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≤SP CAN HAVE INFINITELY MANY CLASSES

1065

SAHARON SHELAH AND DANIELLE ULRICH

Abstract. Building off of recent results on Keisler’s order, we show that
consistently, ≤SP has infinitely many classes. In particular, we define the
property of ≤ k-type amalgamation for simple theories, for each 2 ≤ k <

ω. If we let Tn,k be the theory of the random k-ary, n-clique free random
hyper-graph, then Tn,k has ≤ k − 1-type amalgamation but not ≤ k-type
amalgamation. We show that consistently, if T has ≤ k-type amalgamation
then Tk+1,k �SP T , thus producing infinitely many ≤SP-classes. The same
construction gives a simplified proof of the theorem from [10] that consistently,
the maximal ≤SP-class is exactly the class of non-simple theories. Finally, we
show that consistently, if T has < ℵ0-type amalgamation, then T ≤SP Trg,
the theory of the random graph.
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2 SAHARON SHELAH AND DANIELLE ULRICH

§ 0. Introduction

Convention 0.1. T is always a complete theory in a countable language. We will
fix a monster model C |= T and work within it so C = CT but if T is clear from the
context we do not mention it.

The first author introduced the following definition in [10], although he had
previously investigated the phenomenon in [8] (without giving it a name):

Definition 0.2. Suppose λ ≥ θ. Define SPT (λ, θ) to mean: for every M |= T of
size λ, there is a θ-saturated N |= T of size λ extending M .

In this paper, we will restrict to the following special case:

Definition 0.3. 1) Say that (θ, λ) is a nice pair if θ is a regular cardinal and λ ≥ θ
has λ = λℵ0 .
2) Given T0, T1 complete first order theories, say that T0 ≤SP T1 if whenever (θ, λ)
is a nice pair, if SPT1(λ, θ) then SPT0(λ, θ).

Thus, ≤SP is a pre-ordering of theories which measures how difficult it is to build
saturated models.

In [8], the first author proves: the stable theories are the minimal SP-class, and
non-simple theories are always maximal. In [10], the first author additionally proves
that consistently, non-simple theories are exactly the maximal class.

Recently, there has been substantial progress on Keisler’s order E, another pre-
ordering of theories which measures how difficult it is to build saturated models;
see for instance [6] and [7] by the first author and Malliaris. In particular, in [7]
it is shown that Keisler’s order has infinitely many classes, these being seperated
by certain amalgamation properties. In this paper we use similar ideas to continue
investigation of ≤SP.

In §2 we summarize what is already known on ≤SP.
In §3, we introduce several amalgamation-related properties of forcing notions

(Definition 2.2), and show that it is preserved under iterations in a suitable sense
(Theorem 2.5). In light of this, we define a class of forcing axioms (Definition 2.7);
these are closely related to the forcing axiom Axµ0 , defined by the first author in
[9] and used to demonstrate the consistent maximality of non-simple theories under
≤SP in [10]. However, the forcing axioms we develop are designed specifically for
what we want and have been simplified somewhat.

In §4, we define and prove some helpful facts about non-forking diagrams of
models.

In §5, we introduce, for each 3 ≤ k < ω, a property of simple theories called
< k-type amalgamation (Definition 4.1), and discuss some of its properties. For
example, if for n > k we let Tn,k be the theory of the k-ary, n-clique free hypergraph,
then if k ≥ 3, Tn,k has < k-type amalgamation but not < k+1-type amalgamation.
We also show that if T has < ℵ0-type amalgamation (i.e., < k-type amalgamation
for all k), then SPT (λ, θ) holds whenever we have that there is some θ ≤ µ ≤ λ
with µ<θ ≤ λ and 2µ ≥ λ (Theorem 4.6). This implies that if the singular cardinals
hypothesis holds, then whenever T has < ℵ0-type amalgamation, then T ≤SP Trg,
where Trg is the theory of the random graph.

In §6, we put everything together to show that consistently, for all k ≥ 3, if
T has the < k-type amalgamation property, then Tk,k−1 �SP T (Theorem 5.4).
In particular, for k < k′, Tk+1,k �SP Tk′+1,k′ ; this is similar to the situation for
Kiesler’s order in [7].
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By a forcing notion, we mean a pre-ordered set (P,≤P ) such that P has a least
element 0P (pre-order means that ≤P is transitive); we are using the convention
where p ≤ q means q is a stronger condition than p. That is, when we force by P we
add a generic ideal, rather than a generic filter. Thus, a finite sequence (pi : i < k)
from P is compatible if it has an upper bound in P .
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§ 1. Background

The following theorem is closely related to the classical Hewitt-Marczewski-
Pondiczery theorem of topology; the special case θ = ℵ0 is implied by Theorem
8 of [1], and the general case is also noted there. It will be central for our investi-
gations.

Theorem 1.1. Suppose θ ≤ µ ≤ λ are infinite cardinals such that θ is regular,
µ = µ<θ, and λ ≤ 2µ. Then there is a sequence (fγ : γ < µ) from λµ such that for
all partial functions f from λ to µ of cardinality less than θ, there is some γ < µ
such that fγ extends f . If λ > 2µ then this fails, in fact, there is no sequence
(fγ : γ < µ) from λ2 such that for all partial functions f from λ to 2 of cardinality
less than θ, there is some γ < µ such that fγ extends f .

We will also want the following technical device, which will allow us to apply
Theorem 1.1 to conclude SPT (λ, θ) holds. Here is the idea: suppose M |= T with
|M | ≤ λ, and we want to find some θ-saturated N � M with |N | ≤ λ. To do this,
we will always first find some N0 � M with |N0| ≤ λ which realizes every type over
M of cardinality less than θ, and then we iterate θ-many times. The key step is to
find N0, and the following definitions capture when this is possible.

Definition 1.2. 1) Suppose T is a simple theory, θ is a regular uncountable car-
dinal, and M∗ � M |= T . then let Γθ

M,M∗
be the forcing notion of all partial types

p(x) over M of cardinality less than θ which do not fork over M∗, ordered by inclu-
sion, where x is a single variable. Also, if p∗(x) is a complete type over M∗, then
let Γθ

M,p∗
⊆ Γθ

M,M∗
be the set of all p(x) which extend p∗(x).

2) Given (θ, λ) a nice pair and given µ with θ ≤ µ ≤ λ, define SP1
T (λ, µ, θ) to

mean: for every M |= T of size ≤ λ and for every countable M∗ � M , there
are complete types pγ(x) : γ < µ over M which do not fork over M∗, such that
whenever p(x) ∈ Γθ

M,M∗
, then p(x) ⊆ pγ(x) for some γ < µ.

3) Given in addition a fixed countable M∗ |= T and type p∗(x) over M∗, define
SP1

T,p∗
(λ, µ, θ) similarly: whenever M � M∗ has size at most λ, there are are

complete, non-forking extensions pγ(x) : γ < µ of p∗(x) to M , such that whenever
p(x) ∈ Γθ

M,p∗
, then p(x) ⊆ pγ(x) for some γ < µ.

Note that if µ ≥ 2ℵ0 , then SP1
T (λ, µ, θ) if and only if SP1

T,p∗
(λ, µ, θ) for every

complete type p∗(x) over a countable model M∗ (the forward direction is uncondi-
tional in µ, but for the reverse direction, we need to concatenate witnesses for each
p∗(x), of which there are 2ℵ0-many). In particular this holds when µ = λ, since
λℵ0 = λ.
The following is an important example. Let Trg be the theory of the random graph,
i.e. the model completion of the theory of graphs. Trg admits quantifiers, and given
A ⊆ B and p(x) ∈ S(B), p forks over A if and only if p is realized in B\A.

Example 1.3. Suppose (θ, λ) is a nice pair and suppose µ is a cardinal with
µ = µ<θ and θ ≤ µ ≤ λ. Then SP1

Trg
(λ, µ, θ) holds if and only if λ ≤ 2µ; and this is

equivalent to SP1
Trg,p∗

(λ, µ, θ) holding for some or any nonalgebraic complete type

p∗(x) over a countable model M∗.
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Proof. Suppose M |= T has size ≤ λ.
Then the non-algebraic types in S1(A) correspond naturally to functions from

A to 2, and so this is just a restatement of Theorem 1.1. �

Theorem 1.4. Suppose T is a simple theory (in a countable language, as always
see 0.1).

Suppose (θ, λ) is a nice pair:

(A) If SP1
T (λ, λ, θ), then SPT (λ, θ).

(B) If T = Trg and SPT (λ, θ) then SPT (λ, λ, θ).
(C) Suppose p∗(x) is a complete type over a countable model M∗ |= T , and

SP1
T,p∗

(λ, λ, θ) holds, and cof(λ) < θ. Then for some µ with θ ≤ µ <

λ, SP1
T,p∗

(λ, µ, θ) holds.

(D) Suppose 2ℵ0 < cof(λ) < θ. Suppose SP1
T (λ, λ, θ) holds. Then SP1

T (λ, µ, θ)
holds for some µ < λ.

Proof. (A) Suppose M |= T has size ≤ λ. Using SP1
T (λ, λ, θ), we can find N � M

of size λ, such that every partial type p(x) over M of cardinality less than θ is
realized in N , using every type in M does not fork over some countable submodel
of M (we are also using λ = λℵ0 , so there are only λ-many countable elementary
submodels M∗ of M). If we iterate this θ-many times then we will get a θ-saturated
model of T .
(B): Suppose M |= Trg has size ≤ λ and M∗ � M is countable. Choose N � M , a
θ-saturated model of size λ. Let aα : α < λ enumerate N . For each α < λ let pα(x)
be the type over M asserting x 6= a for each a ∈ M , and R(x, a) ∈ pα if and only
if R(aα, a) holds for each a ∈ M . This is a complete type over M which does not
fork over ∅. Then {pα(x) : α < λ} along with all algebraic types over M∗ witness
SP1

Trg
(λ, λ, θ).

(C): Suppose towards a contradiction that SP1
T,p∗

(λ, µ, θ) failed for all θ ≤ µ < λ.
Write κ = cof(λ), and let (µβ : β < κ) be a cofinal sequence of cardinals in λ with
each uβ ≥ θ. For each β < κ, choose Mβ � M∗ with |Mβ | ≤ λ, witnessing that

SP1
T,p∗

(λ, µβ , θ) fails. We can suppose that (Mβ : β < κ) is independent over M∗.

Let N |= T have size ≤ λ such that each Mβ � N . Then by SP1
T,p∗

(λ, λ, θ), we
can find (qα(x) : α < λ) such that each qα(x) extends p∗(x), does not fork over M∗

and whenever q(x) ∈ Γθ
N,p∗

, then q(x) ⊆ qα(x) for some α < λ.

For each β < κ, we can by hypothesis choose pβ(x) ∈ Γθ
Mβ ,p∗

such that pβ(x) *
qα(x) for any α < µβ ; note that still p(x) ⊇ p∗(x). By the independence theorem
for simple theories, p(x) :=

⋃

β<κ

pβ(x) does not fork over M∗. Hence p(x) ⊆ qα(x)

for some α < λ. Choose β < κ with α < µβ; then this implies that pβ(x) ⊆ qα(x),
a contradiction.

(D): Enumerate, up to isomorphism, all types over countable models (pα(x,Mα) :
α < 2ℵ0). For each α < 2ℵ0 , SP1

T,pα
(λ, λ, θ) holds, so by (C) there is µα < λ such

that SP1
T,pα

(λ, µα, θ) holds. Let µ be the supremum of 2ℵ0 and {µα : α < 2ℵ0};

then µ < λ and easily SP1
T (λ, µ, θ) holds. �

Finally, the following theorem is a collection of most of what has been previously
known on ≤SP.

Theorem 1.5. Suppose T is a complete first order theory in a countable language.
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Suppose (θ, λ) is a nice pair:

(A) If λ = λ<θ, then SPT (λ, θ) holds; if T is non-simple then the converse
is true as well. Thus non-simple theories are all ≤SP-maximal. (See [10]
Conclusion 4.6 and Theorem 4.7.)

(B) Trg is the ≤SP-minimal unstable theory. (Theorem 4.8 of [10].)

(C) If T is stable, then SPT (λ, θ) holds (see [10] Theorem 4.7(2)).

(D) If λ is a strong limit with cof(λ) < θ (and as λ = λℵ0 , we have ℵ0 < cof(λ)),
and if SPT (λ, θ) holds, then T is stable. (Theorem 4.7(4) of [10].) Thus
the stable theories are exactly the minimal ≤SP-class. Also, under GCH,
all unstable theories are maximal.

(E) If θ ≤ µ ≤ λ and µ<θ = µ and λ ≤ 2µ, then SPTrg (λ, θ) holds. (This is
Exercise VIII 4.5 in [8].)

(F) It is consistent that there exists a nice pair (θ, λ) such that for all simple
T, SPT (θ, λ) holds. Hence, it is consistent that the non-simple theories are
exactly the ≤SP-maximal class. (This is Theorem 4.10 of [10].)

For the reader’s convenience, we prove (A) through (E), making use of the lan-
guage of SP 1. Theorem (F) will be a special case of our main theorem, namely
Theorem 5.4(B).

Proof. (A): By standard arguments, if λ<θ = λ then SPT (λ, θ) holds. Suppose
T is non-simple, and SPT (λ, θ) holds, and suppose towards a contradiction that
λ<θ > λ. Choose a formula φ(x, y) with the tree property (possibly y is a tuple).

Let κ < θ be least such that λκ > λ. Choose M |= T and (aη : η ∈ <κλ) such
that for all η ∈ κλ, pη(x) := {φ(x, aη↾β ) : β < κ} is consistent, and for all η ∈ <κλ

and for all α < β < λ, φ(x, aη⌢(α)) and φ(x, aη⌢(β)) are inconsistent. Note that
each |pη(x)| < θ; but clearly if N � M realizes each pη(x) then |N | ≥ λκ > λ.
(B): Suppose T is unstable; we show Trg ≤SP T . By (A), this is true if T is non-
simple, so we can suppose that T is simple, hence has the independence property
via some formula φ(x, y). Now suppose (θ, λ) is a nice pair. By Theorem 1.4(B),
it suffices to show that if SPT (λ, θ) holds, then SP1

Trg
(λ, λ, θ) holds. Choose some

(aα : α < λ) from C such that for all f : λ → 2, {φ(x, aα)
f(α) : α < λ} is consistent.

By SPT (λ, θ) we can find some θ-saturated M ≺ C with |M | ≤ λ and each aα ∈ M .
Suppose N |= Trg has cardinality λ , say N = {bα : α < λ} without repetitions.

For each c ∈ M, let pc(x) be the complete nonalgebraic type over N , defined by
putting R(x, bα) ∈ pc(x) if and only if M |= φ(c, aα). Then recalling the proof of
1.3 this witnesses SP1

Trg
(λ, λ, θ) holds (since |M | ≤ λ).

(C): Suppose T is stable. It suffices to show that SP1
T (λ, λ, θ) holds. But this is

clear: given M |= T of size ≤ λ and M∗ � M countable, there are ≤ 2ℵ0 ≤ λℵ0 = λ
many types overM that do not fork overM∗, seeing as types overM∗ are stationary.
(D): Suppose towards a contradiction that SPT (λ, θ) holds for some unstable T .
Then in particular SPTrg (λ, θ) holds. Let p∗(x) be a complete non-algebraic type
over some countable M∗ |= Trg. By Theorem 1.4 we can find θ ≤ µ < λ such that

SP1
Trg,p∗

(λ, µ, θ) holds. By possibly replacing µ with µ<θ we can suppose µ = µ<θ.
Then this contradicts Example 1.3, since 2µ < λ.
(E): By Example 1.3 and Theorem 1.4(A).
(F): See [10] or [3]. �
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If the singular cardinals hypothesis holds, then we can say more. Recall that

Definition 1.6. The singular cardinals hypothesis states that if λ is singular and
2cof(λ) < λ, then λcof(λ) = λ+. (Note that 2cof(λ) 6= λ since cof(2κ) > κ for all
cardinals κ, by König’s theorem.)

The failure of the singular cardinals hypothesis is a large cardinal axiom; see
Chapter 5 of [5].

We want the following simple lemma.

Lemma 1.7. Suppose the singular cardinals hypothesis holds. Suppose θ is regular,
λ ≥ θ, λ<θ > λ, and 2<θ ≤ λ. Then for every µ < λ, µ<θ < λ. Further, λ is
singular of cofinality < θ.

Proof. First of all, note that 2<θ < λ, as otherwise λ<θ = λ.
Now suppose towards a contradiction there were some µ < λ with µ<θ ≥ λ;

then necessarily µ<θ > λ, as otherwise again λ<θ = λ. We can choose µ least with
µ<θ > λ. Let κ < θ be least such that µκ > λ.

Note that 2κ < µ, as otherwise 2κ = (2κ)κ ≥ µκ > λ, contradicting 2<θ < λ.
Thus, by a consequence of the singular cardinals hypothesis (Theorem 5.22(ii)(b),(c)
of [5]), µκ ≤ µ+. But since µ < λ, µ+ ≤ λ, so this is a contradiction.

To finish, suppose towards a contradiction that cof(λ) ≥ θ. Then λ<θ = λ +
sup{µ<θ : µ < λ} = λ, a contradiction. �

Theorem 1.8. Suppose the singular cardinals hypothesis holds, and suppose (θ, λ)
is a nice pair. Then SP1

T (λ, λ, θ) holds if and only if T is stable, or λ = λ<θ, or else
T is simple and for every complete type p∗(x) over a countable model M∗ |= T , there
is some µ with θ ≤ µ < λ and with µ<θ = µ and 2µ ≥ λ, such that SP1

T,p∗
(λ, µ, θ)

holds.

Proof. If T is stable or λ = λ<θ, then SP1
T (λ, λ, θ) holds. If T is non-simple and

λ < λ<θ, then SP1
T (λ, λ, θ) fails by Theorem 1.5(A) and Theorem 1.4(A). Thus

we can assume T is unstable, simple (hence has the independence property) and
λ < λ<θ.

It suffices to show that SP1
T (λ, λ, θ) holds if and only if for every complete type

p∗(x) over a countable model M∗, there is some θ ≤ µ < λ with µ<θ = µ and
2µ ≥ λ, such that SP1

T,p∗
(λ, µ, θ) holds.

Suppose first SP1
T (λ, λ, θ) holds, and p∗(x) is given. Since T is unstable with

the independence property, SP1
T (λ, λ, θ) clearly implies that 2<θ ≤ λ. Hence, by

Lemma 1.7, λ is singular with cof(λ) < θ, and there are cofinally many µ < λ with
µ<θ = µ. By Theorem 1.5(D), λ is not a strong limit. Thus by Theorem 1.4(C),
we can find θ ≤ µ < λ such that µ = µ<θ and 2µ ≥ λ and SP1

T,p∗
(λ, µ, θ) holds.

Conversely, we have in particular that each SP1
T,p∗

(λ, λ, θ) holds; since λ = λℵ0 ≥

2ℵ0 we get that SP1
T (λ, λ, θ) holds. �
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§ 2. Forcing Axioms

In this section, we introduce the forcing axioms which will produce the desired
behavior in SP. It is well-known that the countable chain condition is preserved
under finite support iterations; we aim to find generalizations to the κ-closed, κ+-
c.c. context.

Definition 2.1. For a regular cardinal θ and sets X,Y , define PXY θ to the forcing
notion of all partial functions from X to Y of cardinality less than θ, ordered by
inclusion. Note that PXY θ has the |Y <θ|+-c.c. by the ∆-system lemma and is
θ-closed.

Definition 2.2. Suppose P,Q are forcing notions, and suppose k ≥ 3 is a cardinal
(typically finite). Then say that P →k Q if there is a dense subset P0 of P and
a map F : P0 → Q such that for all sequences (pi : i < i∗) from P0 with i∗ < k,
if (F (pi) : i < i∗) is compatible in Q (that is, has a common upper bound), then
(pi : i < i∗) has a least upper bound in P ; we write F : (P, P0) →k Q. Say that
P →w

k Q (where w stands for weak) if there is a map F : P → Q such that whenever
(pi : i < i∗) is a sequence from P with i∗ < k, if (F (pi) : i < i∗) is compatible in
Q, then (pi : i < i∗) is compatible in P .

Suppose P is a forcing notion, ℵ0 < θ ≤ µ are cardinals with θ regular, and
3 ≤ k ≤ θ is a cardinal (often finite). Then say that P has the (< k, µ, θ)-
amalgamation property if every ascending chain from P of length less than θ has a
least upper bound in P , and for some set X , P →k PXµθ.

For example, PXµθ has the (< k, µ, θ)-amalgamation property.
The following lemma sums up several obvious facts.

Lemma 2.3. Suppose ℵ0 < θ ≤ µ are cardinals with θ = cf(λ) > ℵ0, and 3 ≤ k ≤ θ
is a cardinal.

(1) If P →k Q and Q →w
k Q′ then P →k Q′.

(2) If P,Q have the (< k, µ, θ)-amalgamation property, then P forces that Q̌
has the (< k, |µ|, θ)-amalgamation property. (We write |µ| because possibly
P collapses µ.) (This is where we use k ≤ θ.)

(3) Suppose P has the (< k, µ, θ)-amalgamation property for some k ≥ 3. Then
P is θ-closed (hence < θ-distributive) and (µ<θ)+-c.c.

(4) If P is θ-closed and has the least upper bound property, then P has the
(< k, µ, θ)-amalgamation property if and only if P →w

k Pλµθ for some λ.

We note the following:

Lemma 2.4. Suppose ℵ0 < θ ≤ µ are cardinals with θ regular, and 3 ≤ k ≤ θ.
Then P has the (< k, µ, θ)-amalgamation property if and only if P has the (<
k, µ<θ, θ)-amalgamation property.

Proof. Define µ′ = µ<θ, and let λ be a cardinal. It suffices to show there is a
cardinal λ′ such that Pλµ′θ →w

k Pλ′µθ, by Lemma 2.3(1). Write Y ′ = <θµ; it
suffices to find a set X ′ such that PλY ′θ →w

k PX′µθ.
Let X ′ = λ × (θ + 1). Define F : PλY ′θ → PX′µθ as follows. Let f ∈ PλY ′θ be

given. Let dom(F (f)) = {((γ, δ) : γ ∈ dom(f) and either δ < dom(f(γ)) or δ = θ}.
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Define F (f)(γ, δ) = f(γ)(δ) if δ < θ, and otherwise F (f)(γ, θ) = dom(f(γ)).
Clearly this works. �

The following is key; it states that the (< k, µ, θ)-amalgamation property is pre-
served under < θ-support iterations. Note that it follows that the (< k, µ, θ)-
amalgamation property is preserved under < θ-support products.

Theorem 2.5. Suppose θ is a regular uncountable cardinal, µ ≥ θ and 3 ≤ k ≤ θ.
Suppose (Pα : α ≤ α∗), (Q̇α : α < α∗) is a < θ-support forcing iteration, such that

each Pα forces that Q̇α has the (< k, |µ|, θ)-amalgamation property. Then Pα∗ has
the (< k, µ, θ)-amalgamation property.

Proof. Let λ be large enough.
Inductively, choose (P 0

α : α ≤ α∗, Q̇
0
α : α < α∗) a < θ-support forcing iteration,

and (Ḟα : α < α∗), such that each P 0
α is dense in Pα (and hence < θ-distributive),

and each Pα forces Ḟα : (Q̇α, Q̇
0
α) →k P̌λµθ. There is a subtlety here: Q̇0

α needs

to be a P 0
α-name for Q̇α, not just a Pα-name. This follows from a general fact

that if P is a forcing notion and P0 is dense in P then any P -name is forced to be
equivalent to a P0-name; this can be checked by an induction on the foundation
rank of P -names.

By revising the choice of Q̇0
α and Ḟα, we can suppose Q̇0

α contains the minimal

element 0Q̇α of Q̇α and we can suppose Ḟα is forced to take 0Q̇α to the empty
function in P̌λµθ.

Claim 2.6. For each γ∗ < θ, if (pγ : γ < γ∗) is an ascending chain from Pα∗ , then
it has a least upper bound p in Pα∗ , such that supp(p) ⊆

⋃

γ<γ∗

supp(pγ).

Proof. By induction on α ≤ α∗, we construct (qα : α ≤ α∗) such that each qα ∈ Pα

with supp(qα) ⊆
⋃

γ<γ∗
supp(pγ) ∩ α, and for α < β ≤ α∗, qβ↾α = qα, and for

each α ≤ α∗, qα is a least upper bound of (pγ ↾α: γ < γ∗) in Pα. At limit stages
there is nothing to do; so suppose we have defined qα. If α /∈

⋃

γ<γ∗

supp(pγ) then

let qα+1 = qα ⌢ (0Q̇α). Otherwise, since qα forces that (pγ(α) : γ < γ∗) is an

ascending chain from Q̇α, we can find q̇, a Pα-name for an element of Q̇α, such that
qα forces q̇ is the least upper bound. Let qα+1 = qα ⌢ (q̇). �

Now suppose p ∈ P 0
α∗
. Note that supp(p) ∈ [α∗]

<θ.
By a similar proof to the claim we can find, for each n < ω, elements qn(p) ∈

P 0
α∗
with q0(p) = p, so that for all n < ω:

• qn+1(p) ≥ qn(p);

• For all α < α∗, qn+1(p) ↾α decides Ḟα(qn(p)(α)). (This is automatic

whenever α 6∈ supp(qn), since then P forces that Ḟα(qn(p)(α)) = ∅.)

So we can choose fn,α,p ∈ Pλµσ such that each qn+1(p) ↾α forces that Ḟα(qn(p)(α)) =

f̌n,α,p.
Let qω(p) ∈ P be the least upper bound of (qn(p) : n < ω), which is possible by

the claim. Let P 0 = {qω(p) : p ∈ P 0
α∗
}. For each q ∈ P 0, choose p(q) ∈ P 0

α∗
such

that q = qω(p(q)). For each n < ω, let pn(q) = qn(p(q)), and for each α < α∗, let
fn,α,q = fn,α,p(q).
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Thus we have arranged that for all q ∈ P 0, q is the least upper bound of (pn(q) :

n < ω), and for all n < ω and α < α∗, pn+1(q) ↾α forces that Ḟα(pn(q)(α)) =
f̌n,α(q).

Write X = ω× α∗ × λ. Choose F : P 0 → PXµθ so that for all q, q′ ∈ P 0, if F (q)
and F (q′) are compatible, then for all n < ω and for all α < α∗, fn,α,q and fn,α,q′

are compatible. For instance, let the domain of F (q) be the set of all (n, α, β) such
that β is in the domain of fn,α,q, and let F (q)(n, α, β) = fn,α,q(β).

Now suppose (qi : i < i∗) is a sequence from P 0 with i∗ < k, such that (F (qi) :
i < i∗) are compatible. Write Γ =

⋃
i<i∗,n<ω supp(pn(qi)).

By induction on α ≤ α∗, we construct a least upper bound sα to (pn(qi) ↾α: i <
i∗, n < ω) in Pα, such that supp(sα) ⊆ Γ ∩ α, and for α < α′, sα′ ↾α= sα.

Limit stages of the induction are clear. So suppose we have constructed sα. If

α 6∈ Γ clearly we can let sα+1 = sα
⌢(0Q̇α); so suppose instead α ∈ Γ. Let n < ω be

given. Then (fn,α,qi : i < i∗) are compatible, and sα forces that Ḟα(pn(qi)(α)) =

f̌n,α,qi for each i < i∗, since pn+1(qi) ↾α does. Thus sα forces that (pn(qi)(α) : i <
i∗) has a least upper bound ṙn. Now sα forces that (ṙn : n < ω) is an ascending

chain in Q̇α, so let q̇ be such that sα forces q̇ is a least upper bound to (ṙn : n < ω).
Let sα+1 = sα

⌢(q̇).
Thus the induction goes through, and sα∗ is a least upper bound (qi : i < i∗). �

The following class of forcing axioms, for k = 3, is related to Shelah’s Axµ0 from
[9] although the formulation is different.

Definition 2.7. Suppose ℵ0 < θ = θ<θ ≤ λ, and suppose 3 ≤ k < ω. Then say
that Ax(< k, θ, λ) holds if for every forcing notion P such that |P | ≤ λ and P
has the (< k, θ, θ)-amalgamation property, if (Dα : α < λ) is a sequence of dense
subsets of P , then there is an ideal of P meeting each Dα. (By dense, we mean
upwards dense: for every p ∈ P , there is q ∈ Dα with q ≥ p.) Say that Ax(< k, θ)
holds iff Ax(< k, θ, λ) holds for all λ < 2θ.

By a typical downward Lowenheim-Skolem argument we could drop the condition
that |P | ≤ λ in Ax(k, θ, λ), but we won’t need this. Finally, note that Ax(k, θ, λ)
implies that 2θ > λ, since Pθ2θ has the (< k, θ, θ)-amalgamation property and there
is a family 2θ dense sets such that no ideal meets them all.

Theorem 2.8. Suppose ℵ0 < θ are cardinals such that θ is regular and θ = θ<θ,
and suppose 3 ≤ k ≤ θ. Suppose κ ≥ θ has κ<κ = κ. Then there is a forcing notion
P with the (< k, θ, θ)-amalgamation property (in particular, θ-closed and θ+-c.c.),
such that P forces that Ax(< k, θ) holds and that 2θ = κ. We can arrange |P | = κ.

Proof. The proof is very similar to the proof of the consistency of Martin’s axiom,
see Theorem 16.13 of [5].

Let (Pα : α ≤ κ), (Q̇α : α < κ) be a < θ-support iteration, such that (viewing
Pα-names as Pβ-names in the natural way, for α ≤ β < κ):

• Each Pα forces that Q̇α has the (< k, θ, θ)-amalgamation property;

• Whenever α < κ, and Q̇ is a Pα-name such that |Q̇| < κ and Pα forces Q̇
has the (< k, θ, θ)-amalgamation property, then there is some β ≥ α such

that Pβ forces that Q̇β is isomorphic to Q̇;
• Each |Pα| ≤ κ.
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This is possible by the θ+-c.c., and using Lemma 2.3(2). The point is that at each

stage α, if Pα forces that |Q̇| = λ < κ, then we can choose a Pα-name Q̇′ such that

Pα-forces Q̇ ∼= Q̇′ and that Q̇′ has universe λ; then there are only |Pα|θ·λ ≤ κ-many

possibilities for Q̇′, up to Pα-equivalence. Thus we can eventually deal with all of
them.

Note that by κ = κ<κ we have in particular that Pκ forces 2θ ≤ κ. Once we
verify Pκ forces that Ax(< k, θ, λ) for all λ < κ, it follows that Pκ forces 2θ = κ.

By the θ+-c.c., we have that whenever Ẋ is a Pκ-name for a subset of λ for some
λ < κ, then for some α < κ and some Pα-name Ẋα we have that Ẋ is forced to be
equal to Ẋα.

Let V[Gκ] be a Pκ-generic extension of V; for α < κ let Gα be the associated Pα-
generic extension of V. Rephrasing the previous paragraph, we have that whenever
λ < κ and X ⊆ λ is in V[Gκ], we have X ∈ V[Gα] for some α < κ.

Let Q be a forcing notion in V[Gκ] with the (< k, θ, θ)-amalgamation property,
with |Q| < κ; let F : (Q,Q0) →k PXθθ witness this, where we can suppose X =
λ < κ. Let D = {Dα : α < λ′} be a set of dense subsets of Q where λ′ < κ.
By the preceding, we can find α < κ such that (Q,Q0, F,D) ∈ V[Gα]. Thus

we can find Pα-names for them, Q̇, Q̇0, Ḟ , Ḋ. We have that Pα forces Q̇ has the
(< k, θ, θ)-amalgamation property. Then we can find some β ≥ α such that it

is forced Q̇ ∼= Q̇β . Then in V[Gκ], if we let H be the V[Gβ ]-generic subset of Q

added by Q̇β , then this is an ideal of Q meeting each dense set in D, thus verifying
Ax(< k, θ). �

We now relate this to model theory.

Definition 2.9. Suppose (θ, λ) is a nice pair, and θ ≤ µ ≤ λ, and T is simple. Then
say that T has (< k, λ, µ, θ)-type amalgamation if whenever M |= T has size ≤ λ,
and whenever M∗ � M is countable, then Γθ

M,M∗
has the (< k, µ, θ)-amalgamation

property, or equivalently, Γθ
M,M∗

→w
k PXµθ for some set X .

Lemma 2.10. Suppose T fails (< k, λ, µ, θ)-type amalgamation, and P has the
(< k, µ, θ)-amalgamation property. Then P forces that Ť fails (< k, λ, |µ|, θ)-type
amalgamation.

Proof. It suffices to show that if Q is a forcing notion and P forces that Q̌ →w
k

P̌X̌µθ, then Q →w
k PX′µθ for some X ′, by Lemma 2.3(4). (We then apply this to

Q = Γθ
M,M∗

witnessing the failure of (< k, µ, θ)-amalgamation.)

Choose some F∗ : (P, P0) →k PX∗µθ, and let Ġ be a P -name so that P forces

ġ : Q̌ →w
k PX̌µθ. For every q ∈ Q, choose p(q) ∈ P0 such that p(q) decides Ġ(q̌),

say p(q) forces that Ġ(q̌) = f(q). Let X be the disjoint union of X∗ and X , and
choose F : Q → PXµθ so that if F (q) and F (q′) are compatible, then f(q) and f(q′)
are compatible, and F∗(p(q)) and F∗(p(q

′)) are compatible.
Suppose (qi : i < i∗) is a sequence from Q with (F (qi) : i < i∗) compatible in

PXµθ. Then (F∗(p(qi)) : i < i∗) are all compatible in PX∗µθ, so (p(qi) : i < i∗) are

compatible in P0 with the least upper bound p. Then p forces each Ḟ (q̌i) = f(qi).
But also (by choice of F ), (f(qi) : i < i∗) are compatible in PY,µ,θ, so p forces that

(q̌i : i < i∗) is compatible in Q̌, i.e. (qi : i < i∗) is compatible in Q. �
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Theorem 2.11. Suppose T simple, and ℵ0 < θ = θ<θ ≤ λ = λℵ0 , and Ax(< k, θ)
holds. Suppose 2θ > λ<θ, and suppose 3 ≤ k ≤ ℵ0. Then the following are
equivalent:

(A) T has (< k, λ, θ, θ)-type amalgamation;
(B) SP 1

T (λ, θ, θ) holds.

Proof. (B) implies (A): suppose (B) holds and M |= T has size λ and M∗ � M is
countable. Let (pα(x) : α < θ) be as in the definition of SP 1

T (λ, θ, θ). Let X = {x}
be a singleton. Then Γθ

M,M∗
→w

k PXθθ, namely send p(x) ∈ Γθ
M,M∗

to {(x, α)} for

some α with p(x) ⊆ pα(x).
(A) implies (B): let M |= T have size at most λ and let M∗ � M be countable.

Let P be the < θ-support product of θ-many copies of Γθ
M,M∗

; then P has the

(< k, θ, θ)-amalgamation property and |P | ≤ λ<θ. For each p(x) ∈ Γθ
M,M∗

let Dp

be the dense subset of P consisting of all f ∈ P such that for some γ ∈ dom(f),
f(γ) extends p(x). By Ax(< k, λ<θ, θ) we can choose an ideal I of P meeting each
Dp. This induces a sequence (pγ(x) : γ < θ) of partial types over M that do not
fork over M∗, such that for all p(x) ∈ Γθ

M,M∗
there is γ < θ with p(x) ⊆ pγ(x). To

finish, extend each pγ(x) to a complete type over M not forking over M∗. �
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§ 3. Non-Forking Diagrams

Suppose T is a simple theory in a countable language. We wish to study various
type amalgamation properties of T ; in particular we will be looking at systems of
types (ps(x) : s ∈ P ) over a system of models (Ms : s ∈ P ), for some P ⊆ P(I)
closed under subsets. For this to be interesting, we need (Ms : s ∈ P ) to be
independent in a suitable sense, which we define in this section.

The following definition is similar to the first author’s definition of independence
in [8] in the context of stable theories, see Section XII.2. In fact we are modeling
our definition after Fact 2.5 there (we cannot take the definition exactly from [8]
because we allow P to contain infinite subsets of I).

Definition 3.1. Let T be simple.
Suppose I is an index set and P ⊆ P(I) is downward closed. Say that (As : s ∈

P ) is a diagram (of subsets of C) if each As ⊆ C and s ⊆ t implies As ⊆ At. Say
that (As : s ∈ P ) is a non-forking diagram if for all si : i < n, tj : j < m ∈ P ,⋃

i<n Asi
|⌣⋃

i,j Asi∩tj

⋃
j<m Atj . Say that (As : s ∈ P ) is a continuous diagram if

for every X ⊆ P ,
⋂

s∈X As = A⋂
X . (If X is finite then this is a consequence of

non-forking.)

Note that (As : s ∈ P ) is continuous if and only if for every a ∈
⋃

s∈P As, there
is some least s ∈ P with a ∈ As. Also note that if (As : s ∈ P ) is non-forking
(continuous) and Q ⊆ P is downward closed then (As : s ∈ Q) is non-forking
(continuous).

Lemma 3.2. Suppose (As : s ∈ P ) is a diagram of subsets of C. Then the following
are equivalent:

(A) For all downward-closed subsets S, T ⊆ P ,
⋃

s∈S As |⌣⋃
s∈S∩T As

⋃
t∈T At.

(B) (As : s ∈ P ) is non-forking.

Proof. (A) implies (B) is trivial.
(B) implies (A): we proceed by induction on κ to show that for all sα : α < κ,

tβ : β < κ,
⋃

α Asα
|⌣⋃

αβ Asα∩tβ

⋃
β Atβ . This suffices to prove (A) since when

κ ≥ |S| + |T | then sα, tβ can just enumerate S and T , in which case sα ∩ tβ
enumerates S ∩ T . For the induction, when κ is finite use the hypothesis (B), and
when κ is infinite use the local character of nonforking. �

The following lemma is similar to Lemma 2.3 from [8] Section XII.2.

Lemma 3.3. Suppose P ⊆ P(I) is downward closed and (As : s ∈ P ) is a contin-
uous diagram of subsets of C. Suppose there is a well-ordering <∗ of

⋃
s As such

that for all a ∈
⋃

s As, a is free from {b ∈
⋃

s As : b <∗ a} over {b ∈ sa : b <∗ a},
where sa is the least element of P with a ∈ Asa . Then (As : s ∈ P ) is non-forking.

Proof. Let (aα : α < α∗) be the <∗-increasing enumeration of
⋃

s As, and let sα
be the least element of P with aα ∈ Asα . For each α ≤ α∗ and for each s ∈ P
let As,α = As ∩ {aβ : β < α}. We show by induction on α that (As,α : s ∈ P ) is
non-forking.

Limit stages are clear. So suppose we have shown (As,α : s ∈ P ) is non-forking.
Let (si : i < n), (tj : j < m) ∈ P be given. We wish to show



14 SAHARON SHELAH AND DANIELLE ULRICH

⋃
i<n Asi,α+1 |⌣⋃

i<n,j<n Asi∩tj ,α+1

⋃
j<m Atj ,α+1. Write A =

⋃
i<n Asi,α, write

B =
⋃

j<m Atj ,α, and write C =
⋃

i,j Asi∩tj ,α. Define A′, B′, C′ similarly except

with α + 1 replacing α. We are trying to show A′ |⌣C′ B
′, and by the inductive

hypothesis, A |⌣C
B, and we also know aα |⌣Asα,α

AB.

If aα 6∈ si and aα 6∈ tj for any i, j then A′ = A,B′ = B,C′ = C and so we are
done. If aα ∈ si ∩ tj and hence Asα,α ⊆ C, then A′ = Aaα, B

′ = Baα, C
′ = Caα

and aα |⌣C
AB (by monotonicity), so we are done by A |⌣C

B and transitivity.
Up to symmetry, the final case is aα ∈ si but is not in any tj . Then Asα,α ⊆ A

and A′ = Aaα, B
′ = B,C′ = C. By monotonicity we have aα |⌣A

AB, so aαA |⌣A

B, so by transitivity aαA |⌣C
B as desired. �

Theorem 3.4. Suppose T is a simple theory in a countable language, and suppose
A is a set of cardinality λ, where λ = λℵ0 . Then we can find a continuous, non-
forking diagram of models (Ms : s ∈ [λ]≤ℵ0) such that A ⊆

⋃
s Ms, and such that

for all S ⊆ λ,
⋃

s∈[S]≤ℵ0 Ms has size at most |S| · ℵ0.

Proof. Enumerate A = (aα : α < λ).
We define (cl({α}) : α < λ) inductively as follows, where each cl({α}) is a

countable subset α + 1 with α ∈ cl({α}). Suppose we have defined (cl({β}) : β <
α). Choose a countable set Γ ⊆ α such that aα |⌣{aβ :β∈Γ} {aβ : β < α}; put

cl({α}) = {α} ∪
⋃

β∈Γ cl({β}).

Now, for each s ⊆ λ, let cl(s) :=
⋃

α∈s cl({α}). Say that A ⊆ λ is closed if
cl(A) = A; this satisfies the usual properties of a set-theoretic closure operation,
that is cl(A) ⊇ A, and A ⊆ B implies cl(A) ⊆ cl(B), and cl2(A) = cl(A), and cl
is finitary: in fact cl(A) =

⋃
α∈A cl({α}), which is even stronger. Finally, |cl(A)| ≤

|A|+ ℵ0.
For each s ∈ [λ]≤ω, let As = {aα : α < λ and cl({α}) ⊆ s}. Since each aα ∈

Acl({α}), we have
⋃

s As = A. Further, (As : s ∈ [λ]≤ω) is clearly a continuous

diagram of sets; we claim that (As : s ∈ [λ]≤ω) is a non-forking diagram of sets.
But this follows from Lemma 3.3, since each aα |⌣Acl({α})

∩{aβ :β<α}
{aβ : β < α}.

For each α ≤ λ, and each u ∈ [λ]<ω let Aα,u = {cl(s ∪ u) ∩ α : s ∈ [α]<ω}. We
show by induction on α ≤ λ that for all u ∈ [λ]<ω , (Aα,u,⊂) is well-founded. There
will be separate step case and limit case.

Suppose we have shown (Aα,u,⊂) is well-founded. Then Aα+1,u = X0∪X1 where
X0 = {cl(s∪u)∩(α+1) : s ∈ [α]<ω} and X1 = {cl(s∪{α}∪u)∩(α+1) : s ∈ [α]<ω}.
It suffices to show each of X0, X1 is well-founded under subset. Write v0 = u and
v1 = u ∪ {α}. Then Xi = {cl(s ∪ vi) ∩ (α+ 1) : s ∈ [α]<ω}.

By the induction hypothesis, Aα,vi is well-founded under subset, so it suffices to
show that cl(s ∪ vi) ∩ (α + 1) ⊆ cl(t ∪ vi) ∩ (α + 1) if and only if cl(s ∪ vi) ∩ α ⊆
cl(t ∪ vi) ∩ α, for all s, t ∈ [α]<ω . It suffices to show that α ∈ cl(s ∪ vi) if and only
if α ∈ cl(t ∪ vi), but both are equivalent to α ∈ cl(vi).

Now suppose we have shown (Aα,u,⊆) is well-founded for all u and for all α < δ
where δ is a limit. Suppose towards a contradiction (Aδ,u,⊆) were not well-founded,
say it had the infinite descending chain cl(sn∪u)∩δ. Choose α < δ with s0 ∈ [α]<ω.
Then we have each sn ⊆ cl(s0 ∪u); thus sn ⊆ α∪ cl(u). Put tn = sn ∩α; then each
cl(sn ∪ u) ∩ δ = cl(tn ∪ u) ∩ δ. But then (cl(tn ∪ u) ∩ α : n < ω) must be strictly
descending, since (cl(tn∪u)∩δ : n < ω) is, and each cl(tn∪u)∩(δ\α) = cl(u)∩(δ\α).
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Hence A := Aλ,∅ = {cl(s) : s ∈ [λ]<ℵ0} is well-founded under subset. Note that
for all s ∈ A, since cl(s) = s we have As = {aα : α ∈ s}.

Let<∗ be a well-order ofA refining⊂. Now by induction on<∗, choose countable
models (Ms : s ∈ A) so that Ms ⊇ As and Ms ⊇ Mt for t ⊆ s and such that
Ms |⌣As∪

⋃
{Mt:t∈A,t⊂s} A ∪

⋃
{Mt : t ∈ A, t <∗ s}. Finally, given s ∈ [λ]≤ω , let

Ms :=
⋃
{Mt : t ∈ A, t ⊆ s}. This is a continuous diagram of models, and for all

S ⊆ λ, {t ∈ A : t ⊆ S} has size at most |S| ·ℵ0, so to finish the proof of the theorem
it suffices to show (Ms : s ∈ [λ]≤ℵ0) is non-forking.

Enumerate A = (uα : α < α∗) in <∗-increasing order. For each α ≤ α∗ let
(Bα

s : s ∈ [λ]≤ℵ0 ) be the continuous diagram of models defined via Bα
s = As ∪⋃

{Muβ
: uβ ⊆ s, β < α}. So B0

s = As, B
α∗
s = Ms, and it suffices to show by

induction on α that (Bα
s : s ∈ [λ]≤ℵ0) is nonforking.

The base case and limit cases are clear. So suppose (Bα
s : s ∈ [λ]≤ℵ0 ) is nonfork-

ing; we try to show (Bα+1
s : s ∈ [λ]≤ℵ0) is nonforking. Let si : i < n, tj : j < m be

from [λ]≤ℵ0 ; we want to show
⋃

i<n Bα+1
si

|⌣⋃
i,j B

α+1
si∩tj

⋃
j<m Bα+1

tj
.

Write A =
⋃

i<n B
α
si
, write B =

⋃
j<m Bα

sj
, and write C =

⋃
i,j B

α
si∩sj

, and

let A′, B′, C′ be the same but with α + 1. We know A |⌣C
B by the inductive

hypothesis and we are trying to show A′ |⌣C′ B
′. We also know, by construction

of Muα
, that Muα

|⌣Bα
uα

⋃
{Bα

s : s ∈ [λ]≤ℵ0}.

If uα is not contained in any si or tj then A = A′, B = B′, C = C′ and we are
done. If uα is contained in some si∩tj then A′ = AMuα

, B′ = BMuα
, C′ = CMuα

,
and Muα

|⌣C
AB, so we are done by transitivity. The remaining case (up to

symmetry) is that uα is contained in some si but not in any tj . Then A′ = AMuα
,

B′ = B,C′ = C, and Muα
|⌣A

B, so we are again done by transitivity. �
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§ 4. Amalgamation properties

Suppose T is a simple theory in a countable language. We now explain what we
mean by T having < k-type amalgamation.

Definition 4.1. Given Λ ⊆ nm, let PΛ be the set of all partial functions from n
to m which can be extended to an element of Λ; so PΛ is a downward-closed subset
of P(n×m), and Λ is the set of maximal elements of PΛ.

Suppose (Mu : u ⊆ n) is a non-forking diagram of models. Then by a (Λ,M)-
array, we mean a non-forking diagram of models (Ns : s ∈ PΛ), together with maps
(πs : s ∈ PΛ) such that each each πs : Mdom(s)

∼= Ns, and such that s ⊆ t implies

πs ⊆ πt.

Definition 4.2. Suppose Λ ⊆ nm. Then T has Λ-type amalgamation if, whenever
(Mu : u ⊆ n) is a non-forking diagram of models, and whenever p(x) is a complete
type over Mn in a single variable which does not fork over M0, and whenever
(Ns, πs : s ∈ PΛ) is a (Λ,M)-array, then

⋃
η∈Λ πη(p(x)) does not fork over N0.

Suppose 3 ≤ k ≤ ℵ0; then say that T has < k-type amalgamation if whenever
|Λ| < k, then T has Λ-type amalgamation.

In the definition of Λ-type amalgamation, it would not matter if we required each
Mu to be countable, by a downward Lowenheim-Skolem argument.

Example 4.3. Every simple theory has < 3-type amalgamation.

Proof. Suppose Λ ⊆ nm has |Λ| = 2 and (Mu : u ⊆ n) is a non-forking diagram
of models and p(x) is a complete type over Mn in a single variable which does not
fork over M0. Suppose (Ns, πs : s ∈ PΛ) is a (Λ,M)-array. Write Λ = {η0, η1}.
Write Ki = πηi

[Mn] for i < 2 and let qi = πηi
(p(x)). By the independence theorem

for simple theories, q0(x) ∪ q1(x) does not fork over K0 ∩K1. But K0 ∩K1 ⊆ K0

and since q0(x) does not fork N0, also q0(x) ∪ q1(x) does not fork over N0 by
transitivity. �

Example 4.4. Trg has < ℵ0-type amalgamation.

Proof. This follows from the fact that if (As : s ∈ P ) is any nonforking diagram of
sets and ps(x) ∈ S1(As) for each s ∈ P , if each ps(x) does not fork over A0 and if
ps(x) ⊆ pt(x) for s ⊆ t, then

⋃
s ps(x) is consistent and does not fork over A0. �

Example 4.5. Suppose ℓ > k ≥ 2. Let Tℓ,k be the theory of the generic k-ary,
ℓ-clique free hypergraph; these examples were introduced by Hrushovski [4], where
he proved they have quantifier elimination, and Tℓ,k is simple if and only if k ≥ 3.
For k ≥ 3 and A ⊆ B, p(x) ∈ S(B), we have that p forks over A if and only if p is
realized in B\A.

Then: for k ≥ 3, Tℓ,k has < k-type amalgamation but not < k+ 1-type amalga-
mation.

Proof. Let R denote the edge relation of Tℓ,k.
First we show Tℓ,k has < k-type amalgamation. Suppose Λ ⊆ nm with |Λ| <

k, and (Mu : u ⊆ n) are given, and suppose p(x) is a complete type over Mn.
Suppose towards a contradiction there were a (Λ,M)-array (Ns, πs : s ∈ PΛ) with⋃

η∈Λ πη[p(x)] forking over N0. Then we must have created some ℓ-clique (x, ai :<
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ℓ− 1), where each ai ∈ Nη for some η ∈ Λ. That is, ai : i < ℓ− 1 is an R-clique and
for each u ∈ [ℓ−1]k−1 there is some η ∈ Λ such that πη[p(x)] implies R(x, ai : i ∈ u).

For each i < ℓ− 1, let h[{i}] be the least s ∈ PΛ with ai ∈ Ns. For u ⊆ ℓ− 1 let
h[u] =

⋃
i∈u h[{i}]. The following must hold:

(I) For every u ∈ [ℓ−1]k−1, h[u] ∈ PΛ, as some πη(p(x)) implies R(x, ai : i ∈ u),
and any such η contains h[u];

(II) h[ℓ− 1] 6∈ PΛ, as if h[ℓ− 1] ⊆ η then πη(p(x)) would contain R(x, ai : i ∈ u)
for all u ∈ [ℓ− 1]k−1 and so would be inconsistent.

By (II), for each each η ∈ Λ we must have h[ℓ−1] 6⊆ η; thus we can choose iη < ℓ−1
such that h[{iη}] 6⊆ η. Let u = {iη : η ∈ Λ} ∈ [ℓ − 1]<k. Clearly then h[u] 6∈ PΛ,
but this contradicts (I).

Now we show that Tℓ,k fails < k + 1-type amalgamation. Indeed, let Λ ⊆ k2
be the set of all f : k → 2 for which there is exactly one i < k with f(i) = 1; so
|Λ| = k. Also, let (Mu : u ⊆ k) be a non-forking diagram of models so that there
are ai ∈ M{i} for i < k and there are bj ∈ M0 for n < ℓ − k − 1, such that every
k-tuple of distinct elements from (ai, bj : i < k, j < ℓ − k − 1) is in R except for
(ai : i < k). Let p(x) be the partial type over Mk which asserts that R(x, a) holds
for every k − 1-tuple a of distinct elements from (ai, bj : i < k, j < ℓ− k − 1).

It is not hard to find a (Λ,M)-array (Ns, πs : s ∈ PΛ) such that, if we write
π{(i,0)}(ai) = ci, then R(ci : i < k) holds; but now we are done, since

⋃
f∈Λ πf [p(x)]

is inconsistent. �

The following is the key consequence of < k-type amalgamation.

Theorem 4.6. Suppose T is a simple theory with < k-type amalgamation. Then
for all nice pairs (θ, λ), T has (< k, λ, θ, θ)-type amalgamation.

Proof. By Theorem 3.4, it suffices to show that if (Ms : s ∈ [λ]<θ) is a continuous
non-forking diagram of countable models such that each |Ms| < θ, then writing
M =

⋃
s Ms, we have that Γ

θ
M,M0

→w
k PXθθ for some X . Let <∗ be a well-ordering

of M.
Given A ∈ [M]<θ let sA be the ⊆-minimal s ∈ [λ]<θ with A ⊆ MsA , possible by

continuity.
Let P be the set of all p(x) ∈ Γθ

M,M0
such that for some s ∈ [λ]<θ, p(x) is a

complete type over Ms; we write p(x,Ms) to indicate this. P is dense in Γθ
M,M0

,
so it suffices to show that P →w

k Pλθθ for some λ.

Claim 4.7. For some set X, we can find F : P → PXθθ so that if F (p(x,Ms)) is
compatible with F (q(x,Mt)), then:

• s and t have the same order-type, and if we let ρ : s → t be the unique
order-preserving bijection, then ρ is the identity on s ∩ t;

• Ms and Mt have the same <∗-order-type, and the unique <∗-preserving
bijection from Ms to Mt is in fact an isomorphism τ : Ms

∼= Mt which is
the identity on Ms∩t;

• For each finite a ∈ M<ω
s , if we write s′ = sa and if we write t′ = sτ(a),

then: ρ[s′] = t′ and τ ↾Ms′
: Ms′

∼= Mt′ .

• τ [p(x)] = q(x).

Proof. Given p(x,Ms) ∈ P let Dp consist of the following data:
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• The order-type of s, call it γ; let ρ0 : γ → s be the order-preserving bijection
• The <∗-order-type of Ms, call it δ; let τ0 : δ → Ms be the order-preserving
bijection;

• The structure N with universe δ, such that τ0 is an isomorphism from N
to Ms;

• τ−1
0 (p(x));

• The set of all (a, α) such that a ∈ N and α < γ and ρ0(α) ∈ sτ0(a).

Note that there are only 2<θ possibilities for Dp. Thus, letting X0 be any
set of cardinality θ, by choosing an antichain in PX0θθ of size 2<θ, we can find
F0 : P → PX0θθ so that for all p, q ∈ P , if F0(p) and F0(q) are compatible then
Dp = Dq.

Let F1 : P → Pλθθ send p(x,Ms) to the function with domain s sending α ∈ s
to its order-type in s. Let F2 : P → PMθθ send p(x,Ms) to the function with
domain Ms sending a ∈ Ms to its <∗-order-type in Ms. Let X = X0 ∪ λ ∪M and
let F (p) = F0(p) ∪ F1(p) ∪ F2(p). A straightforward verification shows that this
works. �

Fix F,X as in the claim. Note that it follows that for every s′ ⊆ s, ρ ↾Ms′
:

Ms′
∼= Mρ[s′], since Ms′ =

⋃
{Msa : a ∈ (Ms′)

<ω} and similarly for Mt′ .
We claim that F works. So suppose pi(x,Msi) : i < i∗ is a sequence from P for

i∗ < k, such that (F (pi(x)) : i < i∗) is compatible in Pxθθ.
Let γ∗ be the order-type of some or any si. Enumerate si = {si(γ) : γ < γ∗}

in increasing order, and for u ⊆ γ∗ let si[u] = {si(γ) : γ ∈ u}. Let E be the
equivalence relation on γ∗ defined by: γEγ′ iff for all i, i′ < k, si(γ) = si′(γ) iff
si(γ

′) = si′(γ
′). Then E has finitely many classes; enumerate them as (uj : j < n).

Then si is the disjoint union of si[uj ] for j < n. Moreover, si[uj ]∩si′ [uj′ ] = ∅ unless
j = j′; and if si[uj ] ∩ si′ [uj] 6= ∅ then si[uj] = si′ [uj]. For each j < n, enumerate
{si[uj] : i < i∗} = (Yℓ,j : ℓ < mj) without repetitions. Let m = max(mj : j < n);
and for each i < i∗, define ηi ∈ nm via: ηi(j) = the unique ℓ < mi with si[uj ] = Yℓ,j.

Let Λ = {ηi : i < i∗}. For each s ∈ PΛ, let Ns = Mts where ts =
⋃

(j,ℓ)∈s Yℓ,j.

Also, define (Mu : u ⊆ n) := (Nη0↾u : u ⊆ n). Then the hypotheses on F give
commuting isomorphisms πs : Mdom(s)

∼= Ns for each s ∈ PΛ, in such a way that

(N, π) is a (λ,M )-array, and each πηi
(p0(x)) = pi(x). It follows by hypothesis on

T that
⋃

i<i∗
pi(x) does not fork over N0, as desired.

�

Corollary 4.8. Suppose T is simple, with < ℵ0-type amalgamation.

(A) Suppose θ is a regular uncountable cardinal. Then for any M |= T and any
M0 � M countable, Γθ

M,M0
has the (< ℵ0, θ, θ)-amalgamation property.

(B) Suppose (θ, λ) is a nice pair, and suppose that θ ≤ µ ≤ λ satisfies µ = µ<θ

and 2µ ≥ λ. Then SP 1
T (λ, µ, θ) holds.

(C) If the singular cardinals hypothesis holds, then T ≤SP Trg.

Proof. (A) follows immediately from Theorem 4.6.
(B): Suppose M |= T has |M | ≤ λ, and suppose M0 � M is countable. Choose

some F : Γθ
M,M0

→w
ℵ0

Pλθθ. By Corollary 1.1, we can find (fγ : γ < µ) such that

whenever f ∈ Pλθθ then f ⊆ fγ for some γ < µ; for each γ < µ, choose qγ(x), a
complete type over M not forking over M0, and extending

⋃
{p(x) : F (p(x)) ⊆ fγ}.

Then clearly (qγ(x) : γ < µ) witnesses SP 1
T (λ, µ, θ).
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(C): Suppose (θ, λ) is a nice pair, and SPTrg
(λ, θ) holds; we want to show

SPT (λ, θ) holds. We can suppose λ < λ<θ. Then by Theorem 1.4(B), SP 1
Trg

(λ, λ, θ)

holds. By Theorem 1.8, there is θ ≤ µ < λ with µ = µ<θ and 2µ ≥ λ. By (B),
SP 1

T (λ, µ, θ) holds, so by Theorem 1.4(A), SPT (λ, θ) holds, as desired. �
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§ 5. Conclusion

We begin to put everything together. We aim to produce a forcing extension in
which, whenever T has < k-type amalgamation, then Tk,k−1 6≤SP T . We will choose
in advance nice pairs (θk, λk) to witness this. In order to arrange that SPT (λk, θk)
holds we will use Theorems 2.11 and 4.6. To arrange that SPTk,k−1

(λk, θk) fails, we
will use the following.

Theorem 5.1. Suppose (θ, λ) is a nice pair such that θ = θ<θ and λ > θ is a
limit cardinal. Let 3 ≤ k < ω. Then Pλθθ forces that for all µ < λ, Ťk+1,k fails
(< k + 1, λ, µ, θ)-type amalgamation.

Proof. Fix θ ≤ µ < λ, and write P = P[λ]kθθ. We show that P forces Ťk+1,k fails
(< k + 1, λ, µ, θ)-type amalgamation. Since P ∼= Pλθθ, this suffices.

We pass to a P -generic forcing extension V[G] of V. Let R ⊆ [λ]k be the set of
all v with {(v, 0)} ∈ G. Choose M0 � M |= Tk+1,k, and (ai,α : i < k, α < λ) such
that, writing as = {ai,α : (i, α) ∈ s} for s ⊆ k × λ:

• M0 is countable, and |M | ≤ λ and each ai,α ∈ M\M0;

• ai,α = aj,β iff α = β and i = j

• For every v∗ ∈ [k×λ]k, if v∗ is not the graph of the increasing enumeration
of some v ∈ [λ]k, then RM (av∗) fails. Otherwise, RM (av∗) holds if and only
if v ∈ R.

For each v ∈ [λ]k, let φv(x, ak×v) be the formula that asserts that R(x, au) holds
for each u ∈ [k × v]k−1. Note that φv(x, ak×v) is consistent exactly when v 6∈ R.

It suffices to show that there is no cardinal λ′ and function F0 : Γθ
M,M0

→w
k+1

Pλ′µθ; so suppose towards a contradiction some such F0 existed. Then we can find
F : [λ]k\R → Pλ′µθ such that for all sequences (wi : i < k + 1) from [λ]k\R, if
(F (wi) : i < k) is compatible in P then

∧
i<k φwi

(x, ak×wi
) is consistent. This is

all we will need, and so we can replace λ′ by λ (since |[λ]k| = λ).

Pulling back to V, we can find p∗ ∈ P , and P -names Ṙ, Ṁ, Ṁ0, ȧi,α, Ḟ , such that
p∗ forces these behave as above.

Write X = λ\
⋃
dom(p∗); so |X | = λ.

Suppose v ∈ [X ]k. Choose pv ∈ P such that pv ≥ p∗ ∪ {(v, 1)} (so pv forces

v 6∈ Ṙ), and so that pv decides Ḟ (v), say pv forces that Ḟ (v) = fv ∈ Pλµθ.
Choose F∗ : [λ]k → Pλµθ so that for all v, v′, if F∗(v) and F∗(v

′) are compatible,
then pv, pv′ are compatible, and fv, fv′ are compatible.

For each u ∈ [λ]k−1 let Pu = {F∗(v) : v ∈ [λ]k, u ⊆ v} and let Qu be the set
of all g ∈ Pλµθ such that g extends some f ∈ Pu. Choose a maximal antichain
(gu,α : α < κu) from Qu. For each α < κu choose wu,α ∈ Pu such that gu,α extends
F∗(wu,α).

Since P has the µ+-c.c., we have that each κu ≤ µ. For u ∈ [λ]k−1 let S(u) ∈ [λ]µ

be sufficiently large so that each wu,α ∈ [S(u)]k and dom(pwu,α
) ⊆ [S(u)]k.

By Theorem 46.1 of [2], using λ ≥ µ+ω, we can find some v ∈ [λ]k such that for
all u ∈ [v]k−1, S(u)∩v = u. Enumerate [v]k−1 = (ui : i < k). By induction on i < k
we pick wi ∈ Pu such that (F∗(v), F∗(wj) : j ≤ i) is compatible in Pλµθ. To see this
is possible, suppose we have wj : j < i. Put f = F∗(v)∪

⋃
{F∗(wj) : j < i}. Since f

extends F∗(v), we have f ∈ Qui
; by maximality of the antichain (gui,α : α < κui

),
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we must have that f is compatible with some gui,α, and hence with F∗(wui,α), so
put wi = wui,α.

Writing vui
:= wi, we have found (vu : u ∈ [v]k−1) such that each u ⊆ vu ∈

[S(u)]k, and (F∗(vu) : u ∈ [w]k−1) is compatible. Thus (pvu : u ∈ [v]k−1) is
compatible in P ; write p =

⋃
u∈[v]k−1 pvu . Note that v 6∈ dom(p), since if v ∈

dom(pvu) then v ∈ [S(u)]k, contradicting that S(u) ∩ v = u. Thus we can choose
p′ ≥ p in P with p′(v) = 0.

Now p′ forces that each Ḟ (vu) = f̌vu , and (fvu : u ∈ [v]k−1) is compatible; thus
p′ forces that φ(x) :=

∧
u∈[v]k−1 φvu(x, ȧk×vu) is consistent. But this is impossible,

since if we let v∗ be the graph of the increasing enumeration of v, then p′ forces

that ṘṀ (ȧv∗) holds, and φ(x) in particular implies that ṘṀ (x, ȧu∗) holds for all
u∗ ∈ [v∗]

k−1, thus creating a k-clique. �

Lemma 5.2. Suppose (λ, θ) is a nice pair and ℓ > k ≥ 3. Then SP1
Tℓ,k

(λ, λ, θ) if

and only if SPTℓ,k
(λ, θ).

Proof. Forward direction is Theorem 1.4(A). The reverse direction is like Theo-
rem 1.4(B): suppose M |= Tℓ,k has |M | ≤ λ and M∗ ≤ M is countable. Choose
N � M , a θ-saturated model of size λ. Let aα : α < λ enumerateN . For each α < λ
let pα(x) be the type over M asserting x 6= a for each a ∈ M , and R(x, a) ∈ pα if
and only if R(aα, a) holds for each a ∈ [M ]k−1. This is a complete type over M
which does not fork over ∅. Then {pα(x) : α < λ} along with all realized types over
M∗ witness SP1

Tℓ,k
(λ, λ, θ). �

Lemma 5.3. Suppose (θ, λ) is a nice pair with 2ℵ0 < cof(λ) < θ. Suppose θ<θ = θ
and suppose there is κ > λ<θ with κ<κ = κ. Suppose k ≥ 3. Then there is a forcing
notion P with |P | = κ which is θ-closed, θ+-c.c. and which forces: (θ, λ) is a nice
pair, and for all T with < k-type amalgamation, SPT (λ, θ) holds, and SPTk,k−1

(λ, θ)
fails.

Proof. Note that any P which is θ-closed, θ+-c.c. will force that (θ, λ) is a nice
pair.

Let P = Pλθθ. By Theorem 2.8 we can choose a P -name Q̇ such that P forces
Q̇ has the (< k, θ, θ)-amalgamation property, and forces Ax(< k, θ) to hold, and

forces 2θ = κ. We claim P ∗ Q̇ works.
If T has < k-type amalgamation, then by Theorem 4.6 and Theorem 2.11, P ∗ Q̇

forces that SP1
T (λ, θ, θ) holds, thus by Theorem 1.4(A), P ∗ Q̇ forces SPT (λ, θ).

So it suffices to show P ∗ Q̇ forces that SPTk,k−1
(λ, θ) fails. If k = 3 then this

follows from λ < λ<θ and the fact that T3,2 is non-simple, by Theorem 1.5(A). So
suppose k ≥ 4.

By Theorem 5.1 and Theorem 2.10, P ∗Q̇ forces that SP1
Tk,k−1

(λ, µ, θ) fails for all

µ < λ. By Theorem 1.4(D), P ∗ Q̇ forces that SP1
Tk,k−1

(λ, λ, θ) fails; by Lemma 5.2,

P ∗ Q̇ forces that SPTk,k−1
(λ, θ) fails.

�

Theorem 5.4. Suppose GCH holds. Then there is a forcing notion P , which
forces: for every k ≥ 3, if T is a simple theory with < k-type amalgamation, then
Tk,k−1 6≤SP T . In particular, the non-simple theories are exactly the maximal ≤SP -
theories.
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Of course, we can also force to make GCH hold (via a proper-class forcing notion).
Thus, this can consistently hold.

Proof. The “in particular” clause follows since simple theories have < 3-type amal-
gamation and non-simple theories are maximal by Theorem 1.5(A).

Choose nice pairs ((θn, λn) : n < ω), such that each θn+1 > λ++
n is regular, and

each λn is singular with 2ℵ0 < cof(λn) < θn (so each λ<θn
n = λ+

n ).

We will define a full-support forcing iteration (Pn : k ≤ ω), (Q̇n : k < ω); for

each n < ω, we will have that |Pn| ≤ λ++
n−1, and Pn will force that Q̇n is θn-closed

and has the θ+n -c.c. Having defined Pn, we will inductively have that |Pn| < θn and
is (2ℵ0)+-closed, and so Pn forces (θn, λn) is a nice pair with 2ℵ0 < cof(λ) < θn
and θ<θn

n = θn and GCH holds above |Pn|. Let Q̇n be as supplied by Lemma 5.3
with θ = θn, λ = λn, κ = λ++

n , k = n+ 3.
Then each Pn+1 forces that for all T with< n+3-type amalgamation, SPT (λn, θn)

holds, and SPTn+3,n+2(λn, θn) fails. Since Q̇≥n+1 is forced to be λ++
n -closed, it does

not disturb this, so we are done.
�
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