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THE TWOFOLD ELLIS-GOHBERG INVERSE PROBLEM IN AN
ABSTRACT SETTING AND APPLICATIONS

S. TER HORST, M.A. KAASHOEK, AND F. VAN SCHAGEN

ABSTRACT. In this paper we consider a twofold Ellis-Gohberg type inverse
problem in an abstract x-algebraic setting. Under natural assumptions, neces-
sary and sufficient conditions for the existence of a solution are obtained, and
it is shown that in case a solution exists, it is unique. The main result relies
strongly on an inversion formula for a 2 X 2 block operator matrix whose off
diagonal entries are Hankel operators while the diagonal entries are identity
operators. Various special cases are presented, including the cases of matrix-
valued L'-functions on the real line and matrix-valued Wiener functions on
the unit circle of the complex plane. For the latter case, it is shown how the
results obtained in an earlier publication by the authors can be recovered.

1. INTRODUCTION

In the present paper we consider a twofold inverse problem related to orthogonal
matrix function equations considered by R.J. Ellis and I. Gohberg for the scalar-
valued case and mainly in discrete time; see [4] and the book [5]. The problem is
referred to as the twofold EG inverse problem for short. Solutions of the onefold
version of the problem, both in discrete and continuous time setting, have been
obtained in [14, 15]. For the discrete time setting a solution of the twofold problem
is given in [10]. One of our aims is to solve the twofold problem for the case of
L'-matrix functions on the real line which has not be done yet. More generally, we
will solve an abstract x-algebraic version of the twofold EG inverse problem that
contains various special cases, including the case of L'-matrix functions on the real
line. Our abstract setting will include an abstract inversion theorem which plays
an important role in various concrete cases as well.

The abstract version of the twofold EG inverse problem we shall be dealing with
is presented in Section 2. Here, for convenience of the reader, we consider the
twofold EG inverse problem for L'-matrix functions on the real line, and present
the two main theorems for this case, Theorem 1.1 and Theorem 1.2 below. This
requires some notation and terminology.

Throughout C"** denotes the linear space of all » x s matrices with complex
entries and L*(R)"** denotes the space of all r x s matrices of which the entries
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are Lebesgue integrable functions on the real line R. Furthermore
LY (R4)™ = {f € L'(R)"™* | supp(f) C Ry = [0,00)},
LY (R_)™* = {f € L'(R)"™** | supp(f) € R = (00, 0]}.
Here supp(f) indicates the support of the function f. Now assume we are given
(1.1) a€ L' R)P*P, ce LYR_)?*P,
(1.2) be LYRL)P*Y de LY(R_)7™.

Given these data the twofold EG inverse problem referred to in the title is the
problem to find g € L!(R,)P*? satisfying

(1.3) at+grce L'R)PP, g +g*xa+ce LRy )P,
(1.4) d+g*xbe L' R )Y, g4+gxd+be L'(R_)PX2

Here g*(t) = g(—t)* for each t € R, and as usual f x h denotes the convolution
product of L!'(R) matrix functions f and h.
The onefold version of the problem, when only @ and ¢ in (1.1) have been given
and the problem is to find ¢ such that (1.3) is satisfied, has been dealt with in [15].
To see the EG inverse problem from an operator point of view, let g € L (IR )P*4,
and let G and G, be the Hankel operators defined by

0
(15)  G:L'(R.)T — L'(R, ), (Gf)(t):/ ot —$)f(s) ds, > 0;

— 00

(1.6)  G.:LY(Ry)P — LY (R, (G.h)(t) —/Ooog*(t—s)h(s) ds, t<0.

Here L'(R4)" = L'(R4)"*!. Using these Hankel operators, the conditions in (1.3)
and (1.4) are equivalent to

(1.7) a+ Ge=0, Gia+c=—g*,
(1.8) d+ G.b=0, Gd+b=—g.

To understand the above identities let us mention that we follow the convention that
an operator acting on columns can be extended in a canonical way to an operator
acting on matrices. We do this without changing the notation. For instance, in
the first identity in (1.7) the operator G acts on each of the p columns of the ¢ x p
matrix function ¢, and Gc is the resulting p x p matrix function. Thus the first
condition in (1.7) is equivalent to the first condition in (1.3). Similarly, the second
condition in (1.3) is equivalent to the second condition in (1.7) and so on.
Hence the four conditions in (1.7) and (1.8) can be summarized by

oo e GE=] me e 0=

In other words, in this context the inverse problem is to reconstruct, if possible, a
(block) Hankel operator and its associate, from the given data {a,b, ¢, d}.

To describe the main theorems in the present context, we need some further pre-
liminaries about Laurent, Hankel and Wiener Hopf operators. Let p be a function
on R given by

(1.10) p(t) = 1o +r(t),t € R, where r € L}(R)¥*™ and ro € CF*™,
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With p in (1.10) we associate the Laurent operator L, : L*(R)™ — L'(R)* which
is defined by

o0

(1.11) LHO=rfO)+ [ rt-9f)ds (teR)

— 00

Furthermore, we write L, as a 2 X 2 operator matrix relative to the direct sum
decompositions L'(R)* = LY(R_)*+L'(R,)%, £ = m, k, as follows:

I T_, H_, LY(R_)™ LY(R_)F
p= : m .
Hyp, Tip] |LY(Ry) LY (Ry)"
Thus T_ , and Ty , are the Wiener Hopf operators given by
0
(112) (@O =rof @)+ [ rlt-s)fe)ds, 10, feLl®)",

(L13) (@) O =rofO)+ [ re=s)f()ds, 20, fe @)™

and H_ , and H , are the Hankel operators given by

(L) (O = [ re-9fe)ds <0 feLi®)™
0
0

(115)  (Hepf)(O)= [ rlt-9f)ds 20 fe LR
In particular, the Hankel operators G and G. appearing in (1.9) are equal to G =
H, ,and G, = H_ 4, respectively.

In what follows, instead of the data set {a, b, ¢, d} we will often use the equivalent
data set {«, 8,7,0}, where

(1.16) a=e,+a, B=0b y=c J=¢;+d.

Here e, and e, are the functions on R identically equal to the unit matrix I, and
I,, respectively. Using the data in (1.16) and the definitions of Toeplitz and Hankel
operators in (1.12) — (1.15), we define the following operators:

(1.17) My =Ty 0Ty o — Ty gTv g : LY(RL)P — LY (R, )P,
(1.18) Moy = H_ Ty o« — H_ 5T g : LY(R} )P — LY (R_)4,
(1.19) Mg = Hy gT— 5+ — Hy oT— 4 : L*(R_)7 — LY(R)P,
(1.20) Moy =T 5T 5e —T- T : L*(R_)? — L*(R_)".

Notice that these four operators are uniquely determined by the data.

We are now ready to state, in the present context, our two main theorems. In
the abstract setting these theorems appear in Sections 6 and 7, respectively. The
first is an inversion theorem and the second presents the solution of the EG inverse
problem.

Theorem 1.1. Let g € LY (R+)P*4, and let W be the operator given by

I Hyy
B |

LRy )P
LY(R_)

(1.21) W= lH
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Then W is invertible if and only if g is a solution to a twofold EG inverse problem
for some data set {a,b,c,d} asin (1.1) and (1.2), that is, if and only if the following
two equations are solvable:

i of]-[3] e[

In that case the inverse of W is given by

My Mo

My M|’

where M;;, 1 < 1,5 <2, are the operators defined by (1.17) — (1.20) with «, 8, v, ¢
being given by (1.16) where a,b, ¢, d are given by (1.22). Furthermore, the operators
M1 and Moo are invertible and

(1.23) W= [

(1.24) Hy g =—M;' Mo = —M2Ms,',
(1.25) H_ o = =My M;}' = — My, My,
(1.26) g= —Mfllb7 g = —Mzglc.

For the second theorem we need a generalization of the convolution product «,
which we shall denote by the symbol ¢. In fact, given the data set {a, b, ¢, d} and the
equivalent data set {«, 8,7v,d} given by (1.16), we define the following ¢-products:

afoa=e,+a*+a+axa, yoy:=c"*c,

0*odi=e+d" +d+d +xd, B*of:=0b"*b,

a*ofB:=b+a"*xb, A od:=c" +c"*d.
Theorem 1.2. Let {a,b,c,d} be the functions given by (1.1) and (1.2), let a, 3,
v, 8 be the functions given by (1.16), and let e, and e, be the functions on R
identically equal to the unit matriz I, and I, respectively. Then the twofold EG

inverse problem associated with the data set {a,b,c,d} has a solution if and only
the following two conditions are satisfied:

(L1) a*oa—q*oy=ep, 0*0d—F 0o =g, a*of=7%00;

(L2) the operators Myy and Mas defined by (1.17) and (1.20) are one-to-one.
In that case M1 and Mas are invertible, and the (unique) solution g and its adjoint
g* are given by
(1.27) g=—-M3'b and g¢*=—-My'c
Here b and ¢ are the matriz functions appearing in (1.2) and (1.1), respectively.

Assuming that condition (L1) above is satisfied, the invertibility of the operator
M7 is equivalent to the injectivity of the operator M1, and the invertibility Mao
is equivalent to the injectivity of the operator Mss. To prove these equivalences
we use the fact (cf., formulas (4.18) and (4.19) in [12, Section 4.3]) that M;; and
Mso are also given by
(1.28) My =I+H gH_g- —Hy H_ o,

(129) M22 = I + H_WH"':V* - H_7§H+7§*.
Since the Hankel operators appearing in these formulas are all compact operators,

My, and Mss are Fredholm operators, and thus invertible if and only if they are
one-to-one.
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We shall see in Lemma 8.5, again assuming that condition (L1) above is satisfied,
that the operators Ms; and Mjs are also given by

(1.30) My =T sH_ o — T H_ o,
(1.31) My =Ty oHy e — Ty gHy 5.

Since the functions a, b, ¢, d are L'(R) matrix functions, the operators M;;,
1 <4,5 <2, are also well-defined as bounded linear operators on the corresponding
L? spaces. It follows that Theorems 1.1 and 1.2 remain true if the L' spaces in
(1.21) are replaced by corresponding L? spaces. In this L?-setting Theorems 1.1
and 1.2 are the continuous analogs of Theorems 3.1 and 4.1 in [10]. Furthermore,
in this L?-setting the adjoints of the operators M;;, 1 < i,j < 2, as operators on
L?-spaces, are well-defined as well. In fact, assuming condition (L1) is satisfied and
using (1.17) — (1.20) and the identities (1.30), (1.31), we see that in the L? setting
we have

(1.32) M, = My, M3y, = M, M= My, My, = M.

Theorem 1.1 belongs to the wide class of inversion theorems for structured opera-
tors. In particular, the theorem can be viewed as an analogue of the Gohberg-Heinig
inversion theorem for convolution operators on a finite interval [7]. In its present
form Theorem 1.1 can be seen as an addition to Theorem 12.2.4 in [5], where, using
a somewhat different notation, the invertibility of W is proved. The formula for the
inverse of W could be obtained from [9, Theorem 0.1], where the formula for My,
appears in a somewhat different notation. Note that [9, Theorem 0.1] also solves
the asymmetric version of the inversion problem. Formulas (1.24)—(1.26) seem to
be new.

As mentioned before, in the present paper we put the twofold EG problem in
an abstract x-algebraic setting. This allows us to consider and solve non-stationary
twofold EG problems (see Subsection 3.2 for an example). Furthermore, Theorems
1.1 and 1.2 are obtained as corollaries of the two abstract theorems, Theorem 6.1
and Theorem 7.1, derived in this paper. Also, as we shall prove in Section 10,
Theorems 3.1 and 4.1 in [10] appear as corollaries of our main theorems.

The paper consists of ten sections (including the present introduction) and an
appendix. In Section 2 we introduce the abstract x-algebraic setting and state the
main problem. Section 3 presents a numerical example and a number of illustrative
special cases, including various Wiener algebra examples. Sections 4 and 5 have a
preliminary character. Here we introduce Toeplitz-like and Hankel-like operators,
which play an important role in the abstract setting, and we derive a number of
identities and lemmas that are used in the proofs of the main results. In Section
6 the abstract inversion theorem (Theorem 6.1) is proved, and in Section 7 the
solution to the abstract twofold EG inverse problem (Theorem 7.1) is presented
and proved. Theorems 1.1 and 1.2 are proved in Section 8 using the results of
Section 6 and Section 7. In Section 9 we further specify Theorem 7.1 for the case
when there are additional invertibility conditions on the underlying data. The proof
in this section is direct and does not use Theorem 7.1. As mentioned in the previous
paragraph, Theorems 3.1 and 4.1 in [10] are derived in Section 10 as corollaries of
our main theorems in Sections 6 and 7.

Finally, in Appendix A we review a number of results that play an important role
in Section 8, where we have to relate Hankel-type and Toeplitz-type operators used
in Section 6 and Section 7 to classical Hankel and Wiener-Hopf integral operators.
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Appendix A consists of three subsections. In Subsection A.1 we recall the definition
of a Hankel operator on L?(R; ) and review some basic facts. In Subsection A.2 we
present a theorem (partially new) characterizing classical Hankel integral operators
mapping L'(R;)? into L'(R;)?. Two auxiliary results are presented in the final
subsection.

2. GENERAL SETTING AND MAIN PROBLEM

We first describe the general x-algebraic setting that we will be working with.
To do this we use the notation introduced on pages 109 and 110 of [13]; see also the
first two pages of [8, Section II.1]. Throughout A, B, C and D are complex linear
vector spaces such that the following set of 2 x 2 block matrices form an algebra:
(2.1) MzMA,B,c,pz{fz[i ZhaeA,beB,ceC,deD}.

Furthermore, we assume A and D are x-algebras (see [18, Chapter IV] for the
definition of this notion) with units e4 and ep, respectively, and endowed with
involutions *. The diagonal

_|eAa 0
eM_|:O GD:|

is the unit element of M. Moreover, C is a linear space isomorphic to B via a
conjugate linear transformation * whose inverse is also denoted by *. We require
M to be a x-algebra with respect to the usual matrix multiplication and with the

involution given by
a bl [a* ¢
c d| bt d¥|”

The algebras A and D are assumed to admit direct sum decompositions:
(2.2) A=A +A4;+A%, D=D"+D4+DY.

In these two direct sum decompositions the summands are assumed to be subalge-
bras of A and D, respectively. Furthermore, we require

(2.3) ea€Aa, (AL =A%, (Ag)* = Aqg,
ep € Dy, (PY)*=DY, (Dy)* = Da.
Set
A=A F Ay, Ay = At AS, Do =D"4Dy, Dy =Dye+DI.
We also assume that B and C admit direct sum decompositions:
(2.4) B=B_4+B;, C=C_+C;, suchthat C_ =B}, C;=B.

These direct sum decompositions yield a direct sum decomposition of M, namely
M= M(i—i-/\/ld—i—MS)r, where
0 0
0 _ ./4_ B_ _ Ad 0 0 _ ./4+ B+

I <] BIPCR il P VC R =1
Note that

(M) = M(i, (Mi)* =M% M= M,
Finally, we assume that the products of elements from the summands in M =
MO+ Mg+MO. satisty the rules of the following
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Multiplication table

x MY Mg | MY

MO MO MO T M

Mg || MY | My [ MY

ML M | MY MY
We say that the algebra M = M 4 pcp defined by (2.1) is admissible if all the
conditions listed in the above paragraph are satisfied.
Main problem. We are now ready to state the main problem that we shall be dealing
with. Let o € Ay, 8 € By, v € C_ and § € D_ be given. We call g € B a solution
to the twofold EG inverse problem associated with «, B, 7y, and § whenever

(2.6) a+gy—eqs€ A’ and gra+veCy,
(2.7) g6 +B€B- and J+g*B—epeDY.

Our main aim is to determine necessary and sufficient conditions for this inverse
problem to be solvable and to derive explicit formulas for its solution. We shall
show that the solution, if it exists, is unique. The following result is a special case
of [13, Theorem 1.2].

Proposition 2.1. If the twofold EG inverse problem associated with «, B, v and
0 has a solution, then

(C1) ofa— 'y = Py,
(C2) §*6 — 3*B = Pp,d,
(C3) o B = 7*6.

Here P4, and Pp, denote the projections of A and D onto Aq and Dg, respectively,
along A° = A° +AY and D° = D°+DY, respectively.

Notice that (C1) and (C2) imply that
(2.8) ag :=Pp,a = (Pa,)" =af and doy:= Pp,0 = (Pp,0)* = dj.

Furthermore, together the three conditions (C1)—-(C3) are equivalent to

af | leqa O a B _lag O
(2.9) [5* 5*} [0 —61)] [”y 5} B [0 —do]
Remark 2.2. Since ag and dy belong to Ay and Dy, respectively, invertibility of

ap in A and of dy in D imply that ay e Ay and dy '€ D,;. In other words, ay and
dy are invertible in Ay and Dy, respectively.

Remark 2.3. In the sequel it will often be assumed that ag and dy are invertible.
In that case the following three conditions are well defined.

(C4) aay ot — Bdy B = e,
(C5) 5dy t6* — yag 'yt = ep,
(C6) aay 'yt = Bdyto*.

In solving the twofold EG inverse problem referred to above we shall always assume
that ag and dy are invertible and that the six conditions (C1)—(C6) are fulfilled.

The next lemma shows that in many cases (C4)—(C6) are satisfied whenever
conditions (C1)—(C3) are satisfied.
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Lemma 2.4. Leta€ Ay, 5 € By, veC_, 6 € D_, and let
_|o B
9= [7 5]'

Assume that ag and a are invertible in A, and that do and & are invertible in D.
If, in addition, o, B, v and § satisfy conditions (C1)—(C3), then Q is invertible,
and conditions (C4)—(C6) are satisfied.

Proof. Since ¢ is invertible, a classical Schur complement argument (see, e.g.,
formula (2.3) in [1, Chapter 2]) shows that

-1
o=t <[ Y[ [ 2], i azas s

v 0 ep D

Using the invertibility of a and §, we can rewrite (C3) as 36~ = a~*y*. The latter
identity together with (C1) yields:

*

A=a—-B5y=a—a*y'y=a " (a*a—7"y) = a *am.

It follows that the Schur complement A is invertible. But then @ is invertible too,
and the identity (2.9) shows that the inverse Q! of Q is given by

o[y &) 0
0 —dy'][B* 6|0 —ep|”

Since QQ ! is a 2 x 2 block identity matrix, we conclude that

a f aal 0 ot ¥ |ea 0| |ea O
v 8 0 —dgl B* 51|10 —ep| |0 ep
This yields

a Bl fa;? 0 o | |ea 0
(2.10) {7 5] [ 0 —dgl} [5* 5*] - {o —ep}’

and hence (C4)—(C6) are satisfied. O

3. A NUMERICAL EXAMPLE AND SOME ILLUSTRATIVE SPECIAL CASES
In this section we present a few inverse problems which are special cases of the

abstract problem presented in the previous section.

3.1. A numerical example. As a first illustration we consider a simple example
of a problem for 3 x 3 matrices. Given

-2 2 0 -2 -6 0

(3.1) a=3|0 =3 —4, B=—5|0 1 —4],
0 0 6 0 0 -2
-2 0 0 6 0 0

(3.2) y=-%]|-4 1 0], s=%|-4 -3 0],
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we seek a 3 x 3 upper triangular matrix g such that

1 0 0 0  *
(3.3) a+gy=|* 1 0|, ga+ty=|0 0 =,
* o+ 1 0 0 O
0 0 0 1 x
(3.4) B+goi=1|x 0 0|, ¢g'B+d6d=1]0 1 %
* x 0 0 0 1]

Here the symbols x denote unspecified entries. By direct checking it is easy to see
that the matrix g, given by

1 2 0

go=10 1 2

0 0 1
is upper triangular and satisfies (3.3) and (3.4). From the general results about
existence of solutions and methods to determine solutions, which will be presented
in this paper, it follows that g, is the only solution. For this example it also
straightforward to check that conditions (C1)—(C3) presented in the previous section
are satisfied.

3.2. A class of finite dimensional matrix examples. We will put the problem
considered in the preceding example into the general setting considered in the pre-
vious section. Let p > 1 be an integer (in the example above we took p = 3), and
let

(3.5) A=B=C=D=CP*".

*

The involution * is given by the usual transposed conjugate of a matrix. Let
Ag = Bg = Cg = DQ_ be the subspace of CP*P of the strictly upper triangular
matrices and A% = B® = C% = DY the subspace of the strictly lower triangular
matrices. Furthermore, let Ay = By = C4 = Dy be the subspace consisting of the
p X p diagonal matrices, that is, matrices with all entries off the main diagonal being
equal to zero. We set

(3.6) A =A"+A;, Ay =A+AY, D_=D"4Dy, Dy =Dy+DY,
(3.7) B_=8B", B.=B;+B}, C_=cicq, Cp=0CY.

The problem we consider in this setting is the following. Let «, 3, «, § be given
p X p matrices, and assume that « € Ay, f € By, vy € C_ and § € D_. Then a
p X p matrix g € B is said to be a solution to the EG inverse problem for the given
data «a, 83, v, 6 whenever the four inclusions in (2.6) and (2.7) are satisfied. In the
numerical example considered above this amounts to the conditions (3.3) and (3.4)
being fulfilled.

If a solution exists, then the conditions (C1)—(C3) are satisfied, what in this
setting means that

@9 AL AL

Here I, is the p x p identity matrix, oq4 is the diagonal matrix whose main diagonal
coincides with the one of «, and ¢4 is the diagonal matrix whose main diagonal
coincides with the one of 0. If ag and é4 are invertible, then « and ¢ are invertible
as p X p (lower or upper) triangular matrices. In this case, as we shall see in
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Theorem 9.1, the twofold EG inverse problem is solvable, the solution is unique,
and the solution is given by g = —Pg, ((a*)7'7*).

The above special case is an example of a non-stationary EG inverse problem.
We intend to deal with other non-stationary problems in a later publication, using
elements of [8]; see also [11, Section 5.

3.3. Wiener algebra examples. Let A/ be a unital *-algebra with unit ey and
involution *. We assume that N admits a direct sum decomposition:

N = N_ o+ Ng+N5 o

In this direct sum decomposition the summands are subalgebras of N, and we
require

exn €Na, (Na)" =Na, (N-o)" =N,
NdNi,O C Ni,Oa Ni,ONd C Ni,o-

Given N we construct two admissible algebras M 4 p.c.p using the following two
translation tables:

Table 1
A A A |AY BBy B |
| NPxp | NPXP | NP | NP | P2 | NPT | NP
¢ le Jer |D DY [Da DT

[N [N | N | | N | A

Table 2
A A A |AY B By B |
[N | NI [ NG NP NG N [N
lc Je Jeo |p [DE Dy [DY |

qxXp gXxXp gxXp X gXxq gxXq gxXq
| NGP | NI | NE [ N9 | N | N N

In subsequent special cases we make these examples more concrete.

3.3.1. The Wiener algebra on the real line. Recall that the Wiener algebra on the
real line W(R) consists of the functions ¢ of the form

(3.9) p(A) = fo +/ EMF()dt, NER,

with fop € C and f € L*(R). The subspaces W(R)+ o consist of the functions ¢ in
W(R) for which in the representation (3.9) the constant fo = 0 and f € L'(Ry). A
function ¢ belongs to the subspace W(R)j if and only if f = 0 in the representation
n (3.9). With A/ = W(R), it is straightforward to check that the spaces A, B,C,
and D and their subspaces defined by Table 2 have all the properties listed in the
first two paragraphs of Section 2, that is, M = M 4 g ¢ p is admissible. Indeed, let

ace,+WRET, BeWRET, veWR)TE, b6ee+WR)TY,
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where e, and e, are the functions identically equal to the unit matrix I, and I,

respectively. Then the twofold EG inverse problem is to find g € W(R )p & such
that the following four inclusions are satisfied:

a+gy—e, € WRZY and g'a+ve WR)LS;
g+ BeWRPY and §+ g8 —e; € WR)YY.

Notice that these inclusions are just the same as the inclusions in (2.6) and (2.7).
In this way this twofold EG inverse problem is put in the abstract setting of the
twofold EG inverse problem defined in Section 2.

Remark 3.1. The version of the twofold EG inverse problem considered in this
subsubsection is isomorphic to the twofold EG inverse problem considered in the
introduction. This follows from the definition of the Wiener algebra W(R) in (3.9).
The solution of the twofold EG inverse problem as described in this subsubsection
follows from Theorems 1.1 and 1.2. The latter two theorems will be proved in
Section 8.

Note that in this special case the algebra M = M 4 g ¢ p appearing in (2.1) can
be considered as a subalgebra of W(R)®+9)x(P+a)  Tndeed,

M = W(R)(f:gwX(p+q)—i—./\/ld—i-W(R)$—EQ)X(p+q)
with

wu_{ﬁféﬂ|%ecwa%eCWﬂ.

The case N' = RW(R). Let RW(R) be the subalgebra of W(R) consisting of all
rational functions in W(R). With N' = RW(R) it is straightforward to check that
the resulting A, B,C, D defined in Table 2 have all the properties listed in the first
two paragraphs of Section 2, that is, M = M4 5 ¢ p is admissible. Let

ae€e,+RWEREY, BeRWRLY, ~veRWR)LY,
0 €eq+RW(R )qu

The twofold EG inverse problem is to find g € RW(R )p " such that the following
four inclusions are satisfied:

a+gy—e, € RWR )po, and g¢g*a+v € RW(R )‘ix,f;

g0+ B e RWER)Y and d+g*8—e, € RW(R)TY.
In a forthcoming paper we plan to deal with the twofold EG inverse problem for
rational functions in W(R), using minimal realizations of the rational functions

involved and related state space techniques. The latter will lead to new explicit
formulas for the solution.

The case N' = FW(R). Let FW(R) denote the subalgebra of W(R) of functions in
W(R) whose inverse Fourier transforms are elements in L!(R) with finite support.
Hence if p € W(R) is given by

p(N) =10+ /700 eMr(t)dt (X €R),

with r € LY(R) and ro € C, then p € FW(R) in case there are real numbers
T1 < T2 so that r(¢t) = 0 for all ¢ ¢ [r1,72]. In this case, one easily verifies that
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M = My e p with A, B,C, D as in Table 2 is admissible. The twofold EG inverse
problem specified for these choices can be stated as follows. Let

€ e —i-]:W(R)ﬁ_Xé), g e fW(R)ﬁ_Xél, ve FWR )qXp
b €eg+ FWR)TY.

The twofold EG inverse problem now is to find g € RW(R)YJ such that the
following four inclusions are satisfied:

a+gy—e, € FWR)PY and gra+ye FW(R)TY;
g+ B e FWREY and 64 g*8—eq € FW(R)YY.

We plan to return to this case in a forthcoming paper.

3.3.2. The Wiener algebra on the unit circle. Let N' = W(T), where W(T) is the
Wiener algebra of functions on the unit circle T, that is, the algebra of all functions
on T with absolutely converging Fourier series. Define A, B,C,D as in Table 1.
In this case M = M4 5 p is admissible too. Note that the Fourier transform
defines an isomorphism between W(T) and the algebra ¢! of absolutely converging
complex sequences. The version of the twofold EG inverse problem for ¢! has been
solved in [10]. In Section 10 we give a new proof of the main theorems in [10] by
putting the inversion theorem, [10, Theorem 3.1], and the solution of the twofold
EG inverse problem, [10, Theorem 4.1], into the general setting of Section 2 and
using the results of Sections 4-7.

The case N' = RW(T). Let RW(T) be the subalgebra of W(T) consisting of all
rational functions in W(T). With N' = RW(T) and A, B,C,D as in Table 1, the
resulting algebra M = M4 ¢ p is admissible. Let

a € RW(T)E*P,  Be RW(T)F*, e RW(T)T?,
§ € RW(T)?*.

The twofold EG inverse problem is to find g € RW(T)E*? such that the following
four inclusions are satisfied:

a+gy—e, e RWMPY and g a+ve RW(T)TS;
g0+ BeRW(TPY and 649" —e, € RW(T)Y.

The onefold EG inverse problem for rational matrix functions on T is treated in
[15, Section 6]. Minimal realizations of the functions involved play an important
role in the approach in [15]. We intend to work on the twofold EG inverse problem
for rational matrix functions on the unit circle in a later publication, again using
minimal state space realizations of the functions involved.

The case N = TP. Let TP be the set consisting of the trigonometric polynomials
in z viewed as a subalgebra of W(T), and write TPy and 7P_ for the subalgebras
of polynomials in z and in 27!, respectively. With TP, o and TP_ o we denote
the corresponding spaces with the constant functions left out. Again, A, B,C,D are
defined as in Table 1, and the algebra M = M 4 5 ¢ p is admissible. Let

ae TPy, BeTPY, ~eTPYP, §eTP.
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In this context the twofold EG inverse problem is to find g € ’TPin such that the
following four inclusions are satisfied:

atgy—ep€ TPTOP and g*a+v€ TPi)Xop;
g0+ B eTPY! and 6+g"8—e, € TPLY.

For this case, a solution to the twofold EG inverse problem has been obtained in
[10, Section 9].

4. PRELIMINARIES ABOUT TOEPLITZ-LIKE AND HANKEL-LIKE OPERATORS

In this section we define Toeplitz-like and Hankel-like operators and derive some
of their properties. First some notation. In what follows the direct sum of two
linear spaces N and £ will be denoted by N'+£. Thus ( see [3, pages 37, 38]) the
space N'4+L consists of all (n,¢) with n € N and £ € £ and its the linear structure
is given by

(n1,41) + (n2,42) = (n1 +na, b1+ 42), A(n,l) =(n, M) (AeC).
In a canonical way N and £ can be identified with the linear spaces
{(n, ) | neN,£=0e L} and {(n,f)|n=0eN,Le L},

respectively. We will use these identifications without further explanation.

Throughout this section A, B, C and D are as in Section 2, and we assume that
M pcp is admissible. Put X = A48 and Y = C+D. Thus X is the direct sum
of A and B, and ) is the direct sum of C and D. Furthermore, let

(4.1) Xy =A By, x_=A"4B_,

(4.2) Vi =C4+DY, Y_=C_+4+D_.

With these direct sums we associate four projections, denoted by
PX+; Pxfa Py+a ny'

By definition, Py, is the projection of X onto X} along A_, and Px_ is the
projection of X onto A_ along &} . The two other projections Py, and Py_ are
defined in a similar way, replacing X by ).

We proceed with defining multiplication (or Laurent-like) operators and related

Toeplitz-like and Hankel-like operators distinguishing four cases. In each case the
Toeplitz- and Hankel-like operators are compressions of the multiplication oper-
ators. Our terminology differs from the one used in [19] and [20]. Intertwining
relations with shift-like operators appear later in the end of Section 7, in Section
8, and in the Appendix.
1. The case when p € A. Assume p € A. Then pA C A and pB C B and therefore
we have for z = (o, 8) € X that px = (pa,pB8) € X, ie., pX C X. We define
the multiplication operator L, : X — X by putting L,z = pz for x € X. With
respect to the decomposition X = X_+X, we write L, as a 2 x 2 operator matrix
as follows

T_ H_ X_ X_
4.3 L, = o’ Pl — .
(43) ? {H+,p T+,J [XJ [XJ
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Thus for x_ € X_ and x4 € X, we have
T_,o— =Px_(pz-), Ty,r4=Pux (pz4),
H, o =Px, (pr_), H_ ,z, =Px_(pry).
We have L,[A] C A and L,[B] C B. Similarly, one has the inclusions
(4.4) Ti)p[.Ai] C Ay, Ti)p[Bi] C B4,
(4.5) H, [Af] C Ax Hy ,[Bf] C Bs.
Furthermore, as expected from the classical theory of Hankel operators, we have
(46) peEAL = H_7p =0 and ¢ A_= H, ;=0

2. The case when p € B. For p € B we have pC C A and pD C B, and therefore
pY C X. We define the multiplication operator L, : Y — X by putting L,y = py
for y € ). With respect to the decompositions ) = Y_+Y, and X = X_+X, we
write L, as a 2 X 2 operator matrix as follows

T_ H_ Y_ X_

47 L,= |t ,p}:[ }%[ }
(4.7) P {H-hp Tipl Y+ Xy
Thus for y_ € Y_ and y; € V4 we have

T_py- =Px_(py-), Ti,y+=Px (py+),

Hy py- =Pux, (py-), H_,yp =Px (pys).
We have L,[C] C A and L,[D] C B. Similarly, one has
(4.8) Ty ,[C+] C Ay, T4 ,[Di] C By,
(4.9) Hiﬁp[CjF] C A, Hiﬁp[DJF] C Bx.
Furthermore, we have
(4.10) peBy=H_,=0 and ¢cB_=H,4=0.

3. The case when p € C. Let p € C. Then pA C C and pB C D, and therefore
pX C Y. We define the multiplication operator L, : X — ) by putting L,z = px
for x € X. With respect to the decomposition X = X_+X, and Y = Y_+YV, we
write L, as a 2 x 2 operator matrix as follows

T , H_ X V.
4.11 L,= P Pl — .
(41 ’ {Hw TJnJ [XJ [yJ
Thus for x_ € A_ and x4 € X4 we have
T*ypr = Py— (pI*)a TJr,prr = Py+ (pIJr)a
Hy,2_ =Py, (pz-), H_,z, =Py (pzy).
We have L,[A] C C and L,[B] C D. Similarly, one has the inclusions

(4.12) Ti)p[.Ai] c Cy, Ti,p[Bi] C D4,
(4.13) Hi)p[.A:F] c Cy, Hi,p[B:F] C Ds.

Furthermore, we have

(4.14) peCi=H_,=0 and ¢cC_=H,4=0.
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4. The case when p € D. For p € D we have pC C C and pD C D, and therefore
pY C Y. We define the multiplication operator L, : Y — ) by putting L,y = py
for y € Y. With respect to the decomposition Y = J_+), we write L,asa2x2
operator matrix as follows

Cr_, H_,] [v.] [
(4.15) te = {H+f} T%ﬂ ' [yJ - [yJ '

Thus for y_ € Y_ and y4 € V4 we have
T_,y- =Py (py-), T ,y+ =Py, (py+),
Hy ,y- =Py (py-), H-_,y+ =Py (py+).
We have L,[C] C C and L,[D] C D. Similarly, we have the inclusions

(4.16) Ty ,[C+] CCx, Ti,D+]C Dy,
(4.17) H. ,[C+]CCs, Hy,Ds] CDy.
Furthermore, we have

(4.18) peEDy=H_,=0, pcD_=H,4=0.

5. Multiplicative identities. Let U, V and Z each be one of the spaces X or ) defined
above. The corresponding decomposition of the spaces we denote as U = U_+U,
and similarly for V and Z. Let ¢ be such that for u € & we have ¢u € V and p be
such that for v € V we have pv € Z. Then we have that L,s = L,Lg, which gives

R el R U 1 e R

Hips Tipe Hi, Ti,] [Hig Tip] [Us =
In particular, we have the following identities:
(4.20) Tips =Ty pThg+Hy pH_ o UL — Zy,
(4.21) Hy pp =Ty p)Hy g +Hy ,T U — 2y,
(4.22) H_ ,,=H_,T +T_,H_,:U —Z_,
(4.23) T_,o=H_,H_ o+T_,T_4:U_— Z_.

5. FURTHER NOTATIONS AND AUXILIARY RESULTS

In this section we bring together a number of identities and lemmas that will be
used in the proofs of the main results. Throughout this section o € A,, 8 € B,
v € C_, and § € D_. Furthermore, g is an arbitrary element in B;. We split this
section into two parts.

PART 1. With g we associate the operator 2 given by

IX H+ | X+ X+
5.1 Q= + S — .
(5.1) [Hyg* Iy_ | {y V-

Here Xy and Y1 are as in (4.1) and (4.2), respectively. Using the properties of
Hankel-like operators given in the previous section we see that

(5.2) (2.6) < Q ‘ﬂ = {eﬂ ,
(5.3) 2.7) «— Q ﬂ _ Lﬂ

Summarizing this yields the following corollary.
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Corollary 5.1. The element g € By is a solution to the twofold EG inverse problem
associated with o, B, v, and § if and only if

51 ot =[] o e fi]=[0)

We also have the following implications:

(5.5) at+gye A = Hy, =-H,,,

(5.6) ga+vely < H_,o=-H_,
(5.7) B+gdeB. < H, ,=-H,pg,

(5.8) g+6eDy = H_p5=-H_;.
After taking adjoints in the left hand inclusions above we obtain
(5.9) at+gye A = H_ .po =-H_ -,
(5.10) gat+yely <= Hy g=-H,
(5.11) B+gdeB. <= H_ 54 =—H_ g,
(5.12) gB+5EeD, = Hy gy =—H, 4.

Notice that the first inclusion in (2.6) implies that o + gy € A_ and the second
inclusion in (2.7) implies ¢*8 + & € Dy. The implications from left to right are
obvious. To prove the implications from right to left in (5.6), (5.7), (5.10) and
(5.11) one reasons as follows. For example, for (5.6) one uses that e4 € X4, such
that
0=H_ g a1rea=Px (¢"a+7v)ea=Pc_(g7a+7).
Hence g*a + v € C4, as claimed. Since eq4 ¢ X_ and ep ¢ Y., the reverse
implications in (5.5), (5.8), (5.9) and (5.12) cannot be derived in this way.
Note that o € A4, S € By, v € C_, § € D_ implies that

(513) nya = 0, Hf,ﬁ = O7 HJﬁ’Y = O7 H+75 = O7
(514) H+)a* = O, H+)B* = O7 H_W* — 0, H_)5* =0.

Using the identities (5.13) and (5.14) together with the product formulas at the
end of Section 4 we obtain the following eight identities:

(5.15) Hy g=T;Hy, Hygy=Ty4s-H,,
(5.16) H_ oge =T_ +H_ oo, H_geg- =T_s«H_ g,
(5.17) Higy =Hy Ty, Hygs=Hy T 5
(5.18) H ,o=H_,T,, H_,;=H_ ,T,;

The next lemma is an immediate consequence of the definitions.
Lemma 5.2. For g € By and h € C_ we have
Hi,ep=9 and H_jpeq=h.
We conclude this part with the following lemma.

Lemma 5.3. Assume that conditions (C1)—(C3) are satisfied. Then

T, o H, -
(5.19) {TIB] Hys H,|= {H:Z] ([T_; T_,].
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and
T_ 5 H_ ;-
(5.20) [TH H_, H_;]= {Hz} [Ty Tipl.

Proof. In the course of the proof we repeatedly use the product rules (4.20)—(4.23).
Using the first identity in (5.14), condition (C3) and the fourth identity in (5.13)
we see that

TyoHyg=H, ap—H, o T_g
=Hy op=Hy 505
—H, .T_s;+T, H, s=H, .T_;.
It follows that
(5.21) T, oH, 3=H, -T_,
Next, using the first identity in (5.14) and the third in (5.13) we obtain
TyoH o=H,gu-HpoT o=H 4q,
Hy Ty =Hy ey =Ty - Hy = Hy 5oy,

On the other hand, using condition (C1) and the second identity in (4.6) with
¢ =ag =P 4,0, we see that Hy o«o —Hy ~, = Hy ,y = 0. We proved

(5.22) T, Hyo=Hy -T_,.
The next two equalities are proved in a similar way as the previous two:
(5.23) T, s-Hig=Hys+T_ 5,
(5.24) TisgH,=H;5T_,.
Observe that (5.21), (5.22), (5.23) and (5.24) can be rewritten as (5.19).
The equality (5.20) is proved similarly, using (C2) instead of (C1). O

PART 2. In the second part of this section we assume that ag = P 4, and dy =
P 4,0 are invertible in A4 and Dy, respectively. Using the notations introduced in
the previous section we associate with the elements «, 3, y, d the following operators:

(5.25) Ry =T 0ay Ty — Ty gdyg ' Ty s Xy — X,
(5.26) Roi =H_ ,a;'Ti o —H_45dy ' Ty g1 Xy — V-,
(5.27) Rio=H, pdy'T_ 5« —Hy pa5'T_ o : YV — Xy,
(5.28) Ros =T_s5dy'T_ 5« —T_ ja5'T_ o : Y- = Y_.

Lemma 5.4. Assume that conditions (C1) and (C2) are satisfied and that ay and
do are invertible in Aq and Dg, respectively. Then the following identities hold true:

(5.29) Rijea=0a, Rizep=p5, Roiea=7, Roep=34d.
Proof. Note that * € C_. Thus

Ty grea =Py, (Bea) =Py, p* =0.
Since a* € A* | we have

Ty area=Px (a"eq) =Px o = aj.
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Using ag = a (by the first part of (2.8)), it follows that
Rieyq = T+7aa0_1T+7a*eA= T+,aa51a3 =T, qea = Py (aeq) = a.
Notice that we used condition (C1). This proves the first identity (5.29).
Next, using v € C_, T o-e4 = af, and T4 g-eq = Py, " = 0 we obtain
Rojea=H_ a5 Ty area=H_jes =Py (yves) =Py v=1,

which proves the third identity in (5.29). The two other identities in (5.29), involv-
ing Ry and Ragy, are obtained in a similar way, using (C2), (2.8) and

T,W*GD = O, T,J;*ep = dz;, H+756D = ﬂ, T,J;ep = 5
This proves the lemma. (I

The next lemma presents alternative formulas for the operators R;;, 1 <14,5 < 2,
given by (5.25)—(5.28), assuming conditions (C4)—(C6) are satisfied.

Lemma 5.5. Assume that ag and dy are invertible in Ay and Dy, respectively, and
that conditions (C4), (C5), and (C6) are satisfied. Then

(5.30) Ry =1y, —Hy a0 ' H_ o +Hy pdyg ' H_ 5 : Xy — Xy,
(5.31) Roy =T sdy'H_ 5 —T_ a5 ' H_ 4 : Xy — Y,
(5.32) Rig = Ty qay 'Hy o — Ty pdy ' Hy 500 YV — Xy,
(5.33) Roo =1y —H_sdy'Hi s +H_ay'Hi -V =V .

Proof. First notice that a; ' € Ay and dy ' € D, yield the following identities

(5.34) Faagl = T, aa;°, H, 1= H, .a;",

(5.35) T+,/3d;1 =Ty pdg H+,3d51 =H, 5dy ",

(5.36) T_sy-r =T sdy'. H_ ;00 =H_,dy’",

(5.37) T =T ha', H _+=H .

Next, note that condition (C4) implies that T, aartar—paz1 g —e, = 0. It follows
that

T, nactor = Ty parge — Ty, =0.

Applying the product rule (4.20) and the identities in (5.34) and (5.35) we see that

T+7aaalT+7a* — T+75dalT+75* = I,’)(‘Jr — H+7aa61H77a* + H+75d61H*,ﬁ* .

It follows that the operator Rj; defined by (5.25) is also given by (5.30). In a
similar way one shows that condition (C5) yields the identity (5.33).

Since (C6) states aay 'v* = Bd, ' 6*, we have the equality H+7aa51,y* = H+75d515*.
Applying the product rule (4.21) and the identities in (5.34) and (5.35) it follows
that

H+7aaalT,7,y* —+ T+7aa61H+77* = H+7ﬁd071T,75* + T+75dalH+7§* .
This yields
Rio =H, gdy ' T_ 5o —Hy qay ' T- oo = Ty qag 'Hy o — Ty pdy 'Hy 5,
which proves (5.32).

Finally, to prove the identity (5.31), note that, by taking adjoints, condition (C6)
yields that ddy'8* = vay'a*. But then using the identities in (5.36) and (5.37),
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arguments similar to the ones used in the previous paragraph, yield the identity
(5.31). O

The following lemma contains some useful formulas that we will prove by direct
verification.

Lemma 5.6. Assume that ag and dg are invertible in Ag and Dg, respectively,
and that the conditions (C1)—(C6) are satisfied. Let R;j;, 4,5 = 1,2, be given by
(5.25)—(5.28). Then

(5.38) [Rll Rlﬂ {Lq 0 }[Rll Rlﬂ _ [Rll 0 }
' Ro1 Rae| | 0 —Iy | [Ra1 R 0 —Ral-

This implies that

R11 R12 X+ XJr
5.39 R = . _
(5.39) {Rm R22} [y—} [3}_
is invertible if and only if R11 and Rao are invertible. Furthermore, in that case
_ IX —R12R1] |: IX —R1R12]
5.40 R ! = + 22 | _ R 11 )
(540) LRﬂRul Iy ~Rj R Ly

Proof. To check (5.38) we will prove the four identities

(5.41) Ri1R12 = R12R22, Ro2Ro1 = Rao1Ruy,
(5.42) RiiRi; — Ri2Ro1 = Ry1, R22Raz — Ro1Rio = Ras.

From (5.25)—(5.28) and (5.30)—(5.33) it follows that

—1
0 T, o+
Rk = [Teo Tl %] 207
0 s

d-1 0 T_ -
o w5 L]

—ay

and

-1
0 H, -
Ri2Rys = [T Ty g [a% _d01:| [HHJ X

d-1 0 T_ s
I =]

But then (5.19) shows that R11R12 = R12Ras. In a similar way, using (5.20) one
proves that R22R21 = R21R11.
Next observe that

—1
a 0 Ty o
Ri(Ri —Tx) == [Tia Tyl { (()) —dal] {Tiﬁ] .

ob 0 T [H_,-
X [H+,o¢ HJr-ﬂ] |:a% _d01:| |:H)5*:| >
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and
-1
_ ) 0 Hy -
RioRo1 = [T Ty g [ 0 _d01:| [H+75*} X
dgt 0 ] [H_ s
x[T_s T_,] [ % _aal} |:H—,o¢*:|
-1
_ ) 0 H, -
S
-1
(%) 0 H_7a*
e n a5 g
But then (5.19) implies that R131R11 — Ri2Re1 = Ry;. Similarly, using (5.20) one
proves that R22R22 — R21R12 = R22.

The final statements (5.39) and (5.40) are immediate from (5.41) and (5.42).
O

6. AN ABSTRACT INVERSION THEOREM

Let M = M 5,c,p be an admissible algebra. Fix g € B, and let €2 be the

operator given by
I, Higl |X4 . Xy
H*,g* Iy7 ' y— yi '

We shall prove the following inversion theorem.

(6.1) Q=

Theorem 6.1. Let M = M 4 5.c p be an admissible algebra and let g € By. Then
the operator Q defined by (6.1) is invertible if there exist « € Ay, B € By, y€C_,
0 € D_ such that

(6.2) Q m = {664 } and ¥ m - Lﬂ ’

and the following two conditions are satisfied:
(a) ag := Py, and dy := Pp,6 are invertible in Aq and Dg, respectively;
(b) conditions (C4)—(C6) are satisfied
In that case the inverse of S is given by
- Ri1 R
6.3 Q!l= ,
(6:3) {Rzl RzJ

where R;j, 1 < 4,5 < 2, are the operators defined by (5.25)—(5.28). Furthermore,
the operators Ri1 and Ras are invertible and

(6.4) H.,=-R'Riz = ~RiRyy,
(6.5) H_ , = -RyuR; = Ry Ray,
(6.6) 9=-Ri'8, g"=-Ryy.

Remark 6.2. In contrast to Theorem 1.1, the above theorem is not an “if and only
if” statement. In this general setting we only have the following partial converse:
if the operator Q given by (6.1) is invertible, then there exist « € Ay, 8 € By,
v € C_, § € D_ such that the equations (6.2) are satisfied. It can happen that the
operator €2 is invertible and item (a) is not satisfied; see Example 6.5 given at the
end of the present section.
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Note that the operators R;;, 1 < ,j < 2, appearing in (6.3) do not depend on
the particular choice of g, but on «, 3, 7, 0 only. It follows that Theorem 6.1 yields
the following corollary.

Corollary 6.3. Leta € Ay, B € By, y€C_, § € D_, and assume that

(a) ap = Pa,a and dg = Pp,0 are invertible in Ag and Dq, respectively;
(b) conditions (C4)—(C6) are satisfied.

Under these conditions, if the twofold EG inverse problem associated with o € A,
BeBy,yeC_, 6 €D_ has a solution, then the solution is unique.

Proof. Assume that the twofold EG inverse problem associated with a@ € A4,
B € By, v € C_, 6 € D_ has a solution, g say. Then (see Corollary 5.1) the
two identities in (6.2) are satisfied. Furthermore, by assumption, items (a) and
(b) in Theorem 6.1 are satisfied too. We conclude that (6.3) holds, and hence Q is
uniquely determined by the operators R;;, 1 <14, < 2. But these R;;, 1 < 4,5 < 2,
do not depend on g, but on «, 8, 7, § only. It follows that the same is true for
H, ,. But Hy jep = Px, gep = Px, g = g. Thus g is uniquely determined by the
data. O

The following lemma will be be useful in the proof of Theorem 6.1.

Lemma 6.4. Let g € By satisfy the inclusions (2.6) and (2.7). Then the following
identities hold:

(6.7) TioHyg=-Hi e TypHp,=-H 5,
(68) T—,’Y*H—,g* = —H_7a*, T_7§*H_7g* = —H_)B*,
(6.9) Hi T s=-Hip, Hy T y=-Hio,
(6.10) H_,T,.,=-H_, H_,T,3=-H_;.

Proof. The above identities follow by using the implications in (5.5)—(5.8) and
(5.9)—(5.12) together with the identities in (5.15) — (5.18). Let us illustrate this by
proving the first identity in (6.7).

From the first identity in (5.15) we know that T, o«Hy , = Hy 4+4. Since
g € By satisfies the first inclusion in (2.6), the equivalence in (5.10) tells us that
H, ., =-H; . Hence T, ,-H, = —H, -, and the first identity (6.7) is
proved. 0

Proof of Theorem 6.1. Recall that the two identities in (6.2) together are equiv-
alent to g € By being a solution to the twofold EG inverse problem associated with
ac Ay, BeBy,yeC_, 6 €D_, and hence the two identities in (6.2) imply that
the conditions (C1)—(C3) are satisfied. Given item (b) in Theorem 6.1 we conclude
that all conditions (C1)—(C6) are satisfied.

The remainder of the proof is divided into three parts.
PART 1. First we will prove that

(6.11) {Rll R12] { Ix, H-l—,g] _ [bq 0 ]
) Rs1 Roo H_7g* Iy7 0 Iy7 )
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We start with the identity Ri; +Ri2H_ 4« = Ix, . Using the two identities in (6.8)
we have

RioH_ 4+ = H+,Bd0_1T—76*H—79* - H+7aa0_1T—77*H—7g*
=-H, pdy'H_ s +H, qa5 ' H_ -
=-Ru1 +Ix,,

which proves R11 + R12H77g* = IX+.
Similarly, using the two identities in (6.7), we obtain

RuHy =Ty aap Ty oHiy— Ty pdg Ty p-Hyy
= —Tiaay Hy e + Ty pdy Hy e
= —-Ris.
Thus Ri1Hy ; +Ri2 =0.

The equalities RoyHy 4 + Ro2 = Iy and Ray + RooH_ 4« = 0 are proved in a
similar way.

PART 2. In this part we prove that

(6.12) Ix, Higl |Ru Rig| _ [Ix, 0
: H , Iy ||Ru R 0 Iy |

To see this we first show that Ri; + Hi jRo; = Ix,. We use (5.31) and the two
identities in (6.9). This yields
H. gRo =H, (T s5dy 'Ho - —Hy (T a5 ' H o
=-H,ipdy H - +Hy oap ' Ho o
=Ix, —Rq1.
where the last equality follows from (5.30). We proved Ri; + Hy jRo1 = Ix, .

Next we will prove that Ri2 + Hy jRos = 0. Using (5.28) and the identities in
(6.9) we obtain

H, Ry =H, T ;d;'T_s5 —H; ,T_.a;'T_
= —H+7ﬁdalT,75* —+ H+_’aaalT,_’7*
= —Rpo.

We proved that Ri2 + Hy jRos = 0.
The equalities H_ ;~R11 +Ro1 =0 and H_ ;R +Rgp = I are proved in a
similar way.

PART 3. To finish the proof we note that (6.11) and (6.12) imply that the operator
2 is invertible and that its inverse is given by

- R R
Q= R 12|
{Rm Roo

which completes the proof. ([l

As mentioned in the introduction, Theorem 6.1 has been many predecessors. See
also Sections 8 and 10.
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Example 6.5. We conclude this section with an example of the type announced
in Remark 6.2, i.e., the operator € is invertible and item (a) in Theorem 6.1 is not
satisfied. We use a special case of the example in Subsection 3.2. Let p = 2 and

|11
9= o 1"
Then 2 is invertible. To see this we choose bases for the upper triangular and

the lower triangular matrices and determine the matrix of €2 with respect to these
bases. The basis we choose for the upper triangular matrices is

ol bl 3]}

and the basis we choose for the lower triangular matrices is

ol Bal b

Then it follows that the matrix for 2 with respect to these bases is

1001 10
01 00 01
0 01 0 01
1 0 01 0 Of’
10 0 010
01 1001

which is an invertible matrix. The solution of the two equations (6.2) is

O e ER o O R O A e

We see that o and § are not invertible and then the diagonals ay and §4 are also
not invertible. It is also easy to check that «, 3, and ¢ satisfy the inclusions (2.6)
and (2.7).

7. SOLUTION TO THE ABSTRACT TWOFOLD EG INVERSE PROBLEM
The next theorem is the main result of this section.

Theorem 7.1. Leta € AL, f e B, veC_, § € D_, and assume that
(a) ap = Pa,a and dg = Pp,0 are invertible in Ay and Dy, respectively;
(b) conditions (C1)—(C6) are satisfied.
Furthermore, let R11, Ri2, Ro1, Raa be the operators defined by (5.25)—(5.28).

Then the twofold EG inverse problem associated with the data set {c,,B,7,0} has
a solution if and only if

(i) Ri1: Xy = Xy and Rag : Y- — Y are invertible;
(i) (Rﬁlﬂ) = R52177'
(ili) R Rie = Hy , for some p € B and Ryy Roy = H_ ) for some n € C.
In that case the solution g of the twofold EG inverse problem associated with o, (3,

v and 0 is unique and is given by

(7.1) g=-Ry/'B=—-Ry""
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Proof. The proof is divided into two parts. Note that the uniqueness statement
is already covered by Corollary 6.3. In the first part of the proof we prove the
necessity of the conditions (i), (ii), (iii).

PART 1. Assume g € By is a solution to the twofold EG inverse problem associated
with the data set {«, 3,7, 0}. Note that conditions (a) and (b) in Theorem 7.1 imply
conditions (a) and (b) in Theorem 6.1. Furthermore, from Corollary 5.1 we know
that the identities in (6.2) are satisfied. Thus Theorem 6.1 tells us that operator
Q defined by (6.1) is invertible and its inverse is given by (6.3). In particular, the

operator R defined by
R — [Rll R12}

R21 R22

is invertible. But then the second part of Lemma 5.6 tells us that the operators
R11 and Ray are invertible, i.e., condition (i) is fulfilled. Furthermore, again using
the second part of Lemma 5.6, we have

T
—Ra1Ry; Iy —Ryy Roy Iy

In particular, we have

H,,=-R;'Rix=-RpR,', H_, = -RyR;'= Ry Ro.

*

The preceding two identities show that item (iii) holds with p = —g and n = —g*.
Finally, since p = —g and n = —g*, the identities in (7.1) imply that item (ii) is
satisfied.

PART 2. In this part we assume that conditions (i), (ii), (iii) are satisfied and we
show that the twofold EG inverse problem associated with the data set {«, 8,7, 6}
has a solution.

Put g = —Pg, p and h = —P¢_n. We shall show that h = g* and for this choice
of g the inclusions (2.6) and (2.7) are fulfilled. Note that Pg, (g9 + p) = 0, so that
g+p € B_. From the second part of (4.10) we then obtain that Hy ; = —H_ ,, and,
by a similar argument, from the first part of (4.14) it follows that H_ j, = —H_ ,,.
Using these identities and those given by Lemma 5.2 together with the second and
third identity in (5.29) we see that condition (iii) yields

g=H, jep = —H, jep = —R{'Rizep = “Ri7' 5,

h=H_jes=-H_ ,es=—RoRoeqa =Ry
But then (ii) implies that A = g*. Furthermore, (iii) tells us that
(7.2) R 'R =-H,, and R,'Ry =-H_ .

According to Lemma 5.6 condition (i) implies that the operator R given by (5.39)
is invertible, and its inverse is given by (5.40). This together with the identities in
(7.2) implies that

R-1_ [Ru Ri]™
R21 R22

_ [ Ix, _R111R12:| _ { Iy, H+g]
~Ry; Ray Iy '

H*yg* I)L

Next note that the identities in (5.29) can be rephrased as

{Rll Rlﬂ {eA 0]_{04 5}
Ro: Ra2| |0 ep J
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In, Hyy||a B| Jea 0
H_)g* Iy7 Y 6l |0 €D ’

and the equivalences in (5.2) and (5.3) tell us that with our choice of ¢ the inclusions
(2.6) and (2.7) are fulfilled. Hence g is a solution to the twofold EG inverse problem
associated with the data set {«a, 8,7,d}. Since g = —Rﬁlﬁ, the proof is complete.

O

But then

A variation on condition (iii) in Theorem 7.1 does not appear in the solution to
the twofold EG inverse problem in L!(R) as formulate in the introduction, e.g., in
Theorem 1.2, and neither in the solution to the discrete twofold EG inverse problem
in [10]. This is because in the abstract setting presented in this paper we do not
have a characterization of Hankel-type operators via an intertwining condition as
in the discrete case as well as in the continuous case (where an extra condition is
needed, as shown in the Appendix). Lemma 7.2 below provides, at the abstract
level, a result that will be useful in proving that condition (iii) is implied by the
assumptions made for the special cases we consider.

Assume we have operators Vz  : 24 — Z4 and V, z 4 : Z+ — 24, with Z
either & or ), that are such that V, z +Vz 4+ =1z, and

forany ¢ € A1 Vix+Hiy=HiygVrz, Vix1TigVas=Tigy
forany ¢ € B: Vix+Hig=Hi¢Vyz, Vix:TiVys=Tiy;
for any 1/} e D: V*,y,iHi,w = HiﬂpV'y_;, V*,'y,:i:T:i:.,qbe,:l: = Ti7¢;
forany Y € C: Viy+Hiy =Hiy Vg, ViyiTigVas =Ty,
and
for any ¢ (S .Ai: Ti,¢VX,i = V,y)iTi)d,;
for any ¢ € B4: Ti,¢V)},i = VX,iTi,qﬁ;
for any ¢ € C+: T17¢Vy7i = V‘y.,:i:T:i:.,v,b;
for any ¢ (S Bi: Ti,wVX,i = Vy)iTiﬂ/,.
Lemma 7.2. With R;; defined as above one has the equalities
R11V*,X.,+R12 = R12Vy,7R22 and R22V*,y,7R21 = R21VX,+R11-
Moreover, if Ri1 and Rag are invertible, then
(7.3) V.xi+RiRy; =R'R1Vy .
Proof. First we will prove that R11 V, x +Ri2 = R12Vy _Raa. We start with
deriving the equality
H,

T, o
(74) [ o }V*Jm [Hip Hio]= [HMJ Vy - [T-s T,

T, s
To obtain (7.4), first notice that

Vy _ 0
Vixs[Hip Hyo|=[Hys Hp | [ %; Vo _] ;

Vy _ 0
Vy-[T-s T_,]=[T-s T_,] [ ?)) Vi } .
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Then use (5.19) to get that

T, o= T a*_ Vv _ 0
Ve s e = [ s med [ 3
) Vy_ 0
o [ SO A
= _Hj’::;* Vy7_ I:T715 T77’Y] .

We proved (7.4). By multiplying (7.4) on the left and the right by

[Tia Tip] and [ij],

respectively, one gets R11 V. x +Ri12 = R12Vy _Rgs. Furthermore, the equality
R22V. y _Ra1 =R21Vx +Ri1 can be proved in a similar way.

Given the invertibility of Rq; and Ras the preceding two identities yield the
identity (7.3) trivially. O

8. PROOF OF THEOREMS 1.1 AND 1.2

In this section we will prove Theorems 1.1 and 1.2. Recall that in this case the
data are given by (1.1) and (1.2), and the twofold EG inverse problem is to find
g € L'(R)P*? such that (1.3) and (1.4) are satisfied.

As a first step, the above problem will be put into the general setting introduced
in Section 2 using a particular choice for A, B, C, D, namely as follows:

(8.1) A={f|[f=nep+ fo, where n € C**?, fy € L'(R)P*"},
(8.2) B=L'Ry*4,  C=L"R)??,
(8.3) D = {h|h=Cey+ ho, where ( € C?*? hg € L*(R)?*4}.

Furthermore, A, B, C, D admit decompositions as in (2.2) and (2.4) using

AL = LNRPP, AL = LNR_PP, Ay = {ne, | g € TP},

By = L'(R4)P™9, B = LMR_)"™,

C.=LYR )P, C_=L'Y(R_)7P,

DY = L'(Ry)™, DY = L'R.)™%, Dy ={Ce, | ¢ € C™9).
Here e,,, for m = p, g, is the constant m x m matrix function on R whose value is
the m x m identity matrix I,,,. Thus given n € C™*™  the symbol ne,, denotes the
constant matrix function on R identically equal to 7.

We proceed by defining the algebraic structure. The addition is the usual addi-

tion of functions and is denoted by +. For the product we use the symbol ¢ which

in certain cases is just the usual convolution product x. If f =nse, + fo € A and
f'=mngep + fo € A, then the ¢ product is defined by

fof=nmpep+ (nfo+ fonep + fox fo
Thus for f € L*(R)"™*™ and h € L'(R)™** the product f o h is the convolution
product f h. The product of elements f = nre, + fo € A and hy € B is defined

as f o hg = nrho + fox ho. Other products are defined likewise. One only needs
the matrix dimension to allow the multiplication. The units e4 and ep in A and
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D are given by e4 = e, and ep = eg4, respectively. Finally, the adjoint f* for
[ € LY(R)"*¢ is defined by f*(A) = f(—=A)*, A € R, so that f* € L}(R)**". For
f =nes + fo with n € C5*% and fy € L'(R)*** we define f* by f* = n*es + f3,
where n* is the adjoint of the matrix 7. It easily follows that all conditions of the
first paragraph of Section 2 are satisfied. We conclude that M 4 g ¢ p is admissible.

Remark 8.1. Observe that for a data set {a,b,c,d} as in (1.1) with «, 8, v, §
the functions given by (1.16), the inclusions for a, b, ¢ and d in (1.3) and (1.4) are
equivalent to the inclusions (2.6) and (2.7) for «, 3, v and §. Thus the solutions
g € L'(R)P*? for the twofold EG inverse problem formulated in the introduction
coincide with the solutions of the abstract twofold EG inverse problem of Section 2
using the specification given in the present section. Furthermore, in this case

(8.4) (Cl) <= a"ca—7"oyv=ep;
(8.5) (C2) <= d"od—-pF"of=¢y
(8.6) (C3) <= a"of=7%0d

Thus (C1)—(C3) are satisfied if and only if the following three identities hold true:
(8.7) afoa—vToy=e, d'od—f"0of=¢e, a"of=7"00.

8.1. Proof of Theorem 1.1. Note that Theorem 1.1 is an “if and only if ” the-
orem. We first proof the “only if” part. Let g € L'(R,)P*9, and assume that the
operator W given by (1.21) is invertible. Note that

[0*16 “(R””“’] nd [—9
-9

LL(Ry )7 0
Since W is invertible, we see that there exist

a€ LYR)P*P, ce LYR)TP, be LY(Ry)P*Y, de LY(R_)7*1

vl =[] el = 3]

But this implies that g is a solution to the twofold EG inverse problem defined by
the data set {a,b, c,d}. Thus the “only if” part of Theorem 1.1 is proved.

S

LR
L (Ry)70

such that

Next we prove the “if” part of Theorem 1.1. We assume that g € L'(R;)P*?
is a solution to the twofold EG inverse problem defined by the data set {a,b,c,d}
given by (1.1) and (1.2). Furthermore, a, 8, v, and § are given by (1.16), and
M = My e p is the admissible algebra defined in the beginning of this section.
Our aim is to obtain the “if” part of Theorem 1.1 as a corollary of Theorem 6.1.
For that purpose various results of Section 2 and Sections 4-6 have to be specified
further for the case when A, B, C, D are given by (8.1)—(8.3) in the beginning of
this section. This will be done in four steps.

STEP 1. RESULTS FROM SECTION 2. Since g € L}(R,)P*9 = B, is a solution to
the twofold EG inverse problem associated with the data {«, 8,7, }, we know from
Proposition 2.1 that conditions (C1)-(C3) are satisfied. Furthermore,

(8.8) ap = Pp,a=e, and dop= Pp,0=e,.
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But then the fact that «, 3, 7, and § are matrix functions implies that conditions
(C4)-(C6) are also satisfied. Indeed, using the identities in (8.8), we see from (2.9)
that

S ] AL AT

In particular, the first matrix in the left hand side of (8.9) is surjective and third
matrix in the left hand side of (8.9) is injective. But all matrices in (8.9) are finite
square matrices. It follows that all these matrices are invertible. Hence

a Bl e, 07fer 17" e, O
v 4 0 —eqf |8 0 0 —egl’

ERIERR| o e
v 0| |0 —eq| |BF OF 0 —eq|”

The latter implies that conditions (1.4)—(1.6) are satisfied. In particular, we have
proved that

which yields

(i) ap = P4, and dy = Pp,¢ are invertible in A4 and Dy, respectively;
(ii) conditions (C1)—(C6) are satisfied.

STEP 2. RESULTS FROM SECTION 4. In the present context the spaces X and ),
Xy and Y4, and X_ and Y_ defined in the first paragraph of Section 4 are given
by
X = A+B = (CP*Pe, + L' (R)P*P) LY (R)P*,
Xy = A 4By = (CP*Pe, + L' (R4 )P*P) +LL (R)P*,
X_=A" FB_ = LY(R_)P*PLLY(R_)P*4,
and
Y =C+D = L'(R)VP+ (L' (R)?7*? 4+ C*%¢,)
Vi = C44DE = L' (R4 )PPHLY (R )77,
V.o =C_4+D_ = L' (R_)PP+4 (L'(R_)7*9 + C9¥%,) .
In the sequel we write z € X as x = (f, g), where f =nse, + fo€ Aand g € B. In

a similar way vectors x4 € X, and x_ € A_ will be written as

2+ = (f+,94), where fy =np, e+ fy0€ Ay and g4 € By,
v =(f_,9_), where f_ € AY and g_ € B_.

Analogous notations will be used for vectorsy € Y, y+ € V4, and y— € Y_. Indeed,
y € Y will be written as (h, k), where h € C, and k = (e, + ko € D, and

Y+ = (h.;,.,k.;,.), where h+ S C+ and k.;,_ S Dg_,
y— = (h_,k_), where h_o € C_ and k_ = (;_eq+k_ o € D_.

Furthermore, in what follows 0,4 and O4x;, denote the linear spaces consisting only
of the zero p X ¢ and zero g X p matrix, respectively.
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Using the above notation we define the following operators:

CPXP40,x 4 ] Tz = [ (ng,,0) ]
3 + 3

Jy, 1 Xy — .
T LY R )PP LY (R, PR (f1+.0:9+)

Je i Xo = DNROPPELROPY, T ol = (f-,g.),

and
Jy, 2 Vi = LHRO)PPELY R, Ty, yy = (hyy ky),
0gp+HCT*1 (0,¢r.)
Jy Yo — . , Jy y. = o= .
oY LY(R_)?*P LY (R_)9x4 vy {(h,k,w]

Note that all four operators defined above are invertible operators.

Next, in our present setting where «, 3,7, are given by given by (1.16), we
relate the Toeplitz-like and Hankel-like operators introduced in Section 4 to ordinary
Wiener-Hopf and Hankel integral operators.

Let a=ay +e,+a_ € Ay + Ag+ A = A. Then
1, 0
a4 T+)a

0
Jx,Hy o = [HJr J Jx_, JxH_o=[a- H_,|Jx,.

JX+T+,O¢ = |: :| JX+; JX,Tf,oc = Tf,a‘]va

For B =by +b_ € By +B_ =B we get

0
JX+T+)B = |:T

J Jy T_g=1|b_ T_gz|J
+,5] Vi X B [ 75] Y,

0 0
Jx, Hyp = L” H, 5} Jy_, Jx H_pg=H pgly..

Let y =c4 +c— € C4 +C_ =C. We have the equalities

0
Jy7 T777 = |:T_ ’Y:| J){i, JerT‘h'Y = [C+ T+7'Y:| J){+,

0
H_)’Y
Let 6 =dy +eq+d- €Dy +Dyg+D_ =D. Then

I, 0
Jy T_ 5= [dp - 5] Jy . Jy,Tys=T:s)v ,

0
Jy7H77»Y == |:C_ :| J){+, Jy+H+7’Y == H+1»YJX7.

0
Jy H_;5= [H J Ty, JyHys=[dp His|Jy .
The following lemma is an immediate consequence of the above relations.

Lemma 8.2. For g € By one has

I, 0 0 0
(8.10) {J;q ()HIX+ Hﬂ,}_ 0 I g Hy, {J;q 0}
' 0 Jy | |[H_, Iy o o0 I, 0 0 Jy_
gt H g 0 I
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Furthermore, if Q is the operator defined by (6.1) using the present data, and if W
is the operator defined by (1.21), then (8.10) shows that Q¥ is invertible if and only
if W is invertible.

STEP 3. RESULTS FROM SECTION 5. As before we assume that a, b, ¢ and d are
given by (1.1) and (1.2) and «, b,y and 6 by (1.16), and that g € L*(R;)P*9 = B,
is a solution to the twofold EG inverse problem associated with the data {«, 3,7, d}.
Thus we know from STEP 1 that

(i) ap = P4, and dy = Pp,d are invertible in Ay and Dy, respectively;

(ii) conditions (C1)—(C6) are satisfied.
In particular, all conditions underlying the lemmas proved in Section 5 are fulfilled.

The following lemma is an immediate consequence of Lemma 5.3.

Lemma 8.3. Since conditions (C1)-(C3) are satisfied, we have

T o Hy
(8.11) [Trﬁ*} Hyp Hyol= {Hiz] T-5 T-,].
and

T_ 6 H_ 5
(8.12) {Tj] [H_, H_;|= {Hi] [Tho Tipl.

Proof. The above equalities (8.11) and (8.12) follow from the equalities (5.19) and
(5.20) and the representations of the Hankel-like and Toeplitz-like operators given
in the paragraph preceding Lemma 8.2. For example to prove (8.11) note that

1, 0
5 ][ o]
0 Jy. | [T 0 T+7B* o

and

0 0 0 1[/H. 0
T (B HW}_L) Hig H+,a] { 0 JX}'

On the other hand

0

0
[JX+ 0 :| [H+7’Y*:| =|c* Hi,|Jy
0 Jy+ H+15* d* HJr’Z* -’

I, 0 0][J 0
Ty [Tos T”}:L? T T,J { 0 JX]'

The equality (8.11) now follows from (5.19). The equality (8.12) can be verified in
the same manner. O

and

In what follows M is the operator given by

(81) - [ e B - B

where My, Mi2, M1, and Mas are the operators defined by (1.17)—(1.20).



THE TWOFOLD ELLIS-GOHBERG INVERSE PROBLEM 31

Lemma 8.4. Let Ry, Ria, Roi, and Ray be defined by (5.25)—(5.28), and let M1,
Mo, May, and Moy be defined by (1.17)—(1.20). Then

I, 0 0 0
(814) JX+ 0 R11 R12 _ a M11 b M12 JX+ 0 .
0 Jy7 R21 Rao 0 0 I 0 0 Jy7
c My d My

In particular, R given by (5.39) is invertible if and only if M defined by (8.13) is
invertible. Moreover, My is invertible if and only if Ri1 is invertible and Moo is
inwvertible if and only if Rag is invertible.

Proof. From the relations between Hankel-like operators and Toeplitz-like opera-
tors on the one hand and Hankel integral operators and Wiener Hopf operators on
the other hand we have the identities:

I 0 0 O

(815) JXJrRll = |:C:LD M11:| JX+7 JX+R12 = |:b M12:| JJLa
0 0 I 0

(816) Jy7R21 = |:C M21:| JX+, Jy7R22 = |:j M22:| in.

Putting together these equalities gives the equality (8.14). The equality (8.14)
implies that R is invertible it and only if M is invertible. The final statement
follows from the first equality in (8.15) and the second equality in (8.16). O

We continue with specifying two other lemmas from Section 5.

Lemma 8.5. Since conditions (C4)—(C6) are satisfied, we have

(8.17) My =1, — Hy oH o+ HygH_ g : LYRL)P — LY(R,)P,
(8.18) My =T_sH_ g« — T H_ o : L'"(Ry)P — LY(R_)Y,
(8.19) Mg =Ty oHy oo — Ty gHy 5+ : LM(R_)? — LY(R )P,
(8.20) Moy =1, — H_sHy s« +H_  Hy o : L'(R_)? — L' (R_)%.

Proof. The result is an immediate consequence of Lemma 5.5 and the relations
between the R;; and M;; in (8.15) and (8.16). O

Lemma 8.6. Let M;;, 1,5 = 1,2, be given by (1.17)~(1.20), and let M be given by
(8.13). Since conditions (C1)—(C6) are satisfied, we have

(8.21) [Mu M12] [Ip 0 ] {Mu Mlz] _ [Mu 0 }
' Moy Maa| |0 —I;| [Ma1 Moo 0 —May|"

In particular, M is invertible if and only if M1 and Mo are invertible. Further-
more, in that case

_ I —M12M1} [ I —M1M12:|
8.22 M= P 2| = A 1 :
(8:22) [—leMul Iy — M3, Moy Iy
Proof. The result is an immediate consequence of Lemma 5.6 and the relations
between R;; and M;; given in (8.15) and (8.16). O

STEP 4. RESULTS OF SECTION 6. We use Theorem 6.1 to prove the “if” part of
Theorem 1.1 and the identities (1.23), (1.24), (1.25), and (1.26).



32 S. TER HORST, M.A. KAASHOEK, AND F. VAN SCHAGEN

First we check that the various conditions appearing in Theorem 6.1 are satisfied
given our data. Since g € L*(R,)P*? = B, is a solution to the twofold EG inverse
problem, Proposition 5.1 tells us that

o= (3] o=l

Thus the identities in (6.2) are satisfied. Next, note that the final conclusion of
STEP 1 tells us that of items (a) and (b) in Theorem 6.1 are also satisfied.

Thus Theorem 6.1 tells us that the operator €2 is invertible. But then we can
use Lemma 8.2 to conclude that the operator W defined by (1.21) is invertible too.
This concludes the proof of the “if” part of Theorem 1.1.

Theorem 6.1 also tells us that the inverse R of €2 is given by (6.3). From (8.10)
and (8.14) it then follows that the inverse of W is the operator M defined by (8.13).
This proves identity (1.23).

From Lemma 8.6 we know that that M, and Mss are invertible. The identities
in (1.24) and (1.25) are obtained by comparing the off diagonal entries of W = M !
in (1.23) and (8.22).

Finally to see that the identities in (1.26) hold true, note that from RQ = I it
follows that

I, 0 0 O 1, 0 0 0
a M11 b M12 0 1 g HJﬁg -7
0 0 I 0 0 0 I 0 '
C M21 d M22 g’k H_)g* 0 1

In particular, My19 + b =0 and Ms2g* + ¢ = 0. Using the invertibility of M7, and
Mo we obtain the formulas for g and ¢* in (1.26). This completes the proof. O

8.2. Proof of Theorem 1.2. Throughout this subsection, as in Theorem 1.2,
{a,b,c,d} are the functions given by in (1.1) and (1.2), and «, 8, v, 0 are the
functions given by (1.16). Furthermore, e, and e, are the functions on R identically
equal to the unit matrix I, and I,, respectively. Finally M = M4 5¢ p is the
admissible algebra constructed in the beginning three paragraphs of the present
section. In what follows we split the proof of Theorem 1.2 into two parts.

PART 1. In this part we assume that the twofold EG inverse problem associated
with the data set {a,b,c,d} has a solution, g € L'(R;)P*? = By say. Then
we know from Proposition 2.1 that conditions (C1) — (C3) are satisfied. But the
latter, using the final part of Remark 8.1, implies that condition (L1) is satisfied.
Furthermore, the second part of Theorem 1.1 tells us that the operators M7; and
My are invertible, and hence condition (L2) is satisfied too. Finally, the two
identities in (1.26) yield the two identities in (1.27). This concludes the first part
of the proof.

PART 2. In this part we assume that (L1) and (L2) are satisfied. Our aim is to
show that the twofold EG inverse problem associated with the data set {a,b, c,d}
has a solution.

We begin with some preliminaries. Recall that
ap =Py,aa=e€, and do=Pp,6=eq.

Furthermore, from the identities in (8.7) we know that (C1)—(C3) are satisfied. But
then we can repeat the arguments in Step 1 of the proof of Theorem 1.1 to show
that conditions (C4)—(C6) are also satisfied. Thus all conditions (C1)-(C6) are
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fulfilled. Finally, note that in the paragraph directly after Theorem 1.2 we showed
that (L1) and (L2) imply that My, and Ma, are invertible, and hence we can apply
Lemma 8.6 to see that the inverse of

My Mo
M =
{le Moo
is given by (8.22), i.e.,
_ I —M12M1} [ I — MMy
8.23 ML= P 22 | — °r 11
(8.23) — My M I, — Myt Moy I,

It remains to show that there exists a g € L*(Ry)P*? such that
(8.24) ~M'Myy=Hy, and — My'My = H_ ;.

To do this we need (in the context of the present setting) a more general version
of Lemma 7.2. We cannot apply Lemma 7.2 directly because of the role of the
constant functions in C?*Pe, and C9*%,. The more general version of Lemma 7.2
will be given and proved in the following intermezzo.

Intermezzo. First we introduce the required transition operators. Let 7 > 0.
Define V.- : L*(R;)" — L*(R4)" by

ft—m7), t>T,

0, 0<t<.

MR

Note that its adjoint V%, is given by (V. f) (t) = f(t+7) for t > 0. We also need
the the flip over operator J, from L?(R;)" to L2(R_)" given by (J.f)(t) = f(—t).
With some abuse of notation we also consider V;. -, J, and their adjoints as operators
acting on L!'-spaces. For ¢ € CF*™ L L1 (R, )**™ we then have

Vi Hyp = Hy g JuVin s Jm, and LV JiH- o = Ho Vi s,
Vi Ty Vi = Ty and TV T o Vinr Jn = T .

The following lemma is the more general version of Lemma 7.2 mentioned above.
The result will be used to show that Ml_llMu and M2_21M21 are classical Hankel
integral operators.

Lemma 8.7. With M;;, 1 <1i,j <2, defined by (1.17)—(1.20) we have the following
equalities:

MV, Mg = M2, V7 JgMay  and  MaajaVy JgMay = M2y Vy, 7 M.
Moreover, if M1 and Mas are invertible, then

Vi Mia Myt = My Mo JgVo - Jg, oV JeMay Mt = My, MoV, .
Proof. First we will prove that Mlle’fTMlg = Mi2J,Vy r JgMay. We start with

deriving the equality

Ty o] Hy
I P A S 8 B A PR A R
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Let f- € LY(R_)9 and h_ € L*(R_)P. To obtain (8.25), first notice that

§ ~ Jg Vg, 0 -
Vor [H"‘w@ H+’O‘] L{_} - [H+”8 H+’a] { ' 8 ' JpVp TJP] LJZJ;

/A TV 0 f-
el ol ()= e w0 ]

Then use (8.11) to get that

] mafl]

T+ ﬁ* —
[Ty o JgVgrdg 0 f-
- _Tﬂg*] [Hes Heol { 0 JpVprdp| |-
_ [Hes IVardy 0 ][
- _H+75*] [T-s T { 0 JVordy| [h_
— -H+ Y f-
— _H+,¢s*] JVardy [T—s T-,] [h] .
We proved (8.25). By multiplying (8.25) on the left and the right by

T_ 5+
[Ty Tip] and [T—,v*] )
respectively, one gets Mlle*)TMlg = Mi2J V7 JqMaa.
The equality MQQJqVq’fTJqul = M3V, M1 can be proved in a similar way.
The claim regarding the case that M7, and Mse are invertible follows trivially. [

We continue with the second part of the proof. It remains to show that
there exists a g € L'(R)P*? such that the two identities in (8.24) are satisfied.
For this purpose we need Lemma 8.7 and various results presented in the Appendix.
In particular, in what follows we need the Sobolev space SB(R;)™ which consist
of all functions ¢ € L'(R,)"™ such that ¢ is absolutely continuous on compact
intervals of Ry and ¢’ € L'(R;)" (See Subsection A.2). Notice that Mi2J, is a
sum of products of Wiener-Hopf operators and classical Hankel integral operators.
Therefore, by Lemma A.7, the operator Mj2J, maps SB(R4)? into SB(R4 )P and
Mi2J4|sB(r, ye is bounded as an operator from SB(R; )? to SB(R)?. The operator
My is of the form (A.18). Thus Lemma A.6 tells us that M;;" satisfies the condition
(H1) in Theorem A.4. We conclude that the operator —M;;' M;2.J, maps SB(R )¢
into SB(R)? and —M;;" M12J,|sp(r, )« is bounded as an operator from SB(R. )
to SB(R4)?. Also we know from Lemma 8.7 that

Vo (=M " M), = (=M, My2)J,Vy -, V7 > 0.

According to Theorem A.2 it follows that there exists a k € L>°(R4)?*? such that
—~M;*M,5J, = H(k). But then we can apply Corollary A.5 to show that there
exists a g € L'(R;)P*9 such that —M;;* M2 = H, ,. In a similar way we prove
that there exists a h € L'(R_)?*P such that —M2}1M21 =H_,

Notice that the operators M;; can be considered to be operators acting between
L?-spaces. This can be done because the Hankel and Wiener-Hopf operators that
constitute the M;; can be seen as operators between L? spaces. Recall that H. o=
H_, and T} , = T4 p~. Using Lemma 8.5 and the definition of Mj2, we see
that My = Mo, and using the definitions of M;; and Mae we may conclude that
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M3y = Myy and M3, = Maz. From the equality (8.22) one sees that H_ j, = HY .
Hence h = g*.

We need to show that for this g the inclusions (1.3) and (1.4) are satisfied, or
equivalently that (1.9) is satisfied. Define for this ¢ the operator W by (1.21). We
already know that W is invertible and that its inverse is M. Let a, I;, ¢ and d be

the solution of _
a bl | 0 —g
vl =1 9l

Then put @ = e, + @, § = b, ¥ = ¢ and § = e, + d. With the data &, 3, 7, and &
produce a new M which, according to Theorem 1.1, is also the inverse of W. But
then the the old M and new M are the same, and hence g is the solution of the EG
inverse problem associated with «, 3, v and §. All the conditions of Theorem 1.1
are now satisfied and we conclude that g = —Ml_llb and g* = — 2_21c. (|

9. THE EG INVERSE PROBLEM WITH ADDITIONAL INVERTIBILITY CONDITIONS

As before o € Ay, € By, v € C_, and § € D_. In this section we consider
the case when « is invertible in A4 and ¢ is invertible in D_. Notice that in the
example discussed in Subsection 3.2 this condition is satisfied whenever ag := P4,
and do := Pp,J are invertible.

Theorem 9.1. Leta € A, B € By, vy€C_ andd € D_ and assume that o and §
are invertible in Ay and D_, respectively. If, in addition, o, B, v and § satisfy the
conditions (C1) and (C2), then g1 = —Pp, (a™*v*) is the unique element of B
that satisfies (2.6) and go = —Pg, (86~") is the unique element of By that satisfies
(2.7). Moreover, in that case, g1 = g2 if and only if condition (C3) is satisfied. In
particular, if (C1)-(C3) hold, then g = g1 = g2 is the unique solution to the twofold
EG inverse problem associated with the data set {a, 8,7,6}.

Proof. The inclusion o~ ! € Ay implies that ag is invertible with inverse in Ag.
Similarly, 6! € D_ implies that dy is invertible with inverse in Dy.

Let g1 := —Pp, (o~ *~*). First we prove that g; satisfies the second inclusion in
(2.6). From the definition of g; it follows that g1 + o= *v* = 1 for some 81 € B_.
Taking adjoints we see that g; +~vya~! = 8} € C,. Multiplying for the right by «
and using the multiplication table in Section 2 we see that

ngx +~veCi Ay CCh.
So ¢g; is a solution of the second inclusion in (2.6). Notice that in this paragraph
we did not yet use that a=! € A,.

The next step is to show that g; is the unique element of B, that satisfies the
second inclusion in (2.6). Assume that ¢1 € By and Pe_(¢fa+v) = 0. We will
prove that ¢; = g1. Notice that

o (p1 —g1) = (a"p1 +7%) — (@"g1 +77) € B—.
Hence ¢1 — g1 € B4 and a*(p1 — g1) € B_. Since a™* € A_ we have that
pr—gi=a o (p1—g1) € A_B_ C B_

and hence ¢; — g1 = 0.
Next remark that P4_ (o™ —ay') = 0. Indeed

ol —agt =aMag—a)ay ' € AL AL A, C AT
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To show that g; satisfies the first inclusion in (2.6), note that
atgy—ea=a— (a7 )+ (Ps_(a"7)) 7 —ea.
Now use that v*v = a*a — ag to see that
a+qy—es=a—a *(afa—ag)+ (P57 (04_*7*)) v —eq

=a fag—eq + (P57 (a‘*v*)) ¥

= (" —agao + (Ps_(a"*y*)) 7.
Since v € C—, we have that P4, [(Ps_(a*v*))v] =0, and since P4_(a~—ay") =
0, we also have that P4, (a™* —ag') = 0. We proved the first inclusion in (2.6).

Next, let go := —Pg, (86~ !). We will show that g, is the unique element of B

that satisfies the first inclusion in (2.7). To do this, note that go + 36~ = S5 for
some 2 € B_, which implies that

g0+ eB_D_CB_.
We proved that Pg, (920 + ) = 0. Assume that ¢y € By satisfies also the first

inclusion in (2.7). Then
(p2 — 92)6 = (20 + B) — (920 + B) € B-—.

Since § € D_ we have that (g2 — g2) = (p2 — g2)66~1 € B_D_ C B_. Hence
©2 — g2 = 0 and g» is the unique solution of the first inclusion in (2.7).

We proceed with showing that go also satisfies the second inclusion in (2.7).
Indeed

B*ga+ 6" —ep =B (=B +Ps (B67)) + 5" —ep
=—B*B0" + 6" —ep+ B Ps_(B6)
=—(6"6—do)d * + 8" —ep+ B*Ps_ (B )
=dod ' —ep+ B Ps_(B671) €D
Here we used that Pp, (dod™! —ep) = Pp, (dgl(ep — 6)6’1) = 0. We proved that
g2 satisfies the second inclusion in (2.7).
If a*B —~*) =0, then 8 = a~*+*d. It follows that
0= Ps. (B—a~"') = Po, (5= P, ((0~"7")9))
= Pp, (8 — Pp,(a™"7")d) = Ps, (B + g19).
So g1 also solves the first inclusion in (2.7) and the uniqueness of the solution gives

g1 = g2-
Conversely, if g1 = g2 then we have a solution of the inclusions (2.6) and (2.7).
It follows from [13, Theorem 1.2] that the conditions (C1)—(C3) are satisfied and

in particular we get a*8 — v*6 = 0. O
In the next proposition we combine the results of Theorem 9.1 with those of

Theorem 6.1.

Proposition 9.2. Let M 4 5,c.p be an admissible algebra, and let o € Ay, 5 € By,

~veC_, 6 €D_ be such that:

(a) « is invertible in Ay and 0 is invertible in D_;

(b) conditions (C1)—(C3) are satisfied.
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Let

— —k % _ | Ixy H,

(9.26) ¢=—Pp (a"") and Q= {H—,w* L |
Then o is the solution of the twofold EG inverse problem associated with «, 3,7, 0,
the operator 2 is invertible, and

- Ri1 Rio
9.27 Q= ,
(9:27) [Rm RQJ
where the operators R;;, 1 < 14,7 < 2, are defined by (5.25)—(5.28). In particular,
the operators Ri1 and Ras are invertible and

(9.28)  H;,=-R;'Rix=-RppRy,, H_,-=-RyR; = -R;)'Roy,
and
(9.29) Riip=—8 and Rop® = —7.

Proof. Since the conditions of Theorem 9.1 are satisfied, ¢ is the unique solution
of the twofold EG inverse problem associated with «, 5,7,d. Also the fact that «
is invertible in A4 and § is invertible in D_ gives that ag and dy are invertible
in Ay and Dy, respectively, and that according to Lemma 2.4 also the conditions
(C4)—(C6) are satisfied. But then all the conditions of Theorem 6.1 are satisfied.
The equalities (9.27), (9.28) and (9.29) are now immediate from Theorem 6.1. [

Specifying Theorem 9.1 for the example discussed in Subsection 3.2 yields the
following corollary.

Corollary 9.3. Let A, B, C, D, Ay, By, Cy, D, and A4, Ba, Ca, Da be as in
Subsection 3.2, and let o € Ay, B € By, v€C_, 6 € D_ be given. Assume that
(a) apg = Pa,a and 5o = Pa,d are invertible.
(b) «, B, v and 0 satisfy conditions (C1)—(C3)
Then g = —Pp, (o™ *~*) is the unique element of B, that satisfies (2.6) and (2.7).

Proof. We only need to recall that the invertibility of the diagonal matrices ag
and dy implies invertibility of a and ¢ in A4 and D_, respectively. (]

From the above corollary it also follows that in the numerical Example 3.1 the
solution g,
1 2 0
g=—Pp (a™y) =10 1 2|,
0 0 1
is the unique solution of equations (3.3) and (3.4).

10. WIENER ALGEBRA ON THE CIRCLE

In this section (as announced in Subsubsection 3.3.2) we show how the solution
of the discrete twofold EG inverse problem, Theorem 4.1 in [10], can be obtained
as a corollary of our abstract Theorem 7.1.

Let us first recall the discrete twofold EG inverse problem as it was presented
in [10]. This requires some preliminaries. Throughout W"*™ denotes the space
of n x m matrix functions with entries in the Wiener algebra on the unit circle
which is denoted by W and not by W(T) as in Subsubsection 3.3.2. Thus a matrix
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function ¢ belongs to W"*™ if and only if ¢ is continuous on the unit circle and
its Fourier coeflicients ...¢_1, g, ¢1,... are absolutely summable. We set

Wixm:{@ewnxm|@Jzov forj:_la_Za"'}v

WX ={po e W™ | p; =0, forj=1,2,...},

Wy ™ ={pe W™ | g; =0, forj#0},

Yo =l e W [ p; =0, forj=0,-1,-2,...},

W ={pe W™ | p; =0, forj=0,1,2,...}.
Given p € W™*™ the function ¢* is defined by ¢*(¢) = ¢(¢)* for each ¢ € T. Thus
the j-th Fourier coefficient of ¢* is given by (¢*); = (p—;)*. The map ¢ — ¢*
defines an involution which transforms W"*™ into W™*™ WX into W™*",
W™ into WY, etc.

The data of the discrete EG inverse problem consist of four functions, namely

(10.1) ae WP Be WP 4 eWD?F §e Wt
and the problem is to find g € WP*? such that

(10.2) a+gy—e, e WP and gfa+ye WL
(10.3) go+BeW” ! and 649" —e; € W

Here e, and eq denote the functions identically equal to the identity matrices I,
and I, respectively. If g has these properties, we refer to g as a solution to the
discrete twofold EG inverse problem associated with the data set {«,8,v,0}. If a
solution exists, then we know from Theorem 1.2 in [13] that necessarily the following
identities hold:

(10.4) o=y =ag, 60-p"B=dy, a'f=7"0

Here ap and dy are the zero-th Fourier coefficient of « and 4, respectively, and
we identify the matrices with a¢ and dy with the matrix functions on T that are
identically equal to ag and dy, respectively. In this section we shall assume that ag
and dy are invertible. Then (10.4) is equivalent to

(10.5) ozao_loz* — ’yaalfy* = ep, 5d0_15* — ﬂd&lﬂ* = eq, aaal”y* = ﬂdald*

Finally, we associate with the data «, 3,7, the following operators:

(10.6) Rt =Ty aay ' Tior — Ty pdy ' T ge : W — WP,
(10.7) Royv = H_ jay Ty o — H_ 5dy ' Ty g : WY — W1,
(10.8) Rio = Hy gdy 'T 5« — Hy qag ' T— 4o : WL — WP
(10.9) Roy =T 5dy*T_ 5+ — T ag T o : WL — W2,

Here Ty o, T4 o, T4 g, T 5, T— ~, T— 4+, T_ 5, T_ 5« are Toeplitz operators and
Hy ., Hyp, H_,, H_;are Hankel operators. The definitions of these operators
can be found in the final paragraph of this section.

The next theorem gives the solution of the discrete twofold EG inverse problem.
By applying Fourier transforms it is straightforward to check that the theorem is
just equivalent to [10, Theorem 4.1].
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Theorem 10.1. Let o, 83, v, § be the functions given by (10.1), with both matrices
ag and dy invertible. Then the discrete twofold EG inverse problem associated
with the data set {a, §,7,d8} has a solution if and only the following conditions are
satisfied:

(D1) the identities in (10.4) hold true;

(D2) the operators Ri1 and Raz defined by (10.6) and (10.9) are one-to-one.

Furthermore, in that case Ri1 and Ros are invertible, the solution is unique and
the unique solution g and its adjoint are given by

(10.10) g=—R'B and g* = —Ry.

The next step is to show how the above theorem can be derived as a corollary
of our abstract Theorem 7.1. This requires to put the inverse problem in the
context of the general scheme of Sections 4-7. To do this (cf., the first paragraph
of Subsubsection 3.3.2) we use the following choice of A, B, C, and D:

(10.11) A=WP*P B=WPX® C=WIP D=IWI

The spaces A, B, C, D admit decompositions as in (2.2) and (2.4) using
AL =WP, A =WPP Ay ={ne, | n € CP*P},
By =W, B =W,
C_=WIr ¢, = Wifop,
DS =W, D2 =WL{, Dag={Ceq| (€T,

The algebraic structure is given by the algebraic structure of the Wiener algebra
and by the matrices with entries from the Wiener algebra. Note that

(10.12) aceAy, peBy, yel_, §eD_,

and we are interested (cf., (2.6) and (2.7)) in finding g € B4 such that
(10.13) at+gy—e, €AY and g*a+v €y,

(10.14) go+pBeB” and §+g*B—e, € DY.

Furthermore, a9 = P4, and dy = P4,0 are invertible in .4, and Dy, respectively.
In the present context the spaces X and Y, Xy and YV, and X_ and )_ defined
in the first paragraph of Section 4 are given by

X = A+B = WP*PLWPX4 ) = C+D = WP WIx4,
Xy = Ap+BL = WP PIRWRX Y = C 4D = W FHWE,
X_ = Ag‘i‘B— = Wﬁi(()p‘i'wgi(oq, y— - C—'i‘D— = ngp_"_ngq'

Remark 10.2. Note that the space X = A+B = WPXPLWPX4 can be identified
in a canonical way with the space WP*(®+49) and analogously the subspaces Xy can
be identified in a canonical way with subspaces of WP*(P+4) | For instance, X, with
W (P9 " Gimilarly, Y = C+D can be identified with W?*(P+9  and the spaces
V. with subspaces of W7*®+9)  We will use these identifications in the proof of
Theorem 10.1

Remark 10.3. Let g € W™, and let R;;, 1 <4,j < 2, be the operators defined
by (10.6)—(10.9). Note that the operators Hy 4, H_ 4+ and R;; act on vector spaces
WI' with m = p or m = g; see the final paragraphs of the present section. As usual
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we extend the action of these operators to spaces of matrices of the type W1 xk,
In this way (using the preceding remark) we see that the operators H 4, H_ -
and R;; can be identified with the operators H, 4, H_ ;« and R;; as defined in
Section 5, respectively.

Proof of Theorem 10.1. We will apply Theorem 7.1 and Lemma 7.2 using
A,B,C,Din (10.11). First we check that the conditions in Theorem 7.1 are satisfied.
Condition (a) is satisfied by assumption.

Now assume that there exists a solution g to the twofold EG inverse problem.
Then conditions (C1)—(C6) are satisfied too. Next put

IWi Hy, . Wi - Wi
H,_’g* IWZ ' Wz Wz ’

Ix,  Hyg| |&y R Xy
H*,g* Iy7 ' y— yi .
Here X1 and Y1 are the spaces defined in the paragraph preceding Remark 10.2.

Since the conditions of Theorem 6.1 are satisfied, we know from (6.3) that the
operator € is invertible and its inverse is given by 2" = R, where

Ry R12]

Q:

Q:

R =
{Rm Roo

Thus 2R and RS2 are identity operators. Using the similarity mentioned in Remark
10.3 above, we see that QR and R} are also identity operators, and hence 2 is
invertible. Moreover, the fact that Ri; and Rags are invertible implies that Ri
and Rgy are invertible. Finally, from (6.4), (6.5) and (6.6) (again using the above
Remark 10.3) we obtain the identities

(10.15)  Hy,=—R;'Ris = —Ri2Ry,, H_ 4 = —RoRy}' = —Ryy Rot;
(10.16) g=—-R'B, ¢"=—-Ry'v.

It follows that conditions (D1) and (D2) are fulfilled.

Conversely, assume that conditions (D1) and (D2) are satisfied. Then the state-
ments (b) and (i) in Theorem 7.1 follow. To apply Lemma 7.2 we set Vx + =5, &
and Vy 4 = 8, +, where S, 4+ and S, + are the shift operators defined in the final
paragraph of this section. The intertwining of V x 4+ and Vy 1 with the Hankel-like
and Toeplitz-like operators are required for the application of Lemma 7.2 but these
intertwining relations correspond with the intertwining of S, + and S, 4+ with the
Hankel and Toeplitz operators Hy p,, H4 4 and T 5, T4 , appearing in the present
section. From the final part of Lemma 7.2 we conclude that

Sep+Ri2Ryy = Rij' RiaSy, -
Furthermore, Lemma 5.6 tells us that Ri2R5y = Ry}' Ria. Hence
S*7P7+R;11R12 = R;11R12Sq77.

But then, using Lemma 10.4 below, it follows that there exists a g € Wixq such
that Hy , = —Rj;'Rio. Similarly we obtain that there exists a h € W2*P such
that H_j, = —Ry; Ro1. From Lemma 5.4 it then follows that ¢ = —R;;'( and
h = _R5217-
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It remains to show that h = g*. To do this, we extend some of the operators from
(subspaces of ) Wiener spaces to subspaces of L?-spaces over the unit circle T. More
specifically, for m = p, ¢ write L?(T)™ for the space of vectors of size m whose entries
are L?-functions over T, and write L2 (T)™ and L% (T)™ for the subspaces of L?(T)™
consisting of functions in L?(T)™ such that the Fourier coefficients with strictly
negative (—1,—2,...) coefficients and positive (0,1,2,...) coeflicients, respectively,
are zero. Then, with some abuse of notation, we extend the operators Hy 4, H_ p,
and R;;, 1,7 = 1,2, in the following way:

Hy g L?(T)! — L3(T)?, H_,:L3(T)? — L2(T)Y,
Ry1: L3(T)? — LA(T)?, Riz: L%(T)? — L3(T)?,
Ry : LA(T)? — L% (T)9, Rap: L2 (T)? — L2(T)".
It then follows from the representations (10.6)—(10.9) and (5.30)—(5.33) that Ry; =
R}y, Ros = Ry, and Rj, = Ro. We find that —H , = R;}'Ri2 = (Rys Ra1)” =

—H_ p, and therefore h = g*. We conclude that the solution of the twofold EG
inverse problem is indeed given by (10.10). ([

Toeplitz and Hankel operators. Throughout, for a function p € W"*™_ we write
M (p) for the multiplication operator of p from W™ into W™, that is,

M(p) : W™ = W™, (M(p)f)(e™) = p(e®) f(e") (f € W, t €0,27]).
We define Toeplitz operators T , and Hankel operators Hy , as compressions of

multiplication operators, as follows. Fizx the dimensions p > 1 and q > 1 for the
remaining part of this section.

If p € WP*P_ then

Typ=PrpM(p): WL = WE, T, = (I =Py p)M(p) : Wio - Wiov
Hyp,=PppM(p): Wio = WL, H_,=(—Pyp)M(p): WY — Wﬁ,o-

If p € WPX4, then

T+1p = P+1pM(p) . Wi)o — Wf_, Tfﬁp = (I — P+7p)M(p) : Wg — W3707
Hy,=PppyM(p): W. W, H_,= (I — Py ,)M(p): W2y — WP .

If p € WP*P_ then

Typ=I—=P_o)M(p) : WY = Wi, T_,=P_ M(p): W’ =W,
Hy,=I—P_oM(p): W’ =W, H_,=P_ ,M(p): WI - WI.

and for p € W?*P then

Tep=(I =P )M(p): Wi o= Wiy T_,=P_,M(p): W —WI,
Hy,=I—P_ o )M(p):W! =W, H_,=P_M(p): Wi, —W..
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Shift operators. We also define the shift operators used in the present section. Let
@ € WP*P and ¢ € W7*1? be defined by ¢(z) = zep and ¢(2) = zeq, with e, and e
the constant functions equal to the unity matrix. The shift operators that we need
are now defined by

Spy = M(p): WY = WE Sy v = M) : Wi, = W,
Sqe =M@ WL WIS, =M ") : WP g 5 WP
Sept =Ty o1 :WE = WE S Sagp =Ty W] g = Wi,
Sig- =T WL WL Sep =T W g =W,
Then
Sup4Sp+ =Iwrs  Sup-Sp—=1Iwr
Seq~S¢— =Iwr,  Seg4+Sq+ =1Iwe .
Also we have for m € {p,q} and n € {p,q}, and p € W"**™ that
Hy ,Sm,— = Sen+Hy,p,, H_ ,Smy =Sin-H_,,

Finally for p € W*™ we have T ,Sym + = Sp T4, and if p € W2*™ then
T_ ,Sm,— = Sp,-T_ .

The following result is classical and is easy to prove using the inverse Fourier
transform (see, e.g., [2, Section 2.3] or Sections XXII — XXIV in [6]).

Lemma 10.4. Let G : W! — W~ | and assume that GSq,— = S. +G. Then there
exists a function g € Wf_xq such that G = Hy 4. Similarly, if H : WY — W? and
HS, + = S.q-H, then there exists a function h € WP such that H = H_ ,.

APPENDIX A. HANKEL AND WIENER-HOPF INTEGRAL OPERATORS

In this appendix, which consists of three subsections, we present a number of
results that play an essential role in the proof of Theorem 1.2. In Subsection A.1 we
recall the definition of a Hankel operator on L?(R;) and review some basic facts.
In Subsection A.2 we present a theorem (partially new) characterising classical
Hankel integral operators mapping L'(R; )P into L'(R; ). Two auxilarly results
are presented in the final subsection.

A.1. Preliminaries about Hankel operators. We begin with some preliminar-
ies about Hankel operators on L?(R. ), mainly taken from or Section 1.8 in [17]
or Section 9.1 in [2]. Throughout J is the flip over operator on L?(R) defined by
(Jf)(t) = f(—t). Furthermore, F denotes the Fourier transform on L?(R) defined
by

(FHO) = \/% / N (1) dt.

It is well-known (see, e.g., [2, Section 9.1, page 482]) that F is a unitary operator
and

Fr=F'=JF and JF=FJ

Given a € L*(R) we define the multiplier m(«) and the convolution operator M («)
defined by « to be the operators on L?(R) given by

(m(a)f)(#) =alt)f(t), f€ L2(R), teR, and M(a)= f_lm(oz)]:.
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Given f € L?(R) we have
(M()f)(t) = (F~'m(a)Ff) (t) = (JFm(a)Ff) ()

e m(@)FS) (5)ds = —= [ = a(s) (s ds

e =

- = f%w(/mﬂ>)
(A1) // B (s)f(r)drds, teR.

By P and Q we denote the orthogonal projections on L?(R) of which the ranges
L?(Ry) and L?(R_), respectively.

Definition A.1. Let oo € L*°(R). Then the Hankel operator defined by « is the
operator on L?(R.) given by

H(a) = PM(a)J|p2(r,) : L*(Ry) = L*(Ry).

The action of the Hankel operator H(a) on f € L?(R,) is given by
(H(a)f) (t) = (PM(e)Jf) (t) = (M ()] f) (1)

_ // is(=) () f(—r) drr ds
-4 /R /R e+ o () (1) dr ds

(A.2) :%// e =T a(s) f(r) drds, t>0.
T JRJo

The following result provides a characterization of which operators on L?(R.)
are Hankel operators; see [16, Exercise (a) on page 199-200].

Theorem A.2. A bounded linear operator K on L?(R.) is a Hankel operator if
and only if VK = KV, for all 7 > 0, where for each T > 0 the operator V; is the
transition operator on L?(R.) defined by

(A.3) (V- )(t) = {f(t(;T)’ ot

Remark A.3. When we worked on this paper we assumed that the above theorem,
which is a natural analogue of the intertwining shift relation theorem for discrete
Hankel operators, to be true and that we only had to find a reference. The latter
turned out to be a bit difficult. Various Hankel operator experts told us “of course,
the result is true.” But no reference. We asked Vladimir Peller, and he mailed us
how the result could be proved using the beautiful relations between H? on the disc
and H? on the upper half plane, but again no reference. What to do? Should we
include Peller’s proof? November last year Albrecht Boétcher solved the problem.
He referred us to Nikolski’s book [16] which appeared recently in Spring 2017 and
contains the result as an exercise. Other references remain welcome.

Next we consider the special case when the defining function « is given by

(A.4) a(A) = /Rei’\sa(s) ds, where a € L'(Ry).
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Then
(A.5) (H(a)f)(t) = /OOO a(t+s)f(s)ds, teR,, feL*R,).

In this case one calls H(«a) the classical Hankel integral operator defined by a. To
prove (A.5) we may without loss of generality assume that f belongs to L'(R,) N
L?(Ry) and « is rational. In that case using (A.4) we have

@) 0 =5 [ ([T e o) as
= % Ooo ( /R eis(t“)a(s)ds) f(r)dr

:/Ooa(t—l—r)f(r)dr, t>0.
0

If o is given by (A.4), then « belongs to the Wiener algebra over R and thus H(«)
also defines a bounded linear operator on L'(R.).

We shall also deal with Hankel operators defined by matrix-valued functions.
Let « be a ¢ x p matrix whose entries ;;, 1 < i < ¢, 1 < j < p, are L2(Ry)
functions. Then H(a) will denote the Hankel operator from L?(R)P to L*(R4 )4
defined by

H(on1) -+ H(oap)
(A.6) He)=| : ..
H(aq) - H(og)

If the operators H(w;j), 1 < i < ¢, 1 < j < p, are all classical Hankel integral
operators, then we call H(«) a classical Hankel integral operator too.

A.2. Classical Hankel integral operators on L' spaces. The main theorem
of this section allows us to identify the classical Hankel integral operators among
all operators from L'(Ry)? to L'(R;)?. We begin with some preliminaries about
related Sobolev spaces.

Let n be a positive integer. By SB(R, )™ we denote the Sobolev space consisting
of all functions ¢ € L'(R,)"™ such that ¢ is absolutely continuous on compact
intervals of R, and ¢’ € L'(R,)". Note that

(A7) p € SBRL)" = o(t) = —/ ¢'(s)ds, t>0.
¢
The linear space SB(R4)™ is a Banach space with norm

(A.8) lellse = llellizr + ¢l -

Furthermore, SB(R,)" is continuously and densely embedded in L'(R)". More
precisely, the map j : SB(R, )" — LY(R,)™ defined by jo = ¢ is a continuous
linear map which is one-to-one and has dense range. From (A.8) we see that j is a
contraction. We are now ready to state and proof the main theorem of this section.

Theorem A.4. An operator K from LY(R,)P to L*(R.)? is a classical Hankel
integral operator if and only if the following two conditions are satisfied:
(H1) K maps SB(R4)P boundedly into SB(R)9;
(H2) there emists k € L*(Ry)9*P such that (K¢) + K¢' = k(-)¢(0) for each
v € SB(R4)P.
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Moreover, in that case the operator K is given by
(A.9) (K F)(t) = / k(t+8)f(s)ds, 0<t< oo,
0

where k € LY (Ry)7%P is the matriz function from (H2).

Proof. We split the proof into three parts. In the first part we show that the
conditions (H1) and (H2) are necessary. The proof is taken from [5], and is given
here for the sake of completeness. The second and third part concern the reverse
implication which seems to be new. In the second part we assume that p =¢q =1,
and in the third part p and ¢ are arbitrary positive integers.

PART 1. Let K on L'(R,) be a classical Hankel integral operator, and assume K
is given by (A.9) with k € L'(Ry). Let ¢ € SB(Ry). Then
(A.10) (Kp)(t) = /000 k(t+ s)p(s)ds = /too k(s)p(s —t)ds.
It follows that
(55%) 0= [ Ko~ s+ k0)510)

(A.11) = - /000 k(t + s)¢'(s) ds + k(t)p(0)

(A.12) = — (K%w) (t) + k(t)¢(0).

This proofs (H2). From the first identity in (A.10) it follows that K¢ belongs to
L'(Ry). Since ¢’ € L*(R, ), we have (Kp)' = K¢'+kp(0) € L*(R,) and it follows
that K¢ € SB(R). We conclude that K maps SB(R ) into SB(R ). Furthermore,
from (A.10) we see that

K@l < Ikl llellr < l[Fllz llellss-
From (A.11) (using ¢(0) = — [~ ¢/(s) ds) it follows that
(K@) llLr < Nkl ll@ller + 1El L llell 2o

<20kl < 20l [lellse-
Hence || Kopllsp < 3||k||z1[|¢llss. Thus K|spr,) is a bounded operator on SB(R ),
and item (H1) is proved.

PART 2. In this part p = ¢ = 1, and we assume that items (H1) and (H2) are
satisfied. Given k in item (H2), let H be the operator on L'(Ry) defined by

(Hf)(t) z/oook(t—i—s)f(s)ds, 0<t<oo.

Then H is a classical Hankel integral operator, and the first part of the proof tells
us that (He)' + Hy' = k(-)p(0) for each ¢ € SB(R4). Now put M = K — H. Then
M is an operator on L*(R, ), and M maps SB(R.) into SB(R. ). Furthermore, we
have

(A.13) (Mg)' =—-M¢', ¢ €SBRy).

It suffices to prove that M is zero.
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For n = 0,1,2,... let ¢, be the function on Ry defined by ¢,(t) = t"e™,
0 <t < co. Obviously, ¢, € SB(Ry). By induction we shall prove that My, is
zero for each n = 0,1,2,.... First we show that My, = 0. To do this note that
oh(t) = —e~t = —py(t). Using (A.13) it follows that 1o := My, satisfies

Yo = (Myo)' = =My = Mpo = .

Thus v satisfies the differential equation 1, = 1o, and hence ¢o(t) = ce’ on [0, )
for some ¢ € C. On the other hand, g = My € SB(Ry) C L'(R;). But then ¢
must be zero, and we conclude that My = 0.

Next, fix a positive integer n > 1, and assume that Myp; =0for j =0,...,n—1.
Again we use (A.13). Since

en(t) =nt""le_y —t"e™" = npn_1 — on,
we obtain
(Mp,) =—My, =nMp,_1 + Mg,.

But, by assumption, M¢,,_1 = 0. Thus (M¢,) = My,, and hence 9, := My,
satisfies the differential equation v/, = 1,,. It follows that 1, (t) = ce’ on [0, 00) for
some ¢ € C. On the other hand, ¥, = My, € SB(R;) C L'(R). But then ¢ = 0,
and we conclude that My, = 0.

By induction we obtain My; = 0 for each j =0,1,2,.... But then M f = 0 for
any f of the form f(t) = p(t)e™, where p is a polynomial. The set of all these

functions is dense in L*(R; ). Since M is an operator on L!(R ), we conclude that
M =0.

PART 3. In this part we use the result of the previous part to prove the sufficiency
of the conditions (H1) and (H2). Assume K from L!'(R.)? to L'(R.)?, and write
K as a ¢ X p operator matrix
K - K
(A.14) K=|: ... /[,
Ky - Ky
where Kj;; is an operator on L' (R )for1<j<pand1<i<q. let
7y LY(Ry) = LYR )P, 5 f = . flfo; (f € L'(Ry);
f1
m LR — LYRy), mif=f5, (f=|:|€L'(Ry)?).
fa
Note that K;; = m; K7, for each 7, j. Furthermore, we have
TJSB(RJ,_) C SB(R+)p and WJSB(]RJ,_)(I C SB(R+)

Now fix a pair i,7, 1 < j <pand 1 <i < ¢q. Then conditions (H1) and (H2) tell us
that

(i) Ki; maps SB(R; ) into SB(R,) and Kjj|sp(r, ) is a bounded operator from
SB(R+) to SB(R4);
(ii) there exists k;; € L'(Ry) such that (K;;0) + Kij¢' = ki;j(-)¢(0) for each
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But then we can use the result of the second part of the proof which covers the
case when p = ¢ = 1. It follows that K;; is a classical Hankel integral operator.
Moreover, K;; is given by

(Kijf)(t)Z/Oookij(t—i-s)f(s)ds, 0<t<oo and feL'R,).

Here k;; € L'(Ry) is the function appearing in item (ii) above. Recall that K is
given by (A.14). Since the pair i, j is arbitrary, we see that K is a classical Hankel
integral operator, and

(Kf)(t):/oook(t—i—s)f(s)ds, 0<t<oo and feL'(R.)?,

where
kin - ki
k:==|: ... 1|€eL' Ry
kg - kg
This completes the proof. ([

The following corollary shows that if the operator K in Theorem A.4 is assumed
to be a Hankel operator, i.e. K = H(«) for some a € L>(R)?*P, then it suffices to
verify (H1) to conclude that H(«a) is a classical Hankel operator.

Corollary A.5. Let a € L®(R)?*P, and assume that H(a) maps L'(R)? into
LY(Ry)?. Furthermore, assume that K = H (o) satisfies condition (H1) in Theorem
A4, i.e., H(a) maps SB(R1)P into SB(R4)? and the operator H(a)|spwr,)r is a
bounded operator from SB(Ry)P into SB(R;)?. Then K = H(a) also satisfies
condition (H2) in Theorem A.4, and thus there exists k € L'(R.)7%P such that

(A.15) a(N) :/ReMSk(s)ds, AER.

In particular, H(«) is a classical Hankel integral operator.

Proof. We split the proof into two parts. In the first part we assume that p = ¢ = 1.
In the second part p and q are arbitrary positive integers, and we reduce the problem
to the case considered in the first part.
PART 1. In this part we prove the theorem for the case when p = ¢ = 1. Note
that we assume that condition (H1) in Theorem A.4 is satisfied for H(a) in place
of K. Take ¢ € SB(R;). Since H(a) maps SB(Ry) into SB(R;), the function
H(a)y also belongs to SB(R, ), and hence (H(a)p) belongs to L*(R;). On the
other hand, since H(a) maps L'(Ry) into L}(R;) and ¢’ € L}(R4), we also have
H(a)¢' € L'(Ry). Hence
d
dt
Using (A.2) we obtain

S(H@e0) = 5 [ e at) ([T eoar) as

(A.16) - % [(tas) ( /O h (d%ei”) o(r) dr) ds,

(H(a)p) — H(a) o € L' ().
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d _ 1 —its > —isr, [/
(H(a)acp) (t) = 5 /Re a(s) (/0 e~ (1) dr) ds.
Now integration by parts yields
> d —iST o > —isr ./ —18T >
/0 (%e )(p(r) dr = —/0 e "Y' (r) dr + (e o(r) . )

= — /OO e (r) dr — ¢(0).
0

[ Gyt [ s a0,

This implies that

(A.17) #(0) /Re_”sa(s)ds = (%(H(a)go) + H(a)%go) (t), t=>0.

Corm

In case p(0) # 0, it follows that (H2) holds for K = H(«) with k € L*(R,) given
by

and

Hence

1 d d
k(t) = —— | =—=(H H(a)— t) =
(0=~ (G (@) + H@) e ) 0
which is independent of the choice of ¢. On the other hand, in case ¢(0) = 0, then
(A.17) shows that (H2) still holds for this choice of k. We can thus use Theorem
A4 with K = H(«) to conclude that H(«) is a classical Hankel integral operator

and « is defined by (A.15).

PART 2. In this part p and ¢ are arbitrary positive integers. Since v € L (R)7*P,
the function « is a ¢ X p matrix function of which the (i,j)-th entry «; ; belongs to
L>*(Ry). It follows that

1

“3 [ e~ "5 a(s) ds,

H(aa) -+ H(aip)
K =H(a) = ; . :
H(agq) -+ H(agp)

Put K;; = H(a;j), where 1 < j <pand 1 <i <gq. Now fix (i,j). Since K maps
LY(R4)? into L' (R4 )4, the operator K;; maps L'(R. ) into L' (R, ). Furthermore,
since K = H(a) satisfies condition (H1) in Theorem A.4, the operator K;; = H(a;;)
satisfies condition (H1) in Theorem A.4 with p = ¢ = 1. But then the result of
the first part of the proof tells us that K;; = H(«;;) satisfies condition (H2) in

Theorem A.4 with p = ¢ = 1. Thus, using (A.15), there exists k;; € L'(R) such
that

Qi = / eMskij(S) dS, A €ER.
R
The latter holds for each 1 < j <p and 1 <17 < q. It follows that
kin o - ki
a() = / e k(s)ds, where k= | 1 .. 1| eL'(Ry)??.
= : :
kg - kgp
This completes the proof. O
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A.3. Two auxiliary results. We present two lemmas concerning condition (H1)
in Theorem A.4. We begin with some preliminaries. Let

(A.18) M =1+ Hi1Hiz + Hai Haa,
where

Hyp: YR — LY R )P, Hip: LY(Ry)? — LY (R,

Hop : LY(Ry)" — LY(Ry)P, Hap: L'(Ry)? — LY(Ry)",

and we assume that H;; is a classical Hankel integral operator for each 1 <14,5 < 2.
We are interested in computing the inverse of M, assuming the inverse exists. Put
M=1+ H1H2, where

~ LY (R )4

Hl = [Hll Hgl}: LIERi;T —>L1(R+)p,
~  |Hy2| 1 » L' (R, )?
=] e > |G

Note that the entries of H 1 and flg are classical Hankel integral operators, and
M =1+ HHy =1+ Hy1His + Ha Has = M.

It follows that M is invertible if and only if M is invertible, and in that case

(A.19) M™'=M"

Theorem 0.1 in [9] tells us how to compute M~L. This yields the following result.

Lemma A.6. Assume M given by (A.18) is invertible. Then

(A.20) M =1+ K+ Ko+ K3 + Ky,

where for each j = 1,2,3,4 the operator K; is a product of two classical Hankel
integral operators. In particular, M—! = I+ K, where K is an operator on L*(R)P
satisfying condition (H1) in Theorem A.J.

Proof. From Theorem 0.1 in [9] we know that
(A.21) M~ =1+ AB+CD,

where the operators A, B, C, D have the following operator matrix representation:

B D
A=[An Ap], B= [Bﬂ, C=[Cn Cu], D= [Di].

and for each 7,5 = 1,2 the entries A;;, By;, Cij, Dyj; are classical Hankel integral
operators. Using (A.19) and (A.21) it follows that

~ B D
M '=M'=I+[A, A [”}LC C { 11].
[A1 12 Boy [Ci1 Cio Doy
Thus (A.20) holds true with
Ky =A11B11, Ky=A13By, Kz=CiDy, Ki=Ci2Dgs.

Clearly for each j = 1,2, 3,4 the operator K; is a product of two classical Hankel
integral operators. Recall that for each classical Hankel integral operator H from
LY(R4)™ to LY (R )™ for some n and m we have H maps SB(R4)" into SB(R;)™
and H|gp(r,)» is bounded as an operator from SB(R )" into SB(R4)™. It follows



50 S. TER HORST, M.A. KAASHOEK, AND F. VAN SCHAGEN

that the same is true if H is a sum or a product of classical Hankel integral operators.
But then condition (H1) in Theorem A .4 is satisfied for K = K71 + Ko + K35 + K.
O

Lemma A.7. Let 7 € LY(R_)9%P, and let T be the Wiener-Hopf integral operator
mapping L*(Ry)P into L*(R,)? defined by

(A.22) (THE) = /too T(t—s)f(s)ds, 0<t<oo (fe€L*Ry)P).

Then T maps SB(R1)P into SB(R )9, and T'|spr,)» is a bounded linear operator
from SB(R1)? into SB(R4)4.

Proof. We split the proof into two parts. In the first part we prove the lemma for
the case when p = ¢ = 1. In the second p and ¢ are arbitrary positive integers, and
we reduce the problem to the case considered in the first part.

PART 1. In this part we prove the lemma for the case when p = ¢ = 1. To do this
take ¢ € SB(R4). Then

wo = [“re-o ([ dwar) e
——/too </tr7'(t—s)ds> O(r)ydr, 0<t< 0.

r—t T
p(r—1t) ::/ T(—u)du:/ T(t—s)ds, 0<t<r<oo.
0 t

Note that p(0) = 0. Furthermore,

Put

(A23) (To)(t) =— /too p(r =)' (r)dr, and p'(t)=7(-t) (0<t< o0).

Using (A.22) with f = ¢ we see that 1 := T belongs to L'(R, ). Furthermore,
from the first identity in (A.23) it follows that ¢ is absolutely continuous on compact
intervals of R... Using the Leibnitz rule and the second identity in (A.23), we obtain

i) =-5 [ or-0p@)ar
—— [ =00 dr + ol 060

(A.24) = —/t T(t — ) (r) dr.

Since 7 € LY(R_) and ¢’ € L*(R.), it follows that ¢’ € L'(R). We conclude that
1 belongs to SB(R).

It remains to show that T'|sgr.) is bounded on SB(R;). As before let ¢ €
LY(Ry), and let ¢ = Tp. By ||T|| we denote the norm of T as an operator on
L'(Ry). From the definition of T in (A.22) and using (A.8), we see that

[9llze < ITHlellze < [Tl ellss
On the other hand from (A.24) and using (A.8) we obtain

19l < ITME e < TN ellsB.
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Together these inequalities show (using (A.8)) that ||¢|lss < |Tl|¢llsg. Thus

ITlsr,) < [IT]|. This proofs the lemma for the case when p =q = 1.

PART 2. In this part p and ¢ are arbitrary positive integers. Since 7 € L*(R_)7¥P,
the function 7 is a ¢ X p matrix function of which the (i,j)-th entry 7;; belongs to
LY(R_). Tt follows that

T - Tip
(A.25) T=1: ... 1,
qu . qu

where for 1 < 7 < p and 1 < i < g the operator T;; is the Wiener-Hopf integral
operator on L!(R,) given gy

(T)f(t) = Awfij<t—s>f<s>ds, 0<it<oo (feL'(Ry).

From the first part of the proof we know that for each ¢, j the operator T;; maps
SB(Ry ) into SB(R.), and T'|sp(r, ) is a bounded linear operator from SB(R ) into
SB(R.). Now recall that T is given by (A.25). It follows that 7' maps SB(R.)? into
SB(R )4, and T'|sp(r, )» is a bounded linear operator from SB(R, )? into SB(R )¢,
which completes the proof. (I
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