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THE TWOFOLD ELLIS-GOHBERG INVERSE PROBLEM IN AN

ABSTRACT SETTING AND APPLICATIONS

S. TER HORST, M.A. KAASHOEK, AND F. VAN SCHAGEN

Abstract. In this paper we consider a twofold Ellis-Gohberg type inverse
problem in an abstract ∗-algebraic setting. Under natural assumptions, neces-
sary and sufficient conditions for the existence of a solution are obtained, and
it is shown that in case a solution exists, it is unique. The main result relies
strongly on an inversion formula for a 2 × 2 block operator matrix whose off
diagonal entries are Hankel operators while the diagonal entries are identity
operators. Various special cases are presented, including the cases of matrix-
valued L

1-functions on the real line and matrix-valued Wiener functions on
the unit circle of the complex plane. For the latter case, it is shown how the
results obtained in an earlier publication by the authors can be recovered.

1. Introduction

In the present paper we consider a twofold inverse problem related to orthogonal
matrix function equations considered by R.J. Ellis and I. Gohberg for the scalar-
valued case and mainly in discrete time; see [4] and the book [5]. The problem is
referred to as the twofold EG inverse problem for short. Solutions of the onefold
version of the problem, both in discrete and continuous time setting, have been
obtained in [14, 15]. For the discrete time setting a solution of the twofold problem
is given in [10]. One of our aims is to solve the twofold problem for the case of
L1-matrix functions on the real line which has not be done yet. More generally, we
will solve an abstract ∗-algebraic version of the twofold EG inverse problem that
contains various special cases, including the case of L1-matrix functions on the real
line. Our abstract setting will include an abstract inversion theorem which plays
an important role in various concrete cases as well.

The abstract version of the twofold EG inverse problem we shall be dealing with
is presented in Section 2. Here, for convenience of the reader, we consider the
twofold EG inverse problem for L1-matrix functions on the real line, and present
the two main theorems for this case, Theorem 1.1 and Theorem 1.2 below. This
requires some notation and terminology.

Throughout Cr×s denotes the linear space of all r × s matrices with complex
entries and L1(R)r×s denotes the space of all r × s matrices of which the entries
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are Lebesgue integrable functions on the real line R. Furthermore

L1(R+)
r×s = {f ∈ L1(R)r×s | supp(f) ⊂ R+ = [0,∞)},

L1(R−)
r×s = {f ∈ L1(R)r×s | supp(f) ⊂ R− = (−∞, 0]}.

Here supp(f) indicates the support of the function f . Now assume we are given

a ∈ L1(R+)
p×p, c ∈ L1(R−)

q×p,(1.1)

b ∈ L1(R+)
p×q, d ∈ L1(R−)

q×q.(1.2)

Given these data the twofold EG inverse problem referred to in the title is the
problem to find g ∈ L1(R+)

p×q satisfying

a+ g ⋆ c ∈ L1(R−)
p×p, g∗ + g∗ ⋆ a+ c ∈ L1(R+)

q×p,(1.3)

d+ g∗ ⋆ b ∈ L1(R+)
q×q, g + g ⋆ d+ b ∈ L1(R−)

p×q.(1.4)

Here g∗(t) = g(−t)∗ for each t ∈ R, and as usual f ⋆ h denotes the convolution
product of L1(R) matrix functions f and h.

The onefold version of the problem, when only a and c in (1.1) have been given
and the problem is to find g such that (1.3) is satisfied, has been dealt with in [15].

To see the EG inverse problem from an operator point of view, let g ∈ L1(R+)
p×q,

and let G and G∗ be the Hankel operators defined by

G : L1(R−)
q → L1(R+)

p, (Gf)(t) =

∫ 0

−∞

g(t− s)f(s) ds , t ≥ 0;(1.5)

G∗ : L1(R+)
p → L1(R−)

q, (G∗h)(t) =

∫ ∞

0

g∗(t− s)h(s) ds , t ≤ 0.(1.6)

Here L1(R±)
r = L1(R±)

r×1. Using these Hankel operators, the conditions in (1.3)
and (1.4) are equivalent to

a+Gc = 0, G∗a+ c = −g∗,(1.7)

d+G∗b = 0, Gd+ b = −g.(1.8)

To understand the above identities let us mention that we follow the convention that
an operator acting on columns can be extended in a canonical way to an operator
acting on matrices. We do this without changing the notation. For instance, in
the first identity in (1.7) the operator G acts on each of the p columns of the q × p

matrix function c, and Gc is the resulting p × p matrix function. Thus the first
condition in (1.7) is equivalent to the first condition in (1.3). Similarly, the second
condition in (1.3) is equivalent to the second condition in (1.7) and so on.

Hence the four conditions in (1.7) and (1.8) can be summarized by

(1.9)

[
I G

G∗ I

] [
a

c

]
=

[
0

−g∗
]

and

[
I G

G∗ I

] [
b

d

]
=

[
−g
0

]
.

In other words, in this context the inverse problem is to reconstruct, if possible, a
(block) Hankel operator and its associate, from the given data {a, b, c, d}.

To describe the main theorems in the present context, we need some further pre-
liminaries about Laurent, Hankel and Wiener Hopf operators. Let ρ be a function
on R given by

(1.10) ρ(t) = r0 + r(t), t ∈ R, where r ∈ L1(R)k×m and r0 ∈ C
k×m.
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With ρ in (1.10) we associate the Laurent operator Lρ : L1(R)m → L1(R)k which
is defined by

(1.11) (Lρf)(t) = r0f(t) +

∫ ∞

−∞

r(t − s)f(s) ds, (t ∈ R).

Furthermore, we write Lρ as a 2 × 2 operator matrix relative to the direct sum
decompositions L1(R)ℓ = L1(R−)

ℓ+̇L1(R+)
ℓ, ℓ = m, k, as follows:

Lρ =

[
T−,ρ H−,ρ

H+,ρ T+,ρ

]
:

[
L1(R−)

m

L1(R+)
m

]
→

[
L1(R−)

k

L1(R+)
k

]
.

Thus T−,ρ and T+,ρ are the Wiener Hopf operators given by

(T−,ρf) (t) = r0f(t) +

∫ 0

−∞

r(t− s)f(s) ds, t ≤ 0, f ∈ L1(R−)
m,(1.12)

(T+,ρf) (t) = r0f(t) +

∫ ∞

0

r(t− s)f(s) ds, t ≥ 0, f ∈ L1(R+)
m,(1.13)

and H−,ρ and H+,ρ are the Hankel operators given by

(H−,ρf) (t) =

∫ ∞

0

r(t− s)f(s) ds, t ≤ 0, f ∈ L1(R+)
m,(1.14)

(H+,ρf) (t) =

∫ 0

−∞

r(t− s)f(s) ds, t ≥ 0 f ∈ L1(R−)
m.(1.15)

In particular, the Hankel operators G and G∗ appearing in (1.9) are equal to G =
H+,g and G∗ = H−,g∗ , respectively.

In what follows, instead of the data set {a, b, c, d} we will often use the equivalent
data set {α, β, γ, δ}, where
(1.16) α = ep + a, β = b, γ = c, δ = eq + d.

Here ep and eq are the functions on R identically equal to the unit matrix Ip and
Iq, respectively. Using the data in (1.16) and the definitions of Toeplitz and Hankel
operators in (1.12) – (1.15), we define the following operators:

M11 = T+,αT+,α∗ − T+,βT+,β∗ : L1(R+)
p → L1(R+)

p,(1.17)

M21 = H−,γT+,α∗ −H−,δT+,β∗ : L1(R+)
p → L1(R−)

q,(1.18)

M12 = H+,βT−,δ∗ −H+,αT−,γ∗ : L1(R−)
q → L1(R+)

p,(1.19)

M22 = T−,δT−,δ∗ − T−,γT−,γ∗ : L1(R−)
q → L1(R−)

q.(1.20)

Notice that these four operators are uniquely determined by the data.
We are now ready to state, in the present context, our two main theorems. In

the abstract setting these theorems appear in Sections 6 and 7, respectively. The
first is an inversion theorem and the second presents the solution of the EG inverse
problem.

Theorem 1.1. Let g ∈ L1(R+)p×q, and let W be the operator given by

(1.21) W :=

[
I H+,g

H−,g∗ I

]
:

[
L1(R+)

p

L1(R−)
q

]
→

[
L1(R+)

p

L1(R−)
q

]
.
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Then W is invertible if and only if g is a solution to a twofold EG inverse problem
for some data set {a, b, c, d} as in (1.1) and (1.2), that is, if and only if the following
two equations are solvable:

(1.22) W

[
a

c

]
=

[
0

−g∗
]

and W

[
b

d

]
=

[
−g
0

]
.

In that case the inverse of W is given by

(1.23) W−1 =

[
M11 M12

M21 M22

]
,

where Mij, 1 ≤ i, j ≤ 2, are the operators defined by (1.17) – (1.20) with α, β, γ, δ
being given by (1.16) where a, b, c, d are given by (1.22). Furthermore, the operators
M11 and M22 are invertible and

H+,g = −M−1
11 M12 = −M12M

−1
22 ,(1.24)

H−,g∗ = −M21M
−1
11 = −M−1

22 M21,(1.25)

g = −M−1
11 b, g∗ = −M−1

22 c.(1.26)

For the second theorem we need a generalization of the convolution product ⋆,
which we shall denote by the symbol ⋄. In fact, given the data set {a, b, c, d} and the
equivalent data set {α, β, γ, δ} given by (1.16), we define the following ⋄-products:

α∗ ⋄ α := ep + a∗ + a+ a∗ ⋆ a, γ∗ ⋄ γ := c∗ ⋆ c,

δ∗ ⋄ δ := eq + d∗ + d+ d∗ ⋆ d, β∗ ⋄ β := b∗ ⋆ b,

α∗ ⋄ β := b+ a∗ ⋆ b, γ∗ ⋄ δ := c∗ + c∗ ⋆ d.

Theorem 1.2. Let {a, b, c, d} be the functions given by (1.1) and (1.2), let α, β,
γ, δ be the functions given by (1.16), and let ep and eq be the functions on R

identically equal to the unit matrix Ip and Iq, respectively. Then the twofold EG
inverse problem associated with the data set {a, b, c, d} has a solution if and only
the following two conditions are satisfied:

(L1) α∗ ⋄ α− γ∗ ⋄ γ = ep, δ∗ ⋄ δ − β∗ ⋄ β = eq, α∗ ⋄ β = γ∗ ⋄ δ;
(L2) the operators M11 and M22 defined by (1.17) and (1.20) are one-to-one.

In that case M11 and M22 are invertible, and the (unique) solution g and its adjoint
g∗ are given by

(1.27) g = −M−1
11 b and g∗ = −M−1

22 c.

Here b and c are the matrix functions appearing in (1.2) and (1.1), respectively.

Assuming that condition (L1) above is satisfied, the invertibility of the operator
M11 is equivalent to the injectivity of the operator M11, and the invertibility M22

is equivalent to the injectivity of the operator M22. To prove these equivalences
we use the fact (cf., formulas (4.18) and (4.19) in [12, Section 4.3]) that M11 and
M22 are also given by

M11 = I +H+,βH−,β∗ −H+,αH−,α∗ ,(1.28)

M22 = I +H−,γH+,γ∗ −H−,δH+,δ∗ .(1.29)

Since the Hankel operators appearing in these formulas are all compact operators,
M11 and M22 are Fredholm operators, and thus invertible if and only if they are
one-to-one.
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We shall see in Lemma 8.5, again assuming that condition (L1) above is satisfied,
that the operators M21 and M12 are also given by

M21 = T−,δH−,β∗ − T−,γH−,α∗ ,(1.30)

M12 = T+,αH+,γ∗ − T+,βH+,δ∗ .(1.31)

Since the functions a, b, c, d are L1(R) matrix functions, the operators Mij ,
1 ≤ i, j ≤ 2, are also well-defined as bounded linear operators on the corresponding
L2 spaces. It follows that Theorems 1.1 and 1.2 remain true if the L1 spaces in
(1.21) are replaced by corresponding L2 spaces. In this L2-setting Theorems 1.1
and 1.2 are the continuous analogs of Theorems 3.1 and 4.1 in [10]. Furthermore,
in this L2-setting the adjoints of the operators Mij , 1 ≤ i, j ≤ 2, as operators on
L2-spaces, are well-defined as well. In fact, assuming condition (L1) is satisfied and
using (1.17) – (1.20) and the identities (1.30), (1.31), we see that in the L2 setting
we have

(1.32) M∗
11 =M11, M∗

21 =M12, M∗
12 =M21, M∗

22 =M22.

Theorem 1.1 belongs to the wide class of inversion theorems for structured opera-
tors. In particular, the theorem can be viewed as an analogue of the Gohberg-Heinig
inversion theorem for convolution operators on a finite interval [7]. In its present
form Theorem 1.1 can be seen as an addition to Theorem 12.2.4 in [5], where, using
a somewhat different notation, the invertibility ofW is proved. The formula for the
inverse of W could be obtained from [9, Theorem 0.1], where the formula for M11

appears in a somewhat different notation. Note that [9, Theorem 0.1] also solves
the asymmetric version of the inversion problem. Formulas (1.24)–(1.26) seem to
be new.

As mentioned before, in the present paper we put the twofold EG problem in
an abstract ∗-algebraic setting. This allows us to consider and solve non-stationary
twofold EG problems (see Subsection 3.2 for an example). Furthermore, Theorems
1.1 and 1.2 are obtained as corollaries of the two abstract theorems, Theorem 6.1
and Theorem 7.1, derived in this paper. Also, as we shall prove in Section 10,
Theorems 3.1 and 4.1 in [10] appear as corollaries of our main theorems.

The paper consists of ten sections (including the present introduction) and an
appendix. In Section 2 we introduce the abstract ∗-algebraic setting and state the
main problem. Section 3 presents a numerical example and a number of illustrative
special cases, including various Wiener algebra examples. Sections 4 and 5 have a
preliminary character. Here we introduce Toeplitz-like and Hankel-like operators,
which play an important role in the abstract setting, and we derive a number of
identities and lemmas that are used in the proofs of the main results. In Section
6 the abstract inversion theorem (Theorem 6.1) is proved, and in Section 7 the
solution to the abstract twofold EG inverse problem (Theorem 7.1) is presented
and proved. Theorems 1.1 and 1.2 are proved in Section 8 using the results of
Section 6 and Section 7. In Section 9 we further specify Theorem 7.1 for the case
when there are additional invertibility conditions on the underlying data. The proof
in this section is direct and does not use Theorem 7.1. As mentioned in the previous
paragraph, Theorems 3.1 and 4.1 in [10] are derived in Section 10 as corollaries of
our main theorems in Sections 6 and 7.

Finally, in Appendix A we review a number of results that play an important role
in Section 8, where we have to relate Hankel-type and Toeplitz-type operators used
in Section 6 and Section 7 to classical Hankel and Wiener-Hopf integral operators.
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Appendix A consists of three subsections. In Subsection A.1 we recall the definition
of a Hankel operator on L2(R+) and review some basic facts. In Subsection A.2 we
present a theorem (partially new) characterizing classical Hankel integral operators
mapping L1(R+)

p into L1(R+)
q. Two auxiliary results are presented in the final

subsection.

2. General setting and main problem

We first describe the general ∗-algebraic setting that we will be working with.
To do this we use the notation introduced on pages 109 and 110 of [13]; see also the
first two pages of [8, Section II.1]. Throughout A, B, C and D are complex linear
vector spaces such that the following set of 2× 2 block matrices form an algebra:

(2.1) M = MA,B,C,D =

{
f =

[
a b

c d

]
| a ∈ A, b ∈ B, c ∈ C, d ∈ D

}
.

Furthermore, we assume A and D are ∗-algebras (see [18, Chapter IV] for the
definition of this notion) with units eA and eD, respectively, and endowed with
involutions ∗. The diagonal

eM =

[
eA 0
0 eD

]

is the unit element of M. Moreover, C is a linear space isomorphic to B via a
conjugate linear transformation ∗ whose inverse is also denoted by ∗. We require
M to be a ∗-algebra with respect to the usual matrix multiplication and with the
involution given by [

a b

c d

]∗
=

[
a∗ c∗

b∗ d∗

]
.

The algebras A and D are assumed to admit direct sum decompositions:

(2.2) A = A0
−+̇Ad+̇A0

+, D = D0
−+̇Dd+̇D0

+.

In these two direct sum decompositions the summands are assumed to be subalge-
bras of A and D, respectively. Furthermore, we require

(2.3)
eA ∈ Ad, (A0

−)
∗ = A0

+, (Ad)
∗ = Ad,

eD ∈ Dd, (D0
−)

∗ = D0
+, (Dd)∗ = Dd.

Set

A− = A0
−+̇Ad, A+ = Ad+̇A0

+, D− = D0
−+̇Dd, D+ = Dd+̇D0

+.

We also assume that B and C admit direct sum decompositions:

(2.4) B = B−+̇B+, C = C−+̇C+, such that C− = B∗
+, C+ = B∗

−.

These direct sum decompositions yield a direct sum decomposition of M, namely
M = M0

−+̇Md+̇M0
+, where

(2.5) M0
− =

[
A0

− B−

C− D0
−

]
, Md =

[
Ad 0
0 Dd

]
, M0

+ =

[
A0

+ B+

C+ D0
+

]
.

Note that

(M0
−)

∗ = M0
+, (M0

+)
∗ = M0

−, M∗
d = Md.

Finally, we assume that the products of elements from the summands in M =
M0

−+̇Md+̇M0
+ satisfy the rules of the following
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Multiplication table

× M0
− Md M0

+

M0
− M0

− M0
− M

Md M0
− Md M0

+

M0
+ M M0

+ M0
+

We say that the algebra M = MA,B,C,D defined by (2.1) is admissible if all the
conditions listed in the above paragraph are satisfied.
Main problem. We are now ready to state the main problem that we shall be dealing
with. Let α ∈ A+, β ∈ B+, γ ∈ C− and δ ∈ D− be given. We call g ∈ B+ a solution
to the twofold EG inverse problem associated with α, β, γ, and δ whenever

α+ gγ − eA ∈ A0
− and g∗α+ γ ∈ C+,(2.6)

gδ + β ∈ B− and δ + g∗β − eD ∈ D0
+.(2.7)

Our main aim is to determine necessary and sufficient conditions for this inverse
problem to be solvable and to derive explicit formulas for its solution. We shall
show that the solution, if it exists, is unique. The following result is a special case
of [13, Theorem 1.2].

Proposition 2.1. If the twofold EG inverse problem associated with α, β, γ and
δ has a solution, then

(C1) α∗α− γ∗γ = PAd
α,

(C2) δ∗δ − β∗β = PDd
δ,

(C3) α∗β = γ∗δ.

Here PAd
and PDd

denote the projections of A and D onto Ad and Dd, respectively,
along A0 = A0

−+̇A0
+ and D0 = D0

−+̇D0
+, respectively.

Notice that (C1) and (C2) imply that

(2.8) a0 :=PAd
α = (PAd

α)∗ = a∗0 and d0 := PDd
δ = (PDd

δ)∗ = d∗0.

Furthermore, together the three conditions (C1)–(C3) are equivalent to

(2.9)

[
α∗ γ∗

β∗ δ∗

] [
eA 0
0 −eD

] [
α β

γ δ

]
=

[
a0 0
0 −d0

]
.

Remark 2.2. Since a0 and d0 belong to Ad and Dd, respectively, invertibility of
a0 in A and of d0 in D imply that a−1

0 ∈ Ad and d−1
0 ∈ Dd. In other words, a0 and

d0 are invertible in Ad and Dd, respectively.

Remark 2.3. In the sequel it will often be assumed that a0 and d0 are invertible.
In that case the following three conditions are well defined.

(C4) αa−1
0 α∗ − βd−1

0 β∗ = eA,
(C5) δd−1

0 δ∗ − γa−1
0 γ∗ = eD,

(C6) αa−1
0 γ∗ = βd−1

0 δ∗.

In solving the twofold EG inverse problem referred to above we shall always assume
that a0 and d0 are invertible and that the six conditions (C1)–(C6) are fulfilled.

The next lemma shows that in many cases (C4)–(C6) are satisfied whenever
conditions (C1)–(C3) are satisfied.
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Lemma 2.4. Let α ∈ A+, β ∈ B+, γ ∈ C−, δ ∈ D−, and let

Q =

[
α β

γ δ

]
.

Assume that a0 and α are invertible in A, and that d0 and δ are invertible in D.
If, in addition, α, β, γ and δ satisfy conditions (C1)–(C3), then Q is invertible,
and conditions (C4)–(C6) are satisfied.

Proof. Since δ is invertible, a classical Schur complement argument (see, e.g.,
formula (2.3) in [1, Chapter 2]) shows that

Q =

[
α β

γ δ

]
=

[
eA βδ−1

0 eD

] [
∆ 0
0 δ

] [
eA 0
γδ−1 eD

]
, with ∆ = α− βδ−1γ.

Using the invertibility of α and δ, we can rewrite (C3) as βδ−1 = α−∗γ∗. The latter
identity together with (C1) yields:

∆ = α− βδ−1γ = α− α−∗γ∗γ = α−∗ (α∗α− γ∗γ) = α−∗a0.

It follows that the Schur complement ∆ is invertible. But then Q is invertible too,
and the identity (2.9) shows that the inverse Q−1 of Q is given by

Q−1 =

[
a−1
0 0
0 −d−1

0

] [
α∗ γ∗

β∗ δ∗

] [
eA 0
0 −eD

]
.

Since QQ−1 is a 2× 2 block identity matrix, we conclude that
[
α β

γ δ

] [
a−1
0 0
0 −d−1

0

] [
α∗ γ∗

β∗ δ∗

] [
eA 0
0 −eD

]
=

[
eA 0
0 eD

]

This yields

(2.10)

[
α β

γ δ

] [
a−1
0 0
0 −d−1

0

] [
α∗ γ∗

β∗ δ∗

]
=

[
eA 0
0 −eD

]
,

and hence (C4)–(C6) are satisfied. �

3. A numerical example and some illustrative special cases

In this section we present a few inverse problems which are special cases of the
abstract problem presented in the previous section.

3.1. A numerical example. As a first illustration we consider a simple example
of a problem for 3× 3 matrices. Given

α = 1
8



−2 2 0
0 −3 −4
0 0 6


 , β = − 1

8



−2 −6 0
0 1 −4
0 0 −2


 ,(3.1)

γ = − 1
8



−2 0 0
−4 1 0
0 −6 −2


 , δ = 1

8




6 0 0
−4 −3 0
0 2 −2


 ,(3.2)
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we seek a 3× 3 upper triangular matrix g such that

α+ gγ =



1 0 0
⋆ 1 0
⋆ ⋆ 1


 , g∗α+ γ =



0 ⋆ ⋆

0 0 ⋆

0 0 0


 ,(3.3)

β + gδ =



0 0 0
⋆ 0 0
⋆ ⋆ 0


 , g∗β + δ =



1 ⋆ ⋆

0 1 ⋆

0 0 1


 .(3.4)

Here the symbols ⋆ denote unspecified entries. By direct checking it is easy to see
that the matrix g◦ given by

g◦ =



1 2 0
0 1 2
0 0 1




is upper triangular and satisfies (3.3) and (3.4). From the general results about
existence of solutions and methods to determine solutions, which will be presented
in this paper, it follows that g◦ is the only solution. For this example it also
straightforward to check that conditions (C1)–(C3) presented in the previous section
are satisfied.

3.2. A class of finite dimensional matrix examples. We will put the problem
considered in the preceding example into the general setting considered in the pre-
vious section. Let p ≥ 1 be an integer (in the example above we took p = 3), and
let

(3.5) A = B = C = D = C
p×p.

The involution ∗ is given by the usual transposed conjugate of a matrix. Let
A0

+ = B0
+ = C0

+ = D0
+ be the subspace of Cp×p of the strictly upper triangular

matrices and A0
− = B0

− = C0
− = D0

− the subspace of the strictly lower triangular
matrices. Furthermore, let Ad = Bd = Cd = Dd be the subspace consisting of the
p×p diagonal matrices, that is, matrices with all entries off the main diagonal being
equal to zero. We set

A− = A0
−+̇Ad, A+ = Ad+̇A0

+, D− = D0
−+̇Dd, D+ = Dd+̇D0

+,(3.6)

B− = B0
−, B+ = Bd+̇B0

+, C− = C0
−+̇Cd, C+ = C0

+.(3.7)

The problem we consider in this setting is the following. Let α, β, γ, δ be given
p × p matrices, and assume that α ∈ A+, β ∈ B+, γ ∈ C− and δ ∈ D−. Then a
p×p matrix g ∈ B+ is said to be a solution to the EG inverse problem for the given
data α, β, γ, δ whenever the four inclusions in (2.6) and (2.7) are satisfied. In the
numerical example considered above this amounts to the conditions (3.3) and (3.4)
being fulfilled.

If a solution exists, then the conditions (C1)–(C3) are satisfied, what in this
setting means that

(3.8)

[
α∗ γ∗

β∗ γ∗

] [
Ip 0
0 −Ip

] [
α β

γ δ

]
=

[
αd 0
0 −δd

]
.

Here Ip is the p×p identity matrix, αd is the diagonal matrix whose main diagonal
coincides with the one of α, and δd is the diagonal matrix whose main diagonal
coincides with the one of δ. If αd and δd are invertible, then α and δ are invertible
as p × p (lower or upper) triangular matrices. In this case, as we shall see in
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Theorem 9.1, the twofold EG inverse problem is solvable, the solution is unique,
and the solution is given by g = −PB+

(
(α∗)−1γ∗

)
.

The above special case is an example of a non-stationary EG inverse problem.
We intend to deal with other non-stationary problems in a later publication, using
elements of [8]; see also [11, Section 5].

3.3. Wiener algebra examples. Let N be a unital ∗-algebra with unit eN and
involution ∗. We assume that N admits a direct sum decomposition:

N = N−,0+̇Nd+̇N+,0.

In this direct sum decomposition the summands are subalgebras of N , and we
require

eN ∈ Nd, (Nd)
∗ = Nd, (N−,0)

∗ = N+,0,

NdN±,0 ⊂ N±,0, N±,0Nd ⊂ N±,0.

Given N we construct two admissible algebras MA,B,C,D using the following two
translation tables:

Table 1

A A0
+ Ad A0

− B B+ B−

N p×p N p×p
+,0 N p×p

d N p×p
−,0 N p×q N p×q

+ N p×q
−,0

C C− C+ D D0
+ Dd D0

−

N q×p N q×p
− N q×p

+,0 N q×q N q×q
+,0 N q×q

d N q×q
−,0

Table 2

A A0
+ Ad A0

− B B+ B−

N p×p N p×p
+,0 N p×p

d N p×p
−,0 N p×q

0 N p×q
+,0 N p×q

−,0

C C− C+ D D0
+ Dd D0

−

N q×p
0 N q×p

−,0 N q×p
+,0 N q×q N q×q

+,0 N q×q
d N q×q

−,0

In subsequent special cases we make these examples more concrete.

3.3.1. The Wiener algebra on the real line. Recall that the Wiener algebra on the
real line W(R) consists of the functions ϕ of the form

(3.9) ϕ(λ) = f0 +

∫ ∞

−∞

eiλtf(t) dt , λ ∈ R,

with f0 ∈ C and f ∈ L1(R). The subspaces W(R)±,0 consist of the functions ϕ in
W(R) for which in the representation (3.9) the constant f0 = 0 and f ∈ L1(R±). A
function ϕ belongs to the subspace W(R)0 if and only if f = 0 in the representation
in (3.9). With N = W(R), it is straightforward to check that the spaces A,B, C,
and D and their subspaces defined by Table 2 have all the properties listed in the
first two paragraphs of Section 2, that is, M = MA,B,C,D is admissible. Indeed, let

α ∈ ep +W(R)p×p+,0 , β ∈ W(R)p×q+,0 , γ ∈ W(R)q×p−,0 , δ ∈ eq +W(R)q×q−,0 ,
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where ep and eq are the functions identically equal to the unit matrix Ip and Iq,

respectively. Then the twofold EG inverse problem is to find g ∈ W(R)p×q+,0 such
that the following four inclusions are satisfied:

α+ gγ − ep ∈ W(R)p×p−,0 and g∗α+ γ ∈ W(R)q×p+,0 ;

gδ + β ∈ W(R)p×q−,0 and δ + g∗β − eq ∈ W(R)q×q+,0 .

Notice that these inclusions are just the same as the inclusions in (2.6) and (2.7).
In this way this twofold EG inverse problem is put in the abstract setting of the
twofold EG inverse problem defined in Section 2.

Remark 3.1. The version of the twofold EG inverse problem considered in this
subsubsection is isomorphic to the twofold EG inverse problem considered in the
introduction. This follows from the definition of the Wiener algebra W(R) in (3.9).
The solution of the twofold EG inverse problem as described in this subsubsection
follows from Theorems 1.1 and 1.2. The latter two theorems will be proved in
Section 8.

Note that in this special case the algebra M = MA,B,C,D appearing in (2.1) can

be considered as a subalgebra of W(R)(p+q)×(p+q). Indeed,

M = W(R)
(p+q)×(p+q)
−,0 +̇Md+̇W(R)

(p+q)×(p+q)
+,0

with

Md =

{[
a0 0
0 d0

]
| a0 ∈ C

p×p, d0 ∈ C
q×q

}
.

The case N = RW(R). Let RW(R) be the subalgebra of W(R) consisting of all
rational functions in W(R). With N = RW(R) it is straightforward to check that
the resulting A,B, C,D defined in Table 2 have all the properties listed in the first
two paragraphs of Section 2, that is, M = MA,B,C,D is admissible. Let

α ∈ ep +RW(R)p×p+,0 , β ∈ RW(R)p×q+,0 , γ ∈ RW(R)q×p−,0 ,

δ ∈ eq +RW(R)q×q−,0 .

The twofold EG inverse problem is to find g ∈ RW(R)p×q+,0 such that the following
four inclusions are satisfied:

α+ gγ − ep ∈ RW(R)p×p−,0 , and g∗α+ γ ∈ RW(R)q×p+,0 ;

gδ + β ∈ RW(R)p×q−,0 and δ + g∗β − eq ∈ RW(R)q×q+,0 .

In a forthcoming paper we plan to deal with the twofold EG inverse problem for
rational functions in W(R), using minimal realizations of the rational functions
involved and related state space techniques. The latter will lead to new explicit
formulas for the solution.

The case N = FW(R). Let FW(R) denote the subalgebra of W(R) of functions in
W(R) whose inverse Fourier transforms are elements in L1(R) with finite support.
Hence if ρ ∈ W(R) is given by

ρ(λ) = r0 +

∫ ∞

−∞

eiλtr(t) dt (λ ∈ R),

with r ∈ L1(R) and r0 ∈ C, then ρ ∈ FW(R) in case there are real numbers
τ1 < τ2 so that r(t) = 0 for all t 6∈ [τ1, τ2]. In this case, one easily verifies that
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M = MA,B,C,D with A,B, C,D as in Table 2 is admissible. The twofold EG inverse
problem specified for these choices can be stated as follows. Let

α ∈ ep + FW(R)p×p+,0 , β ∈ FW(R)p×q+,0 , γ ∈ FW(R)q×p−,0 ,

δ ∈ eq + FW(R)q×q−,0 .

The twofold EG inverse problem now is to find g ∈ RW(R)p×q+,0 such that the
following four inclusions are satisfied:

α+ gγ − ep ∈ FW(R)p×p−,0 and g∗α+ γ ∈ FW(R)q×p+,0 ;

gδ + β ∈ FW(R)p×q−,0 and δ + g∗β − eq ∈ FW(R)q×q+,0 .

We plan to return to this case in a forthcoming paper.

3.3.2. The Wiener algebra on the unit circle. Let N = W(T), where W(T) is the
Wiener algebra of functions on the unit circle T, that is, the algebra of all functions
on T with absolutely converging Fourier series. Define A,B, C,D as in Table 1.
In this case M = MA,B,C,D is admissible too. Note that the Fourier transform
defines an isomorphism between W(T) and the algebra ℓ1 of absolutely converging
complex sequences. The version of the twofold EG inverse problem for ℓ1 has been
solved in [10]. In Section 10 we give a new proof of the main theorems in [10] by
putting the inversion theorem, [10, Theorem 3.1], and the solution of the twofold
EG inverse problem, [10, Theorem 4.1], into the general setting of Section 2 and
using the results of Sections 4–7.

The case N = RW(T). Let RW(T) be the subalgebra of W(T) consisting of all
rational functions in W(T). With N = RW(T) and A,B, C,D as in Table 1, the
resulting algebra M = MA,B,C,D is admissible. Let

α ∈ RW(T)p×p+ , β ∈ RW(T)p×q+ , γ ∈ RW(T)q×p− ,

δ ∈ RW(T)q×q− .

The twofold EG inverse problem is to find g ∈ RW(T)p×q+ such that the following
four inclusions are satisfied:

α+ gγ − ep ∈ RW(T)p×p−,0 and g∗α+ γ ∈ RW(T)q×p+,0 ;

gδ + β ∈ RW(T)p×q−,0 and δ + g∗β − eq ∈ RW(T)q×q+,0 .

The onefold EG inverse problem for rational matrix functions on T is treated in
[15, Section 6]. Minimal realizations of the functions involved play an important
role in the approach in [15]. We intend to work on the twofold EG inverse problem
for rational matrix functions on the unit circle in a later publication, again using
minimal state space realizations of the functions involved.

The case N = T P . Let T P be the set consisting of the trigonometric polynomials
in z viewed as a subalgebra of W(T), and write T P+ and T P− for the subalgebras
of polynomials in z and in z−1, respectively. With T P+,0 and T P−,0 we denote
the corresponding spaces with the constant functions left out. Again, A,B, C,D are
defined as in Table 1, and the algebra M = MA,B,C,D is admissible. Let

α ∈ T Pp×p+ , β ∈ T Pp×q+ , γ ∈ T Pq×p− , δ ∈ T Pq×q− .
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In this context the twofold EG inverse problem is to find g ∈ T Pp×q+ such that the
following four inclusions are satisfied:

α+ gγ − ep ∈ T Pp×p−,0 and g∗α+ γ ∈ T Pq×p+,0 ;

gδ + β ∈ T Pp×q−,0 and δ + g∗β − eq ∈ T Pq×q+,0 .

For this case, a solution to the twofold EG inverse problem has been obtained in
[10, Section 9].

4. Preliminaries about Toeplitz-like and Hankel-like operators

In this section we define Toeplitz-like and Hankel-like operators and derive some
of their properties. First some notation. In what follows the direct sum of two
linear spaces N and L will be denoted by N +̇L. Thus ( see [3, pages 37, 38]) the
space N +̇L consists of all (n, ℓ) with n ∈ N and ℓ ∈ L and its the linear structure
is given by

(n1, ℓ1) + (n2, ℓ2) = (n1 + n2, ℓ1 + ℓ2), λ(n, ℓ) = (λn, λℓ) (λ ∈ C).

In a canonical way N and L can be identified with the linear spaces

{(n, ℓ) | n ∈ N , ℓ = 0 ∈ L} and {(n, ℓ) | n = 0 ∈ N , ℓ ∈ L},

respectively. We will use these identifications without further explanation.
Throughout this section A, B, C and D are as in Section 2, and we assume that

MA,B,C,D is admissible. Put X = A+̇B and Y = C+̇D. Thus X is the direct sum
of A and B, and Y is the direct sum of C and D. Furthermore, let

X+ = A++̇B+, X− = A0
−+̇B−,(4.1)

Y+ = C++̇D0
+, Y− = C−+̇D−.(4.2)

With these direct sums we associate four projections, denoted by

PX+
, PX−

, PY+
, PY−

.

By definition, PX+
is the projection of X onto X+ along X−, and PX−

is the
projection of X onto X− along X+ . The two other projections PY+

and PY−
are

defined in a similar way, replacing X by Y.
We proceed with defining multiplication (or Laurent-like) operators and related

Toeplitz-like and Hankel-like operators distinguishing four cases. In each case the
Toeplitz- and Hankel-like operators are compressions of the multiplication oper-
ators. Our terminology differs from the one used in [19] and [20]. Intertwining
relations with shift-like operators appear later in the end of Section 7, in Section
8, and in the Appendix.
1. The case when ρ ∈ A. Assume ρ ∈ A. Then ρA ⊂ A and ρB ⊂ B and therefore
we have for x = (α, β) ∈ X that ρx = (ρα, ρβ) ∈ X , i.e., ρX ⊂ X . We define
the multiplication operator Lρ : X → X by putting Lρx = ρx for x ∈ X . With
respect to the decomposition X = X−+̇X+ we write Lρ as a 2× 2 operator matrix
as follows

(4.3) Lρ =

[
T−,ρ H−,ρ

H+,ρ T+,ρ

]
:

[
X−

X+

]
→

[
X−

X+

]
.
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Thus for x− ∈ X− and x+ ∈ X+ we have

T−,ρx− = PX−
(ρx−), T+,ρx+ = PX+

(ρx+),

H+,ρx− = PX+
(ρx−), H−,ρx+ = PX−

(ρx+).

We have Lρ[A] ⊂ A and Lρ[B] ⊂ B. Similarly, one has the inclusions

T±,ρ[A±] ⊂ A±, T±,ρ[B±] ⊂ B±,(4.4)

H±,ρ[A∓] ⊂ A± H±,ρ[B∓] ⊂ B±.(4.5)

Furthermore, as expected from the classical theory of Hankel operators, we have

(4.6) ρ ∈ A+ ⇒ H−,ρ = 0 and φ ∈ A− ⇒ H+,φ = 0.

2. The case when ρ ∈ B. For ρ ∈ B we have ρC ⊂ A and ρD ⊂ B, and therefore
ρY ⊂ X . We define the multiplication operator Lρ : Y → X by putting Lρy = ρy

for y ∈ Y. With respect to the decompositions Y = Y−+̇Y+ and X = X−+̇X+ we
write Lρ as a 2× 2 operator matrix as follows

(4.7) Lρ =

[
T−,ρ H−,ρ

H+,ρ T+,ρ

]
:

[
Y−

Y+

]
→

[
X−

X+

]
.

Thus for y− ∈ Y− and y+ ∈ Y+ we have

T−,ρy− = PX−
(ρy−), T+,ρy+ = PX+

(ρy+),

H+,ρy− = PX+
(ρy−), H−,ρy+ = PX−

(ρy+).

We have Lρ[C] ⊂ A and Lρ[D] ⊂ B. Similarly, one has

T±,ρ[C±] ⊂ A±, T±,ρ[D±] ⊂ B±,(4.8)

H±,ρ[C∓] ⊂ A±, H±,ρ[D∓] ⊂ B±.(4.9)

Furthermore, we have

(4.10) ρ ∈ B+ ⇒ H−,ρ = 0 and φ ∈ B− ⇒ H+,φ = 0.

3. The case when ρ ∈ C. Let ρ ∈ C. Then ρA ⊂ C and ρB ⊂ D, and therefore
ρX ⊂ Y. We define the multiplication operator Lρ : X → Y by putting Lρx = ρx

for x ∈ X . With respect to the decomposition X = X−+̇X+ and Y = Y−+̇Y+ we
write Lρ as a 2× 2 operator matrix as follows

(4.11) Lρ =

[
T−,ρ H−,ρ

H+,ρ T+,ρ

]
:

[
X−

X+

]
→

[
Y−

Y+

]
.

Thus for x− ∈ X− and x+ ∈ X+ we have

T−,ρx− = PY−
(ρx−), T+,ρx+ = PY+

(ρx+),

H+,ρx− = PY+
(ρx−), H−,ρx+ = PY−

(ρx+).

We have Lρ[A] ⊂ C and Lρ[B] ⊂ D. Similarly, one has the inclusions

T±,ρ[A±] ⊂ C±, T±,ρ[B±] ⊂ D±,(4.12)

H±,ρ[A∓] ⊂ C±, H±,ρ[B∓] ⊂ D±.(4.13)

Furthermore, we have

(4.14) ρ ∈ C+ ⇒ H−,ρ = 0 and φ ∈ C− ⇒ H+,φ = 0.
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4. The case when ρ ∈ D. For ρ ∈ D we have ρC ⊂ C and ρD ⊂ D, and therefore
ρY ⊂ Y. We define the multiplication operator Lρ : Y → Y by putting Lρy = ρy

for y ∈ Y. With respect to the decomposition Y = Y−+̇Y+ we write Lρ as a 2× 2
operator matrix as follows

(4.15) Lρ =

[
T−,ρ H−,ρ

H+,ρ T+,ρ

]
:

[
Y−

Y+

]
→

[
Y−

Y+

]
.

Thus for y− ∈ Y− and y+ ∈ Y+ we have

T−,ρy− = PY−
(ρy−), T+,ρy+ = PY+

(ρy+),

H+,ρy− = PY+
(ρy−), H−,ρy+ = PY−

(ρy+).

We have Lρ[C] ⊂ C and Lρ[D] ⊂ D. Similarly, we have the inclusions

T±,ρ[C±] ⊂ C±, T±,ρ[D±] ⊂ D±,(4.16)

H±,ρ[C∓] ⊂ C±, H±,ρ[D∓] ⊂ D±.(4.17)

Furthermore, we have

(4.18) ρ ∈ D+ ⇒ H−,ρ = 0, φ ∈ D− ⇒ H+,φ = 0.

5. Multiplicative identities. Let U , V and Z each be one of the spaces X or Y defined
above. The corresponding decomposition of the spaces we denote as U = U−+̇U+

and similarly for V and Z. Let φ be such that for u ∈ U we have φu ∈ V and ρ be
such that for v ∈ V we have ρv ∈ Z. Then we have that Lρφ = LρLφ, which gives

(4.19)

[
T−,ρφ H−,ρφ

H+,ρφ T+,ρφ

]
=

[
T−,ρ H−,ρ

H+,ρ T+,ρ

] [
T−,φ H−,φ

H+,φ T+,φ

]
:

[
U−

U+

]
→

[
Z−

Z+

]
.

In particular, we have the following identities:

T+,ρφ = T+,ρT+,φ +H+,ρH−,φ : U+ → Z+,(4.20)

H+,ρφ = T+,ρH+,φ +H+,ρT−,φ : U− → Z+,(4.21)

H−,ρφ = H−,ρT+,φ +T−,ρH−,φ : U+ → Z−,(4.22)

T−,ρφ = H−,ρH+,φ +T−,ρT−,φ : U− → Z−.(4.23)

5. Further notations and auxiliary results

In this section we bring together a number of identities and lemmas that will be
used in the proofs of the main results. Throughout this section α ∈ A+, β ∈ B+,
γ ∈ C−, and δ ∈ D−. Furthermore, g is an arbitrary element in B+. We split this
section into two parts.

Part 1. With g we associate the operator Ω given by

(5.1) Ω =

[
IX+

H+,g

H−,g∗ IY−

]
:

[
X+

Y−

]
→

[
X+

Y−

]
.

Here X± and Y± are as in (4.1) and (4.2), respectively. Using the properties of
Hankel-like operators given in the previous section we see that

(2.6) ⇐⇒ Ω

[
α

γ

]
=

[
eA
0

]
,(5.2)

(2.7) ⇐⇒ Ω

[
β

δ

]
=

[
0
eD

]
.(5.3)

Summarizing this yields the following corollary.
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Corollary 5.1. The element g ∈ B+ is a solution to the twofold EG inverse problem
associated with α, β, γ, and δ if and only if

(5.4) Ω

[
α

γ

]
=

[
eA
0

]
and Ω

[
β

δ

]
=

[
0
eD

]
,

We also have the following implications:

α+ gγ ∈ A− =⇒ H+,gγ = −H+,α,(5.5)

g∗α+ γ ∈ C+ ⇐⇒ H−,g∗α = −H−,γ(5.6)

β + gδ ∈ B− ⇐⇒ H+,gδ = −H+,β,(5.7)

g∗β + δ ∈ D+ =⇒ H−,g∗β = −H−,δ.(5.8)

After taking adjoints in the left hand inclusions above we obtain

α+ gγ ∈ A− =⇒ H−,γ∗g∗ = −H−,α∗ ,(5.9)

g∗α+ γ ∈ C+ ⇐⇒ H+,α∗g = −H+,γ∗(5.10)

β + gδ ∈ B− ⇐⇒ H−,δ∗g∗ = −H−,β∗ ,(5.11)

g∗β + δ ∈ D+ =⇒ H+,β∗g = −H+,δ∗ .(5.12)

Notice that the first inclusion in (2.6) implies that α + gγ ∈ A− and the second
inclusion in (2.7) implies g∗β + δ ∈ D+. The implications from left to right are
obvious. To prove the implications from right to left in (5.6), (5.7), (5.10) and
(5.11) one reasons as follows. For example, for (5.6) one uses that eA ∈ X+, such
that

0 = H−,g∗α+γeA = PX−
(g∗α+ γ)eA = PC−

(g∗α+ γ).

Hence g∗α + γ ∈ C+, as claimed. Since eA 6∈ X− and eD 6∈ Y+, the reverse
implications in (5.5), (5.8), (5.9) and (5.12) cannot be derived in this way.

Note that α ∈ A+, β ∈ B+, γ ∈ C−, δ ∈ D− implies that

H−,α = 0, H−,β = 0, H+,γ = 0, H+,δ = 0,(5.13)

H+,α∗ = 0, H+,β∗ = 0, H−,γ∗ = 0, H−,δ∗ = 0.(5.14)

Using the identities (5.13) and (5.14) together with the product formulas at the
end of Section 4 we obtain the following eight identities:

H+,α∗g = T+,α∗H+,g, H+,β∗g = T+,β∗H+,g,(5.15)

H−,γ∗g∗ = T−,γ∗H−,g∗ , H−,δ∗g∗ = T−,δ∗H−,g∗ ,(5.16)

H+,gγ = H+,gT−,γ , H+,gδ = H+,gT−,δ(5.17)

H−,g∗α = H−,g∗T+,α, H−,g∗β = H−,g∗T+,β(5.18)

The next lemma is an immediate consequence of the definitions.

Lemma 5.2. For g ∈ B+ and h ∈ C− we have

H+,geD = g and H−,heA = h.

We conclude this part with the following lemma.

Lemma 5.3. Assume that conditions (C1)–(C3) are satisfied. Then

(5.19)

[
T+,α∗

T+,β∗

] [
H+,β H+,α

]
=

[
H+,γ∗

H+,δ∗

] [
T−,δ T−,γ

]
.
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and

(5.20)

[
T−,δ∗

T−,γ∗

] [
H−,γ H−,δ

]
=

[
H−,β∗

H−,α∗

] [
T+,α T+,β

]
.

Proof. In the course of the proof we repeatedly use the product rules (4.20)–(4.23).
Using the first identity in (5.14), condition (C3) and the fourth identity in (5.13)
we see that

T+,α∗H+,β = H+,α∗β −H+,α∗T−,β

= H+,α∗β = H+,γ∗δ

= H+,γ∗T−,δ +T+,γ∗H+,δ = H+,γ∗T−,δ.

It follows that

(5.21) T+,α∗H+,β = H+,γ∗T−,δ.

Next, using the first identity in (5.14) and the third in (5.13) we obtain

T+,α∗H+,α = H+,α∗α −H+,α∗T−,α = H+,α∗α,

H+,γ∗T−,γ = H+,γ∗γ −T+,γ∗H+,γ = H+,γ∗γ .

On the other hand, using condition (C1) and the second identity in (4.6) with
φ = a0 = PAd

α, we see that H+,α∗α −H+,γ∗γ = H+,a0 = 0. We proved

(5.22) T+,α∗H+,α = H+,γ∗T−,γ .

The next two equalities are proved in a similar way as the previous two:

(5.23) T+,β∗H+,β = H+,δ∗T−,δ,

(5.24) T+,β∗H+,α = H+,δ∗T−,γ .

Observe that (5.21), (5.22), (5.23) and (5.24) can be rewritten as (5.19).
The equality (5.20) is proved similarly, using (C2) instead of (C1). �

Part 2. In the second part of this section we assume that a0 = PAd
α and d0 =

PAd
δ are invertible in Ad and Dd, respectively. Using the notations introduced in

the previous section we associate with the elements α, β, γ, δ the following operators:

R11 = T+,αa
−1
0 T+,α∗ −T+,βd

−1
0 T+,β∗ : X+ → X+,(5.25)

R21 = H−,γa
−1
0 T+,α∗ −H−,δd

−1
0 T+,β∗ : X+ → Y−,(5.26)

R12 = H+,βd
−1
0 T−,δ∗ −H+,αa

−1
0 T−,γ∗ : Y− → X+,(5.27)

R22 = T−,δd
−1
0 T−,δ∗ −T−,γa

−1
0 T−,γ∗ : Y− → Y−.(5.28)

Lemma 5.4. Assume that conditions (C1) and (C2) are satisfied and that a0 and
d0 are invertible in Ad and Dd, respectively. Then the following identities hold true:

(5.29) R11eA = α, R12eD = β, R21eA = γ, R22eD = δ.

Proof. Note that β∗ ∈ C−. Thus
T+,β∗eA = PY+

(β∗eA) = PY+
β∗ = 0.

Since α∗ ∈ A∗
−, we have

T+,α∗eA = PX+
(α∗eA) = PX+

α∗ = a∗0.
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Using a0 = a∗0 (by the first part of (2.8)), it follows that

R11eA = T+,αa
−1
0 T+,α∗eA= T+,αa

−1
0 a∗0 = T+,αeA = PX+

(αeA) = α.

Notice that we used condition (C1). This proves the first identity (5.29).
Next, using γ ∈ C−, T+,α∗eA = a∗0, and T+,β∗eA = PY+

β∗ = 0 we obtain

R21eA = H−,γa
−1
0 T+,α∗eA = H−,γeA = PY−

(γeA) = PY−
γ = γ,

which proves the third identity in (5.29). The two other identities in (5.29), involv-
ing R12 and R22, are obtained in a similar way, using (C2), (2.8) and

T−,γ∗eD = 0, T−,δ∗eD = d∗0, H+,βeD = β, T−,δeD = δ.

This proves the lemma. �

The next lemma presents alternative formulas for the operatorsRij , 1 ≤ i, j ≤ 2,
given by (5.25)–(5.28), assuming conditions (C4)–(C6) are satisfied.

Lemma 5.5. Assume that a0 and d0 are invertible in Ad and Dd, respectively, and
that conditions (C4), (C5), and (C6) are satisfied. Then

R11 = IX+
−H+,αa

−1
0 H−,α∗ +H+,βd

−1
0 H−,β∗ : X+ → X+,(5.30)

R21 = T−,δd
−1
0 H−,β∗ −T−,γa

−1
0 H−,α∗ : X+ → Y−,(5.31)

R12 = T+,αa
−1
0 H+,γ∗ −T+,βd

−1
0 H+,δ∗ : Y− → X+,(5.32)

R22 = IY−
−H−,δd

−1
0 H+,δ∗ +H−,γa

−1
0 H+,γ∗ : Y− → Y−.(5.33)

Proof. First notice that a−1
0 ∈ Ad and d−1

0 ∈ Dd yield the following identities

T+,αa−1

0

= T+,αa
−1
0 , H+,αa−1

0

= H+,αa
−1
0 ,(5.34)

T+,βd−1

0

= T+,βd
−1
0 , H+,βd−1

0

= H+,βd
−1
0 ,(5.35)

T−,δd−1

0

= T−,δd
−1
0 , H−,δd−1

0

= H−,δd
−1
0 ,(5.36)

T−,γa−1

0

= T−,γa
−1
0 , H−,γa−1

0

= H−,γa
−1
0 .(5.37)

Next, note that condition (C4) implies that T+,αa−1

0
α∗−βd−1

0
β∗−eA

= 0. It follows

that
T+,αa−1

0
α∗ −T+,βd−1

0
β∗ − IX+

= 0.

Applying the product rule (4.20) and the identities in (5.34) and (5.35) we see that

T+,αa
−1
0 T+,α∗ −T+,βd

−1
0 T+,β∗ = IX+

−H+,αa
−1
0 H−,α∗ +H+,βd

−1
0 H−,β∗ .

It follows that the operator R11 defined by (5.25) is also given by (5.30). In a
similar way one shows that condition (C5) yields the identity (5.33).

Since (C6) states αa−1
0 γ∗ = βd−1

0 δ∗, we have the equalityH+,αa−1

0
γ∗ = H+,βd−1

0
δ∗ .

Applying the product rule (4.21) and the identities in (5.34) and (5.35) it follows
that

H+,αa
−1
0 T−,γ∗ +T+,αa

−1
0 H+,γ∗ = H+,βd

−1
0 T−,δ∗ +T+,βd

−1
0 H+,δ∗ .

This yields

R12 = H+,βd
−1
0 T−,δ∗ −H+,αa

−1
0 T−,γ∗ = T+,αa

−1
0 H+,γ∗ −T+,βd

−1
0 H+,δ∗ ,

which proves (5.32).
Finally, to prove the identity (5.31), note that, by taking adjoints, condition (C6)

yields that δd−1
0 β∗ = γa−1

0 α∗. But then using the identities in (5.36) and (5.37),
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arguments similar to the ones used in the previous paragraph, yield the identity
(5.31). �

The following lemma contains some useful formulas that we will prove by direct
verification.

Lemma 5.6. Assume that a0 and d0 are invertible in Ad and Dd, respectively,
and that the conditions (C1)–(C6) are satisfied. Let Rij , i, j = 1, 2, be given by
(5.25)–(5.28). Then

(5.38)

[
R11 R12

R21 R22

] [
IX+

0
0 −IY−

] [
R11 R12

R21 R22

]
=

[
R11 0
0 −R22

]
.

This implies that

(5.39) R =

[
R11 R12

R21 R22

]
:

[
X+

Y−

]
→

[
X+

Y−

]

is invertible if and only if R11 and R22 are invertible. Furthermore, in that case

(5.40) R−1 =

[
IX+

−R12R
−1
22

−R21R
−1
11 IY−

]
=

[
IX+

−R−1
11 R12

−R−1
22 R21 IY−

]
.

Proof. To check (5.38) we will prove the four identities

R11R12 = R12R22, R22R21 = R21R11,(5.41)

R11R11 −R12R21 = R11, R22R22 −R21R12 = R22.(5.42)

From (5.25)–(5.28) and (5.30)–(5.33) it follows that

R11R12 =
[
T+,α T+,β

] [a−1
0 0
0 −d−1

0

] [
T+,α∗

T+,β∗

]
×

×
[
H+,β H+,α

] [d−1
0 0
0 −a−1

0

] [
T−,δ∗

T−,γ∗

]
,

and

R12R22 =
[
T+,α T+,β

] [a−1
0 0
0 −d−1

0

] [
H+,γ∗

H+,δ∗

]
×

×
[
T−,δ T−,γ

] [d−1
0 0
0 −a−1

0

] [
T−,δ∗

T−,γ∗

]
.

But then (5.19) shows that R11R12 = R12R22. In a similar way, using (5.20) one
proves that R22R21 = R21R11.

Next observe that

R11(R11 − IX+
) = −

[
T+,α T+,β

] [a−1
0 0
0 −d−1

0

] [
T+,α∗

T+,β∗

]
×

×
[
H+,α H+,β

] [a−1
0 0
0 −d−1

0

] [
H−,α∗

H−,β∗

]
,
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and

R12R21 =
[
T+,α T+,β

] [a−1
0 0
0 −d−1

0

] [
H+,γ∗

H+,δ∗

]
×

×
[
T−,δ T−,γ

] [d−1
0 0
0 −a−1

0

] [
H−,β∗

H−,α∗

]

= −
[
T+,α T+,β

] [a−1
0 0
0 −d−1

0

] [
H+,γ∗

H+,δ∗

]
×

×
[
T−,δ T−,γ

] [a−1
0 0
0 −d−1

0

] [
H−,a∗

H−,β∗

]

But then (5.19) implies that R11R11 −R12R21 = R11. Similarly, using (5.20) one
proves that R22R22 −R21R12 = R22.

The final statements (5.39) and (5.40) are immediate from (5.41) and (5.42).
�

6. An abstract inversion theorem

Let M = MA,B,C,D be an admissible algebra. Fix g ∈ B+, and let Ω be the
operator given by

(6.1) Ω :=

[
IX+

H+,g

H−,g∗ IY−

]
:

[
X+

Y−

]
→

[
X+

Y−

]
.

We shall prove the following inversion theorem.

Theorem 6.1. Let M = MA,B,C,D be an admissible algebra and let g ∈ B+. Then
the operator Ω defined by (6.1) is invertible if there exist α ∈ A+, β ∈ B+, γ ∈ C−,
δ ∈ D− such that

(6.2) Ω

[
α

γ

]
=

[
eA
0

]
and Ω

[
β

δ

]
=

[
0
eD

]
,

and the following two conditions are satisfied:

(a) a0 := PAd
α and d0 := PDd

δ are invertible in Ad and Dd, respectively;
(b) conditions (C4)–(C6) are satisfied

In that case the inverse of Ω is given by

(6.3) Ω−1 =

[
R11 R12

R21 R22

]
,

where Rij , 1 ≤ i, j ≤ 2, are the operators defined by (5.25)–(5.28). Furthermore,
the operators R11 and R22 are invertible and

H+,g = −R−1
11 R12 = −R12R

−1
22 ,(6.4)

H−,g∗ = −R21R
−1
11 = −R−1

22 R21,(6.5)

g = −R−1
11 β, g∗ = −R−1

22 γ.(6.6)

Remark 6.2. In contrast to Theorem 1.1, the above theorem is not an “if and only
if” statement. In this general setting we only have the following partial converse:
if the operator Ω given by (6.1) is invertible, then there exist α ∈ A+, β ∈ B+,
γ ∈ C−, δ ∈ D− such that the equations (6.2) are satisfied. It can happen that the
operator Ω is invertible and item (a) is not satisfied; see Example 6.5 given at the
end of the present section.
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Note that the operators Rij , 1 ≤ i, j ≤ 2, appearing in (6.3) do not depend on
the particular choice of g, but on α, β, γ, δ only. It follows that Theorem 6.1 yields
the following corollary.

Corollary 6.3. Let α ∈ A+, β ∈ B+, γ ∈ C−, δ ∈ D−, and assume that

(a) a0 = PAd
α and d0 = PDd

δ are invertible in Ad and Dd, respectively;
(b) conditions (C4)–(C6) are satisfied.

Under these conditions, if the twofold EG inverse problem associated with α ∈ A+,
β ∈ B+, γ ∈ C−, δ ∈ D− has a solution, then the solution is unique.

Proof. Assume that the twofold EG inverse problem associated with α ∈ A+,
β ∈ B+, γ ∈ C−, δ ∈ D− has a solution, g say. Then (see Corollary 5.1) the
two identities in (6.2) are satisfied. Furthermore, by assumption, items (a) and
(b) in Theorem 6.1 are satisfied too. We conclude that (6.3) holds, and hence Ω is
uniquely determined by the operatorsRij , 1 ≤ i, j ≤ 2. But these Rij , 1 ≤ i, j ≤ 2,
do not depend on g, but on α, β, γ, δ only. It follows that the same is true for
H+,g. But H+,geD = PX+

geD = PX+
g = g. Thus g is uniquely determined by the

data. �

The following lemma will be be useful in the proof of Theorem 6.1.

Lemma 6.4. Let g ∈ B+ satisfy the inclusions (2.6) and (2.7). Then the following
identities hold:

T+,α∗H+,g = −H+,γ∗ , T+,β∗H+,g = −H−,δ∗ ,(6.7)

T−,γ∗H−,g∗ = −H−,α∗ , T−,δ∗H−,g∗ = −H−,β∗ ,(6.8)

H+,gT−,δ = −H+,β, H+,gT−,γ = −H+,α,(6.9)

H−,g∗T+,α = −H−,γ , H−,g∗T+,β = −H−,δ.(6.10)

Proof. The above identities follow by using the implications in (5.5)–(5.8) and
(5.9)–(5.12) together with the identities in (5.15) – (5.18). Let us illustrate this by
proving the first identity in (6.7).

From the first identity in (5.15) we know that T+,α∗H+,g = H+,α∗g. Since
g ∈ B+ satisfies the first inclusion in (2.6), the equivalence in (5.10) tells us that
H+,α∗g = −H+,γ∗ . Hence T+,α∗H+,g = −H+,γ∗ , and the first identity (6.7) is
proved. �

Proof of Theorem 6.1. Recall that the two identities in (6.2) together are equiv-
alent to g ∈ B+ being a solution to the twofold EG inverse problem associated with
α ∈ A+, β ∈ B+, γ ∈ C−, δ ∈ D−, and hence the two identities in (6.2) imply that
the conditions (C1)–(C3) are satisfied. Given item (b) in Theorem 6.1 we conclude
that all conditions (C1)–(C6) are satisfied.

The remainder of the proof is divided into three parts.
Part 1. First we will prove that

(6.11)

[
R11 R12

R21 R22

] [
IX+

H+,g

H−,g∗ IY−

]
=

[
IX+

0
0 IY−

]
.
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We start with the identity R11+R12H−,g∗ = IX+
. Using the two identities in (6.8)

we have

R12H−,g∗ = H+,βd
−1
0 T−,δ∗H−,g∗ −H+,αa

−1
0 T−,γ∗H−,g∗

= −H+,βd
−1
0 H−,β∗ +H+,αa

−1
0 H−,α∗

= −R11 + IX+
,

which proves R11 +R12H−,g∗ = IX+
.

Similarly, using the two identities in (6.7), we obtain

R11H+,g = T+,αa
−1
0 T+,α∗H+,g −T+,βd

−1
0 T+,β∗H+,g

= −T+,αa
−1
0 H+,γ∗ +T+,βd

−1
0 H+,δ∗

= −R12.

Thus R11H+,g +R12 = 0.
The equalities R21H+,g +R22 = IY and R21 +R22H−,g∗ = 0 are proved in a

similar way.

Part 2. In this part we prove that

(6.12)

[
IX+

H+,g

H−,g∗ IY−

] [
R11 R12

R21 R22

]
=

[
IX+

0
0 IY−

]
.

To see this we first show that R11 +H+,gR21 = IX+
. We use (5.31) and the two

identities in (6.9). This yields

H+,gR21 = H+,gT−,δd
−1
0 H−,β∗ −H+,gT−,γa

−1
0 H−,α∗

= −H+,βd
−1
0 H−,β∗ +H+,αa

−1
0 H−,α∗

= IX+
−R11.

where the last equality follows from (5.30). We proved R11 +H+,gR21 = IX+
.

Next we will prove that R12 +H+,gR22 = 0. Using (5.28) and the identities in
(6.9) we obtain

H+,gR22 = H+,gT−,δd
−1
0 T−,δ∗ −H+,gT−,γa

−1
0 T−,γ∗

= −H+,βd
−1
0 T−,δ∗ +H+,αa

−1
0 T−,γ∗

= −R12.

We proved that R12 +H+,gR22 = 0.
The equalities H−,g∗R11 +R21 = 0 and H−,g∗R12 +R22 = IY−

are proved in a
similar way.

Part 3. To finish the proof we note that (6.11) and (6.12) imply that the operator
Ω is invertible and that its inverse is given by

Ω−1 =

[
R11 R12

R21 R22

]
,

which completes the proof. �

As mentioned in the introduction, Theorem 6.1 has been many predecessors. See
also Sections 8 and 10.
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Example 6.5. We conclude this section with an example of the type announced
in Remark 6.2, i.e., the operator Ω is invertible and item (a) in Theorem 6.1 is not
satisfied. We use a special case of the example in Subsection 3.2. Let p = 2 and

g =

[
1 1
0 1

]
.

Then Ω is invertible. To see this we choose bases for the upper triangular and
the lower triangular matrices and determine the matrix of Ω with respect to these
bases. The basis we choose for the upper triangular matrices is

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

]}

and the basis we choose for the lower triangular matrices is
{[

1 0
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
.

Then it follows that the matrix for Ω with respect to these bases is



1 0 0 1 1 0
0 1 0 0 0 1
0 0 1 0 0 1
1 0 0 1 0 0
1 0 0 0 1 0
0 1 1 0 0 1



,

which is an invertible matrix. The solution of the two equations (6.2) is

α =

[
−1 −1
0 0

]
, γ =

[
1 0
1 1

]
, β =

[
1 1
0 1

]
, δ =

[
0 0
−1 −1

]
.

We see that α and δ are not invertible and then the diagonals αd and δd are also
not invertible. It is also easy to check that α, β, γ and δ satisfy the inclusions (2.6)
and (2.7).

7. Solution to the abstract twofold EG inverse problem

The next theorem is the main result of this section.

Theorem 7.1. Let α ∈ A+, β ∈ B+, γ ∈ C−, δ ∈ D−, and assume that

(a) a0 = PAd
α and d0 = PDd

δ are invertible in Ad and Dd, respectively;
(b) conditions (C1)–(C6) are satisfied.

Furthermore, let R11, R12, R21, R22 be the operators defined by (5.25)–(5.28).
Then the twofold EG inverse problem associated with the data set {α, , β, γ, δ} has
a solution if and only if

(i) R11 : X+ → X+ and R22 : Y− → Y− are invertible;

(ii)
(
R−1

11 β
)∗

= R−1
22 γ;

(iii) R−1
11 R12 = H+,ρ for some ρ ∈ B and R−1

22 R21 = H−,η for some η ∈ C.
In that case the solution g of the twofold EG inverse problem associated with α, β,
γ and δ is unique and is given by

(7.1) g = −R−1
11 β = −(R−1

22 γ)
∗.
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Proof. The proof is divided into two parts. Note that the uniqueness statement
is already covered by Corollary 6.3. In the first part of the proof we prove the
necessity of the conditions (i), (ii), (iii).

Part 1. Assume g ∈ B+ is a solution to the twofold EG inverse problem associated
with the data set {α, β, γ, δ}. Note that conditions (a) and (b) in Theorem 7.1 imply
conditions (a) and (b) in Theorem 6.1. Furthermore, from Corollary 5.1 we know
that the identities in (6.2) are satisfied. Thus Theorem 6.1 tells us that operator
Ω defined by (6.1) is invertible and its inverse is given by (6.3). In particular, the
operator R defined by

R =

[
R11 R12

R21 R22

]

is invertible. But then the second part of Lemma 5.6 tells us that the operators
R11 and R22 are invertible, i.e., condition (i) is fulfilled. Furthermore, again using
the second part of Lemma 5.6, we have

Ω = R−1 =

[
IX+

−R12R
−1
22

−R21R
−1
11 IY−

]
=

[
IX+

−R−1
11 R12

−R−1
22 R21 IY−

]
.

In particular, we have

H+,g = −R−1
11 R12 = −R12R

−1
22 , H−,g∗ = −R21R

−1
11 = −R−1

22 R21.

The preceding two identities show that item (iii) holds with ρ = −g and η = −g∗.
Finally, since ρ = −g and η = −g∗, the identities in (7.1) imply that item (ii) is
satisfied.

Part 2. In this part we assume that conditions (i), (ii), (iii) are satisfied and we
show that the twofold EG inverse problem associated with the data set {α, β, γ, δ}
has a solution.

Put g = −PB+
ρ and h = −PC−

η. We shall show that h = g∗ and for this choice
of g the inclusions (2.6) and (2.7) are fulfilled. Note that PB+

(g + ρ) = 0, so that
g+ρ ∈ B−. From the second part of (4.10) we then obtain thatH+,g = −H+,ρ, and,
by a similar argument, from the first part of (4.14) it follows that H−,h = −H−,η.
Using these identities and those given by Lemma 5.2 together with the second and
third identity in (5.29) we see that condition (iii) yields

g = H+,geD = −H+,ρeD = −R−1
11 R12eD = −R−1

11 β,

h = H−,heA = −H−,ηeA = −R−1
22 R21eA = −R−1

22 γ.

But then (ii) implies that h = g∗. Furthermore, (iii) tells us that

(7.2) R−1
11 R12 = −H+,g and R−1

22 R21 = −H−,g∗ .

According to Lemma 5.6 condition (i) implies that the operatorR given by (5.39)
is invertible, and its inverse is given by (5.40). This together with the identities in
(7.2) implies that

R−1 =

[
R11 R12

R21 R22

]−1

=

[
IX+

−R−1
11 R12

−R−1
22 R21 IY−

]
=

[
IX+

H+g

H−,g∗ IY−

]
.

Next note that the identities in (5.29) can be rephrased as
[
R11 R12

R21 R22

] [
eA 0
0 eD

]
=

[
α β

γ δ

]
.
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But then [
IX+

H+g

H−,g∗ IY−

] [
α β

γ δ

]
=

[
eA 0
0 eD

]
,

and the equivalences in (5.2) and (5.3) tell us that with our choice of g the inclusions
(2.6) and (2.7) are fulfilled. Hence g is a solution to the twofold EG inverse problem
associated with the data set {α, β, γ, δ}. Since g = −R−1

11 β, the proof is complete.
�

A variation on condition (iii) in Theorem 7.1 does not appear in the solution to
the twofold EG inverse problem in L1(R) as formulate in the introduction, e.g., in
Theorem 1.2, and neither in the solution to the discrete twofold EG inverse problem
in [10]. This is because in the abstract setting presented in this paper we do not
have a characterization of Hankel-type operators via an intertwining condition as
in the discrete case as well as in the continuous case (where an extra condition is
needed, as shown in the Appendix). Lemma 7.2 below provides, at the abstract
level, a result that will be useful in proving that condition (iii) is implied by the
assumptions made for the special cases we consider.

Assume we have operators VZ,± : Z± → Z± and V∗,Z,± : Z± → Z±, with Z
either X or Y, that are such that V∗,Z,±VZ,± = IZ±

and

for any φ ∈ A: V∗,X ,±H±,φ = H±,φVX ,∓, V∗,X ,±T±,φVX ,± = T±,φ;

for any φ ∈ B: V∗,X ,±H±,φ = H±,φVY,∓, V∗,X ,±T±,φVY,± = T±,φ;

for any ψ ∈ D: V∗,Y,±H±,ψ = H±,ψVY,∓, V∗,Y,±T±,φVY,± = T±,φ;

for any ψ ∈ C: V∗,Y,±H±,ψ = H±,ψVX ,∓, V∗,Y,±T±,φVX ,± = T±,φ,

and

for any φ ∈ A±: T±,φVX ,± = VX ,±T±,φ;

for any φ ∈ B±: T±,φVY,± = VX ,±T±,φ;

for any ψ ∈ C±: T±,ψVY,± = VY,±T±,ψ;

for any φ ∈ B±: T±,ψVX ,± = VY,±T±,ψ.

Lemma 7.2. With Rij defined as above one has the equalities

R11V∗,X ,+R12 = R12VY,−R22 and R22V∗,Y,−R21 = R21VX ,+R11.

Moreover, if R11 and R22 are invertible, then

(7.3) V∗,X ,+R12R
−1
22 = R−1

11 R12VY,−.

Proof. First we will prove that R11V∗,X ,+R12 = R12VY,−R22. We start with
deriving the equality

(7.4)

[
T+,α∗

T+,β∗

]
V∗,X ,+

[
H+,β H+,α

]
=

[
H+,γ∗

H+,δ∗

]
VY,−

[
T−,δ T−,γ

]
.

To obtain (7.4), first notice that

V∗,X ,+

[
H+,β H+,α

]
=

[
H+,β H+,α

] [VY,− 0
0 VX ,−

]
;

VY,−

[
T−,δ T−,γ

]
=

[
T−,δ T−,γ

] [VY,− 0
0 VX ,−

]
.
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Then use (5.19) to get that
[
T+,α∗

T+,β∗

]
V∗,X ,+

[
H+,β H+,α

]
=

[
T+,α∗

T+,β∗

] [
H+,β H+,α

] [VY,− 0
0 VX ,−

]

=

[
H+,γ∗

H+,δ∗

] [
T−,δ T−,γ

] [VY,− 0
0 VX ,−

]

=

[
H+,γ∗

H+,δ∗

]
VY,−

[
T−,δ T−,γ

]
.

We proved (7.4). By multiplying (7.4) on the left and the right by

[
T+,α T+,β

]
and

[
T−,δ∗

T−,γ∗

]
,

respectively, one gets R11V∗,X ,+R12 = R12VY,−R22. Furthermore, the equality
R22V∗,Y,−R21 = R21VX ,+R11 can be proved in a similar way.

Given the invertibility of R11 and R22 the preceding two identities yield the
identity (7.3) trivially. �

8. Proof of Theorems 1.1 and 1.2

In this section we will prove Theorems 1.1 and 1.2. Recall that in this case the
data are given by (1.1) and (1.2), and the twofold EG inverse problem is to find
g ∈ L1(R+)

p×q such that (1.3) and (1.4) are satisfied.
As a first step, the above problem will be put into the general setting introduced

in Section 2 using a particular choice for A, B, C, D, namely as follows:

A = {f | f = ηep + f0, where η ∈ C
p×p, f0 ∈ L1(R)p×p},(8.1)

B = L1(R)p×q , C = L1(R)q×p,(8.2)

D = {h | h = ζeq + h0, where ζ ∈ C
q×q, h0 ∈ L1(R)q×q}.(8.3)

Furthermore, A, B, C, D admit decompositions as in (2.2) and (2.4) using

A0
+ = L1(R+)

p×p, A0
− = L1(R−)

p×p, Ad = {ηep | η ∈ C
p×p},

B+ = L1(R+)
p×q , B− = L1(R−)

p×q,

C+ = L1(R+)
q×p, C− = L1(R−)

q×p,

D0
+ = L1(R+)

q×q, D0
− = L1(R−)

q×q, Dd = {ζeq | ζ ∈ C
q×q}.

Here em, for m = p, q, is the constant m×m matrix function on R whose value is
the m×m identity matrix Im. Thus given η ∈ Cm×m, the symbol ηem denotes the
constant matrix function on R identically equal to η.

We proceed by defining the algebraic structure. The addition is the usual addi-
tion of functions and is denoted by +. For the product we use the symbol ⋄ which
in certain cases is just the usual convolution product ⋆. If f = ηfep + f0 ∈ A and

f̃ = ηf̃ep + f̃0 ∈ A, then the ⋄ product is defined by

f ⋄ f̃ := ηfηf̃ep +
(
ηf f̃0 + f0ηf̃ ep + f0 ⋆ f̃0

Thus for f ∈ L1(R)n×m and h ∈ L1(R)m×k the product f ⋄ h is the convolution
product f ⋆ h. The product of elements f = ηf ep + f0 ∈ A and h0 ∈ B is defined
as f ⋄ h0 = ηfh0 + f0 ⋆ h0. Other products are defined likewise. One only needs
the matrix dimension to allow the multiplication. The units eA and eD in A and
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D are given by eA = ep and eD = eq, respectively. Finally, the adjoint f∗ for
f ∈ L1(R)r×s is defined by f∗(λ) = f(−λ)∗, λ ∈ R, so that f∗ ∈ L1(R)s×r. For
f = ηes + f0 with η ∈ Cs×s and f0 ∈ L1(R)s×s we define f∗ by f∗ = η∗es + f∗

0 ,
where η∗ is the adjoint of the matrix η. It easily follows that all conditions of the
first paragraph of Section 2 are satisfied. We conclude that MA,B,C,D is admissible.

Remark 8.1. Observe that for a data set {a, b, c, d} as in (1.1) with α, β, γ, δ
the functions given by (1.16), the inclusions for a, b, c and d in (1.3) and (1.4) are
equivalent to the inclusions (2.6) and (2.7) for α, β, γ and δ. Thus the solutions
g ∈ L1(R+)

p×q for the twofold EG inverse problem formulated in the introduction
coincide with the solutions of the abstract twofold EG inverse problem of Section 2
using the specification given in the present section. Furthermore, in this case

(C1) ⇐⇒ α∗ ⋄ α− γ∗ ⋄ γ = ep;(8.4)

(C2) ⇐⇒ d∗ ⋄ δ − β∗ ⋄ β = eq;(8.5)

(C3) ⇐⇒ α∗ ⋄ β = γ∗ ⋄ δ.(8.6)

Thus (C1)–(C3) are satisfied if and only if the following three identities hold true:

(8.7) α∗ ⋄ α− γ∗ ⋄ γ = ep, d∗ ⋄ δ − β∗ ⋄ β = eq, α∗ ⋄ β = γ∗ ⋄ δ.

8.1. Proof of Theorem 1.1. Note that Theorem 1.1 is an “if and only if ” the-
orem. We first proof the “only if” part. Let g ∈ L1(R+)

p×q, and assume that the
operator W given by (1.21) is invertible. Note that

[
0

−g∗

]
∈
[
L1(R+)

p×p

L1(R+)
q×p

]
and

[
−g
0

]
∈
[
L1(R+)

p×q

L1(R+)
q×q

]

Since W is invertible, we see that there exist

a ∈ L1(R+)
p×p, c ∈ L1(R−)

q×p, b ∈ L1(R+)
p×q, d ∈ L1(R−)

q×q

such that

W

[
a

c

]
=

[
0

−g∗
]

and W

[
b

d

]
=

[
−g
0

]
.

But this implies that g is a solution to the twofold EG inverse problem defined by
the data set {a, b, c, d}. Thus the “only if” part of Theorem 1.1 is proved.

Next we prove the “if” part of Theorem 1.1. We assume that g ∈ L1(R+)
p×q

is a solution to the twofold EG inverse problem defined by the data set {a, b, c, d}
given by (1.1) and (1.2). Furthermore, α, β, γ, and δ are given by (1.16), and
M = MA,B,C,D is the admissible algebra defined in the beginning of this section.
Our aim is to obtain the “if” part of Theorem 1.1 as a corollary of Theorem 6.1.
For that purpose various results of Section 2 and Sections 4–6 have to be specified
further for the case when A, B, C, D are given by (8.1)–(8.3) in the beginning of
this section. This will be done in four steps.

Step 1. Results from Section 2. Since g ∈ L1(R+)
p×q = B+ is a solution to

the twofold EG inverse problem associated with the data {α, β, γ, δ}, we know from
Proposition 2.1 that conditions (C1)-(C3) are satisfied. Furthermore,

(8.8) a0 = PAd
α = ep and d0 = PDd

δ = eq.
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But then the fact that α, β, γ, and δ are matrix functions implies that conditions
(C4)-(C6) are also satisfied. Indeed, using the identities in (8.8), we see from (2.9)
that

(8.9)

[
α∗(λ) γ∗(λ)
β∗(λ) δ∗(λ)

] [
Ip 0
0 −Iq

] [
α(λ) β(λ)
γ(λ) δ(λ)

]
=

[
Ip 0
0 −Iq

]
, λ ∈ R.

In particular, the first matrix in the left hand side of (8.9) is surjective and third
matrix in the left hand side of (8.9) is injective. But all matrices in (8.9) are finite
square matrices. It follows that all these matrices are invertible. Hence

[
α β

γ δ

]−1 [
ep 0
0 −eq

] [
α∗ γ∗

β∗ δ∗

]−1

=

[
ep 0
0 −eq

]
,

which yields [
α β

γ δ

] [
ep 0
0 −eq

] [
α∗ γ∗

β∗ δ∗

]
=

[
ep 0
0 −eq

]
.

The latter implies that conditions (1.4)–(1.6) are satisfied. In particular, we have
proved that

(i) a0 = PAd
α and d0 = PDd

δ are invertible in Ad and Dd, respectively;
(ii) conditions (C1)–(C6) are satisfied.

Step 2. Results from Section 4. In the present context the spaces X and Y,
X+ and Y+, and X− and Y− defined in the first paragraph of Section 4 are given
by

X = A+̇B =
(
C
p×pep + L1(R)p×p

)
+̇L1(R)p×q ,

X+ = A++̇B+ =
(
C
p×pep + L1(R+)

p×p
)
+̇L1

+(R)
p×q ,

X− = A0
−+̇B− = L1(R−)

p×p+̇L1(R−)
p×q,

and

Y = C+̇D = L1(R)q×p+̇
(
L1(R)q×q + C

q×qeq
)
,

Y+ = C++̇D0
+ = L1(R+)

q×p+̇L1(R+)
q×q,

Y− = C−+̇D− = L1(R−)
q×p+̇

(
L1(R−)

q×q + C
q×qeq

)
.

In the sequel we write x ∈ X as x = (f, g), where f = ηfep + f0 ∈ A and g ∈ B. In
a similar way vectors x+ ∈ X+ and x− ∈ X− will be written as

x+ = (f+, g+), where f+ = ηf+ep + f+,0 ∈ A+ and g+ ∈ B+,

x− = (f−, g−), where f− ∈ A0
− and g− ∈ B−.

Analogous notations will be used for vectors y ∈ Y, y+ ∈ Y+, and y− ∈ Y−. Indeed,
y ∈ Y will be written as (h, k), where h ∈ C, and k = ζeq + k0 ∈ D, and

y+ = (h+, k+), where h+ ∈ C+ and k+ ∈ D0
+,

y− = (h−, k−), where h− ∈ C− and k− = ζk−eq + k−,0 ∈ D−.

Furthermore, in what follows 0p×q and 0q×p denote the linear spaces consisting only
of the zero p× q and zero q × p matrix, respectively.
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Using the above notation we define the following operators:

JX+
: X+ →

[
Cp×p+̇0p×q

L1(R+)
p×p+̇L1(R+)

p×q

]
, JX+

x+ =

[
(ηf+ , 0)
(f+,0, g+)

]
,

JX−
: X− → L1(R−)

p×p+̇L1(R−)
p×q, JX−

x− = (f−, g−),

and

JY+
: Y+ → L1(R+)

q×p+̇L1(R+)
q×q, JY+

y+ = (h+, k+),

JY−
: Y− →

[
0q×p+̇Cq×q

L1(R−)
q×p+̇L1(R−)

q×q

]
, JY−

y− =

[
(0, ζk−)

(h−, k−,0)

]
.

Note that all four operators defined above are invertible operators.
Next, in our present setting where α, β, γ, δ are given by given by (1.16), we

relate the Toeplitz-like and Hankel-like operators introduced in Section 4 to ordinary
Wiener-Hopf and Hankel integral operators.

Let α = a+ + ep + a− ∈ A+ +Ad +A− = A. Then

JX+
T+,α =

[
Ip 0
a+ T+,α

]
JX+

, JX−
T−,α = T−,αJX−

,

JX+
H+,α =

[
0

H+,α

]
JX−

, JX−
H−,α =

[
a− H−,α

]
JX+

.

For β = b+ + b− ∈ B+ + B− = B we get

JX+
T+,β =

[
0

T+,β

]
JY+

, JX−
T−,β =

[
b− T−,β

]
JY−

,

JX+
H+,β =

[
0 0
b+ H+,β

]
JY−

, JX−
H−,β = H−,βJY+

.

Let γ = c+ + c− ∈ C+ + C− = C. We have the equalities

JY−
T−,γ =

[
0

T−,γ

]
JX−

, JY+
T+,γ =

[
c+ T+,γ

]
JX+

,

JY−
H−,γ =

[
0 0
c− H−,γ

]
JX+

, JY+
H+,γ = H+,γJX−

.

Let δ = d+ + eq + d− ∈ D+ +Dd +D− = D. Then

JY−
T−,δ =

[
Ip 0
d− T−,δ

]
JY−

, JY+
T+,δ = T+,δJX−

,

JY−
H−,δ =

[
0

H−,δ

]
JY+

, JY+
H+,δ =

[
d+ H+,δ

]
JY−

.

The following lemma is an immediate consequence of the above relations.

Lemma 8.2. For g ∈ B+ one has

(8.10)

[
JX+

0
0 JY−

] [
IX+

H+,g

H−,g∗ IY−

]
=




Ip 0 0 0
0 I g H+,g

0 0 Iq 0
g∗ H−,g∗ 0 I



[
JX+

0
0 JY−

]
.
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Furthermore, if Ω is the operator defined by (6.1) using the present data, and if W
is the operator defined by (1.21), then (8.10) shows that Ω is invertible if and only
if W is invertible.

Step 3. Results from Section 5. As before we assume that a, b, c and d are
given by (1.1) and (1.2) and α, b, γ and δ by (1.16), and that g ∈ L1(R+)

p×q = B+

is a solution to the twofold EG inverse problem associated with the data {α, β, γ, δ}.
Thus we know from Step 1 that

(i) a0 = PAd
α and d0 = PDd

δ are invertible in Ad and Dd, respectively;
(ii) conditions (C1)–(C6) are satisfied.

In particular, all conditions underlying the lemmas proved in Section 5 are fulfilled.
The following lemma is an immediate consequence of Lemma 5.3.

Lemma 8.3. Since conditions (C1)-(C3) are satisfied, we have

(8.11)

[
T+,α∗

T+,β∗

] [
H+,β H+,α

]
=

[
H+,γ∗

H+,δ∗

] [
T−,δ T−,γ

]
.

and

(8.12)

[
T−,δ∗

T−,γ∗

] [
H−,γ H−,δ

]
=

[
H−,β∗

H−,α∗

] [
T+,α T+,β

]
.

Proof. The above equalities (8.11) and (8.12) follow from the equalities (5.19) and
(5.20) and the representations of the Hankel-like and Toeplitz-like operators given
in the paragraph preceding Lemma 8.2. For example to prove (8.11) note that

[
JX+

0
0 JY+

] [
T+,α∗

T+,β∗

]
=



Ip 0
0 T+,α∗

0 T+,β∗


JX+

,

and

JX+

[
H+,β H+,α

]
=

[
0 0 0
b H+,β H+,α

] [
JY−

0
0 JX−

]
.

On the other hand

[
JX+

0
0 JY+

] [
H+,γ∗

H+,δ∗

]
=



0 0
c∗ H+,γ∗

d∗ H+,δ∗


JY−

,

and

JY−

[
T−,δ T−,γ

]
=

[
Iq 0 0
d T−,δ T−,γ

] [
JY−

0
0 JX−

]
.

The equality (8.11) now follows from (5.19). The equality (8.12) can be verified in
the same manner. �

In what follows M is the operator given by

(8.13) M =

[
M11 M12

M21 M22

]
:

[
L1(R+)

p

L1(R−)
q

]
→

[
L1(R+)

p

L1(R−)
q

]
,

where M11, M12, M21, and M22 are the operators defined by (1.17)–(1.20).
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Lemma 8.4. Let R11, R12, R21, and R22 be defined by (5.25)–(5.28), and let M11,
M12, M21, and M22 be defined by (1.17)–(1.20). Then

(8.14)

[
JX+

0
0 JY−

] [
R11 R12

R21 R22

]
=




Ip 0 0 0
a M11 b M12

0 0 I 0
c M21 d M22



[
JX+

0
0 JY−

]
.

In particular, R given by (5.39) is invertible if and only if M defined by (8.13) is
invertible. Moreover, M11 is invertible if and only if R11 is invertible and M22 is
invertible if and only if R22 is invertible.

Proof. From the relations between Hankel-like operators and Toeplitz-like opera-
tors on the one hand and Hankel integral operators and Wiener Hopf operators on
the other hand we have the identities:

JX+
R11 =

[
Ip 0
a M11

]
JX+

, JX+
R12 =

[
0 0
b M12

]
JY−

,(8.15)

JY−
R21 =

[
0 0
c M21

]
JX+

, JY−
R22 =

[
Iq 0
d M22

]
JY−

.(8.16)

Putting together these equalities gives the equality (8.14). The equality (8.14)
implies that R is invertible it and only if M is invertible. The final statement
follows from the first equality in (8.15) and the second equality in (8.16). �

We continue with specifying two other lemmas from Section 5.

Lemma 8.5. Since conditions (C4)–(C6) are satisfied, we have

M11 = Ip −H+,αH−,α∗ +H+,βH−,β∗ : L1(R+)
p → L1(R+)

p,(8.17)

M21 = T−,δH−,β∗ − T−,γH−,α∗ : L1(R+)
p → L1(R−)

q,(8.18)

M12 = T+,αH+,γ∗ − T+,βH+,δ∗ : L1(R−)
q → L1(R+)

p,(8.19)

M22 = Iq −H−,δH+,δ∗ +H−,γH+,γ∗ : L1(R−)
q → L1(R−)

q.(8.20)

Proof. The result is an immediate consequence of Lemma 5.5 and the relations
between the Rij and Mij in (8.15) and (8.16). �

Lemma 8.6. Let Mij, i, j = 1, 2, be given by (1.17)–(1.20), and let M be given by
(8.13). Since conditions (C1)–(C6) are satisfied, we have

(8.21)

[
M11 M12

M21 M22

] [
Ip 0
0 −Iq

] [
M11 M12

M21 M22

]
=

[
M11 0
0 −M22

]
.

In particular, M is invertible if and only if M11 and M22 are invertible. Further-
more, in that case

(8.22) M−1 =

[
Ip −M12M

−1
22

−M21M
−1
11 Iq

]
=

[
Ip −M−1

11 M12

−M−1
22 M21 Iq

]
.

Proof. The result is an immediate consequence of Lemma 5.6 and the relations
between Rij and Mij given in (8.15) and (8.16). �

Step 4. Results of Section 6. We use Theorem 6.1 to prove the “if” part of
Theorem 1.1 and the identities (1.23), (1.24), (1.25), and (1.26).
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First we check that the various conditions appearing in Theorem 6.1 are satisfied
given our data. Since g ∈ L1(R+)

p×q = B+ is a solution to the twofold EG inverse
problem, Proposition 5.1 tells us that

Ω

[
α

γ

]
=

[
eA
0

]
and Ω

[
β

δ

]
=

[
0
eD

]
.

Thus the identities in (6.2) are satisfied. Next, note that the final conclusion of
Step 1 tells us that of items (a) and (b) in Theorem 6.1 are also satisfied.

Thus Theorem 6.1 tells us that the operator Ω is invertible. But then we can
use Lemma 8.2 to conclude that the operator W defined by (1.21) is invertible too.
This concludes the proof of the “if” part of Theorem 1.1.

Theorem 6.1 also tells us that the inverse R of Ω is given by (6.3). From (8.10)
and (8.14) it then follows that the inverse ofW is the operatorM defined by (8.13).
This proves identity (1.23).

From Lemma 8.6 we know that that M11 and M22 are invertible. The identities
in (1.24) and (1.25) are obtained by comparing the off diagonal entries ofW =M−1

in (1.23) and (8.22).
Finally to see that the identities in (1.26) hold true, note that from RΩ = I it

follows that 


Ip 0 0 0
a M11 b M12

0 0 I 0
c M21 d M22







Ip 0 0 0
0 I g H+,g

0 0 I 0
g∗ H−,g∗ 0 I


 = I.

In particular, M11g + b = 0 and M22g
∗ + c = 0. Using the invertibility of M11 and

M22 we obtain the formulas for g and g∗ in (1.26). This completes the proof. �

8.2. Proof of Theorem 1.2. Throughout this subsection, as in Theorem 1.2,
{a, b, c, d} are the functions given by in (1.1) and (1.2), and α, β, γ, δ are the
functions given by (1.16). Furthermore, ep and eq are the functions on R identically
equal to the unit matrix Ip and Iq , respectively. Finally M = MA,B,C,D is the
admissible algebra constructed in the beginning three paragraphs of the present
section. In what follows we split the proof of Theorem 1.2 into two parts.

Part 1. In this part we assume that the twofold EG inverse problem associated
with the data set {a, b, c, d} has a solution, g ∈ L1(R+)

p×q = B+ say. Then
we know from Proposition 2.1 that conditions (C1) – (C3) are satisfied. But the
latter, using the final part of Remark 8.1, implies that condition (L1) is satisfied.
Furthermore, the second part of Theorem 1.1 tells us that the operators M11 and
M22 are invertible, and hence condition (L2) is satisfied too. Finally, the two
identities in (1.26) yield the two identities in (1.27). This concludes the first part
of the proof.

Part 2. In this part we assume that (L1) and (L2) are satisfied. Our aim is to
show that the twofold EG inverse problem associated with the data set {a, b, c, d}
has a solution.

We begin with some preliminaries. Recall that

a0 = PAd
α = ep and d0 = PDd

δ = eq.

Furthermore, from the identities in (8.7) we know that (C1)–(C3) are satisfied. But
then we can repeat the arguments in Step 1 of the proof of Theorem 1.1 to show
that conditions (C4)–(C6) are also satisfied. Thus all conditions (C1)–(C6) are
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fulfilled. Finally, note that in the paragraph directly after Theorem 1.2 we showed
that (L1) and (L2) imply thatM11 and M22 are invertible, and hence we can apply
Lemma 8.6 to see that the inverse of

M :=

[
M11 M12

M21 M22

]

is given by (8.22), i.e.,

(8.23) M−1 =

[
Ip −M12M

−1
22

−M21M
−1
11 Iq

]
=

[
Ip −M−1

11 M12

−M−1
22 M21 Iq

]
.

It remains to show that there exists a g ∈ L1(R+)
p×q such that

(8.24) −M−1
11 M12 = H+,g and −M−1

22 M21 = H−,g∗ .

To do this we need (in the context of the present setting) a more general version
of Lemma 7.2. We cannot apply Lemma 7.2 directly because of the role of the
constant functions in Cp×pep and Cq×qeq. The more general version of Lemma 7.2
will be given and proved in the following intermezzo.

Intermezzo. First we introduce the required transition operators. Let τ ≥ 0.
Define Vr,τ : L2(R+)

r → L2(R+)
r by

(Vr,τf) (t) =

{
f(t− τ), t ≥ τ,

0, 0 ≤ t ≤ τ.

Note that its adjoint V ∗
r,τ is given by

(
V ∗
r,τf

)
(t) = f(t+ τ) for t ≥ 0. We also need

the the flip over operator Jr from L2(R+)
r to L2(R−)

r given by (Jrf)(t) = f(−t).
With some abuse of notation we also consider Vr,τ , Jr and their adjoints as operators
acting on L1-spaces. For ϕ ∈ Ck×m+̇L1(R+)

k×m we then have

V ∗
k,τH+,ϕ = H+,ϕJmVm,τJm, and JkV

∗
k,τJkH−,ϕ = H−,ϕVm,τ ,

V ∗
k,τT+,ϕVm,τ = T+,ϕ. and JkV

∗
k,τJkT−,ϕJmVm,τJm = T−,ϕ.

The following lemma is the more general version of Lemma 7.2 mentioned above.
The result will be used to show that M−1

11 M12 and M−1
22 M21 are classical Hankel

integral operators.

Lemma 8.7. WithMij, 1 ≤ i, j ≤ 2, defined by (1.17)–(1.20) we have the following
equalities:

M11V
∗
p,τM12 =M12JqVq,τJqM22 and M22jqV

∗
q,τJqM21 =M21Vp,τM11.

Moreover, if M11 and M22 are invertible, then

V ∗
p,τM12M

−1
22 =M−1

11 M12JqVq,τJq, JqV
∗
q−,τJqM21M

−1
11 =M−1

22 M21Vp,τ .

Proof. First we will prove that M11V
∗
p,τM12 = M12JqVq,τJqM22. We start with

deriving the equality

(8.25)

[
T+,α∗

T+,β∗

]
V ∗
p,τ

[
H+,β H+,α

]
=

[
H+,γ∗

H+,δ∗

]
JqVq,τJq

[
T−,δ T−,γ

]
.
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Let f− ∈ L1(R−)
q and h− ∈ L1(R−)

p. To obtain (8.25), first notice that

V ∗
p,τ

[
H+,β H+,α

] [f−
h−

]
=

[
H+,β H+,α

] [JqVq,τJq 0
0 JpVp,τJp

] [
f−
h−

]
;

JqVq,τJq
[
T−,δ T−,γ

] [f−
h−

]
=

[
T−,δ T−,γ

] [JqVq,τJq 0
0 JpVp,τJp

] [
f−
h−

]
.

Then use (8.11) to get that
[
T+,α∗

T+,β∗

]
V ∗
p,τ

[
H+,β H+,α

] [f−
h−

]

=

[
T+,α∗

T+,β∗

] [
H+,β H+,α

] [JqVq,τJq 0
0 JpVp,τJp

] [
f−
h−

]

=

[
H+,γ∗

H+,δ∗

] [
T−,δ T−,γ

] [JqVq,τJq 0
0 JpVp,τJp

] [
f−
h−

]

=

[
H+,γ∗

H+,δ∗

]
JqVq,τJq

[
T−,δ T−,γ

] [f−
h−

]
.

We proved (8.25). By multiplying (8.25) on the left and the right by

[
T+,α T+,β

]
and

[
T−,δ∗

T−,γ∗

]
,

respectively, one gets M11V
∗
p,τM12 =M12JqVq,τJqM22.

The equality M22JqV
∗
q,τJqM21 = M21Vp,τM11 can be proved in a similar way.

The claim regarding the case that M11 and M22 are invertible follows trivially. �

We continue with the second part of the proof. It remains to show that
there exists a g ∈ L1(R+)

p×q such that the two identities in (8.24) are satisfied.
For this purpose we need Lemma 8.7 and various results presented in the Appendix.
In particular, in what follows we need the Sobolev space SB(R+)

n which consist
of all functions ϕ ∈ L1(R+)

n such that ϕ is absolutely continuous on compact
intervals of R+ and ϕ′ ∈ L1(R+)

n (See Subsection A.2). Notice that M12Jq is a
sum of products of Wiener-Hopf operators and classical Hankel integral operators.
Therefore, by Lemma A.7, the operator M12Jq maps SB(R+)

q into SB(R+)
p and

M12Jq|SB(R+)q is bounded as an operator from SB(R+)
q to SB(R+)

p. The operator

M11 is of the form (A.18). Thus Lemma A.6 tells us thatM−1
11 satisfies the condition

(H1) in Theorem A.4. We conclude that the operator −M−1
11 M12Jq maps SB(R+)

q

into SB(R+)
p and −M−1

11 M12Jq|SB(R+)q is bounded as an operator from SB(R+)
q

to SB(R+)
p. Also we know from Lemma 8.7 that

Vp,τ (−M−1
11 M12)Jq = (−M−1

11 M12)JqVq,τ , ∀τ ≥ 0.

According to Theorem A.2 it follows that there exists a k ∈ L∞(R+)
p×q such that

−M−1
11 M12Jq = H(k). But then we can apply Corollary A.5 to show that there

exists a g ∈ L1(R+)
p×q such that −M−1

11 M12 = H+,g. In a similar way we prove

that there exists a h ∈ L1(R−)
q×p such that −M−1

22 M21 = H−,h.
Notice that the operatorsMij can be considered to be operators acting between

L2-spaces. This can be done because the Hankel and Wiener-Hopf operators that
constitute the Mij can be seen as operators between L2 spaces. Recall that H∗

+,ρ =
H−,ρ∗ and T ∗

±,ρ = T±,ρ∗ . Using Lemma 8.5 and the definition of M12, we see
that M∗

12 = M21, and using the definitions of M11 and M22 we may conclude that
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M∗
11 =M11 and M∗

22 =M22. From the equality (8.22) one sees that H−,h = H∗
+,g.

Hence h = g∗.
We need to show that for this g the inclusions (1.3) and (1.4) are satisfied, or

equivalently that (1.9) is satisfied. Define for this g the operator W by (1.21). We

already know that W is invertible and that its inverse is M . Let ã, b̃, c̃ and d̃ be
the solution of

W

[
ã b̃

c̃ d̃

]
=

[
0 −g

−g∗ 0

]
.

Then put α̃ = ep + ã, β̃ = b̃, γ̃ = c̃ and δ̃ = eq + d̃. With the data α̃, β̃, γ̃, and δ̃

produce a new M̃ which, according to Theorem 1.1, is also the inverse of W . But
then the the old M and new M̃ are the same, and hence g is the solution of the EG
inverse problem associated with α, β, γ and δ. All the conditions of Theorem 1.1
are now satisfied and we conclude that g = −M−1

11 b and g
∗ = −M−1

22 c. �

9. The EG inverse problem with additional invertibility conditions

As before α ∈ A+, β ∈ B+, γ ∈ C−, and δ ∈ D−. In this section we consider
the case when α is invertible in A+ and δ is invertible in D−. Notice that in the
example discussed in Subsection 3.2 this condition is satisfied whenever a0 := PAd

α

and d0 := PDd
δ are invertible.

Theorem 9.1. Let α ∈ A+, β ∈ B+, γ ∈ C− and δ ∈ D− and assume that α and δ
are invertible in A+ and D−, respectively. If, in addition, α, β, γ and δ satisfy the
conditions (C1) and (C2), then g1 = −PB+

(α−∗γ∗) is the unique element of B+

that satisfies (2.6) and g2 = −PB+
(βδ−1) is the unique element of B+ that satisfies

(2.7). Moreover, in that case, g1 = g2 if and only if condition (C3) is satisfied. In
particular, if (C1)-(C3) hold, then g = g1 = g2 is the unique solution to the twofold
EG inverse problem associated with the data set {α, β, γ, δ}.
Proof. The inclusion α−1 ∈ A+ implies that a0 is invertible with inverse in Ad.
Similarly, δ−1 ∈ D− implies that d0 is invertible with inverse in Dd.

Let g1 := −PB+
(α−∗γ∗). First we prove that g1 satisfies the second inclusion in

(2.6). From the definition of g1 it follows that g1 + α−∗γ∗ = β1 for some β1 ∈ B−.
Taking adjoints we see that g∗1 + γα−1 = β∗

1 ∈ C+. Multiplying for the right by α
and using the multiplication table in Section 2 we see that

g∗1α+ γ ∈ C+A+ ⊂ C+.
So g1 is a solution of the second inclusion in (2.6). Notice that in this paragraph
we did not yet use that α−1 ∈ A+.

The next step is to show that g1 is the unique element of B+ that satisfies the
second inclusion in (2.6). Assume that ϕ1 ∈ B+ and PC−

(ϕ∗
1α + γ) = 0. We will

prove that ϕ1 = g1. Notice that

α∗(ϕ1 − g1) = (α∗ϕ1 + γ∗)− (α∗g1 + γ∗) ∈ B−.

Hence ϕ1 − g1 ∈ B+ and α∗(ϕ1 − g1) ∈ B−. Since α
−∗ ∈ A− we have that

ϕ1 − g1 = α−∗α∗(ϕ1 − g1) ∈ A−B− ⊂ B−

and hence ϕ1 − g1 = 0.
Next remark that PA−

(α−1 − a−1
0 ) = 0. Indeed

α−1 − a−1
0 = α−1(a0 − α)a−1

0 ∈ A+A0
+Ad ⊂ A0

+.
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To show that g1 satisfies the first inclusion in (2.6), note that

α+ g1γ − eA = α− (α−∗γ∗)γ +
(
PB−

(α−∗γ∗)
)
γ − eA.

Now use that γ∗γ = α∗α− a0 to see that

α+ g1γ − eA = α− α−∗(α∗α− a0) +
(
PB−

(α−∗γ∗)
)
γ − eA

= α−∗a0 − eA +
(
PB−

(α−∗γ∗)
)
γ

= (α−∗ − a−1
0 )a0 +

(
PB−

(α−∗γ∗)
)
γ.

Since γ ∈ C−, we have that PA+

[(
PB−

(α−∗γ∗)
)
γ
]
= 0, and since PA−

(α−1−a−1
0 ) =

0, we also have that PA+
(α−∗ − a−1

0 ) = 0. We proved the first inclusion in (2.6).
Next, let g2 := −PB+

(βδ−1). We will show that g2 is the unique element of B+

that satisfies the first inclusion in (2.7). To do this, note that g2 + βδ−1 = β2 for
some β2 ∈ B−, which implies that

g2δ + β ∈ B−D− ⊂ B−.

We proved that PB+
(g2δ + β) = 0. Assume that ϕ2 ∈ B+ satisfies also the first

inclusion in (2.7). Then

(ϕ2 − g2)δ = (ϕ2δ + β)− (g2δ + β) ∈ B−.

Since δ ∈ D− we have that (ϕ2 − g2) = (ϕ2 − g2)δ δ
−1 ∈ B−D− ⊂ B−. Hence

ϕ2 − g2 = 0 and g2 is the unique solution of the first inclusion in (2.7).
We proceed with showing that g2 also satisfies the second inclusion in (2.7).

Indeed

β∗g2 + δ∗ − eD = β∗(−βδ−1 + PB−
(βδ−1)) + δ∗ − eD

= −β∗βδ−1 + δ∗ − eD + β∗PB−
(βδ−1)

= −(δ∗δ − d0)δ
−1 + δ∗ − eD + β∗PB−

(βδ−1)

= d0δ
−1 − eD + β∗PB−

(βδ−1) ∈ D0
−.

Here we used that PD+
(d0δ

−1 − eD) = PD+

(
d−1
0 (eD − δ)δ−1

)
= 0. We proved that

g2 satisfies the second inclusion in (2.7).
If α∗β − γ∗δ = 0, then β = α−∗γ∗δ. It follows that

0 = PB+
(β − α−∗γ∗δ) = PB+

(
β − PB+

(
(α−∗γ∗)δ

))

= PB+

(
β − PB+

(α−∗γ∗)δ
)
= PB+

(β + g1δ).

So g1 also solves the first inclusion in (2.7) and the uniqueness of the solution gives
g1 = g2.

Conversely, if g1 = g2 then we have a solution of the inclusions (2.6) and (2.7).
It follows from [13, Theorem 1.2] that the conditions (C1)–(C3) are satisfied and
in particular we get α∗β − γ∗δ = 0. �

In the next proposition we combine the results of Theorem 9.1 with those of
Theorem 6.1.

Proposition 9.2. Let MA,B,C,D be an admissible algebra, and let α ∈ A+, β ∈ B+,
γ ∈ C−, δ ∈ D− be such that:

(a) α is invertible in A+ and δ is invertible in D−;
(b) conditions (C1)–(C3) are satisfied.
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Let

(9.26) ϕ = −PB+
(a−∗γ∗) and Ω =

[
IX+

H+,ϕ

H−,ϕ∗ IY−

]
.

Then ϕ is the solution of the twofold EG inverse problem associated with α, β, γ, δ,
the operator Ω is invertible, and

(9.27) Ω−1 =

[
R11 R12

R21 R22

]
,

where the operators Rij, 1 ≤ i, j ≤ 2, are defined by (5.25)–(5.28). In particular,
the operators R11 and R22 are invertible and

(9.28) H+,ϕ = −R−1
11 R12 = −R12R

−1
22 , H−,ϕ∗ = −R21R

−1
11 = −R−1

22 R21,

and

(9.29) R11ϕ = −β and R22ϕ
∗ = −γ.

Proof. Since the conditions of Theorem 9.1 are satisfied, ϕ is the unique solution
of the twofold EG inverse problem associated with α, β, γ, δ. Also the fact that α
is invertible in A+ and δ is invertible in D− gives that a0 and d0 are invertible
in Ad and Dd, respectively, and that according to Lemma 2.4 also the conditions
(C4)–(C6) are satisfied. But then all the conditions of Theorem 6.1 are satisfied.
The equalities (9.27), (9.28) and (9.29) are now immediate from Theorem 6.1. �

Specifying Theorem 9.1 for the example discussed in Subsection 3.2 yields the
following corollary.

Corollary 9.3. Let A, B, C, D, A±, B±, C±, D±, and Ad, Bd, Cd, Dd be as in
Subsection 3.2, and let α ∈ A+, β ∈ B+, γ ∈ C−, δ ∈ D− be given. Assume that

(a) α0 = PAd
α and δ0 = PAd

δ are invertible.
(b) α, β, γ and δ satisfy conditions (C1)–(C3)

Then g = −PB+
(α−∗γ∗) is the unique element of B+ that satisfies (2.6) and (2.7).

Proof. We only need to recall that the invertibility of the diagonal matrices a0
and d0 implies invertibility of α and δ in A+ and D−, respectively. �

From the above corollary it also follows that in the numerical Example 3.1 the
solution g,

g = −PB+
(α−∗γ∗) =



1 2 0
0 1 2
0 0 1


 ,

is the unique solution of equations (3.3) and (3.4).

10. Wiener algebra on the circle

In this section (as announced in Subsubsection 3.3.2) we show how the solution
of the discrete twofold EG inverse problem, Theorem 4.1 in [10], can be obtained
as a corollary of our abstract Theorem 7.1.

Let us first recall the discrete twofold EG inverse problem as it was presented
in [10]. This requires some preliminaries. Throughout Wn×m denotes the space
of n × m matrix functions with entries in the Wiener algebra on the unit circle
which is denoted by W and not by W(T) as in Subsubsection 3.3.2. Thus a matrix
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function ϕ belongs to Wn×m if and only if ϕ is continuous on the unit circle and
its Fourier coefficients . . . ϕ−1, ϕ0, ϕ1, . . . are absolutely summable. We set

Wn×m
+ = {ϕ ∈ Wn×m | ϕj = 0, for j = −1,−2, . . .},

Wn×m
− = {ϕ ∈ Wn×m | ϕj = 0, for j = 1, 2, . . .},

Wn×m
d = {ϕ ∈ Wn×m | ϕj = 0, for j 6= 0},

Wn×m
+,0 = {ϕ ∈ Wn×m | ϕj = 0, for j = 0,−1,−2, . . .},

Wn×m
−,0 = {ϕ ∈ Wn×m | ϕj = 0, for j = 0, 1, 2, . . .}.

Given ϕ ∈ Wn×m the function ϕ∗ is defined by ϕ∗(ζ) = ϕ(ζ)∗ for each ζ ∈ T. Thus
the j-th Fourier coefficient of ϕ∗ is given by (ϕ∗)j = (ϕ−j)

∗. The map ϕ 7→ ϕ∗

defines an involution which transforms Wn×m into Wm×n, Wn×m
+ into Wm×n

− ,

Wn×m
−,0 into Wm×n

+,0 , etc.
The data of the discrete EG inverse problem consist of four functions, namely

(10.1) α ∈ Wp×p
+ , β ∈ Wp×q

+ , γ ∈ Wq×p
− , δ ∈ Wq×q

− ,

and the problem is to find g ∈ Wp×q
+ such that

α+ gγ − ep ∈ Wp×p
−,0 and g∗α+ γ ∈ Wq×p

+,0 ;(10.2)

gδ + β ∈ Wp×q
−,0 and δ + g∗β − eq ∈ Wq×q

+,0 .(10.3)

Here ep and eq denote the functions identically equal to the identity matrices Ip
and Iq, respectively. If g has these properties, we refer to g as a solution to the
discrete twofold EG inverse problem associated with the data set {α, β, γ, δ}. If a
solution exists, then we know from Theorem 1.2 in [13] that necessarily the following
identities hold:

(10.4) α∗α− γ∗γ = a0, δ∗δ − β∗β = d0, α∗β = γ∗δ.

Here a0 and d0 are the zero-th Fourier coefficient of α and δ, respectively, and
we identify the matrices with a0 and d0 with the matrix functions on T that are
identically equal to a0 and d0, respectively. In this section we shall assume that a0
and d0 are invertible. Then (10.4) is equivalent to

(10.5) αa−1
0 α∗ − γa−1

0 γ∗ = ep, δd−1
0 δ∗ − βd−1

0 β∗ = eq, αa−1
0 γ∗ = βd−1

0 δ∗

Finally, we associate with the data α, β, γ, δ the following operators:

R11 = T+,αa
−1
0 T+,α∗ − T+,βd

−1
0 T+,β∗ : Wp

+ → Wp
+,(10.6)

R21 = H−,γa
−1
0 T+,α∗ −H−,δd

−1
0 T+,β∗ : Wp

+ → Wq
−,(10.7)

R12 = H+,βd
−1
0 T−,δ∗ −H+,αa

−1
0 T−,γ∗ : Wq

− → Wp
+,(10.8)

R22 = T−,δd
−1
0 T−,δ∗ − T−,γa

−1
0 T−,γ∗ : Wq

− → Wq
−.(10.9)

Here T+,α, T+,α∗ , T+,β, T+,β, T−,γ , T−,γ∗ , T−,δ, T−,δ∗ are Toeplitz operators and
H+,α, H+,β , H−,γ , H−,δ are Hankel operators. The definitions of these operators
can be found in the final paragraph of this section.

The next theorem gives the solution of the discrete twofold EG inverse problem.
By applying Fourier transforms it is straightforward to check that the theorem is
just equivalent to [10, Theorem 4.1].
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Theorem 10.1. Let α, β, γ, δ be the functions given by (10.1), with both matrices
a0 and d0 invertible. Then the discrete twofold EG inverse problem associated
with the data set {α, β, γ, δ} has a solution if and only the following conditions are
satisfied:

(D1) the identities in (10.4) hold true;
(D2) the operators R11 and R22 defined by (10.6) and (10.9) are one-to-one.

Furthermore, in that case R11 and R22 are invertible, the solution is unique and
the unique solution g and its adjoint are given by

(10.10) g = −R−1
11 β and g∗ = −R−1

22 γ.

The next step is to show how the above theorem can be derived as a corollary
of our abstract Theorem 7.1. This requires to put the inverse problem in the
context of the general scheme of Sections 4–7. To do this (cf., the first paragraph
of Subsubsection 3.3.2) we use the following choice of A, B, C, and D:

(10.11) A = Wp×p, B = Wp×q C = Wq×p, D = Wq×q.

The spaces A, B, C, D admit decompositions as in (2.2) and (2.4) using

A0
+ = Wp×p

+,0 , A0
− = Wp×p

−,0 , Ad = {ηep | η ∈ C
p×p},

B+ = Wp×q
+ , B− = Wp×q

−,0 ,

C− = Wq×p
− , C+ = Wq×p

+,0 ,

D0
+ = Wq×q

+,0 , D0
− = Wq×q

−,0 , Dd = {ζeq | ζ ∈ C
q×q}.

The algebraic structure is given by the algebraic structure of the Wiener algebra
and by the matrices with entries from the Wiener algebra. Note that

(10.12) α ∈ A+, β ∈ B+, γ ∈ C−, δ ∈ D−,

and we are interested (cf., (2.6) and (2.7)) in finding g ∈ B+ such that

α+ gγ − ep ∈ A0
− and g∗α+ γ ∈ C+,(10.13)

gδ + β ∈ B0
− and δ + g∗β − eq ∈ D0

+.(10.14)

Furthermore, a0 = PAd
α and d0 = PAd

δ are invertible in Ad and Dd, respectively.
In the present context the spaces X and Y, X+ and Y+, and X− and Y− defined

in the first paragraph of Section 4 are given by

X = A+̇B = Wp×p+̇Wp×q, Y = C+̇D = Wq×p+̇Wq×q,

X+ = A++̇B+ = Wp×p
+ +̇Wp×q

+ , Y+ = C++̇D0
+ = Wq×p

+,0 +̇Wq×q
+,0 ,

X− = A0
−+̇B− = Wp×p

−,0 +̇Wp×q
−,0 , Y− = C−+̇D− = Wq×p

− +̇Wq×q
− .

Remark 10.2. Note that the space X = A+̇B = Wp×p+̇Wp×q can be identified
in a canonical way with the space Wp×(p+q), and analogously the subspaces X± can
be identified in a canonical way with subspaces of Wp×(p+q). For instance, X+ with

Wp×(p+q)
+ . Similarly, Y = C+̇D can be identified with Wq×(p+q), and the spaces

Y± with subspaces of Wq×(p+q). We will use these identifications in the proof of
Theorem 10.1

Remark 10.3. Let g ∈ Wp×q
+ , and let Rij , 1 ≤ i, j ≤ 2, be the operators defined

by (10.6)–(10.9). Note that the operators H+,g, H−,g∗ and Rij act on vector spaces
Wm

± with m = p or m = q; see the final paragraphs of the present section. As usual
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we extend the action of these operators to spaces of matrices of the type Wm×k
± .

In this way (using the preceding remark) we see that the operators H+,g, H−,g∗

and Rij can be identified with the operators H+,g, H−,g∗ and Rij as defined in
Section 5, respectively.

Proof of Theorem 10.1. We will apply Theorem 7.1 and Lemma 7.2 using
A,B, C,D in (10.11). First we check that the conditions in Theorem 7.1 are satisfied.
Condition (a) is satisfied by assumption.

Now assume that there exists a solution g to the twofold EG inverse problem.
Then conditions (C1)–(C6) are satisfied too. Next put

Ω =

[
IWp

+
H+,g

H−,g∗ IWq

−

]
:

[
Wp

+

Wq
−

]
→

[
Wp

+

Wq
−

]
,

Ω =

[
IX+

H+,g

H−,g∗ IY−

]
:

[
X+

Y−

]
→

[
X+

Y−

]
.

Here X± and Y± are the spaces defined in the paragraph preceding Remark 10.2.
Since the conditions of Theorem 6.1 are satisfied, we know from (6.3) that the
operator Ω is invertible and its inverse is given by Ω−1 = R, where

R =

[
R11 R12

R21 R22

]
.

ThusΩR andRΩ are identity operators. Using the similarity mentioned in Remark
10.3 above, we see that ΩR and RΩ are also identity operators, and hence Ω is
invertible. Moreover, the fact that R11 and R22 are invertible implies that R11

and R22 are invertible. Finally, from (6.4), (6.5) and (6.6) (again using the above
Remark 10.3) we obtain the identities

H+,g = −R−1
11 R12 = −R12R

−1
22 , H−,g∗ = −R21R

−1
11 = −R−1

22 R21;(10.15)

g = −R−1
11 β, g∗ = −R−1

22 γ.(10.16)

It follows that conditions (D1) and (D2) are fulfilled.
Conversely, assume that conditions (D1) and (D2) are satisfied. Then the state-

ments (b) and (i) in Theorem 7.1 follow. To apply Lemma 7.2 we set VX ,± = Sp,±
and VY,± = Sq,±, where Sq,± and Sq,± are the shift operators defined in the final
paragraph of this section. The intertwining of VX ,± and VY,± with the Hankel-like
and Toeplitz-like operators are required for the application of Lemma 7.2 but these
intertwining relations correspond with the intertwining of Sp,± and Sq,± with the
Hankel and Toeplitz operators H±,p, H±,q and T±,p, T±,q appearing in the present
section. From the final part of Lemma 7.2 we conclude that

S∗,p,+R12R
−1
22 = R−1

11 R12Sq,−.

Furthermore, Lemma 5.6 tells us that R12R
−1
22 = R−1

11 R12. Hence

S∗,p,+R
−1
11 R12 = R−1

11 R12Sq,−.

But then, using Lemma 10.4 below, it follows that there exists a g ∈ Wp×q
+ such

that H+,g = −R−1
11 R12. Similarly we obtain that there exists a h ∈ Wq×p

− such

that H−,h = −R−1
22 R21. From Lemma 5.4 it then follows that g = −R−1

11 β and

h = −R−1
22 γ.



THE TWOFOLD ELLIS-GOHBERG INVERSE PROBLEM 41

It remains to show that h = g∗. To do this, we extend some of the operators from
(subspaces of) Wiener spaces to subspaces of L2-spaces over the unit circle T. More
specifically, form = p, q write L2(T)m for the space of vectors of sizem whose entries
are L2-functions overT, and write L2

+(T)
m and L2

−(T)
m for the subspaces of L2(T)m

consisting of functions in L2(T)m such that the Fourier coefficients with strictly
negative (−1,−2, . . .) coefficients and positive (0, 1, 2, . . .) coefficients, respectively,
are zero. Then, with some abuse of notation, we extend the operators H+,g, H−,h

and Rij , i, j = 1, 2, in the following way:

H+,g : L
2
−(T)

q → L2
+(T)

p, H−,h : L2
+(T)

p → L2
−(T)

q ,

R11 : L2
+(T)

p → L2
+(T)

p, R12 : L2
−(T)

q → L2
+(T)

p,

R21 : L2
+(T)

p → L2
−(T)

q , R22 : L2
−(T)

q → L2
−(T)

q .

It then follows from the representations (10.6)–(10.9) and (5.30)–(5.33) that R11 =

R∗
11, R22 = R∗

22, and R
∗
12 = R21. We find that −H+,g = R−1

11 R12 =
(
R−1

22 R21

)∗
=

−H−,h, and therefore h = g∗. We conclude that the solution of the twofold EG
inverse problem is indeed given by (10.10). �

Toeplitz and Hankel operators. Throughout, for a function ρ ∈ Wn×m, we write
M(ρ) for the multiplication operator of ρ from Wm into Wn, that is,

M(ρ) : Wm → Wn, (M(ρ)f)(eit) = ρ(eit)f(eit) (f ∈ Wm, t ∈ [0, 2π]).

We define Toeplitz operators T±,ρ and Hankel operators H±,ρ as compressions of
multiplication operators, as follows. Fix the dimensions p ≥ 1 and q ≥ 1 for the
remaining part of this section.

If ρ ∈ Wp×p, then

T+,ρ = P+,pM(ρ) : Wp
+ → Wp

+, T−,ρ = (I − P+,p)M(ρ) : Wp
−,0 → Wp

−,0,

H+,ρ = P+,pM(ρ) : Wp
−,0 → Wp

+, H−,ρ = (I − P+,p)M(ρ) : Wp
+ → Wp

−,0.

If ρ ∈ Wp×q, then

T+,ρ = P+,pM(ρ) : Wq
+,0 → Wp

+, T−,ρ = (I − P+,p)M(ρ) : Wq
− → Wp

−,0,

H+,ρ = P+,pM(ρ) : Wq
− → Wp

+, H−,ρ = (I − P+,p)M(ρ) : Wq
+,0 → Wp

−,0.

If ρ ∈ Wq×p, then

T+,ρ = (I − P−,q)M(ρ) : Wp
+ → Wq

+,0, T−,ρ = P−,qM(ρ) : Wp
−,0 → Wq

−,

H+,ρ = (I − P−,q)M(ρ) : Wp
−,0 → Wq

+,0, H−,ρ = P−,qM(ρ) : Wp
+ → Wq

−.

and for ρ ∈ Wq×p then

T+,ρ = (I − P−,q)M(ρ) : Wq
+,0 → Wq

+,0, T−,ρ = P−,qM(ρ) : Wq
− → Wq

−,

H+,ρ = (I − P−,q)M(ρ) : Wq
− → Wq

+,0, H−,ρ = P−,qM(ρ) : Wq
+,0 → Wq

−.
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Shift operators. We also define the shift operators used in the present section. Let
ϕ ∈ Wp×p and ψ ∈ Wq×q be defined by ϕ(z) = zep and ψ(z) = zeq, with ep and eq
the constant functions equal to the unity matrix. The shift operators that we need
are now defined by

Sp,+ =M(ϕ) : Wp
+ → Wp

+, Sq,+ =M(ψ) : Wq
+,0 → Wq

+,0,

Sq,− =M(ψ−1) : Wq
− → Wq

−, Sp,− =M(ϕ−1) : Wp
−,0 → Wp

−,0,

S∗,p,+ = T+,ϕ−1 : Wp
+ → Wp

+, S∗,q,+ = T+,ψ−1 : Wq
+,0 → Wq

+,0,

S∗,q,− = T−,ψ : Wq
− → Wq

−, S∗,p,− = T−,ϕ : Wp
−,0 → Wp

−,0,

Then

S∗,p,+Sp,+ = IWp

+
, S∗,p,−Sp,− = IWp

−,0
,

S∗,q,−Sq,− = IWq

−
, S∗,q,+Sq,+ = IWq

+,0
.

Also we have for m ∈ {p, q} and n ∈ {p, q}, and ρ ∈ Wn×m that

H+,ρSm,− = S∗,n,+H+,ρ, H−,ρSm,+ = S∗,n,−H−,ρ,

Finally for ρ ∈ Wn×m
+ we have T+,ρSm,+ = Sn,+T+,ρ and if ρ ∈ Wn×m

− then
T−,ρSm,− = Sn,−T−,ρ.

The following result is classical and is easy to prove using the inverse Fourier
transform (see, e.g., [2, Section 2.3] or Sections XXII – XXIV in [6]).

Lemma 10.4. Let G : Wq
− → Wp

+, and assume that GSq,− = S∗,p,+G. Then there

exists a function g ∈ Wp×q
+ such that G = H+,g. Similarly, if H : Wp

+ → Wq
− and

HSp,+ = S∗,q,−H, then there exists a function h ∈ Wq×p
− such that H = H−,h.

Appendix A. Hankel and Wiener-Hopf integral operators

In this appendix, which consists of three subsections, we present a number of
results that play an essential role in the proof of Theorem 1.2. In Subsection A.1 we
recall the definition of a Hankel operator on L2(R+) and review some basic facts.
In Subsection A.2 we present a theorem (partially new) characterising classical
Hankel integral operators mapping L1(R+)

p into L1(R+)
q. Two auxilarly results

are presented in the final subsection.

A.1. Preliminaries about Hankel operators. We begin with some preliminar-
ies about Hankel operators on L2(R+), mainly taken from or Section 1.8 in [17]
or Section 9.1 in [2]. Throughout J is the flip over operator on L2(R) defined by
(Jf)(t) = f(−t). Furthermore, F denotes the Fourier transform on L2(R) defined
by

(Ff)(λ) = 1√
2π

∫

R

eiλtf(t) dt.

It is well-known (see, e.g., [2, Section 9.1, page 482]) that F is a unitary operator
and

F∗ = F−1 = JF and JF = FJ.
Given α ∈ L∞(R) we define the multiplierm(α) and the convolution operatorM(α)
defined by α to be the operators on L2(R) given by

(m(α)f)(t) = α(t)f(t), f ∈ L2(R), t ∈ R, and M(α) = F−1m(α)F .
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Given f ∈ L2(R) we have

(M(α)f)(t) =
(
F−1m(α)Ff

)
(t) = (JFm(α)Ff) (t)

=
1√
2π

∫

R

e−its (m(α)Ff) (s) ds = 1√
2π

∫

R

e−itsα(s)(Ff)(s) ds

=
1

2π

∫

R

e−itsα(s)

(∫

R

eisrf(r) dr

)
ds

=
1

2π

∫

R

∫

R

eis(r−t)α(s)f(r) dr ds, t ∈ R.(A.1)

By P and Q we denote the orthogonal projections on L2(R) of which the ranges
L2(R+) and L

2(R−), respectively.

Definition A.1. Let α ∈ L∞(R). Then the Hankel operator defined by α is the
operator on L2(R+) given by

H(α) = PM(α)J |L2(R+) : L
2(R+) → L2(R+).

The action of the Hankel operator H(α) on f ∈ L2(R+) is given by

(H(α)f) (t) = (PM(α)Jf) (t) = (M(α)Jf) (t)

=
1

2π

∫

R

∫

R

eis(r−t)α(s)f(−r) dr ds

=
1

2π

∫

R

∫

R

e−is(t+r)α(s)f(r) dr ds

=
1

2π

∫

R

∫ ∞

0

e−is(t+r)α(s)f(r) dr ds, t ≥ 0.(A.2)

The following result provides a characterization of which operators on L2(R+)
are Hankel operators; see [16, Exercise (a) on page 199-200].

Theorem A.2. A bounded linear operator K on L2(R+) is a Hankel operator if
and only if V ∗

τ K = KVτ for all τ ≥ 0, where for each τ ≥ 0 the operator Vτ is the
transition operator on L2(R+) defined by

(A.3) (Vτf)(t) =

{
f(t− τ), t ≥ τ,

0, 0 ≤ t ≤ τ,

Remark A.3. When we worked on this paper we assumed that the above theorem,
which is a natural analogue of the intertwining shift relation theorem for discrete
Hankel operators, to be true and that we only had to find a reference. The latter
turned out to be a bit difficult. Various Hankel operator experts told us “of course,
the result is true.” But no reference. We asked Vladimir Peller, and he mailed us
how the result could be proved using the beautiful relations between H2 on the disc
and H2 on the upper half plane, but again no reference. What to do? Should we
include Peller’s proof? November last year Albrecht Bötcher solved the problem.
He referred us to Nikolski’s book [16] which appeared recently in Spring 2017 and
contains the result as an exercise. Other references remain welcome.

Next we consider the special case when the defining function α is given by

(A.4) α(λ) =

∫

R

eiλsa(s) ds, where a ∈ L1(R+).
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Then

(A.5) (H(α)f)(t) =

∫ ∞

0

a(t+ s)f(s) ds, t ∈ R+, f ∈ L2(R+).

In this case one calls H(α) the classical Hankel integral operator defined by a. To
prove (A.5) we may without loss of generality assume that f belongs to L1(R+) ∩
L2(R+) and α is rational. In that case using (A.4) we have

(H(α)f) (t) =
1

2π

∫

R

(∫ ∞

0

e−is(t+r)α(s)f(r) dr

)
ds

=
1

2π

∫ ∞

0

(∫

R

e−is(t+r)α(s) ds

)
f(r) dr

=

∫ ∞

0

a(t+ r)f(r) dr, t ≥ 0.

If α is given by (A.4), then α belongs to the Wiener algebra over R and thus H(α)
also defines a bounded linear operator on L1(R+).

We shall also deal with Hankel operators defined by matrix-valued functions.
Let α be a q × p matrix whose entries αij , 1 ≤ i ≤ q, 1 ≤ j ≤ p, are L∞(R+)
functions. Then H(α) will denote the Hankel operator from L2(R+)

p to L2(R+)
q

defined by

(A.6) H(α) =



H(α11) · · · H(α1p)

... · · ·
...

H(αq1) · · · H(αqp)


 .

If the operators H(αij), 1 ≤ i ≤ q, 1 ≤ j ≤ p, are all classical Hankel integral
operators, then we call H(α) a classical Hankel integral operator too.

A.2. Classical Hankel integral operators on L1 spaces. The main theorem
of this section allows us to identify the classical Hankel integral operators among
all operators from L1(R+)

p to L1(R+)
q. We begin with some preliminaries about

related Sobolev spaces.
Let n be a positive integer. By SB(R+)

n we denote the Sobolev space consisting
of all functions ϕ ∈ L1(R+)

n such that ϕ is absolutely continuous on compact
intervals of R+ and ϕ′ ∈ L1(R+)

n. Note that

(A.7) ϕ ∈ SB(R+)
n =⇒ ϕ(t) = −

∫ ∞

t

ϕ′(s) ds, t ≥ 0.

The linear space SB(R+)
n is a Banach space with norm

(A.8) ‖ϕ‖SB = ‖ϕ‖L1 + ‖ϕ′‖L1 .

Furthermore, SB(R+)
n is continuously and densely embedded in L1(R+)

n. More
precisely, the map j : SB(R+)

n → L1(R+)
n defined by jϕ = ϕ is a continuous

linear map which is one-to-one and has dense range. From (A.8) we see that j is a
contraction. We are now ready to state and proof the main theorem of this section.

Theorem A.4. An operator K from L1(R+)
p to L1(R+)

q is a classical Hankel
integral operator if and only if the following two conditions are satisfied:

(H1) K maps SB(R+)
p boundedly into SB(R+)

q;
(H2) there exists k ∈ L1(R+)

q×p such that (Kϕ)′ + Kϕ′ = k(·)ϕ(0) for each
ϕ ∈ SB(R+)

p.
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Moreover, in that case the operator K is given by

(A.9) (Kf)(t) =

∫ ∞

0

k(t+ s)f(s) ds, 0 ≤ t <∞,

where k ∈ L1(R+)
q×p is the matrix function from (H2).

Proof. We split the proof into three parts. In the first part we show that the
conditions (H1) and (H2) are necessary. The proof is taken from [5], and is given
here for the sake of completeness. The second and third part concern the reverse
implication which seems to be new. In the second part we assume that p = q = 1,
and in the third part p and q are arbitrary positive integers.

Part 1. Let K on L1(R+) be a classical Hankel integral operator, and assume K
is given by (A.9) with k ∈ L1(R+). Let ϕ ∈ SB(R+). Then

(A.10) (Kϕ)(t) =

∫ ∞

0

k(t+ s)ϕ(s) ds =

∫ ∞

t

k(s)ϕ(s − t) ds.

It follows that (
d

dt
Kϕ

)
(t) = −

∫ ∞

t

k(s)ϕ′(s− t) ds+ k(t)ϕ(0)

= −
∫ ∞

0

k(t+ s)ϕ′(s) ds+ k(t)ϕ(0)(A.11)

= −
(
K
d

dt
ϕ

)
(t) + k(t)ϕ(0).(A.12)

This proofs (H2). From the first identity in (A.10) it follows that Kϕ belongs to
L1(R+). Since ϕ

′ ∈ L1(R+), we have (Kϕ)
′ = Kϕ′+kϕ(0) ∈ L1(R+) and it follows

thatKϕ ∈ SB(R+). We conclude that K maps SB(R+) into SB(R+). Furthermore,
from (A.10) we see that

‖Kϕ‖L1 ≤ ‖k‖L1‖ϕ‖L1 ≤ ‖k‖L1‖ϕ‖SB.

From (A.11) (using ϕ(0) = −
∫∞

0
ϕ′(s) ds) it follows that

‖(Kϕ)′‖L1 ≤ ‖k‖L1‖ϕ′‖L1 + ‖k‖L1‖ϕ′‖L1

≤ 2‖k‖L1‖ϕ′‖L1 ≤ 2‖k‖L1‖ϕ‖SB.
Hence ‖Kϕ‖SB ≤ 3‖k‖L1‖ϕ‖SB. Thus K|SB(R+) is a bounded operator on SB(R+),
and item (H1) is proved.

Part 2. In this part p = q = 1, and we assume that items (H1) and (H2) are
satisfied. Given k in item (H2), let H be the operator on L1(R+) defined by

(Hf)(t) =

∫ ∞

0

k(t+ s)f(s) ds, 0 ≤ t <∞.

Then H is a classical Hankel integral operator, and the first part of the proof tells
us that (Hϕ)′+Hϕ′ = k(·)ϕ(0) for each ϕ ∈ SB(R+). Now putM = K−H . Then
M is an operator on L1(R+), and M maps SB(R+) into SB(R+). Furthermore, we
have

(A.13) (Mϕ)′ = −Mϕ′, ϕ ∈ SB(R+).

It suffices to prove that M is zero.
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For n = 0, 1, 2, . . . let ϕn be the function on R+ defined by ϕn(t) = tne−t,
0 ≤ t < ∞. Obviously, ϕn ∈ SB(R+). By induction we shall prove that Mϕn is
zero for each n = 0, 1, 2, . . .. First we show that Mϕ0 = 0. To do this note that
ϕ′
0(t) = −e−t = −ϕ0(t). Using (A.13) it follows that ψ0 :=Mϕ0 satisfies

ψ′
0 = (Mϕ0)

′ = −Mϕ′
0 =Mϕ0 = ψ0.

Thus ψ0 satisfies the differential equation ψ′
0 = ψ0, and hence ψ0(t) = cet on [0,∞)

for some c ∈ C. On the other hand, ψ0 = Mϕ0 ∈ SB(R+) ⊂ L1(R+). But then c
must be zero, and we conclude that Mϕ0 = 0.

Next, fix a positive integer n ≥ 1, and assume thatMϕj = 0 for j = 0, . . . , n−1.
Again we use (A.13). Since

ϕ′
n(t) = ntn−1e−t − tne−t = nϕn−1 − ϕn,

we obtain

(Mϕn)
′ = −Mϕ′

n = nMϕn−1 +Mϕn.

But, by assumption, Mϕn−1 = 0. Thus (Mϕn)
′ = Mϕn, and hence ψn := Mϕn

satisfies the differential equation ψ′
n = ψn. It follows that ψn(t) = cet on [0,∞) for

some c ∈ C. On the other hand, ψn =Mϕn ∈ SB(R+) ⊂ L1(R+). But then c = 0,
and we conclude that Mϕn = 0.

By induction we obtain Mϕj = 0 for each j = 0, 1, 2, . . .. But then Mf = 0 for
any f of the form f(t) = p(t)e−t, where p is a polynomial. The set of all these
functions is dense in L1(R+). Since M is an operator on L1(R+), we conclude that
M = 0.

Part 3. In this part we use the result of the previous part to prove the sufficiency
of the conditions (H1) and (H2). Assume K from L1(R+)

p to L1(R+)
q, and write

K as a q × p operator matrix

(A.14) K =



K11 · · · K1p

... · · ·
...

Kq1 · · · Kqp


 ,

where Kij is an operator on L1(R+) for 1 ≤ j ≤ p and 1 ≤ i ≤ q. let

τj : L
1(R+) → L1(R+)

p, τjf = [δj,kf ]
p
k=1 (f ∈ L1(R+);

πi : L
1(R+)

q → L1(R+), πjf = fj, (f =



f1
...
fq


 ∈ L1(R+)

q).

Note that Kij = πiKτj for each i, j. Furthermore, we have

τjSB(R+) ⊂ SB(R+)
p and πjSB(R+)

q ⊂ SB(R+)

Now fix a pair i, j, 1 ≤ j ≤ p and 1 ≤ i ≤ q. Then conditions (H1) and (H2) tell us
that

(i) Kij maps SB(R+) into SB(R+) and Kij |SB(R+) is a bounded operator from
SB(R+) to SB(R+);

(ii) there exists kij ∈ L1(R+) such that (Kijϕ)
′ +Kijϕ

′ = kij(·)ϕ(0) for each
ϕ ∈ SB(R+).
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But then we can use the result of the second part of the proof which covers the
case when p = q = 1. It follows that Kij is a classical Hankel integral operator.
Moreover, Kij is given by

(Kijf)(t) =

∫ ∞

0

kij(t+ s)f(s) ds, 0 ≤ t <∞ and f ∈ L1(R+).

Here kij ∈ L1(R+) is the function appearing in item (ii) above. Recall that K is
given by (A.14). Since the pair i, j is arbitrary, we see that K is a classical Hankel
integral operator, and

(Kf)(t) =

∫ ∞

0

k(t+ s)f(s) ds, 0 ≤ t <∞ and f ∈ L1(R+)
p,

where

k :=



k11 · · · k1p
... · · ·

...
kq1 · · · kqp


 ∈ L1(R+)

q×p.

This completes the proof. �

The following corollary shows that if the operator K in Theorem A.4 is assumed
to be a Hankel operator, i.e. K = H(α) for some α ∈ L∞(R)q×p, then it suffices to
verify (H1) to conclude that H(α) is a classical Hankel operator.

Corollary A.5. Let α ∈ L∞(R)q×p, and assume that H(α) maps L1(R+)
p into

L1(R+)
q. Furthermore, assume that K = H(α) satisfies condition (H1) in Theorem

A.4, i.e., H(α) maps SB(R+)
p into SB(R+)

q and the operator H(α)|SB(R+)p is a
bounded operator from SB(R+)

p into SB(R+)
q. Then K = H(α) also satisfies

condition (H2) in Theorem A.4, and thus there exists k ∈ L1(R+)
q×p such that

(A.15) α(λ) =

∫

R

eiλsk(s) ds, λ ∈ R.

In particular, H(α) is a classical Hankel integral operator.

Proof. We split the proof into two parts. In the first part we assume that p = q = 1.
In the second part p and q are arbitrary positive integers, and we reduce the problem
to the case considered in the first part.

Part 1. In this part we prove the theorem for the case when p = q = 1. Note
that we assume that condition (H1) in Theorem A.4 is satisfied for H(α) in place
of K. Take ϕ ∈ SB(R+). Since H(α) maps SB(R+) into SB(R+), the function
H(α)ϕ also belongs to SB(R+), and hence (H(α)ϕ)′ belongs to L1(R+). On the
other hand, since H(α) maps L1(R+) into L

1(R+) and ϕ
′ ∈ L1(R+), we also have

H(α)ϕ′ ∈ L1(R+). Hence

d

dt

(
H(α)ϕ

)
−H(α)

d

dt
ϕ ∈ L1(R+).

Using (A.2) we obtain

d

dt

(
H(α)ϕ(t)

)
=

1

2π

∫

R

(−is)e−itsα(s)
(∫ ∞

0

e−isrϕ(r) dr

)
ds

=
1

2π

∫

R

e−itsα(s)

(∫ ∞

0

(
d

dr
e−isr

)
ϕ(r) dr

)
ds,(A.16)
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and (
H(α)

d

dt
ϕ
)
(t) =

1

2π

∫

R

e−itsα(s)

(∫ ∞

0

e−isrϕ′(r) dr

)
ds.

Now integration by parts yields
∫ ∞

0

( d

dr
e−isr

)
ϕ(r) dr = −

∫ ∞

0

e−isrϕ′(r) dr +
(
e−isrϕ(r)

∣∣∣
∞

0

)

= −
∫ ∞

0

e−isrϕ′(r) dr − ϕ(0).

Hence ∫ ∞

0

( d

dr
e−isr

)
ϕ(r) dr +

∫ ∞

0

e−isrϕ′(r) = −ϕ(0).

This implies that

(A.17) −ϕ(0)
2π

∫

R

e−itsα(s) ds =

(
d

dt

(
H(α)ϕ

)
+H(α)

d

dt
ϕ

)
(t), t ≥ 0.

In case ϕ(0) 6= 0, it follows that (H2) holds for K = H(α) with k ∈ L1(R+) given
by

k(t) :=
1

ϕ(0)

(
d

dt

(
H(α)ϕ

)
+H(α)

d

dt
ϕ

)
(t) = − 1

2π

∫

R

e−itsα(s) ds,

which is independent of the choice of ϕ. On the other hand, in case ϕ(0) = 0, then
(A.17) shows that (H2) still holds for this choice of k. We can thus use Theorem
A.4 with K = H(α) to conclude that H(α) is a classical Hankel integral operator
and α is defined by (A.15).

Part 2. In this part p and q are arbitrary positive integers. Since α ∈ L∞(R)q×p,
the function α is a q × p matrix function of which the (i,j)-th entry αi,j belongs to
L∞(R+). It follows that

K = H(α) =



H(α11) · · · H(α1p)

... · · ·
...

H(αq1) · · · H(αqp)


 .

Put Kij = H(αij), where 1 ≤ j ≤ p and 1 ≤ i ≤ q. Now fix (i,j). Since K maps
L1(R+)

p into L1(R+)
q, the operator Kij maps L1(R+) into L

1(R+). Furthermore,
sinceK = H(α) satisfies condition (H1) in Theorem A.4, the operatorKij = H(αij)
satisfies condition (H1) in Theorem A.4 with p = q = 1. But then the result of
the first part of the proof tells us that Kij = H(αij) satisfies condition (H2) in
Theorem A.4 with p = q = 1. Thus, using (A.15), there exists kij ∈ L1(R+) such
that

αij =

∫

R

eiλskij(s) ds, λ ∈ R.

The latter holds for each 1 ≤ j ≤ p and 1 ≤ i ≤ q. It follows that

α(λ) =

∫

R

eiλsk(s) ds, where k =



k11 · · · k1p
... · · ·

...
kq1 · · · kqp


 ∈ L1(R+)

q×p.

This completes the proof. �
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A.3. Two auxiliary results. We present two lemmas concerning condition (H1)
in Theorem A.4. We begin with some preliminaries. Let

(A.18) M = I +H11H12 +H21H22,

where

H11 : L1(R+)
q → L1(R+)

p, H12 : L1(R+)
p → L1(R+)

q,

H21 : L1(R+)
r → L1(R+)

p, H22 : L1(R+)
p → L1(R+)

r,

and we assume that Hij is a classical Hankel integral operator for each 1 ≤ i, j ≤ 2.
We are interested in computing the inverse of M , assuming the inverse exists. Put

M̃ = I + H̃1H̃2, where

H̃1 =
[
H11 H21

]
:

[
L1(R+)

q

L1(R+)
r

]
→ L1(R+)

p,

H̃2 =

[
H12

H22

]
: L1(R+)

p →
[
L1(R+)

q

L1(R+)
r

]
.

Note that the entries of H̃1 and H̃2 are classical Hankel integral operators, and

M̃ = I + H̃1H̃2 = I +H11H12 +H21H22 =M.

It follows that M is invertible if and only if M̃ is invertible, and in that case

(A.19) M̃−1 =M−1.

Theorem 0.1 in [9] tells us how to compute M̃−1. This yields the following result.

Lemma A.6. Assume M given by (A.18) is invertible. Then

(A.20) M−1 = I +K1 +K2 +K3 +K4,

where for each j = 1, 2, 3, 4 the operator Kj is a product of two classical Hankel
integral operators. In particular, M−1 = I+K, where K is an operator on L1(R+)

p

satisfying condition (H1) in Theorem A.4.

Proof. From Theorem 0.1 in [9] we know that

(A.21) M̃−1 = I +AB + CD,

where the operators A,B,C,D have the following operator matrix representation:

A =
[
A11 A12

]
, B =

[
B11

B21

]
, C =

[
C11 C12

]
, D =

[
D11

D21

]
.

and for each i, j = 1, 2 the entries Aij , Bij , Cij , Dij are classical Hankel integral
operators. Using (A.19) and (A.21) it follows that

M−1 = M̃−1 = I +
[
A11 A12

] [B11

B21

]
+
[
C11 C12

] [D11

D21

]
.

Thus (A.20) holds true with

K1 = A11B11, K2 = A12B21, K3 = C11D11, K4 = C12D22.

Clearly for each j = 1, 2, 3, 4 the operator Kj is a product of two classical Hankel
integral operators. Recall that for each classical Hankel integral operator H from
L1(R+)

n to L1(R+)
n for some n and m we have H maps SB(R+)

n into SB(R+)
m

and H |SB(R+)n is bounded as an operator from SB(R+)
n into SB(R+)

m. It follows
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that the same is true ifH is a sum or a product of classical Hankel integral operators.
But then condition (H1) in Theorem A.4 is satisfied for K = K1 +K2 +K3 +K4.
�

Lemma A.7. Let τ ∈ L1(R−)
q×p, and let T be the Wiener-Hopf integral operator

mapping L1(R+)
p into L1(R+)

q defined by

(A.22) (Tf)(t) =

∫ ∞

t

τ(t − s)f(s) ds, 0 ≤ t <∞ (f ∈ L1(R+)
p).

Then T maps SB(R+)
p into SB(R+)

q, and T |SB(R+)p is a bounded linear operator
from SB(R+)

p into SB(R+)
q.

Proof. We split the proof into two parts. In the first part we prove the lemma for
the case when p = q = 1. In the second p and q are arbitrary positive integers, and
we reduce the problem to the case considered in the first part.

Part 1. In this part we prove the lemma for the case when p = q = 1. To do this
take ϕ ∈ SB(R+). Then

(Tϕ)(t) = −
∫ ∞

t

τ(t − s)

(∫ ∞

s

ϕ′(r) dr

)
ds

= −
∫ ∞

t

(∫ r

t

τ(t− s) ds

)
ϕ′(r) dr, 0 ≤ t <∞.

Put

ρ(r − t) :=

∫ r−t

0

τ(−u) du =

∫ r

t

τ(t − s) ds, 0 ≤ t ≤ r <∞.

Note that ρ(0) = 0. Furthermore,

(A.23) (Tϕ)(t) = −
∫ ∞

t

ρ(r − t)ϕ′(r) dr, and ρ′(t) = τ(−t) (0 ≤ t <∞).

Using (A.22) with f = ϕ we see that ψ := Tϕ belongs to L1(R+). Furthermore,
from the first identity in (A.23) it follows that ψ is absolutely continuous on compact
intervals of R+. Using the Leibnitz rule and the second identity in (A.23), we obtain

ψ′(t) = − d

dt

∫ ∞

t

ρ(r − t)ϕ′(r) dr

= −
∫ ∞

t

∂

∂t
ρ(r − t)ϕ′(r) dr + ρ(t− t)ϕ′(t)

= −
∫ ∞

t

τ(t − r)ϕ′(r) dr.(A.24)

Since τ ∈ L1(R−) and ϕ
′ ∈ L1(R+), it follows that ψ

′ ∈ L1(R+). We conclude that
ψ belongs to SB(R+).

It remains to show that T |SB(R+) is bounded on SB(R+). As before let ϕ ∈
L1(R+), and let ψ = Tϕ. By ‖T ‖ we denote the norm of T as an operator on
L1(R+). From the definition of T in (A.22) and using (A.8), we see that

‖ψ‖L1 ≤ ‖T ‖‖ϕ‖L1 ≤ ‖T ‖‖ϕ‖SB
On the other hand from (A.24) and using (A.8) we obtain

‖ψ′‖L1 ≤ ‖T ‖‖ϕ′‖L1 ≤ ‖T ‖‖ϕ‖SB.
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Together these inequalities show (using (A.8)) that ‖ψ‖SB ≤ ‖T ‖‖ϕ‖SB. Thus
‖T ‖SB(R+) ≤ ‖T ‖. This proofs the lemma for the case when p = q = 1.

Part 2. In this part p and q are arbitrary positive integers. Since τ ∈ L1(R−)
q×p,

the function τ is a q × p matrix function of which the (i,j)-th entry τij belongs to
L1(R−). It follows that

(A.25) T =



T11 · · · T1p
... · · ·

...
Tq1 · · · Tqp


 ,

where for 1 ≤ j ≤ p and 1 ≤ i ≤ q the operator Tij is the Wiener-Hopf integral
operator on L1(R+) given gy

(Tij)f(t) =

∫ ∞

t

τij(t− s)f(s) ds, 0 ≤ t <∞ (f ∈ L1(R+)).

From the first part of the proof we know that for each i, j the operator Tij maps
SB(R+) into SB(R+), and T |SB(R+) is a bounded linear operator from SB(R+) into
SB(R+). Now recall that T is given by (A.25). It follows that T maps SB(R+)

p into
SB(R+)

q, and T |SB(R+)p is a bounded linear operator from SB(R+)
p into SB(R+)

q,
which completes the proof. �
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