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THE BÉZOUT EQUATION ON THE RIGHT HALF PLANE IN A

WIENER SPACE SETTING

G.J. GROENEWALD, S. TER HORST, AND M.A. KAASHOEK

Abstract. This paper deals with the Bézout equation G(s)X(s) = Im, ℜs ≥

0, in the Wiener space of analytic matrix-valued functions on the right half

plane. In particular, G is an m × p matrix-valued analytic Wiener function,
where p ≥ m, and the solution X is required to be an analytic Wiener function
of size p×m. The set of all solutions is described explicitly in terms of a p× p

matrix-valued analytic Wiener function Y , which has an inverse in the analytic
Wiener space, and an associated inner function Θ defined by Y and the value
of G at infinity. Among the solutions, one is identified that minimizes the H2-
norm. A Wiener space version of Tolokonnikov’s lemma plays an important
role in the proofs. The results presented are natural analogs of those obtained
for the discrete case in [11].

1. Introduction and main results

In this paper we deal with the Bézout equation G(s)X(s) = Im on the closed
right half plane ℜs ≥ 0, assuming that the given function G is of the form

G(s) = D +

∫ ∞

0

e−stg(t) dt (ℜs ≥ 0),

where g ∈ L1
m×p(R+) ∩ L2

m×p(R+).(1.1)

In particular, G belongs to the analytic Wiener space Wm×p
+ . We are interested in

solutions X ∈ Wp×m
+ , that is,

(1.2) X(s) = DX +

∫ ∞

0

e−stx(t) dt (ℜs ≥ 0), where x ∈ L1
m×p(R+).

Throughout p ≥ m. We refer to the final paragraph of this introduction for a
further explanation of the notation.

With G given by (1.1) we associate the Wiener-Hopf operator TG mapping
L2
p(R+) into L

2
m(R+) which is defined by

(1.3) (TGh)(t) = Dh(t) +

∫ ∞

0

g(t− τ)h(τ)dτ, t ≥ 0 (h ∈ L2
m(R+)).
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For X as in (1.2) we define the Wiener-Hopf operator TX mapping L2
m(R+) into

L2
p(R+) in a similar way, replacing D by DX and g by x. If the Bézout equation

(1.4) G(s)X(s) = Im, ℜs ≥ 0.

has a solution X as in (1.2), then (using the analyticity of G and X) the theory
of Wiener-Hopf operators (see [7, Section XII.2] or [2, Section 9]) tells us that
TGTX = TGX = I, where I stands for the identity operator on L2

m(R+). Thus for
the Bézout equation (1.4) to be solvable the operator TG must be surjective or,
equivalently, TGT

∗

G must be strictly positive. We shall see that this condition is
also sufficient.

To state our main results, we assume that TGT
∗

G is strictly positive. Then D =
G(∞) is surjective, and hence DD∗ is strictly positive too. We introduce two
matrices D+ and E, of sizes p×m and p× (p−m), respectively, and a p× p matrix

function Y in Wp×p
+ , as follows:

(i) D+ = D∗(DD∗)−1, where D = G(∞);
(ii) E is an isometry mapping Cp−m into Cp such that ImE = KerD;
(iii) Y is the p× p matrix function given by

(1.5) Y (s) = Ip −
∫

∞

0

e−sty(t)dt, ℜs ≥ 0, where y = T ∗

G(TGT
∗

G)
−1g.

From the definitions of D+ and E it follows that the p × p matrix
[
D+ E

]
is

non-singular. In fact

(1.6)

[
D

E∗

] [
D+ E

]
=

[
Im 0
0 Ip−m

]
.

As we shall see (Proposition 2.1 in Section 2 below), the fact that the given function
g ∈ L1

m×p(R+) ∩ L2
m×p(R+) implies that a similar result holds true for y. In

particular, Y ∈ Wp×p
+ . In what follows Ξ and Θ are the functions defined by

Ξ(s) =
(
Ip −

∫
∞

0

e−sty(t)dt
)
D+ = Y (s)D+, ℜs > 0;(1.7)

Θ(s) =
(
Ip −

∫ ∞

0

e−sty(t)dt
)
E = Y (s)E, , ℜs > 0.(1.8)

Since Y ∈ Wp×p
+ , we have Ξ ∈ Wp×m

+ and Θ ∈ Wp×(p−m)
+ . Finally, recall that a

function Ω in the analytic Wiener spaceWk×r
+ is inner whenever Ω(s) is an isometry

for each s ∈ iR. We now state our main results.

Theorem 1.1. Let G be the m× p matrix-valued function given by (1.1). Then

the equation G(s)X(s) = Im, ℜs > 0, has a solution X ∈ Wp×m
+ if and only if

TG is right invertible. In that case the function Ξ defined by (1.7) is a particular

solution and the set of all solutions X ∈ Wp×m
+ is given by

(1.9) X(s) = Ξ(s) + Θ(s)Z(s), ℜs > 0,

where Ξ and Θ are defined by (1.7) and (1.8), respectively, and the free parameter

Z is an arbitrary function in W(p−m)×m
+ . Moreover, the function Θ belongs to

Wp×(p−m)
+ and is inner. Furthermore, the solution Ξ is the minimal H2 solution
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in the following sense

‖X(·)u‖2H2
p

= ‖Ξ(·)u‖2H2
p

+ ‖Z(·)u‖2H2

p−m

,

where u ∈ Cm and Z ∈ W̃ (p−m)×m
+ .(1.10)

In the above theorem, for any positive integer k, H2
k = H2

k(iR) is the Hardy
space of Ck-valued functions on the right half plane given by H2

k(iR) = JL2
k(R+),

where J is the unitary operator defined by

(1.11) J =
1√
2π

F : L2
k(R) → L2

k(iR)

with F being the Fourier transform mapping L2
k(R) onto L2

k(iR). Moreover, Z ∈
W̃ (p−m)×m

+ means that

Z(s) = DZ +

∫
∞

0

e−stz(t) dt (ℜs ≥ 0), where

DZ is a (p−m)× p matrix and z ∈ L1
(p−m)×p(R+) ∩ L2

(p−m)×p(R+).

See the final part of this introduction for further information about the used nota-
tion, in particular, see (1.14) for the definition of the Fourier transform F .

The second theorem is a variant of the Tolokonnikov lemma [20] in the present
setting. The result emphasizes the central role of the function Y .

Theorem 1.2. Assume TGT
∗

G is strictly positive, and let Y be the matrix function

defined by (1.5). Then Y belongs to the Wiener space Wp×p
+ , det Y (s) 6= 0 whenever

ℜs ≥ 0, and hence Y is invertible in Wp×p
+ . Furthermore, the p×p matrix function

(1.12)

[
G(s)

E∗Y (s)−1

]
, ℜs ≥ 0,

is invertible in the Wiener algebra Wp×p
+ and its inverse is given by

(1.13)

[
G(s)

E∗Y (s)−1

]−1

= Y (s)
[
D+ E

]
=

[
Ξ(s) Θ(s)

]
, ℜs ≥ 0.

The literature on the Bézout equation and the related corona problem is exten-
sive, starting with Carleson’s corona theorem [3] (for the case when m = 1) and
Fuhrmann’s extension to the matrix-valued case [6], both in a H∞ setting. The
topic has beautiful connections with operator theory (see the books [14], [16], [17],
[18], and the more recent papers [21], [22], [23]). Rational matrix equations of the
form (1.4) play an important role in solving systems and control theory problems,
in particularly, in problems involving coprime factorization, see, e.g., [24, Section
4.1], [10, Section A.2], [25, Chapter 21]. For more recent work see [12] and [13],
and [15, page 3] where it is proved that the scalar analytic Wiener algebra is a
pre-Bézout ring. For matrix polynomials, the equation (1.4) is closely related to
the Sylvester resultant; see, e.g., Section 3 in [9] and the references in that paper.

The present paper is inspired by [5] and [11]. The paper [5] deals with equation
(1.4) assuming the matrix function G to be a stable rational matrix function, and
the solutions are required to be stable rational matrix functions as well. The com-
ment in the final paragraph of [5, Section 2] was the starting point for our analysis.
The paper [11] deals with the discrete case (when the right half plane is replaced by
the open unit disc). Theorems 1.1 and 1.2 are the continuous analogue of Theorem
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1.1 in [11]. The absence of an explicit formula for the function Y −1 in the present
setting makes the proofs more complicated than those in [11].

The paper consists of five sections, including the present introduction and an
appendix. Section 2, which deals with the right invertibility of the operator TG,
has an auxiliary character. Theorem 1.2 is proved in Section 3, and Theorem 1.1
in Section 4. The Appendix, Section A, contains a number of auxiliary results
involving the Lebesgue space L1(R) ∩ L2(R) and its vector-valued counterpart,
which are collected together simply for the convenience of the reader and contains
no significantly new material.

Notation and terminology. We conclude this section with some notation and termi-
nology. Throughout, a linear map A : Cr → Ck is identified with the k×r matrix of
A relative to the standard orthonormal bases in Cr and Ck. The space of all k × r

matrices with entries in L1(R) will be denoted by L1
k×r(R). As usual f̂ denotes the

Fourier transform of f ∈ L1
k×r(R), that is,

(1.14) f̂(s) = (Ff)(s) =
∫

∞

−∞

e−stf(t)dt, s ∈ iR.

Note that f̂ is continuous on the extended imaginary axis iR∪ {± i∞}, and is zero
at ± i∞ by the Riemann-Lebesgue lemma. By Wk×r we denote the Wiener space

consisting of all k × r matrix functions F on the imaginary axis of the form

F (s) = DF + f̂(s), s ∈ iR,where f ∈ L1
k×r(R) and

DF is a constant matrix.(1.15)

Since f̂ is continuous on the extended imaginary axis and is zero at ±i∞, the
function F given by (1.15) is also continuous on the extended imaginary axis and

the constant matrixDF is equal to the value of F at infinity. We write Wk×r
+ for the

space of all F of the form (1.15) with the additional property that f has its support

in R+ = [0,∞), that is, f is equal to zero on (−∞, 0). Any function F ∈ Wk×r
+ is

analytic and bounded on the open right half plane. Thus any F ∈ Wk×r
+ is a matrix-

valued H∞ function. Finally, by Wk×r
−,0 we denote the Wiener space consisting of

all F of the form (1.15) with the additional property that DF = 0 and f has its
support in (−∞, 0]. Thus we have the following direct sum decomposition:

(1.16) Wk×r = Wk×r
+ +̇Wk×r

−,0 .

We write F ∈ W̃ k×r
+ if the function f in (1.15) belongs to L1

k×r(R+) ∩ L2
k×r(R+).

Similarly, F ∈ W̃ k×r
−,0 if f ∈ L1

k×r(R−) ∩ L2
k×r(R−) and DF = 0.

Let F ∈ Wk×r be given by (1.15). With F we associate the Wiener-Hopf op-
erator TF mapping L2

r(R+) into L2
k(R+). This operator (see [7, Section XII.2]) is

defined by

(1.17) (TFh)(t) = DFh(t) +

∫
∞

0

f(t− τ)h(τ)dτ, t ≥ 0 (h ∈ L2
r(R+)).

The orthogonal complement of H2
k(iR) = JL2

k(R+), with J as in (1.11), in L2
k(iR)

will be denoted by K2
k(iR). If F ∈ W̃ k×r

+ , then for each u ∈ Cr the function F (·)u
belongs to H2

k(iR). Similarly, F (·)u belongs to K2
k(iR) if F ∈ W̃ k×r

−,0 .
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Finally, for f ∈ L1
k×r(R) and g ∈ L1

r×m(R) the convolution product f ⋆ g is the

function in L1
k×m(R), see [19, Section 7.13], given by

(1.18) (f ⋆ g)(t) =

∫ ∞

−∞

f(t− τ)g(τ) dτ a.e. on R.

2. Right invertibility of TG

In this section G ∈ Wm×p
+ , where G is given by (1.1) and p ≥ m. We already

know that the Bézout equation (1.4) having a solution X in Wp×m
+ implies that

TG is right invertible or, equivalently, TGT
∗

G is strictly positive; see the paragraph
containing formula (1.4).

In this section we present an auxiliary result that will be used to prove our main
theorems. For this purpose we need the m ×m matrix-valued function R on the
imaginary axis defined by R(s) = G(s)G(s)∗, s ∈ iR. It follows that R ∈ Wm×m.
By TR we denote the corresponding Wiener-Hopf operator acting on L2

m(R+). Thus

(TRf)(t) = DD∗f(t) +

∫
∞

0

r(t− τ)f(τ) dτ, 0 ≤ t <∞,

with r(t) = Dg∗(t) + g(t)D∗ +

∫ ∞

−∞

g(t− τ)g∗(τ) dτ, t ∈ R.

Here g∗(t) = g(−t)∗ for t ∈ R. It is well-known (see, e.g., formula (24) in Section
XII.2 of [7]) that

(2.1) TR = TGT
∗

G +HGH
∗

G.

Here HG is the Hankel operator mapping L2
p(R+) into L

2
m(R+) defined by G, that

is,

(2.2) (HGf)(t) =

∫ ∞

0

g(t+ τ)f(τ)dτ, f ∈ L2
p(R+).

We shall prove the following proposition. For the case when G is a rational
matrix function, the first part (of the “if and only if” part) of the proposition is
covered by Lemma 2.3 in [5]. The proof given in [5] can also be used in the present
setting. For the sake of completeness we include a proof of the first part.

Proposition 2.1. Let G be given by (1.1). Then the operator TG is right invertible

if and only if TR and I −H∗

GT
−1
R HG are both invertible operators. In that case the

inverse of TGT
∗

G is given by

(2.3) (TGT
∗

G)
−1 = T−1

R + T−1
R HG(I −H∗

GT
−1
R HG)

−1H∗

GT
−1
R .

Furthermore,

(a) (TGT
∗

G)
−1 maps L1

m(R+) ∩ L2
m(R+) in a one-to-one way onto itself;

(b) the function y defined by y = T ∗

G(TGT
∗

G)
−1g belongs to L1

p×p(R+)∩L2
p×p(R+),

in particular, the function Y given by (1.5) is in W̃p×p
+ .

Proof. We split the proof into four parts. In the first part we assume that TG
is right invertible, and we show that TR and I − H∗

GT
−1
R HG are both invertible

operators and that the inverse of TGT
∗

G is given by (2.3). The second part deals
with the reverse implication. Items (a) and (b) are proved in the last two parts.

Part 1. Assume TG is right invertible. Then the operator TGT
∗

G is strictly positive.
According to (2.1) we have TR ≥ TGT

∗

G, and hence TR is also strictly positive.
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In particular, TR is invertible. Rewriting (2.1) as TGT
∗

G = TR − HGH
∗

G, and

multiplying the latter identity from the left and from the right by T
−1/2
R shows

that

(2.4) T
−1/2
R TGT

∗

GT
−1/2
R = I − T

−1/2
R HGH

∗

GT
−1/2
R .

Hence I − T
−1/2
R HGH

∗

GT
−1/2
R is strictly positive which shows that H∗

GT
−1/2
R is a

strict contraction. But then H∗

GT
−1
R HG =

(
H∗

GT
−1/2
R

)(
H∗

GT
−1/2
R

)∗
is also a strict

contraction, and thus the operator I−H∗

GT
−1
R HG is strictly positive. In particular,

I − H∗

GT
−1
R HG is invertible. Finally, since TGT

∗

G = TR − HGH
∗

G, a usual Schur
complement type of argument (see, e.g., Section 2.2 in [1]), including the well-
known inversion formula

(A−BC)−1 = A−1 +A−1B(I − CA−1B)−1CA−1,

then shows that (TGT
∗

G)
−1 is given by (2.3).

Part 2. In this part we assume that TR and I − H∗

GT
−1
R HG are both invertible

operators, and we show that TG is right invertible. According to (2.1) the operator
TR is positive. Since we assume TR to be invertible, we conclude that TR is strictly
positive. Rewriting (2.1) as TGT

∗

G = TR − HGH
∗

G, and multiplying the latter

identity from the left and from the right by T
−1/2
R we obtain the identity (2.4).

Hence I−T−1/2
R HGH

∗

GT
−1/2
R is positive which shows thatH∗

GT
−1/2
R is a contraction.

But then H∗

GT
−1
R HG =

(
H∗

GT
−1/2
R

)(
H∗

GT
−1/2
R

)∗
is also a contraction, and thus the

operator I − H∗

GT
−1
R HG is positive. By assumption I − H∗

GT
−1
R HG is invertible.

It follows that I − H∗

GT
−1
R HG is strictly positive, and hence T

−1/2
R HG is a strict

contraction. But then the same holds true for T
−1/2
R HGH

∗

GT
−1/2
R . This implies

that I − T
−1/2
R HGH

∗

GT
−1/2
R is strictly positive, and (2.4) shows that TG is right

invertible.

Part 3. In this part we prove item (a). Observe that g ∈ L1
m×p(R) implies that

TG maps L1
p(R+) ∩ L2

p(R+) into L
1
m(R+) ∩ L2

m(R+). Since g
∗ ∈ L1

p×m(R) and

(T ∗

Gf)(t) = D∗f(t) +

∫
∞

0

g∗(t− τ)f(τ) dτ, 0 ≤ t <∞,

the operator T ∗

G maps L1
m(R+)∩L2

m(R+) into L
1
p(R+)∩L2

p(R+). Thus TGT
∗

G maps

L1
m(R+) ∩ L2

m(R+) into itself. We have to show that the same holds true for its
inverse. To do this we apply Lemmas A.3 and A.4.

Lemma A.3 tells us that T−1
R maps L1

m(R+)∩L2
m(R+) in a one-to-one way onto

itself. This allows us to apply Lemma A.4 with

Q = T−1
R , H = HG and H̃ = H∗

G.

Recall that HG is a Hankel operator, see (2.2), and H∗

G is also a Hankel operator,
in fact

(H∗

Gf)(t) =

∫
∞

0

g(t+ τ)∗f(τ) dτ, 0 ≤ t <∞.

Since I−H∗

GT
−1
R HG is invertible, Lemma A.4 then shows that I−H∗

GT
−1
R HG maps

L1
p(R+)∩L2

p(R+) in a one-to-one way onto itself, and hence the same holds true for

its inverse (I −H∗

GT
−1
R HG)

−1. To complete the proof of item (a) note that H∗

GT
−1
R

maps L1
m(R+)∩L2

m(R+) into L
1
p(R+)∩L2

p(R+), and T
−1
R HG maps L1

p(R+)∩L2
p(R+)

into L1
m(R+) ∩ L2

m(R+). But then (2.3) shows that (TGT
∗

G)
−1 maps L1

m(R+) ∩
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L2
m(R+) into itself. To see that (TGT

∗

G)
−1 is one-to-one on L1

m(R+)∩L2
m(R+) and

maps L1
m(R+) ∩ L2

m(R+) onto itself, one can follow the same argumentation as in
the last part of the proof of Lemma A.3.

Part 4. In this part we prove item (b). Since g belongs to L1
m×p(R+)∩L2

m×p(R+),

item (a) tells us that f := (TGT
∗

G)
−1g also belongs to L1

m×p(R+) ∩ L2
m×p(R+).

We already have seen (in the first paragraph of the previous part) that T ∗

G maps
L1
m(R+) ∩ L2

m(R+) into L1
p(R+) ∩ L2

p(R+). It follows that y = T ∗

Gf belongs to

L1
p×p(R+) ∩ L2

p×p(R+), as desired. �

3. The functions Y and Θ, and proof of Theorem 1.2

We begin with three lemmas involving the functions Y and Θ defined by (1.5)
and (1.8), respectively. From Proposition 2.1, item (b), and (1.8) we know that

Y ∈ Wp×p
+ and Θ ∈ Wp×(p−m)

+ ; see also the paragraph preceding Theorem 1.1.

Lemma 3.1. Assume that TG is right invertible, and let Y ∈ Wp×p
+ be the function

defined by (1.5). Then

(3.1) G(s)Y (s) = D, ℜs > 0.

Proof. To prove (3.1) note that TGy = TGT
∗

G(TGT
∗

G)
−1g = g. Since the functions

g and y both have their support in R+, the identity TGy = g can be rewritten as
Dy+ g ⋆ y = g, where ⋆ is the convolution product of matrix-valued functions with
entries in L1(R); see (1.18). Thus

(3.2) Dy(t) + (g ⋆ y)(t) = Dy(t) +

∫
∞

−∞

g(t− τ)y(τ)dt = g(t), t ∈ R.

Next use that the Fourier transform of a convolution product is just the product
of the Fourier transforms of the functions in the convolution product. Thus taking
Fourier transforms in (3.2) yields Dŷ+ ĝŷ = ĝ. The latter identity can be rewritten
as Gŷ = ĝ. Hence, using the definition of Y in (1.5), we obtain

G(s)Y (s) = G(s)
(
Ip − ŷ(s)

)
= G(s) − ĝ(s) = D.

This proves (3.1). �

Lemma 3.2. Assume that TG is right invertible. Then the function Θ defined by

(1.8) belongs to Wp×(p−m)
+ and is an inner function, that is, Θ(s) is an isometry

for each s ∈ iR and at infinity.

Proof. We already know that Θ ∈ Wp×(p−m)
+ . To prove that Θ is inner, let

y = T ∗

G(TGT
∗

G)
−1g as in (1.5), and put f = (TGT

∗

G)
−1g. Thus f ∈ L1

m×m(R+), by
Proposition 2.1 (b), and y = T ∗

Gf . The latter can be rewritten as

y(t) = D∗f(t) +

∫
∞

0

g∗(t− τ)f(τ) dτ, t ≥ 0.

Note that g∗(t) = g(−t)∗, and hence g∗ has its support in (−∞, 0]. Therefore

y(t) = D∗f(t) +

∫ ∞

−∞

g∗(t− τ)f(τ) dτ, t ∈ R.(3.3)

Put

(3.4) ρ(t) =

{
0 when t ≥ 0,

(g∗ ⋆ f)(t) when t < 0.
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Using the definition of the convolution product ⋆, see (1.18), we can rewrite (3.3)
as

y(t) = D∗f(t) + (g∗ ⋆ f)(t)− ρ(t) t ∈ R.

Taking Fourier transforms we obtain

ŷ(s) = D∗f̂(s) + ĝ∗(s)f̂(s)− ρ̂(s) = G(s)∗f̂(s)− ρ̂(s), s ∈ iR.

Hence, we have

Y (s) = I −G(s)∗f̂(s) + ρ̂(s), s ∈ iR.(3.5)

Now let us compute Θ(s)∗Θ(s) = E∗Y (s)∗Y (s)E for s ∈ iR. We have

E∗Y (s)∗Y (s)E =

= E∗Y (s)∗E − E∗Y (s)∗G(s)∗f̂(s)E + E∗Y (s)∗ρ̂(s)E

= E∗Y (s)∗E + E∗Y (s)∗ρ̂(s)E

(because G(s)Y (s)E = 0 by (3.1) and DE = 0)

= E∗E − E∗ŷ(s)∗E + E∗Y (s)∗ρ̂(s)E

= Ip−m − Ω(s).

Here Ω(s) = E∗ŷ(s)∗E−E∗Y (s)∗ρ̂(s)E. Note that the functions ŷ(·)∗ and Y (·)∗ρ̂(·)
belong to Wp×p

−,0 , and thus Ω belongs to W(p−m)×(p−m)
−,0 . On the other hand, the

function E∗Y (·)∗Y (·)E is hermitian on the imaginary axis, and hence the same is
true for Ω. But for any positive integer k we have

Wk×k
−,0 ∩ (Wk×k

−,0 )∗ = {0}.
Thus Ω is identically zero, and thus Θ(s)∗Θ(s) = E∗Y (s)∗Y (s)E = Ip−m for any
s ∈ iR. Moreover, Θ(∞)∗Θ(∞) = E∗E = I. This proves that Θ is inner. �

Lemma 3.3. Assume that TG is right invertible, and let Y ∈ Wp×p
+ be the function

defined by (1.5). Then Y is invertible in Wp×p
+ .

Proof. Fix s ∈ iR, and assume u ∈ Cp such that Y (s)u = 0. Then G(s)Y (s) = D

implies that Du = 0. By definition of E, u = Ev for some v ∈ Cp−m. Next use
Θ(s) = Y (s)E. It follows that Θ(s)v = Y (s)Ev = Y (s)u = 0. However, Θ(s) is an
isometry, by Lemma 3.2. So v = 0, and hence u = 0. We see that detY (s) 6= 0.
Also Y (∞) = Ip. We conclude that TY is a Fredholm operator; see [7, Theorem
XII.3.1].

Next we prove that KerTY = {0}. Take h ∈ KerTY . Then TY h = 0, and hence

Y (s)ĥ(s) = 0 for each s ∈ iR. But det Y (s) 6= 0 for each s ∈ iR. Hence ĥ = 0, and
therefore h = 0.

We want to prove that TY is invertible. Given the results of the preceding first
two paragraphs it suffices to show that indTY = 0. This will be done in the next
step by an approximation argument, using the fact, from [5], that we know the
result is true for rational matrix functions.

Let g be as in (1.1). Note that g is the limit in L1 of a sequence g1, g2, . . . such
that Gn(s) = D+ĝn(s) is a stable rational matrix function; cf., Part (v) on page 229
of [7]. Since TG is right invertible, TGn

will also be right invertible for n sufficiently
large. In fact, TGn

T ∗

Gn
→ TGT

∗

G in operator norm. Put yn = T ∗

Gn
(TGn

T ∗

Gn
)−1gn.

Then yn → y in the L1-norm. Put Yn(s) = I − ŷn(s). Then TYn
→ TY in operator
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norm. For n sufficiently large the operator TYn
is invertible (see the paragraph

preceding Theorem 1.2 in [5] and formula (2.17) in [5]). In particular, the Fredholm
index of TYn

is zero. But indTY = limn→∞ indTYn
= 0. Thus TY is invertible, and

hence Y is invertible in Wp×p
+ . �

Proof of Theorem 1.2. From Lemma 3.3 we know that Y ∈ Wp×p
+ and that Y

is invertible in Wp×p
+ . Thus we only have to prove the second part of the theorem.

Since Y is invertible in Wp×p
+ , the p × p matrix function given by (1.12) is well-

defined and belongs to Wp×p
+ . Furthermore, from (1.6) we know that the p × p

matrix
[
D+ E

]
is invertible. Hence the function defined by the right hand side

of (1.13) belongs to Wp×p
+ and is invertible in Wp×p

+ . Using (3.1) and the identity
(1.6) we see that

[
G(s)

E∗Y (s)−1

]
Y (s)

[
D+ E

]
=

[
G(s)Y (s)

E∗

] [
D+ E

]

=

[
D

E∗

] [
D+ E

]
=

[
Im 0
0 Ip−m

]
, ℜs ≥ 0.

This proves the first identity (1.13). The second identity is an immediate conse-
quence of the definitions of Ξ and Θ in (1.7) and (1.8), respectively. �

4. Proof of Theorem 1.1

We begin with a lemma concerning the functions Ξ and Θ.

Lemma 4.1. Assume that TG is right invertible, and let Ξ and Θ be the functions

defined by (1.7) and (1.8), respectively. Then

(4.1) KerTG = TΘL
2
p−m(R+) and Θ∗Ξ ∈ W̃ (p−m)×m

0,− .

Proof. We split the proof into two parts.

Part 1. In this part we prove the inclusion of (4.1). Take s ∈ iR. Note that in
Proposition 3.2 it was shown for s ∈ iR that

Y (s) = I −G(s)∗f̂(s) + ρ̂(s),

where f = (TGT
∗

G)
−1g and ρ is defined by (3.4); see (3.5). From (1.7) and (1.8) we

then see that

Θ(s)∗Ξ(s) = E∗Y (s)∗Y (s)D+ = E∗Y (s)∗
(
I −G(s)∗f̂(s) + ρ̂(s)

)
D+.

Now use that G(s)Y (s)E = DE = 0, and hence E∗Y (s)∗G(s)∗ = 0. The latter
identity and the fact that E∗D+ = 0 and Y = I − ŷ imply that

Θ(s)∗Ξ(s) = −E∗ŷ(s)∗D+ + E∗ρ̂(s)D+ − E∗ŷ(s)∗ρ̂(s)D+

= −A(s) +B(s)− C(s).(4.2)

From item (b) in Proposition 4.1 we know that y ∈ L1
p×p(R+) ∩ L2

p×p(R+), and

thus ŷ ∈ W̃ p×p
+ and ŷ(∞) = 0, that is, ŷ ∈ W̃ p×p

0,+ . It follows that

(4.3) A(·) := E∗ŷ(·)∗D+ ∈ W̃ (p−m)×p
0,− .

Recall that ρ is given by (3.4) with f = (TGT
∗

G)
−1g. Since the function g belongs

to L1
m×p(R+)∩L2

m×p(R+), item (b) in Proposition 2.1 tells us that the same holds
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true for f . It follows that g∗ ⋆ f ∈ L1
p×p(R) ∩ L2

p×p(R). The latter implies that

ρ ∈ L1
p×p(R−) ∩ L2

p×p(R−). We conclude that

(4.4) B(·) := E∗ρ̂(·)D+ ∈ W̃ (p−m)×p
0,− .

Finally, note that y∗(t) = y(−t)∗ for t ∈ R and
(
ŷ(s)

)∗
= ŷ∗(s) for s ∈ iR. Thus

ŷ(s)∗ρ̂(s) =
(
ŷ∗ ⋆ ρ

)
(s), s ∈ iR,

and

(y∗ ⋆ ρ)(t) =

∫
∞

−∞

y∗(t− τ)ρ(τ) dτ =

∫ 0

−∞

y∗(t− τ)ρ(τ) dτ.

Since both y∗ and ρ belong to L1
p×p(R−) ∩ L2

p×p(R−), it is well known (see, e.g.,
Section 2 in [4]) that the same holds true for y∗ ⋆ ρ. But then

(4.5) C(·) := E∗ŷ(·)∗ρ̂(·)D+ ∈ W̃ (p−m)×p
0,− .

From (4.3), (4.4), (4.5) and (4.2) it follows that Θ∗Ξ ∈ W̃ (p−m)×m
0,− .

Part 2. In this part we prove the identity of (4.1). Using (3.1) we see that

G(s)Θ(s) = G(s)Y (s)E = DE = 0, s ∈ iR.

This implies that TGTΘ = 0, and hence ImTΘ ⊂ KerTG. To prove the reverse
inclusion, take h ∈ KerTG. Thus h ∈ L2

p(R+) and TGh = 0. It follows that

G(s)ĥ(s) = 0 for ℜs > 0. Put H(s) = ĥ(s). Then H(·) belongs to H2
m(iR). Next

we apply Theorem 1.2. Using the identities in (1.13) we see that

H(s) =
[
Ξ(s) Θ(s)

] [ G(s)
E∗Y (s)−1

]
H(s)

=
[
Ξ(s) Θ(s)

] [ 0
E∗Y (s)−1H(s)

]
= Θ(s)E∗Y (s)−1H(s).

Hence ĥ(s) = Θ(s)Ψ(s), where Ψ(s) = E∗Y (s)−1ĥ(s). Since h ∈ L2
p(R+) and

Y (·)−1 is a matrix function with H∞ entries, we conclude that Ψ ∈ H2
p−m, and

hence Ψ = û for some u ∈ L2
p−m(R+). The identity ĥ(s) = Θ(s)Ψ(s) then yields

ĥ(s) = Θ(s)û(s). This shows that h = TΘu, and hence KerTG ⊂ ImTΘ. �

Proof of Theorem 1.1. From Lemma 3.2 we know that Θ is an inner function in
W(p−m)×m

+ . The proof of the other statements is split into three parts.

Part 1. In this part we show that the equation G(s)X(s) = Im, ℜs > 0, has a

solution X ∈ Wp×m
+ if and only if TG is right invertible. Furthermore, we show

that in that case the function Ξ defined by (1.7) is a particular solution. From the
one but last sentence of the paragraph containing (1.4) we know that it suffices to
prove the “if part” only. Therefore, in what follows we assume that TG is right
invertible. Since Ξ(s) = Y (s)D+ and Y ∈ Wp×p

+ , we have Ξ ∈ Wp×m
+ . Moreover,

using the identity (4.1) we have

G(s)Ξ(s) = G(s)Y (s)D+ = DD+ = Im.

Thus Ξ is a particular solution.
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Part 2. This second part deals with the description of all in solutions in Wp×m
+ .

Let Z be an arbitrary function in Wp×m
+ , and let X ∈ Wp×m

+ be defined by (1.9).
Then

G(s)X(s) = G(s)Ξ(s) +G(s)Θ(s)Z(s) = Im +G(s)Θ(s)Z(s), ℜs ≥ 0.

Recall that G(s)Θ(s) = G(s)Y (s)E = DE = 0. Thus G(s)X(s) = Im, ℜs ≥ 0, and
thus X is a solution.

To prove the converse implication, let X ∈ Wp×m
+ be a solution of the equation

G(s)X(s) = Im. Put H = X − Ξ. Then H ∈ Wp×m
+ and G(s)H(s) = 0. Using the

identities in (1.13), we obtain

H(s) =
[
Ξ(s) Θ(s)

] [ G(s)
E∗Y (s)−1

]
H(s)

=
[
Ξ(s) Θ(s)

] [ 0
E∗Y (s)−1H(s)

]
= Θ(s)E∗Y (s)−1H(s).

Thus H(s) = Θ(s)Z(s), where Z(s) = E∗Y (s)−1H(s). Since Y is invertible in

Wp×p
+ , the function Y (·)−1 is in Wp×p

+ . Together with the fact that H ∈ Wp×m
+ ,

this yields Z ∈ W(p−m)×m
+ . It follows X has the desired representation (1.9).

Part 3. In this part we prove the identity (1.10). Assume Z ∈ W̃ (p−m)×m, and
let X be the function defined by (1.9). Fix u ∈ Cm. Then Z(·)u ∈ H2

m(iR), and

(4.6) Θ(·)Z(·)u =MΘZ(·)u ∈ H2
p−m(iR).

HereMΘ is the operator of multiplication by Θ(·) mapping H2
m(iR) into H2

p−m(iR).
Furthermore, since MΘ is an isometry, we also see that

(4.7) ‖Z(·)u‖ = ‖Θ(·)Z(·)u‖.

The fact that y ∈ L1
p×p(R+) ∩ L2

p×p(R+) implies that Y ∈ W̃ p×p
+ . But then

Ξ(s) = Y (s)D+ yields Ξ(·)u ∈ H2
m(iR). Using the identity (1.9) we conclude that

Ξ(·)u also belongs to H2
m(iR). It follows that all norms in (1.10) are well defined,

and in order to prove the identity (1.10) it suffices that to show that in H2
m(iR) the

function Θ(·)Z(·)u is orthogonal to the function Ξ(·)v for any v ∈ Cm. The latter
fact follows from the inclusion in the second part of (4.1). Indeed, this inclusion
tells us that M∗

ΘΞ(·)v = 0, and hence

〈Ξ(·)v,Θ(·)Z(·)u〉H2
m
(iR) = 〈Ξ(·)v,MΘZ(·)u〉H2

m
(iR)

= 〈M∗

ΘΞ(·)v, Z(·)u〉H2
m
(iR) = 0.

This completes the proof. �

Appendix A. The Lebesgue space L1(R) ∩ L2(R)

The material in this section is standard and is presented for the convenience
of the reader. Throughout we deal with the Lebesgue spaces of complex-valued
functions on the real line L1(R) and L2(R), their vector-valued counterparts L1

m(R)
and L2

m(R), and the intersection of the latter two spaces: L1
m(R) ∩ L2

m(R). The
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norms on these spaces are given by

‖f‖1 =
∫ ∞

−∞

|f(t)| dt for f ∈ L1(R),

‖f‖2 =
(∫ ∞

−∞

|f(t)|2 dt
)1/2

for f ∈ L2(R),

‖f‖1 =
( m∑

i=1

‖fi‖21
)1/2

for f = (f1, . . . , fm)⊤ ∈ L1
m(R),

‖f‖2 =
( m∑

i=1

‖fi‖22
)1/2

for f = (f1, . . . , fm)⊤ ∈ L2
m(R),

‖f‖0 = max{‖f‖1, ‖f‖2} for f ∈ L1
m(R) ∩ L2

m(R).

Let k ∈ L1
m×p(R). Thus k is an m×p matrix function of which the (i, j)-th entry

kij ∈ L1(R). For each ϕ ∈ L1
p(R) and ψ ∈ L2

p(R) the convolution products k ⋆ ϕ

and k ⋆ ψ, see (1.18), are well defined, k ⋆ ϕ belongs to L1
m(R) and k ⋆ ψ belongs to

L2
m(R). In particular, if f ∈ L1

p(R) ∩L2
p(R), then k ⋆ f belongs to L1

m(R)∩L2
m(R).

It follows that for a given k ∈ L1
m×p(R) the convolution product induces linear

maps from the space L1
p(R) into L1

m(R), from the space L2
p(R) into L2

m(R), and

from the space L1
p(R) ∩ L2

p(R) into L1
m(R) ∩ L2

m(R). The resulting operators will
be denoted by K1, K2 and K0, respectively. The proof of the following lemma is
standard (see, e.g., page 216 in [6]) and therefore it is omitted.

Lemma A.1. The operators K1, K2 and K0 are bounded linear operators, and

(A1) ‖Kν‖ ≤ κ (ν = 1, 2, 0), where κ =
( m∑

i=1

p∑

j=1

‖kij‖21
)1/2

.

With k ∈ L1
m×p(R+) we also associate the Wiener-Hopf operator W and the

Hankel operator H defined by

(Wf)(t) =

∫
∞

0

k(t− τ)f(τ) dτ, 0 ≤ t <∞,

(Hf)(t) =

∫
∞

0

k(t+ τ)f(τ) dτ, 0 ≤ t <∞.

Using the classical relation between the convolution operator defined by k and the
operators W and H (see, e.g., Section XII.2 in [7]) it is easy to see that W and H
map the space L1

p(R+) into L
1
m(R+), the space L

2
p(R+) into L

2
m(R+), and the space

L1
p(R+) ∩ L2

p(R+) into L1
m(R+) ∩ L2

m(R+). We denote the resulting operators by
W1, W2, W0, and H1, H2, H0, respectively. Lemma A.1 shows that these operators
are bounded and

(A2) ‖Wν‖ ≤ κ and ‖Hν‖ ≤ κ (ν = 1, 2, 0), where κ =
( m∑

i=1

p∑

j=1

‖kij‖21
)1/2

.

Furthermore, using the line of reasoning in Lemma XX.2.4 in [7], we have the
following corollary.

Corollary A.2. The Hankel operators H1, H2, and H0 are the limit in operator

norm of finite rank operators, and hence compact.
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Next we present an auxiliary result that is used in the proof of Proposition 2.1.
Put

(A3) R(s) = DR +

∫
∞

−∞

e−str(t) dt where r ∈ L1
m×m(R).

By TR we denote the Wiener-Hopf operator on L2
m(R+) defined by R, that is,

(A4) (TRf)(t) = DRf(t) +

∫
∞

0

r(t − τ)f(τ) dτ, 0 ≤ t <∞.

As we know from the first paragraph of this section, the fact that r ∈ L1
m×m(R)

implies that TR maps L1
m(R+) ∩ L2

m(R+) into itself.

Lemma A.3. If TR is invertible as an operator on L2
m(R+), then T−1

R maps the

space L1
m(R+) ∩ L2

m(R+) in a one-to-one way onto itself.

Proof. Since TR is invertible, R admits a canonical factorization (see Section
XXX.10 in [8]), and hence we can write T−1

R = LU , where L and U are Wiener-
Hopf operators on L2

m(R+),

(Lf)(t) = DLf(t) +

∫ t

0

ℓ(t− τ)f(t) dt, 0 ≤ t <∞,(A5)

(Uf)(t) = DUf(t) +

∫
∞

t

u(t− τ)f(t) dt, 0 ≤ t <∞.(A6)

Here ℓ and u both belong to L1
m×m(R), with support of ℓ in R+ and support of u

in R−. The fact that both ℓ and u belong to L1
m×m(R) implies that both L and

U map L1
m(R+) ∩ L2

m(R+) into itself. Hence T−1
R has the same property. Since

T−1
R is one-to-one on L2

m(R+), it is also one-to-one on L1
m(R+) ∩ L2

m(R+). For

f ∈ L1
m(R+)∩L2

m(R+), we have g = TRf ∈ L1
m(R+)∩L2

m(R+) and f = T−1
R TRf =

T−1
R g. This shows that T−1

R maps L1
m(R+) ∩ L2

m(R+) onto L
1
m(R+) ∩ L2

m(R+). �

Lemma A.4. Let k ∈ L1
p×m(R+) and k̃ ∈ L1

m×p(R+), and let H and H̃ be the

corresponding Hankel operators acting from L2
m(R+) into L

2
p(R+) and from L2

p(R+)

into L2
m(R+), respectively. Let Q be any operator on L2

m(R+) mapping L1
p(R+) ∩

L2
m(R+) into itself, and assume that the restricted operator Q0 acting on L1

m(R+)∩
L2
m(R+) is bounded. If the operator I − H̃QH is invertible on L2

m(R+), then I −
H̃QH maps the space L1

m(R+) ∩ L2
m(R+) in a one-to-one way onto itself.

Proof. We know that H maps L1
p(R+) ∩ Lp

2(R+) into L1
m(R+) ∩ L2

m(R+). Fur-

thermore the same holds true for H̃ with the role of p and m interchanged. Hence
our hypothesis on Q implies that I − H̃QH maps the space L1

m(R+) ∩ L2
m(R+)

into itself. Let M0 be the corresponding restricted operator. We have to prove
that M0 is invertible. Note that Corollary A.2 implies that M0 is equal to the
identity operator minus a compact operator, and hence M0 is a Fredholm operator
of index zero. Therefore, in order to prove that M0 is invertible, it suffices to show
that KerM0 consists of the zero element only. Assume not. Then there exists a
non-zero f in L1

m(R+) ∩ L2
m(R+) such that M0f = 0. The fact that f belongs to

L1
m(R+)∩L2

m(R+) ⊂ L2
m(R+) shows that 0 =M0f = (I− H̃QH)f . But I− H̃QH

is assumed to be invertible. Hence f must be zero. Thus M0 is invertible. �
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