivity of W∗

o).
Moreover, if the ℓ2-exact observability condition is weakened to observability (i.e.,⋂

n≥0 KerC+A
n
+ = {0} and

⋂
n≥0 KerC−A

−n−1
− = {0}), then one still gets that Ha

and Hr are injective but their respective inverses may not be bounded.
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Remark 5.4. If ‖F‖∞,T < 1 (where we are setting F = FΣ), then DT∗
F
and D

T̃∗
F

are invertible, and we can solve uniquely for the operatorsX0,+ and X0,− in Lemma
5.1:

X0,+ = D−1
T∗

F

W+
o , X0,− = D−1

T̃∗
F

W−
o .

We may then plug in these expressions for X0,+ and X0,− into the formulas (5.7),
(5.8), (5.9), (5.10) to get even more explicit formulas for Sa, Sr, Ha and Hr.

6. Storage functions for bicausal systems

We now consider how the analysis in Sections 4 and 5, concerning storage func-
tions S : X → R, available storage Sa and required supply Sr, quadratic storage
function SH , etc., can be adapted to the setting of a bicausal system Σ = (Σ+,Σ−)
with subsystems (3.2) and (3.1), where now ℓ2-admissible trajectories refer to sig-
nals of the form (u,x− ⊕ x+,y) such that y = y− + y+ with (u,x−,y−) an
ℓ2-admissible system trajectory of Σ− and (u,x+,y+) an ℓ2-admissible system tra-
jectory of Σ+. We define S : X := X− ⊕ X+ → R to be a storage function for Σ
exactly as was done in Section 4 for the dichotomous case, i.e., we demand that

(1) S is continuous at 0,
(2) S satisfies the energy balance relation (4.1) along all ℓ2-admissible system

trajectories of the bicausal system Σ = (Σ−,Σ+), and
(3) S(0) = 0.

We again say that S is a strict storage function for Σ if the strict energy-balance re-
lation (4.2) holds over all ℓ2-admissible system trajectories (u,x,y) for the bicausal
system Σ = (Σ−,Σ+). By following the proof of Proposition 4.1 verbatim, but now
interpreted for the more general setting of a bicausal system Σ = (Σ−,Σ+), we
arrive at the following result.

Proposition 6.1. Suppose that S is a storage function for the bicausal system

Σ = (Σ−,Σ+) in (3.1)–(3.2), with Ã± exponentially stable. Then the input-output
map TΣ is contractive (‖TΣ‖ ≤ 1). In case S is a strict storage function for Σ, the
input-output map is a strict contraction (‖TΣ‖ < 1).

To get further results for bicausal systems, we impose the condition (4.3), inter-
preted property for the bicausal setting as explained in Section 3. In particular,
with the bicausal ℓ2-exact controllability assumption in place, we get the following
analogue of Remark 4.2.

Remark 6.2. We argue that the second condition (4.1) (respectively, (4.2) for
the strict case) in the definition of a storage function for a bicausal system Σ =
(Σ−,Σ+) (assumed to be ℓ2-exactly controllable) can be replaced by the local condi-
tion

S(x− ⊕ (Ã+x+ +B+u))− S((Ã−x− +B−u)⊕ x+)

≤ ‖u‖2 − ‖C̃Ã−x− + C̃+x+ + (C̃−B̃− +D)u‖2.(6.1)

for the standard case, and by its strict version

S(x− ⊕ (Ã+x+ +B+u))− S((Ã−x− +B−u)⊕ x+)

+ ǫ2(‖Ã−x− + B̃−u‖
2 + ‖x+‖

2 + ‖u‖2)

≤ ‖u‖2 − ‖C̃Ã−x− + C̃+x+ + (C̃−B̃− +D)u‖2.(6.2)
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for the strict case. Indeed, by translation invariance of the system equations, it
suffices to check the bicausal energy-balance condition (4.1) only at n = 0 for any
ℓ2-admissible trajectory (u,x,y). In terms of

(6.3) x− := x−(n+ 1), x+ := x+(n), u := u(n),

we can solve for the other quantities appearing in (4.1) for the case n = 0:

x+(1) = Ã+x+ + B̃+u,

x−(0) = Ã−x− + B̃−u,

y(0) = C̃−Ã−x− + C+x+ + (C̃−B̃− + D̃)u.

Then the energy-balance condition (4.1) for the bicausal system Σ reduces to (6.1),
so (6.1) is a sufficient condition for S to be a storage function (assuming conditions
(1) and (3) in the definition of a storage function also hold). Conversely, given
any x− ∈ X−, x+ ∈ X+, u ∈ U , the trajectory-interpolation result Proposition 3.3
assures us that we can always embed the vectors x−, x+, u into an ℓ2-admissible
trajectory so that (6.3) holds. We then see that condition (6.1) holding for all x,
x′, u is also necessary for S to be a storage function. The strict version works out
in a similar way, again by making use of the interpolation result Proposition 3.3 .

We next define functions Sa : X → R and Sr : X → R via the formulas (4.6) and
(4.7) but with Wc taken to be the controllability operator as in (3.21) for a bicausal
system. One can also check that the following bicausal version of Proposition 4.4
holds, but again with the verification of the continuity property for Sa and Sr

postponed until more detailed information concerning Sa and Sr is developed below.

Proposition 6.3. Let Σ = (Σ−,Σ+) be a bicausal system as in (3.1)–(3.2), with

Ã± exponentially stable. Assume that (4.3) holds. Then:

(1) Sa is a storage function for Σ.
(2) Sr is a storage function for Σ.

(3) If S̃ is any storage function for Σ, then

Sa(x0) ≤ S̃(x0) ≤ Sr(x0) for all x0 ∈ X .

Proof. The proof of Proposition 4.4 for the causal dichotomous setting extends
verbatim to the bicausal setting once we verify that the patching technique of
Lemma 4.3 holds in exactly the same form for the bicausal setting. We therefore
suppose that

(6.4) (u′,x′,y′), (u′′,x′′,y′′)

are ℓ2-admissible trajectories for the bicausal system Σ such that x′(0) = x′′(0).
In more detail, this means that there are two ℓ2-admissible system trajectories
of the form (u′,x′

−,y
′
−) and (u′′,x′′

−,y
′′
−) for the anticausal system Σ− such that

x′
−(0) = x′′

−(0) and two ℓ2-admissible system trajectories of the form (u′,x′
+,y

′
+)

and (u′′,x′′
+,y

′′
+) for the causal system Σ+ with x′

+(0) = x′′
+(0) such that we recover

the state and output components of the original trajectories for the bicausal system
(6.4) via

x′(n) = x′
−(n)⊕ x′

+(n), x′′(n) = x′′
−(n)⊕ x′′

+(n),

y′(n) = y′
−(n) + y′

+(n), y′′(n) = y′′
−(n) + y′′

+(n).
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Let us define a composite input trajectory by

u(n) =

{
u′(n) if n < 0,

u′′(n) if n ≥ 0.

We apply the causal patching lemma to the system Σ+ (having trivial dichotomy)
to see that the composite trajectory (u,x+,y+) with state and output given by

x+(n) =

{
x′
+(n) if n ≤ 0,

x′′
+(n) if n > 0,

y+(n) =

{
y′
+(n) if n < 0,

y′′
+(n) if n ≥ 0,

is an ℓ2-admissible trajectory for the causal system Σ+. Similarly, we apply a
reversed-orientation version of the patching given by Lemma 4.3 to see that the
trajectory (u,x−,y−) with state and output given by

x−(n) =

{
x′
−(n) if n < 0,

x′
−(n) if n ≥ 0,

y−(n) =

{
y′
−(n) if n < 0,

y′′
−(n) if n ≥ 0

is an ℓ2-admissible system trajectory for the anticausal system Σ−. It then follows
from the definitions that the composite trajectory (u,x,y) given by (4.8) is an
ℓ2-admissible system trajectory for the bicausal system Σ as wanted. �

Quadratic storage functions and spatial KYP-inequalities: the bicausal
setting. We define a quadratic function S : X → R as was done at the end of
Section 4 above: S(x) = 〈Hx, x〉 where H is a bounded selfadjoint operator on X .
For the bicausal setting, we wish to make explicit that X has a decomposition as

X = X− ⊕X+ which we now wish to write as a column decomposition X =
[
X−

X+

]
.

After a change of coordinates which we choose not to go through explicitly, we may
assume that this decomposition is orthogonal. Then any selfadjoint operator H on
X has a 2× 2 matrix representation

(6.5) H =

[
H− H0

H∗
0 H+

]
on X =

[
X−

X+

]
.

with associated quadratic function SH now given by

SH(x− ⊕ x+) = 〈H(x− ⊕ x+), x− ⊕ x+〉 =

〈[
H− H0

H∗
0 H+

] [
x−

x+

]
,

[
x−

x+

]〉
.

If we apply the local criterion for a given function S to be a storage function in the
bicausal setting as given by Remark 6.2, we arrive at the following criterion for SH

to be a storage function for the bicausal system Σ:

〈[
H− H0

H∗
0 H+

] [
x−

Ãx++B̃+u

]
,
[

x−

Ãx++B̃+u

]〉

−
〈[

H− H0

H∗
0 H+

] [
Ã−x−+B̃−u

x+

]
,
[
Ã−x−+B̃−u

x+

]〉

≤ ‖u‖2 − ‖C̃−Ã−x− + C̃+x+ + (C̃−B̃− + D̃)u‖2.

which amounts to the spatial version of the bicausal KYP-inequality (1.9).
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Similarly, SH is a strict storage function exactly when there is an ǫ > 0 so that

〈[
H− H0

H∗
0 H+

] [
x−

Ãx++B̃+u

]
,
[

x−

Ãx++B̃+u

]〉

−
〈[

H− H0

H∗
0 H+

] [
Ã−x−+B̃−u

x+

]
,
[
Ã−x−+B̃−u

x+

]〉

+ ǫ2(‖Ã−x− + B̃−u‖
2 + ‖x+‖

2 + ‖u‖2)

≤ ‖u‖2 − ‖C̃−Ã−x− + C̃+x+ + (C̃−B̃− + D̃)u‖2.

One can check that this is just the spatial version of the strict bicausal KYP-
inequality (1.10). One can now check that the assertion of Proposition 4.5 goes
through as stated with the dichotomous linear systems in (1.1) replaced by a bi-

causal system (3.1)–(3.2) (with Ã+ and Ã− both exponentially stable), and with
KYP-inequality (respectively strict KYP-inequality (1.5)) replaced with bicausal
KYP-inequality (1.9) (respectively strict bicausal KYP-inequality (1.10)). We have
thus arrived at the following extension of Proposition 4.5 to the bicausal setting.

Proposition 6.4. Suppose that Σ = (Σ−,Σ+) is a bicausal system (3.1)–(3.2),

with Ã± exponentially stable. Let H be a selfadjoint operator as in (6.5), where
we assume that coordinates are chosen so that the decomposition X = X− ⊕ X+

is orthogonal. Then SH is a quadratic storage function for Σ if and only if H is
a solution of the bicausal KYP-inequality (1.9). Moreover, SH is a strict storage
function for Σ if and only if H is a solution of the strict bicausal KYP-inequality
(1.10).

Furthermore, as noted in Section 3, the Hankel factorizations (3.22) also hold in
the bicausal setting. Hence Lemma 5.1 goes through as stated, the only modification
being the adjustment of the formulas for the operators W±

o , W
±
c to those in (3.20)

(rather than (2.19), (2.20)). It then follows that Theorem 5.2 holds with exactly
the same formulas (5.7), (5.8), (5.9), (5.10) for Sa, Sr, Ha and Hr, again with the
adjusted formulas for the operatorsW±

o and W±
c . As Sa = SHa

and Sr = SHr
with

Ha and Hr bounded and boundedly invertible selfadjoint operators on X− ⊕X+, it
follows that Sa and Sr are continuous, completing the missing piece in the proof of
Proposition 6.3 above. We have arrived at the following extension of Theorem 5.2
to the bicausal setting.

Theorem 6.5. Suppose that Σ = (Σ−,Σ+) is a bicausal system (3.1)–(3.2), with

Ã± exponentially stable, satisfying the standing hypothesis (4.3). Define the avail-
able storage Sa and the required supply Sr as in (4.6)–(4.7) (properly interpreted for
the bicausal rather than dichotomous setting). Then Sa and Sr are continuous. In
detail, Sa and Sr are given by the formulas (5.7)–(5.8), or equivalently, Sa = SHa

and Sr = SHr
where Ha and Hr are given explicitly as in (5.9) and (5.10).

Remark 6.6. A nice exercise is to check that the bicausal KYP-inequality (1.9)

collapses to the standard KYP-inequality (1.4) in the case that Ã− is invertible

so that the the bicausal system Σ̃ can be converted to a dichotomous system as

in Remark 3.2. Let us assume that Σ̃ is a bicausal system as in (3.1) and (3.2).

We assume that Ã is invertible and we make the substitution (3.17) to convert
to a dichotomous linear system as in (1.1), (2.1), (2.2). The resulting bicausal
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KYP-inequality then becomes
[

I 0 A
−1∗
−

C∗
−

0 A∗
+ C∗

+

0 B∗
+ −B∗

−A
∗−1
−

C∗
−+D∗

][
H− H0 0
H∗

0 H+ 0
0 0 I

] [
I 0 0
0 A+ B+

C−A
−1
−

C+ −C−A
−1
−

B−+D

]

�

[
A

−1∗
−

0 0

0 I 0
−B∗

−A
∗−1
−

0 I

] [
H− H0

H∗
0 H+ 0
0 0 I

] [
A

−1
−

0 −A
−1
−

B−

0 I 0
0 0 I

]
.(6.6)

However the spatial version of the bicausal KYP-inequality (1.9) corresponds to

the quadratic form based at the vector

[
x−(1)
x+(0)
u(0)

]
while the spatial version of the

dichotomous (causal) KYP-inequality (1.4) is the quadratic form based at the vector[
x−(0)
x+(0)
u(0)

]
, where the conversion from the latter to the former is given by

[
x−(0)
x+(0)
u(0)

]
=
[
A− 0 B−

0 I 0
0 0 I

] [ x−(1)
x+(0)
u(0)

]
.

To recover the dichotomous KYP-inequality (1.4) from (6.6), it therefore still re-

mains to conjugate both sides of (6.6) by T =
[
A− 0 B−

0 I 0
0 0 I

]
(i.e., multiply on the

right by T and on the left by T ∗). Note next that
[

I 0 0
0 A+ B+

C−A−1
−

C+ −C−A−1
−

B−+D

] [
A− 0 B−

0 I 0
0 D 0

]
=

[
A− 0 B−

0 A+ B+

C− C+ D

]
,

[
A

−1
−

0 −A
−1
−

B

0 I 0
0 0 I

] [
A− 0 B−

0 I 0
0 0 I

]
=
[
I 0 0
0 I 0
0 0 I

]
.

Hence conjugation of both sides of (6.6) by T results in
[

A∗
− 0 C∗

−

0 A∗
+ C∗

+

B∗
− B∗

+ D∗

] [
H− H0 0
H∗

0 H− 0
0 0 I

] [
A− 0 B−

0 A− B+

C− C+ D

]
�

[
H− H0 0
H∗

0 H− 0
0 0 I

]

which is just the dichotomous KYP-inequality (1.4) written out when the matrices
are expressed in the decomposed form (2.1), (2.2), (6.5).

The connection between the strict KYP-inequalities for the bicausal setting
(1.10) and the dichotomous setting (1.5) works out similarly. In fact all the re-
sults presented here for dichotomous systems follow from the corresponding result
for the bicausal setting by restricting to the associated bicausal system having

Ã− = A−1
− invertible.

7. Dichotomous and bicausal Bounded Real Lemmas

In this section we derive infinite-dimensional versions of the finite-dimensional
Bounded Real Lemmas stated in the introduction.

Combining the results of Propositions 4.1, 4.4, 4.5 and Theorem 5.2 leads us
to the following infinite-dimensional version of the standard dichotomous Bounded
Real Lemma; this result contains Theorem 1.2 (1), as stated in the introduction,
as a corollary.

Theorem 7.1. Standard dichotomous Bounded Real Lemma: Assume that
the linear system Σ in (1.1) has a dichotomy and is dichotomously ℓ2-exactly con-
trollable and observable (both Wc and W∗

o are surjective). Then the following are
equivalent:
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(1) ‖FΣ‖∞,T := supz∈T ‖FΣ(z)‖ ≤ 1.
(2) There is a bounded and boundedly invertible selfadjoint operator H on X

which satisfies the KYP-inequality (1.4). Moreover, the dimension of the
spectral subspace of A over the unit disk (respectively, exterior of the closed
unit disk) agrees with the dimension of the spectral subspace of H over the
positive real line (respectively, over the negative real line).

We shall next show how the infinite-dimensional version of the strict dichotomous
Bounded Real Lemma (Theorem 1.2 (2)) can be reduced to the standard version
(Theorem 7.1) by the same technique used for the stable (non-dichotomous) case
(see [18, 6, 7]). The result is as follows; the reader can check that specializing the
result to the case where all signal spaces U , X , Y are finite-dimensional results in
Theorem 1.2 (2) from the introduction as a corollary. Note that, as in the non-
dichotomous case (see [6, Theorem 1.6]), there is no controllability or observability
condition required here.

Theorem 7.2. Strict dichotomous Bounded Real Lemma: Assume that the
linear system Σ in (1.1) has a dichotomy. Then the following are equivalent:

(1) ‖FΣ‖∞,T := supz∈T
‖FΣ(z)‖ < 1.

(2) There is a bounded and boundedly invertible selfadjoint operator H on X
which satisfies the strict KYP-inequality (1.5). Moreover the inertia of A
partitioned by the unit circle lines up with the inertia of H (partitioned by
the point 0 on the real line) as in the standard dichotomous Bounded Real
Lemma (Theorem 7.1 above).

Proof. The proof of (2) ⇒ (1) is a consequence of Propositions 4.1, 4.4, and 4.5,
so it suffices to prove (1) ⇒ (2). To simplify the notation, we again write F rather
than FΣ throughout this proof.

We therefore assume that ‖F‖∞,T < 1. For ǫ > 0, we let Σǫ be the discrete-time
linear system (1.1) with system matrix Mǫ given by

(7.1) Mǫ =

[
A Bǫ

Cǫ Dǫ

]
:=




A B ǫIX
C D 0
ǫIX 0 0
0 ǫIU 0




with associated transfer function

Fǫ(z) =



D 0
0 0
ǫIU 0


+ z




C
ǫIX
0


 (I − zA)−1

[
B ǫIX

]

=




F (z) ǫzC(I − zA)−1

ǫz(I − zA)−1B ǫ2z(I − zA)−1

ǫIU 0


 .(7.2)

As M and Mǫ have the same state-dynamics operator A, the system Σǫ inherits the
dichotomy property from Σ. As the resolvent expression z(I − zA)−1 is uniformly
bounded in norm on T, the fact that ‖F‖∞,T < 1 implies that ‖Fǫ‖∞,T < 1 as long
as ǫ > 0 is chosen sufficiently small. Moreover, when we decompose Bǫ and Cǫ
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according to (2.2), we get

Bǫ =

[
B− ǫIX−

0
B+ 0 ǫIX+

]
:



U
X−

X+


→

[
X−

X+

]
,

Cǫ =




C− C+

ǫIX−
0

0 ǫIX+

0 0


 :

[
X−

X+

]
→




Y
X−

X+

U


 ,

or specifically

Bǫ− =
[
B− ǫIX−

0
]
, Bǫ+ =

[
B+ 0 ǫIX+

]
,

Cǫ− =




C
ǫIX−

0
0


 , Cǫ+ =




C+

0
ǫIX+

0


 .

Hence we see that (A+, Bǫ+) is exactly controllable in one step and hence is ℓ2-
exactly controllable. Similarly, (A−1

− , A−1
− Bǫ−) is ℓ2-exactly controllable and both

(Cǫ+, A+) and (Cǫ−A
−1
− , A−1

− ) are ℓ2-exactly observable. As we also have ‖Fǫ‖∞,T <
1, in particular ‖Fǫ‖∞,T ≤ 1, so Theorem 7.1 applies to the system Σǫ. We conclude
that there is bounded, boundedly invertible, selfadjoint operator Hǫ on X so that
the KYP-inequality holds with respect to the system Σǫ:

[
A∗ C∗

ǫ

B∗
ǫ D∗

ǫ

] [
Hǫ 0
0 IY⊕X⊕U

] [
A Bǫ

Cǫ Dǫ

]
�

[
Hǫ 0
0 IU⊕X

]
.

Spelling this out gives


A∗HǫA+ C∗C + ǫ2IX A∗HǫB + C∗D ǫA∗Hǫ

B∗HǫA+D∗C B∗HǫB +D∗D + ǫ2IU ǫB∗Hǫ

ǫHǫA ǫHǫB ǫ2Hǫ


 �



Hǫ 0 0
0 IU 0
0 0 IX


 .

By crossing off the third row and third column, we get the inequality
[
A∗HǫA+ C∗C + ǫ2IX A∗HǫB + C∗D

B∗HǫA+D∗C B∗HǫB +D∗D + ǫ2IU

]
�

[
Hǫ 0
0 IU

]

or [
A∗ C∗

B∗ D∗

] [
Hǫ 0
0 IY

] [
A B
C D

]
+ ǫ2

[
IX 0
0 IU

]
�

[
Hǫ 0
0 IU

]
.

We conclude that Hǫ serves as a solution to the strict KYP-inequality (1.5) for the
original system Σ as wanted. �

The results in Section 6 for bicausal systems lead to the following extensions
of Theorems 7.1 and 7.2 to the bicausal setting; note that Theorem 1.3 in the
introduction follows as a corollary of this result.

Theorem 7.3. Suppose that Σ = (Σ+,Σ−) is a bicausal linear system with sub-
systems Σ+ and Σ− as in (3.1) and (3.2), respectively, with both A+ and A−

exponentially stable and with associated transfer function FΣ as in (3.9).
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(1) Assume that Σ is ℓ2-exactly minimal, i.e., the operators W+
c , W

−
c , (W

+
o )

∗,
(W−

o )
∗ given by (3.20) are all surjective. Then ‖FΣ‖∞,T ≤ 1 if and only

if there exists a bounded and boundedly invertible selfadjoint solution H =[
H− H0

H∗
0 H+

]
of the bicausal KYP-inequality (1.9).

(2) Furthermore, ‖FΣ‖∞,T < 1 holds if and only if there is a bounded and

boundedly invertible selfadjoint solution H =
[
H− H0

H∗
0 H+

]
of the strict bicausal

KYP-inequality (1.10).

Proof. To verify item (1), simply combine the results of Propositions 6.1, 6.3, 6.4
and Theorem 6.5.

As for item (2), note that sufficiency follows already from the stream of Propo-
sitions 6.1, 6.3 and 6.4. As for necessity, let us verify that the same ǫ-augmented-
system technique as used in the proof of Theorem 7.2 can be used to reduce the
strict case of the result (item (2)) to the standard case (item (1)). Let us rewrite
the bicausal KYP-inequality (1.9) as

[
H−+Ã∗

−C̃∗
−C̃−Ã− H0Ã++Ã∗

−C̃∗
−C̃+ H0B̃++Ã∗

−C̃∗
−D̂

Ã∗
+H∗

0+C̃∗
+C̃−Ã− Ã∗

+H+Ã++C̃∗
+C̃+ Ã∗

+H+B̃++C̃∗
+D̂

B̃∗
+H∗

0+D̂∗C̃−Ã− B̃∗
+H+Ã++D̂∗C̃+ B̃∗

+H+B̃++D̂∗D̂

]

�

[
Ã∗

−H−Ã− Ã∗
−H0 Ã∗

−H−B̃−

H∗
0 Ã− H+ H∗

0 B̃−

B̃∗
−H−Ã− B̃∗

−H0 B̃∗
−H−B̃−+I

]
(7.3)

where we set

D̂ = C̃−B̃− + D̃.

Let us now consider the ǫ-augmented system matrices

M+,ǫ =

[
Ã+ B̃+,ǫ

C̃+,ǫ D̃ǫ

]
=




Ã+ | B̃+ ǫIX+

C̃+ | D̃ 0
ǫIX+

| 0 0

0 | ǫIU 0


 :

[
X+

U
X+

]
→

[
X+

Y
X+

U

]
,

M−,ǫ =

[
Ã− B̃−,ǫ

C̃−,ǫ 0

]
=




Ã− | B̃− ǫIX−

C̃− | 0 0
ǫIX−

| 0 0

0 | 0 0


 :

[
X−

U
X−

]
→

[
X−

Y
X−

U

]
.

Then the systemmatrix-pair (Mǫ,+,Mǫ,−) defines a bicausal system Σǫ = (Σǫ,+,Σǫ,−)
where the subsystem Σǫ,+ is associated the system matrix Mǫ,+ and the subsystem
Σǫ,− is associated the system matrix Mǫ,−. Note that the state-dynamics operators

Ã+ and Ã− of Σǫ are exponentially stable and has transfer function Fǫ given by

Fǫ(z) =

[
D̃ 0
0 0

ǫIU 0

]
+ z

[
C̃+

ǫIX+

0

]
(I − zÃ+)

−1 [ B̃+ ǫIX+ ]

+

[
C̃−

ǫIX−

0

]
(I − z−1Ã−)

−1 [ B̃− ǫIX− ]

=

[
F (z) ǫzC̃+(I−zÃ+)−1+ǫC̃−(I−zÃ−)−1

ǫz(I−zÃ+)−1B̃++ǫ(I−z−1Ã−)−1B̃− ǫ2z(I−zÃ+)−1+ǫ2(I−z−1Ã−)−1

ǫIU 0

]
.

Since by assumption the transfer function F associated with the original bicausal

system Σ = (Σ+,Σ−) has norm ‖F‖∞,T < 1 and both Ã+ and Ã− are exponentially
stable, it is clear that we can maintain ‖Fǫ‖∞,T < 1 with ǫ > 0 as long as we choose
ǫ sufficiently small. Due to the presence of the identity matrices in the input
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and output operators for M+,ǫ and M−,ǫ, it is clear that the bicausal system Σǫ

is ℓ2-exactly controllable and ℓ2-exactly observable in the bicausal sense. Then
statement (1) of the present theorem (already verified) applies and we are assured

that there is a bounded and boundedly invertible solution H =
[
H+ H0

H∗
0 H−

]
of the

bicausal KYP-inequality (7.3) associated with Σǫ = (Σ+,ǫ,Σ−,ǫ). Replacing B̃±,

C̃± and D̃ in (7.3) by B̃±,ǫ, C̃±,ǫ and D̃ǫ leads to the ǫ-augmented version of the
bicausal KYP-inequality:



H−+Ã∗
−C̃∗

−C̃−Ã−+ǫ2Ã∗
−Ã− H0Ã++Ã∗

−C̃∗
−C̃+! H0B̃++Ã∗

−C̃∗
−D̂+ǫ2Ã∗

−B̃− X14

Ã∗
+H∗

0+C̃∗
+C̃−Ã− Ã∗

+H+Ã++C̃∗
+C̃++ǫ2I Ã+H+B̃++C̃∗

+D̂ X24

B̃∗
+H∗

0+D̂∗C̃−Ã−+ǫ2B̃∗
−Ã− B̃∗

+H+Ã++D̂∗C̃+ B̃∗
+H+B̃++D̂∗D̂+ǫ2B̃∗

−B̃−+ǫ2IU X34

ǫH∗
0+ǫC̃∗

−C̃−Ã−+ǫ2Ã− ǫH+Ã++ǫC̃∗
−C̃+ ǫC̃∗

−D̂+ǫ2B̃− X44




�




Ã∗
−H−Ã− Ã∗

−H0 Ã∗
−H−B̃− ǫÃ∗

−H−

H∗
0 Ã− H+ H∗

0 B̃− ǫH∗
0

B̃∗
−H−Ã− B̃∗

−H0 B̃∗
−H−B̃−+I ǫB̃∗

−H−

ǫH−Ã− ǫH0 ǫH−B̃− ǫ2H−+I




(7.4)

where
[

X14

X24

X34

X44

]
=




ǫH0+ǫÃ∗
−C̃∗

−C̃−+ǫ2Ã∗
−

ǫÃ∗
+H++ǫC̃∗

+C̃−

ǫD̂∗C̃−+ǫ2B̃∗
−

ǫ2C̃∗
−C̃−+ǫ2IX−


 .

The (4× 4)-block matrices appearing in (7.4) are to be understood as operators on[
X−

X+

U
X

]
where the last component X further decomposes as X =

[
X−

X+

]
. Note that

the operators in the fourth row a priori are operators with range in X− or X+; to get
the proper interpretation of these operators as mapping in X , one must compost

each of these operators on the left by the canonical injection of X± into X =
[
X−

X+

]
.

Similarly the operators in the fourth columns a priori are defined only on X− or
X+; each of these should be composed on the right with the canonical projection of
X onto X±. On the other hand the identity operator I appearing in the (4, 4)-entry

of the matrix on the right is the identity on the whole space X =
[
X−

X+

]
.

With this understanding of the interpretation for the fourth row and fourth
column of the matrices in (7.4) in place, the next step is to simply cross out the
last row and last column in (7.4) to arrive at the reduced block-(3× 3) inequality

[
H−+Ã∗

−C̃∗
−C̃−Ã− H0Ã++Ã∗

−C̃∗
−C̃+ H0B̃++Ã∗

−C̃∗
−D̂

Ã∗
+H∗

0+C̃∗
+C̃−Ã− Ã∗

+H+Ã++C̃∗
+C̃+ Ã+H+B̃++C̃∗

+D̂

B̃∗
+H∗

0+D̂∗C̃−Ã− B̃∗
+H+Ã++D̂∗C̃+ B̃∗

+H+B̃++D̂∗D̂

]

+ ǫ2

[
Ã∗

−Ã− 0 Ã∗
−B̃−

0 IX+
0

B̃−Ã− 0 B̃∗
−B̃−+IU

]
�

[
Ã∗

−H−Ã− Ã∗
−H0 Ã∗

−H−B̃−

H∗
0 Ã− H+ H∗

0 B̃−

B̃∗
−H−Ã− B̃∗

−H0 B̃∗
−H−B̃−+IU

]
.

This last inequality amounts to the spelling out of the strict version of the bicausal
KYP-inequality (1.9), i.e., to (1.10). �

8. Bounded Real Lemma for nonstationary systems with dichotomy

In this section we show how the main result of Ben Artzi-Gohberg-Kaashoek in
[10] (see also [14, Chapter 3] for closely related results) follows from Theorem 7.2
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by the technique of embedding a nonstationary discrete-time linear system into an
infinite-dimensional stationary (time-invariant) linear system (see [13, Chapter X])
and applying the corresponding result for stationary linear systems. We note that
Ben Artzi-Gohberg-Kaashoek took the reverse path: they obtain the result for the
stationary case as a corollary of the result for the non-stationary case.

In this section we replace the stationary linear system (1.1) with a nonstationary
(or time-varying) linear system of the form

(8.1) Σnon-stat : =

{
x(n+ 1) = Anx(n) +Bnu(n),

y(n) = Cnx(n) +Dnu(n),
(n ∈ Z)

where {An}n∈Z is a bilateral sequence of state space operators (An ∈ L(X )),
{Bn}n∈Z is a bilateral sequence of input operators (Bn ∈ L(U ,X )), {Cn}n∈Z is
a bilateral sequence of output operators (Cn ∈ L(X ,Y)), and {Dn}n∈Z is a bilat-
eral sequence of feedthrough operators (Dn ∈ L(U ,Y)). We assume that all the
operator sequences {An}n∈Z, {Bn}n∈Z, {Cn}n∈Z, {Dn}n∈Z are uniformly bounded
in operator norm. The system Σnon−stat is said to have dichotomy if there is a
bounded sequence of projection operators {Rn}n∈Z on X such that

(1) RankRn is constant and the equalities

AnRn = Rn+1An

hold for all n ∈ Z,
(2) there are constants a and b with a < 1 so that

‖An+j−1 · · ·Anx‖ ≤ baj‖x‖ for all x ∈ ImRn,(8.2)

‖An+j−1 · · ·Any‖ ≥
1

baj
‖y‖ for all y ∈ KerRn.(8.3)

Let us introduce spaces
→

U := ℓ2U(Z),
→

X := ℓ2X (Z),
→

Y := ℓ2Y(Z).

and define bounded operatorsA ∈ L(
→

X ), B ∈ L(
→

U ,
→

X ), C ∈ L(
→

X ,
→

Y), D ∈ L(
→

U ,
→

Y)
by

A = diagn∈Z[An], B = diagn∈Z[Bn], C = diagn∈Z[Cn], D = diagn∈Z[Dn].

Define the shift operator S on
→

X by

S = [δi,j+1IX ]i,j∈Z

with inverse S−1 given by

S−1 = [δi+1,jIX ]i,j∈Z,

Then the importance of the dichotomy condition is that S−1 − A is invertible
on ℓ2X (Z), and conversely, S−1 − A invertible implies that the system (8.1) has

dichotomy (see [10, Theorem 2.2]). In this case, given any ℓ2-sequence x′ ∈
→

X , the
equation

(8.4) S−1x = Ax+ x′

admits a unique solution x = (S−1 − A)−1x′ ∈ ℓ2X (Z). Write out x as x =
{x(n)}n∈Z. Then the aggregate equation (8.4) amounts to the system of equations

(8.5) x(n+ 1) = Anx(n) + x′(n).
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In particular we may take x′(n) to be of the form x′(n) = Bnu(n) where u =

{u(n)}n∈Z ∈ ℓ2U (Z). Then we may uniquely solve for x = {x(n)}n∈Z ∈
→

X so that

x(n+ 1) = Anx(n) +Bu(n).

We may then use the output equation in (8.1) to arrive at an output sequence

y = {y(n)}n∈Z ∈
→

Y by

y(n) = Cnx(n) +Dnu(n).

Thus there is a well-defined map TΣ which maps the sequence u = {u(n)}n∈Z in
→

U

to the sequence y = {y(n)}n∈Z in
→

Y . Roughly speaking, here the initial condition
is replaced by boundary conditions at ±∞: Rx(−∞) = 0 and (I −R)x(+∞) = 0;
we shall use the more precise albeit more implicit operator-theoretic formulation
of the input-output map (compare also to the discussion around (3.2) and (3.1)

for this formulation in the stationary setting): TΣ :
→

U →
→

Y is defined as: given a

u = {u(n)}n∈Z ∈
→

U , TΣu is the unique y = {y(n)}n∈Z ∈
→

Y for which there is a

x = {x(n)}n∈Z ∈
→

X so that the system equations (8.1) hold for all n ∈ Z, or in
aggregate operator-form, by

TΣ = D+C(S−1 −A)−1B = D+C(I − SA)−1SB.

The main theorem from [10] can be stated as follows.

Theorem 8.1. (See [10, Theorem 1.1].) Given a nonstationary input-state-output
linear system (8.1), the following conditions are equivalent.

(1) The system (8.1) is dichotomous and the associated input-output operator
TΣ has operator norm strictly less than 1 (‖TΣ‖ < 1).

(2) There exists a sequence of constant-inertia invertible selfadjoint operators
{Hn}n∈Z ∈ L(X ) with both ‖Hn‖ and ‖H−1

n ‖ uniformly bounded in n ∈ Z

such that

(8.6)

[
A∗

n C∗
n

B∗
n D∗

n

] [
Hn+1 0
0 IY

] [
An Bn

Cn Dn

]
≺

[
Hn 0
0 IU

]

for all n ∈ Z.

Proof. One can check that the nonstationary dichotomy condition (8.2)–(8.3) on
the operator sequence {An}n∈Z translates to the stationary dichotomy condition

on A with
→

X+ = ImR,
→

X− = KerR where R = diagn∈Z[Rn]. Then

U =

[
A B
C D

]
:

[→
X
→

U

]
→

[→
X
→

Y

]

is the system matrix for a big stationary dichotomous linear system

(8.7) Σ :=

{
→
x(n+ 1) = A

→
x(n) +B

→
u(n)

→
y(n+ 1) = C

→
x(n) +D

→
u(n)

where
→
u = {

→
u(n)}n∈Z ∈ ℓ2→

U
(Z),

→
x = {

→
x(n)}n∈Z ∈ ℓ2→

X
(Z),

→
y = {

→
y(n)}n∈Z ∈ ℓ2→

Y
(Z).
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To apply Theorem 7.2 to this enlarged stationary dichotomous system Σ, we first
need to check that the input-output map TΣ is strictly contractive. Toward this
end, for each k ∈ Z introduce a linear operator

σk,U :
→

U = ℓ2U(Z) → ℓ2→
U
(Z)

defined by

u = {u(n)}n∈Z → σku = {
→
u
(k)

(n)}n∈Z

where we set
→
u

(k)
(n) = {δm,n+ku(n)}m∈Z ∈ ℓ2U (Z) =

→

U .

In the same way we define σk,X and σk,Y , changing only U to X and Y, respectively,
in the definition:

σk,X :
→

X = ℓ2X (Z) 7→ ℓ2→
X
(Z), σk,Y :

→

Y = ℓ2Y(Z) 7→ ℓ2→
Y
(Z).

Then one can check that σk,U , σk,X and σk,Y are all isometries. Furthermore, the
operators

σ→

U
=
[
· · · σ−1,U σ0,U σ1,U · · ·

]
: ℓ2→

U
(Z) → ℓ2→

U
(Z),

σ→

X
=
[
· · · σ−1,X σ0,X σ1,X · · ·

]
: ℓ2→

X
(Z) → ℓ2→

X
(Z),

σ→

Y
=
[
· · · σ−1,Y σ0,Y σ1,Y · · ·

]
: ℓ2→

Y
(Z) → ℓ2→

Y
(Z),

are all unitary. The relationship between the input-output map TΣ for the station-
ary system Σ and the input-output map TΣ for the original nonstationary system
is encoded in the identity

TΣ =

∞⊕

k=−∞

σk,Y S∗k
Y TΣ Sk

U σ∗
k,U = σ→

Y
diag k∈Z [TΣ]σ

∗
→

U

where SU is the bilateral shift on ℓ2U(Z) and SY is the bilateral shift on ℓ2Y(Z), i.e., the
input-output map TΣ is unitarily equivalent to the infinite inflation TΣ ⊗ Iℓ2(Z) =
diag k∈Z[TΣ] of TΣ. In particular, it follows that ‖TΣ‖ = ‖TΣ‖, and hence the
hypothesis that ‖TΣ‖ < 1 implies that also ‖TΣ‖ < 1.

We may now apply Theorem 7.2 to conclude that there is a bounded invertible

selfadjoint operator H on
→

X such that

(8.8)

[
A∗ C∗

B∗ D∗

] [
H 0
0 I→

Y

][
A B
C D

]
−

[
H 0
0 I→

U

]
≺ 0.

Conjugate this identity with the isometry σ0:
[
σ∗
0 0
0 σ∗

0

] [
A∗ C∗

B∗ D∗

] [
H 0
0 I→

Y

] [
A B
C D

] [
σ0 0
0 σ0

]

−

[
σ∗
0 0
0 σ∗

0

] [
H 0
0 I→

U

] [
σ0 0
0 σ0

]
≺ 0.(8.9)

If we define Hn ∈ L(X ) by
Hn = ι∗n σ∗

0 H σ0 ιn

where ιn is the embedding of X into the n-th coordinate subspace of ℓ2X (Z), then
one can check that the identity (8.8) collapses to the identity (8.6) holding for all
n ∈ Z. This completes the proof of Theorem 8.1. �
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