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FURSTENBERG SYSTEMS OF BOUNDED MULTIPLICATIVE

FUNCTIONS AND APPLICATIONS

NIKOS FRANTZIKINAKIS AND BERNARD HOST

Abstract. We prove a structural result for measure preserving systems naturally
associated with any finite collection of multiplicative functions that take values on the
complex unit disc. We show that these systems have no irrational spectrum and their
building blocks are Bernoulli systems and infinite-step nilsystems. One consequence
of our structural result is that strongly aperiodic multiplicative functions satisfy the
logarithmically averaged variant of the disjointness conjecture of Sarnak for a wide
class of zero entropy topological dynamical systems, which includes all uniquely ergodic
ones. We deduce that aperiodic multiplicative functions with values plus or minus one
have super-linear block growth. Another consequence of our structural result is that
products of shifts of arbitrary multiplicative functions with values on the unit disc
do not correlate with any totally ergodic deterministic sequence of zero mean. Our
methodology is based primarily on techniques developed in a previous article of the
authors where analogous results were proved for the Möbius and the Liouville function.
A new ingredient needed is a result obtained recently by Tao and Teräväinen related
to the odd order cases of the Chowla conjecture.

1. Introduction and main results

1.1. Main results. A function f : N → C is called multiplicative if

f(mn) = f(m)f(n) whenever (m,n) = 1.

Perhaps the most well-known example of a bounded multiplicative function is the Möbius
function, which is defined to be 0 on integers divisible by a square, −1 on square-free
integers with an odd number of prime factors, and 1 elsewhere. Its non-zero values are
expected to fluctuate between −1 and 1 in a random way and many famous conjectures
have been formulated based on this belief. One example that has received a lot of
attention in recent years is the Möbius disjointness conjecture of Sarnak [27, 28]. It
asserts that the Möbius function does not correlate with any bounded deterministic
sequence, meaning, any sequence that is produced by a continuous function evaluated
along the orbit of a point in a zero entropy topological dynamical system.

In [14] we verified the logarithmically averaged variant of the conjecture of Sarnak for
a wide class of deterministic sequences. Our approach was to study measure preserv-
ing systems (which we call Furstenberg systems) naturally associated with the Möbius
function; in particular, we studied structural properties that allow to deduce disjoint-
ness from a wide class of zero entropy systems. Various interesting results, establishing
non-correlation of deterministic sequences with the Möbius function and products of its
shifts, are natural consequences of these disjointness results.

The main purpose of this article is to extend the approach from [14] in order to cover
multiplicative functions that take values on the complex unit disc U := {z ∈ C : |z| ≤ 1}.
Our first main result concerns a class of multiplicative functions that are expected to
satisfy similar disjointness properties as the Möbius function. These are the strongly
aperiodic multiplicative functions (see Definition 2.9), and we verify that they do not
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correlate with a wide class of deterministic sequences. Throughout the paper, we denote
by (Y,R) a topological dynamical system, meaning, a compact metric space Y together
with a continuous homeomorphism R : Y → Y .

Theorem 1.1. Let f : N → U be a strongly aperiodic multiplicative function. Let (Y,R)
be a topological dynamical system with zero topological entropy and at most countably
many ergodic invariant measures. Then for every y ∈ Y and every g ∈ C(Y ) we have

lim
N→∞

1

logN

N∑

n=1

g(Rny) f(n)

n
= 0.

Furthermore, the convergence is uniform in y ∈ Y .

Remarks. • Using rotations on finite cyclic groups, one deduces that non-correlation
(using logarithmic averages) of f with all periodic sequences (which implies strong ape-
riodicity in the real valued case) is a necessary assumption for the conclusion to hold.

• We believe that the countability assumption on the number of ergodic invariant
measures of (Y,R) can be dropped. In the case where f is the Möbius function, this is
equivalent to the logarithmically averaged variant of the Sarnak conjecture.

An interesting consequence of the previous result is a statement about the block com-
plexity of multiplicative functions f : N → U that have finite range. In the next statement
we denote by Pf (n) the number of patterns of size n that are taken by consecutive values
of f (see Section 5.3 for a more formal definition).

Theorem 1.2. If the multiplicative function f : N → U has finite range, is strongly

aperiodic, and does not converge to zero in logarithmic density, then limn→∞
Pf (n)

n
= ∞.

Remarks. • In fact, we establish a stronger statement, if a : N → C has finite range and

linear block growth, then limN→∞
1

logN

∑N
n=1

a(n) f(n)
n

= 0 for every strongly aperiodic

multiplicative function f : N → U. Thus, even if we modify the values of f on a set of
logarithmic density 0, using values taken from a finite set of complex numbers, the new
sequence still has super-linear block growth.

• The assumptions are satisfied if f takes only the values ±1 and is aperiodic, meaning,
it does not correlate with any periodic sequence. Previously, it was not even known that
for such multiplicative functions we have limn→∞(Pf (n)− n) = ∞. On the other hand,
a conjecture of Elliott [9, 10] predicts if f : N → {−1, 1} is aperiodic, then Pf (n) = 2n

for every n ∈ N, and if f : N → U has finite range, is strongly aperiodic, and does not
converge to zero in logarithmic density, then Pf (n) grows exponentially.

Henceforth, whenever needed, we assume that a multiplicative function f : N → U is
extended to the integers in an arbitrary way.

In the next result if (Y,R) is a topological dynamical system, we say that a point
y ∈ Y is generic for logarithmic averages for a Borel probability measure ν on Y if for

every g ∈ C(Y ) we have limN→∞
1

logN

∑N
n=1

g(Rny)
n

=
∫
g dν. Our methods also allow us

to prove non-correlation between products of shifts of arbitrary multiplicative functions
with values on the unit disc and totally ergodic deterministic sequences of zero mean.

Theorem 1.3. Let f1, . . . , fℓ : N → U be multiplicative functions. Let (Y,R) be a topo-
logical dynamical system and let y ∈ Y be generic for logarithmic averages for a measure
ν with zero entropy and at most countably many ergodic components, all of which are
totally ergodic. Then for every g ∈ C(Y ) that is orthogonal in L2(ν) to all R-invariant
functions we have

(1) lim
N→∞

1

logN

N∑

n=1

g(Rny)
∏ℓ

j=1 fj(n + hj)

n
= 0

for all h1, . . . , hℓ ∈ Z.



FURSTENBERG SYSTEMS OF MULTIPLICATIVE FUNCTIONS AND APPLICATIONS 3

Remarks. • The unweighted version of (1) (take g := 1) is expected to hold if the
shifts are distinct and at least one of the multiplicative functions is strongly aperiodic.
This is the logarithmically averaged variant of a conjecture of Elliott [9, 10] (see [26,
Theorem B.1] for a corrected version and the need to assume strong aperiodicity).

• If (Y,R) has zero topological entropy and is uniquely and totally ergodic, then it is
easy to deduce from Theorem 1.3 that (1) holds for all g ∈ C(Y ) and y ∈ Y such that

limN→∞
1

logN

∑N
n=1

g(Rny)
n

= 0.

• If (Y, ν,R) is totally ergodic, then using an approximation argument one can also
conclude that (1) holds for every g : Y → C that is Riemann integrable with respect to
the measure ν and

∫
g dν = 0.1

Theorem 1.3 is new even in the very special case where R is given by an irrational
rotation on T and g(t) := e2πit, t ∈ T. In this case we have g(Rn0) = e2πinα, n ∈ N, for
some irrational α, and we get the following result as a consequence:

Corollary 1.4. Let f1, . . . , fℓ : N → U be multiplicative functions and let α ∈ R be
irrational. Then

(2) lim
N→∞

1

logN

N∑

n=1

e2πinα
∏ℓ

j=1 fj(n+ hj)

n
= 0

for all h1, . . . , hℓ ∈ Z.

Remarks. • For ℓ = 1 the result is the logarithmically averaged variant of a classical
result of Daboussi [5, 6, 7]. But even for ℓ = 2 the result is new.

• More generally, if we apply Theorem 1.3 for R given by appropriate totally ergodic
affine transformations on a torus with the Haar measure (as in [16, Section 3.3]), we

get that (2) holds with (e2πinα)n∈N replaced by any sequence of the form (e2πiP (n))n∈N,
where P ∈ R[t] has at least one non-constant coefficient irrational. Moreover, one could
use as weights zero mean sequences arising from more general totally ergodic nilsys-
tems, giving rise to generalized polynomial sequences. One such example is the sequence
(e2πi[nα]nβ)n∈N, where α, β ∈ R are rationally independent. In order to establish this
variant, one has to use Theorem 1.3 (see the last remark following this result) for a to-
tally ergodic nilsystem (Y,R) defined on the Heisenberg nilmanifold and an appropriate
Riemann integrable function g with respect to the Haar measure on Y with zero integral
(see [2, Section 0.14] for details).

A key step in the proof of the previous results is a structural result for measure
preserving systems naturally associated with any collection of multiplicative functions
that take values on the complex unit disc. We call such systems Furstenberg systems,
and they are defined as follows: For convenience, let f be a multiplicative function that
takes values on a finite subset A of U and admits correlations for logarithmic averages
on a sequence of intervals N = ([Nk])k∈N with Nk → ∞ (see Definition 2.1). Then
the Furstenberg system associated with f and N is defined on the sequence space X :=
AZ with the shift transformation, by a measure that assigns to each cylinder set {x ∈
X : x(j) = aj, j = −m, . . . ,m} value equal to the logarithmic density, taken along the
sequence N, of the set {n ∈ N : f(n + j) = aj, j = −m, . . . ,m}, where a−m, . . . , am ∈
A and m ∈ N. Similarly, one defines Furstenberg systems associated with any finite
collection of multiplicative functions f1, . . . , fℓ : N → U and a sequence of intervals N

on which f1, . . . , fℓ admit correlations for logarithmic averages; we call these measure
preserving systems joint Furstenberg systems. The precise constructions are given in
Section 2.3 and are motivated by analogous constructions made by Furstenberg in [16, 17]
in order to restate Szemerédi’s theorem on arithmetic progressions in ergodic terms.

1We say that a function g : Y → C is Riemann integrable with respect to the measure ν if for every
ε > 0 there exist g1, g2 ∈ C(Y ) such that g1(y) ≤ g(y) ≤ g2(y) for every y ∈ Y and

∫
(g2 − g1) dν ≤ ε.
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We prove the following structural result for joint Furstenberg systems of multiplicative
functions:

Theorem 1.5. A joint Furstenberg system of the multiplicative functions f1, . . . , fℓ : N →
U is a factor of a system that

(i) has no irrational spectrum;
(ii) has ergodic components isomorphic to direct products of infinite-step nilsystems

and Bernoulli systems.

Remarks. • We refer the reader to Section 2 and Appendix A of [14] for the definition
of the ergodic notions used in the previous statement.

• The product decomposition depends on the ergodic component, in particular, the
infinite-step nilsystems depend on the ergodic component.

See Section 1.3 for more refined conjectural statements regarding the structure of joint
Furstenberg systems of multiplicative functions with values on the unit disc.

1.2. Proof strategy. Our general strategy in the proofs of Theorems 1.1-1.3 is similar to
the one used in [14] to cover the case of the Möbius and the Liouville functions, but there
are also some serious additional difficulties that we have to overcome. Our main focus is to
prove the structural result stated in Theorem 1.5; then Theorems 1.1-1.3 are consequences
of this result and the deduction is carried out using joining arguments in Section 5
(Theorem 1.1 also uses additional number theory input provided by Theorem 2.10). The
first step in the proof of Theorem 1.5 is to apply the identity of Theorem 3.1 which allows
to express an arbitrary joint correlation of multiplicative functions as a weighted average
of their dilated joint correlations taken over all prime dilates (this step necessitates the
use of logarithmic averages). This leads, via the correspondence principle of Furstenberg
(see Proposition 2.3), to certain ergodic identities that any joint Furstenberg system
(X,µ, T ) of these multiplicative functions satisfies.

The next goal is to utilize the ergodic identities in order to prove the structural proper-
ties of Theorem 1.5. Unfortunately, the presence of some unwanted weights, which appear
because the multiplicative functions are not constant on primes, creates serious problems
that do not allow us to continue as in [14], especially when the multiplicative functions
take infinitely many distinct values on primes. The way to overcome this obstacle is to
first utilize a recent result of Tao and Teräväinen, which proves that joint correlations of
multiplicative functions vanish if the product of the multiplicative functions is far from
being periodic. This result enables us to obtain a variant of the identity in Theorem 3.1,
which has the additional property that all the weights are equal to 1 (see Corollary 3.7).
As a consequence, we get an ergodic identity, stated in Theorem 3.8, which allows to
show that the system (X,µ, T ) is a factor of some system of arithmetic progressions with
steps given by all primes in an appropriate congruence class (see Definition 4.1). Finally,
this system can be easily linked to a system of arithmetic progressions with prime steps
(see Lemma 4.4). The structure of these systems was studied in [14] and they were shown
to satisfy the structural properties of Theorem 1.5. Combining the above facts we get a
proof of Theorem 1.5.

A simpler and more elementary way to link Furstenberg systems of multiplicative func-
tions to systems of arithmetic progressions with primes steps is explained in Section 4.2;
but this simpler approach only works if the range of the multiplicative functions on the
primes is a subset of the unit interval or a finite subset of the complex unit disc.

1.3. Further remarks and conjectures. The structural result of Theorem 1.5 is not
expected to be optimal and we give below some more refined conjectural structural
statements.

In what follows, unless explicitly specified, a Bernoulli system is allowed to be the
trivial one point system. Moreover, an ergodic procyclic system (often referred to as
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an odometer) is an ergodic inverse limit of periodic systems, or equivalently, an ergodic
system (X,µ, T ) for which the rational eigenfunctions span a dense subspace of L2(µ).

Conjecture 1. If the multiplicative functions f1, . . . , fℓ take values in [−1, 1] or in a
finite subset of U, then they have a unique joint Furstenberg system,2 which is ergodic
and isomorphic to the direct product of a procyclic system and a Bernoulli system.

This generalizes [14, Conjecture 1], which concerned Furstenberg systems of a single
multiplicative function f : N → [−1, 1]. If we further restrict to the case where f takes
values in {−1, 1}, then we conjectured in [14, Conjecture 2] that f should have a unique
Furstenberg system, which is either an ergodic procyclic system or a Bernoulli system.
Combining [1, Theorem 1.7] and [7, Theorem 6] we get that the first alternative holds if
f is not aperiodic (this happens if and only if D(f, χ) < ∞ for some Dirichlet character
χ, see terminology in Section 2.5). We expect that the second alternative holds exactly
when f is aperiodic. This is known to be the case conditionally to the assumption that
all Furstenberg systems of f are ergodic [12, Corollary 1.5]. Unconditionally, this is not
even known for the Liouville function; it is equivalent to the logarithmically averaged
variant of the Chowla conjecture.

Perhaps surprisingly, multiplicative functions with values on the unit circle may have
non-ergodic Furstenberg systems, in fact, with uncountably many ergodic components.
Consider for instance the multiplicative function f(n) := nit, n ∈ N, for some non-zero
t ∈ R. We claim that it has a unique Furstenberg system (X,µ, T ), which is isomorphic to
the system (T,mT, R), where R is the identity transformation on T. Indeed, let G0(y) :=
e2πiy, y ∈ T, and X := U

Z, T be the shift transformation on X, F0(x) := x(0), x ∈ X,

and µ := limN→∞
1

logN

∑N
n=1

δf(n)

n
(we show below that the weak-star limit exists). We

claim that Φ: T → X, defined by Φ(y) := (e2πiy)n∈Z, y ∈ T, is an isomorphism between
the systems (T,mT, R) and (X,µ, T ). The map Φ is clearly one to one and satisfies
T ◦Φ = Φ◦R. It remains to show that µ = mT ◦Φ

−1. Notice first, that due to the slowly
varying nature of nit, for fixed h ∈ Z we have (n+ h)it − nit → 0 as n → ∞. Using this

and the fact that limN→∞
1

logN

∑N
n=1

nit

n
= 0 for t 6= 0, we get that for every m ∈ N and

k−m, . . . , km ∈ Z, we have
∫

X

m∏

j=−m

T hjF
kj
0 dµ = lim

N→∞

1

logN

N∑

n=1

∏m
j=−m fkj(n+ hj)

n
=

∫

T

m∏

j=−m

T hjG
kj
0 dmT,

since the second and third terms are either simultaneously 0 or 1 depending on whether∑m
j=−m kj 6= 0 or

∑m
j=−m kj = 0. Using this identity and the fact that G0 = F0 ◦ Φ we

get that µ = mT ◦ Φ−1, completing the proof that Φ is an isomorphism.
Similarly, if f(n) := nit

µ(n), n ∈ N, where t 6= 0 and µ is the Möbius function, then
we expect (but cannot prove) that f has a unique Furstenberg system with uncountably
many ergodic components, all of them isomorphic to a direct product of a non-trivial pro-
cyclic system and a non-trivial Bernoulli system. It seems likely that a similar structural
result holds for general multiplicative functions with values on the unit disc:

Conjecture 2. A joint Furstenberg system of any multiplicative functions f1, . . . , fℓ : N →
U has ergodic components isomorphic to direct products of procyclic systems and Bernoulli
systems.

1.4. Notation. For readers convenience, we gather here some notation that we use fre-
quently throughout the article.

We write T for the unit circle, which we often identify with R/Z, and we write U for
the complex unit disc. We denote by N the set of positive integers, by P the set of prime

2This is equivalent to the statement that all sequences of the form (
∏m

j=1 gj(n+ hj))n∈N have loga-

rithmic averages, where g1, . . . , gm ∈ {f1, . . . , fℓ, f1, . . . , fℓ} and m,h1, . . . , hm ∈ N are arbitrary.
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numbers, and for d ∈ N we denote by Pd the set P ∩ (dN + 1). For N ∈ N we denote by
[N ] the set {1, . . . , N}. Whenever we write N we mean a sequence of intervals of integers
([Nk])k∈N with Nk → ∞.

1.5. Acknowledgement. We would like to thank M. Lemańczyk for the observation
that the convergence in Theorem 1.1 is uniform. We also thank M. Lemańczyk and T.
de la Rue for pointing out a correction in Theorem 1.4 and Part (ii) of Proposition 5.1.

2. Background in ergodic theory and number theory

2.1. Notation regarding averages. If A is a non-empty finite subset of N we let

En∈A a(n) :=
1

|A|

∑

n∈A

a(n), E
log
n∈A a(n) :=

1∑
n∈A

1
n

∑

n∈A

a(n)

n
.

If A is an infinite subset of N we let

En∈A a(n) := lim
N→∞

En∈A∩[N ] a(n), E
log
n∈A a(n) := lim

N→∞
E
log
n∈A∩[N ] a(n)

if the limits exist. Let N = ([Nk])k∈N be a sequence of intervals with Nk → ∞. We let

En∈N a(n) := lim
k→∞

En∈[Nk] a(n), E
log
n∈N a(n) := lim

k→∞
E
log
n∈[Nk]

a(n)

if the limits exist. Using partial summation one sees that if En∈N a(n) = 0, then also

E
log
n∈N a(n) = 0. The converse does not hold in general, and the forward implication fails

if one replaces N with general sequences N = ([Nk])k∈N with Nk → ∞.

2.2. Measure preserving systems. Throughout the article, we make the standard
assumption that all probability spaces (X,X , µ) considered are Lebesgue, meaning, X can
be given the structure of a compact metric space and X is its Borel σ-algebra. A measure
preserving system, or simply a system, is a quadruple (X,X , µ, T ) where (X,X , µ) is
a probability space and T : X → X is an invertible, measurable, measure preserving
transformation. We typically omit the σ-algebra X and write (X,µ, T ). Throughout, for
n ∈ N we denote by T n the composition T ◦ · · · ◦T (n times) and let T−n := (T n)−1 and
T 0 := idX . Also, for f ∈ L1(µ) and n ∈ Z we denote by T nf the function f ◦ T n.

In order to avoid unnecessary repetition, we refer the reader to the article [14] for
some other standard notions from ergodic theory. In particular, the reader will find
in Section 2 and in Appendix A of [14] the definition of the terms factor, Kronecker
factor, isomorphism, inverse limit, spectrum, rational and irrational spectrum, ergodicity,
ergodic components, total ergodicity, nilsystem, infinite-step nilsystem, Bernoulli system,
joining, and disjoint systems; all these notions are used subsequently.

2.3. Furstenberg systems associated with several sequences. To each finite col-
lection of sequences a1, . . . , aℓ : N → U that are distributed “regularly” along a sequence
of intervals, we associate a measure preserving system defined using the joint distribution
of the sequences a1, . . . , aℓ. For the purposes of this article, all averages in the definition
of joint Furstenberg systems are taken to be logarithmic.

Definition 2.1. Let N := ([Nk])k∈N be a sequence of intervals with Nk → ∞. We say
that the sequences a1, . . . , aℓ : Z → U admit log-correlations on N, if the limits

(3) lim
k→∞

E
log
n∈[Nk]

m∏

j=1

bj(n + hj)

exist for all m ∈ N, all h1, . . . , hm ∈ Z, and all b1, . . . , bm ∈ {a1, . . . , aℓ, a1, . . . , aℓ}.
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Remarks. • Given a1, . . . , aℓ : Z → U, using a diagonal argument, we get that every
sequence of intervals N = ([Nk])k∈N has a subsequence N

′ = ([N ′
k])k∈N, such that the

sequences a1, . . . , aℓ admit log-correlations on N
′.

• If the sequences a1, . . . , aℓ are only defined on N, then we extend them in an arbitrary
way to Z and give analogous definitions. Then all the limits in (3) do not depend on the
choice of the extension.

Definition 2.2. Let (X,T ) be a topological dynamical system. We say that the col-
lection of functions F1, . . . , Fℓ ∈ C(X) is T -generating if the functions T nF1, . . . , T

nFℓ,
n ∈ Z, separate points of X.

Remark. By the Stone-Weierstrass theorem, the functions F1, . . . , Fℓ ∈ C(X) are T -
generating if and only if the T , T−1-invariant subalgebra generated by F1, . . . , Fℓ and
F1, . . . , Fℓ is dense in C(X) with the uniform topology.

We use the following variant of the correspondence principle of Furstenberg [16, 17]
that applies to finite collections of bounded sequences of complex numbers:

Proposition 2.3. Let a1, . . . , aℓ : Z → U be sequences that admit log-correlations on
N := ([Nk])k∈N. Then there exist a topological dynamical system (X,T ), a T -invariant
Borel probability measure µ, and a T -generating collection of functions F0,1 . . . , F0,ℓ ∈
C(X), such that

(4) E
log
n∈N

m∏

j=1

bj(n+ hj) =

∫

X

m∏

j=1

T hjFj dµ

for all m ∈ N, all h1, . . . , hm ∈ Z, and all bj , . . . , bm ∈ {a1, . . . , aℓ, a1, . . . , aℓ}, where for
j = 1, . . . ,m, if the sequence bj is ak or ak for some k ∈ {1, . . . , ℓ}, then Fj is F0,k or

F0,k respectively.

Remark. In the arguments that follow we often use the explicit choice of X and T made
in the proof below, namely, we take X = (Uℓ)Z and let T be the shift transformation on
X. We also often assume that the functions F0,1, . . . , F0,ℓ are defined by (5) below.

Proof. Let X := (Uℓ)Z and T be the shift transformation on X, namely, T maps an
element ((x1(n), . . . , xℓ(n)))n∈Z of X to ((x1(n+1), . . . , xℓ(n+1)))n∈Z. For j = 0, . . . , ℓ
we define the functions F0,j ∈ C(X) as follows

(5) F0,j(x) := xj(0), for x = ((x1(n), . . . , xℓ(n)))n∈Z ∈ X.

Finally, the measure µ is defined to be the weak-star limit of the sequence of measures

E
log
n∈[Nk]

δTna, k ∈ N, where a := ((a1(n), . . . , aℓ(n)))n∈Z ∈ X. Then µ is T -invariant and

we have F0,j(T
na) = aj(n), n ∈ Z, for j = 1, . . . , ℓ. It follows that (4) holds and the

proof is complete. �

Definition 2.4. Let a1, . . . , aℓ : Z → U be sequences that admit log-correlations on
N := (Nk)k∈N. We call the system (or the measure µ) defined in Proposition 2.3 the
joint Furstenberg system (or measure) associated with a1, . . . , aℓ and N.

Remarks. • Given a1, . . . , aℓ : Z → U and N, the measure µ is uniquely determined by
(4) since this identity determines the values of

∫
f dµ for all real valued f ∈ C(X).

• If two or more sequences coincide, say for example that am = · · · = aℓ for some
m ∈ {1, . . . , ℓ−1}, then it is not hard to see that the joint Furstenberg system associated
with a1, . . . , aℓ and N is isomorphic with the one associated with a1, . . . , am and N.

• A collection of sequences a1, . . . , aℓ : Z → U may have several non-isomorphic joint
Furstenberg systems depending on which sequence of intervals N we use in the evaluation
of their joint correlations. When we write that a joint Furstenberg measure or system of
the sequences a1, . . . , aℓ has a certain property, we mean that any of these measures or
systems has the asserted property.
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2.4. Convergence results. Henceforth, we use the following notation:

Definition 2.5. If d ∈ N we let Pd := P ∩ (dN + 1).

We will use the following convergence result that was proved in [32] and also in [15]
conditional to some conjectures obtained later in [21, 22]:

Theorem 2.6. Let (X,µ, T ) be a system and d ∈ N. Then for every ℓ ∈ N and
F1, . . . , Fℓ ∈ L∞(µ) the following limit exists in L2(µ)

Ep∈Pd

ℓ∏

j=1

T pjFj .

Remark. Convergence is proved in [32] and [15] for d = 1. The more general statement
follows by using the d = 1 case for product systems of the form T×R acting on X×Z/dZ
with the product measure, where R is the translation by 1 on Z/dZ, and for the functions
F1 ⊗ 1dZ+1, F2, . . . , Fℓ; of course, one also uses the fact that the relative density of the
set Pd in the primes exists.

We will make use of the following consequence of Theorem 2.6:

Proposition 2.7. Suppose that the sequences a1, . . . , aℓ : Z → U admit log-correlations
on the sequence of intervals N. Then for every d ∈ N the limit

Ep∈Pd

(
E
log
n∈N

m∏

j=1

bj(n+ phj)
)

exists for all m ∈ N, all h1, . . . , hm ∈ Z, and all b1, . . . , bm ∈ {a1, . . . , aℓ, a1, . . . , aℓ}.

Proof. Let (X,X , µ, T ) be the joint Furstenberg system associated with a1, . . . , aℓ and
N, and let also F0,1, . . . , F0,ℓ ∈ L∞(µ) be as in Proposition 2.3. Using Theorem 2.6 we
get that the limit

Ep∈Pd

∫

X

m∏

j=1

T phjFj dµ

exists for all m ∈ N, all h1, . . . , hm ∈ Z, and all F1, . . . , Fm ∈ L∞(µ). Combining this
with identity (4) we get the asserted convergence. �

2.5. Aperiodic and strongly aperiodic multiplicative functions. We denote by
M the set of all multiplicative functions f : N → U, where U is the complex unit disc.
A Dirichlet character is a periodic completely multiplicative function χ with χ(1) = 1.
We say that f ∈ M is aperiodic (or non-pretentious using terminology from [18]) if it
averages to 0 on every infinite arithmetic progression, meaning, if

En∈N f(an+ b) = 0, for all a, b ∈ N.

This is equivalent to asserting that En∈N f(n) d(n) = 0 for every periodic sequence
d : N → C, or that En∈N f(n)χ(n) = 0 for every Dirichlet character χ. In order to
give easier to verify necessary conditions for aperiodicity, we use a notion of distance
between two multiplicative functions defined as in [18]:

Definition 2.8. We let D : M×M → [0,∞] be given by

D(f, g)2 :=
∑

p∈P

1

p

(
1− Re

(
f(p)g(p)

))

where Re(z) denotes the real part of a complex number z.
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It is shown in [8, Theorem 1] that f ∈ M is aperiodic if and only if D(f, χ · nit) = ∞
for every t ∈ R and every Dirichlet character χ. Moreover, if f takes real values, then f
is aperiodic if and only if D(f, χ) = ∞ for every Dirichlet character χ. In particular, the
Möbius and the Liouville functions are aperiodic.

For our purposes we also need a notion introduced in [26] that is somewhat stronger
than aperiodicity.

Definition 2.9. Let D : M×M× N → [0,∞] be given by

D(f, g;N)2 :=
∑

p∈P∩[N ]

1

p

(
1− Re

(
f(p)g(p)

))

and M : M× N → [0,∞) be given by

M(f ;N) := min
|t|≤N

D(f, nit;N)2.

The multiplicative function f ∈ M is strongly aperiodic if M(f · χ;N) → ∞ as N → ∞
for every Dirichlet character χ.

Note that strong aperiodicity implies aperiodicity. The converse is not in general
true (see [26, Theorem B.1]), but it is true for real valued multiplicative functions (see
[26, Appendix C]). In particular, the Möbius and the Liouville functions are strongly
aperiodic. Furthermore, if f ∈ M is aperiodic and f(p) is a d-th root of unity for all
p ∈ P, then f is strongly aperiodic (see [13, Proposition 6.1]). In particular, if f(p)
is a nontrivial d-th root of unity for all p ∈ P, then f is strongly aperiodic (see [13,
Corollary 6.2]).

The hypothesis of strong aperiodicity is useful for our purposes because it enables us
to use the following result of Tao [30, Corollary 1.5]:

Theorem 2.10. Let f ∈ M be a strongly aperiodic multiplicative function. Then we
have

E
log
n∈N f(n) f(n+ h) = 0

for every h ∈ N.

Remark. By adjusting the example in [26, Theorem B.1], it follows that strong aperiod-
icity cannot be replaced by aperiodicity; in particular, there exist an aperiodic multiplica-
tive function f ∈ M, a positive constant c, and a sequence of intervals N := ([Nk])k∈N
with Nk → ∞, such that

|Elog
n∈N f(n) · f(n+ h)| ≥ c, for every h ∈ N.

3. Correlation identities and ergodic consequences

3.1. Correlation identities. If a : P → U is a sequence and A is a non-empty finite or

infinite subset of the primes we define E
log
p∈A as in Section 2.1. The following identity of

Tao and Teräväinen from [31, Theorem 3.6] is key for our purposes:

Theorem 3.1. Suppose that the multiplicative functions f1, . . . , fℓ : Z → U admit log-
correlations on the sequence of intervals N. Then we have

(6) E
log
p∈P

∣∣∣cp,m E
log
n∈N

m∏

j=1

gj(n+ hj)− E
log
n∈N

m∏

j=1

gj(n+ phj)
∣∣∣ = 0

for all m ∈ N, all h1, . . . , hm ∈ Z, and all g1, . . . , gm ∈ {f1, . . . , fℓ, f1, . . . , fℓ}, where
cp,m :=

∏m
j=1 gj(p), p ∈ P.
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Remarks. • A variant of this result is also implicit in the article of Tao [30] and was
also used in [14] for f1 = · · · = fℓ = µ or λ using a different averaging scheme. The
current version is more suitable for our purposes.

• In [31] the result is proved for a class of generalized limit functionals in place of Elog
n∈N.

Assuming that N = ([Nk])k∈N, the asserted version follows if one uses a generalized

limit functional of the form l̃imk→∞E
log
n∈[Nk]

since it coincides with the standard limit

limk→∞ E
log
n∈[Nk]

= E
log
n∈N whenever this limit exists.

For the record, we mention the following identity for general sequences which follows
from the proof of [31, Theorem 3.6] without any essential change; Theorem 3.1 is an easy
consequence of this identity:

Theorem 3.2. Let N be a sequence of intervals, a1, . . . , aℓ : Z → U be sequences, and

h1, . . . , hℓ ∈ Z. Then, assuming that for every p ∈ P the limits Elog
n∈N below exist, we have

the identity

E
log
p∈P

∣∣∣Elog
n∈N

ℓ∏

j=1

aj(pn+ phj)− E
log
n∈N

ℓ∏

j=1

aj(n+ phj)
∣∣∣ = 0.

3.2. A consequence of the correlation identities. We are going to combine Theo-
rem 3.1 with Theorem 3.5 stated below in order to prove a variant of the identity (6)
in which the weights cp,m are all equal to 1. For convenience we introduce the following
notation:

Definition 3.3. Let a, b : P → U be sequences. We write a ∼ b if

E
log
p∈P(1− Re(a(p) · b(p))) = 0.

Remarks. • If we restrict to sequences that take values on the unit circle, then ∼ is an

equivalence relation and a ∼ b is equivalent to E
log
p∈P|a(p)− b(p)| = 0.

• Using terminology from [31] we have that two multiplicative functions f, g : Z → U

satisfy f ∼ g exactly when “f weakly pretends to be g”.

We will use the following basic properties:

Lemma 3.4. If a, b, c, d : P → U are sequences, then the following properties hold:

(i) If a ∼ b, then a ∼ b.
(ii) If a ∼ b and b ∼ c, then a ∼ c.
(iii) If a ∼ b and c ∼ d, then ac ∼ bd.

(iv) If a ∼ b, then E
log
p∈P|a(p)− b(p)| = 0.

Proof. Property (i) is obvious. Properties (ii) and (iii) follow from the estimate

(7) 1− Re(uv) ≤ 2(1− Re(u) + 1− Re(v))

which holds for all u, v ∈ U. One way to prove this, is to first consider the case where
|u| = |v| = 1; in this case the estimate is equivalent to |u− v|2 ≤ 2(|1 − u|2 + |1 − v|2),
which follows from the Cauchy Schwarz inequality. One then deduces from this the
general case by expressing arbitrary u, v ∈ U as a convex combination of two elements
on the unit circle and taking advantage of the linearity features of (7). Property (iv)
follows from the estimate

|u− v|2 ≤ 2(1 −Re(uv))

which holds for all u, v ∈ U. �

We will use the next result of Tao and Teräväinen [31, Theorem 1.2]:
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Theorem 3.5. Let f1, . . . , fℓ : Z → U be multiplicative functions. Suppose that for every
Dirichlet character χ we have f1 · · · fℓ ≁ χ. Then

E
log
n∈N

ℓ∏

j=1

fj(n+ hj) = 0

for all h1, . . . , hℓ ∈ Z.

Remarks. • The use of logarithmic averages is essential for the statement to hold. For
example, take ℓ = 1 and let f1(n) := nit, n ∈ N, for some non-zero t ∈ R. Then f1 ≁ χ
for every Dirichlet character χ but the limit limN→∞ En∈[N ] n

it does not exist (since

En∈[N ] n
it = N it

it+1 + o(1)). On the other hand we have that E
log
n∈N nit = 0.

• The proof of Theorem 3.5 depends crucially on deep results from ergodic theory such
as [23, 24, 25] and analytic number theory [19, 20].

The next result is a key ingredient in our argument (recall that Pd = P ∩ (dN+ 1)):

Proposition 3.6. Let f1, . . . , fℓ : Z → U be multiplicative functions. There exists d ∈
N such that the following holds: If f1, . . . , fℓ admit log-correlations on the sequence of
intervals N, then

(8) E
log
p∈Pd

∣∣∣Elog
n∈N

m∏

j=1

gj(n+ hj)− E
log
n∈N

m∏

j=1

gj(n+ phj)
∣∣∣ = 0

for all m ∈ N, all h1, . . . , hm ∈ Z, and all g1, . . . , gm ∈ {f1, . . . , fℓ, f1, . . . , fℓ}.

Proof. Suppose first that for some j ∈ {1, . . . , ℓ} we have E
log
n∈N|fj(n)| = 0. Then when-

ever one of the functions g1, . . . , gm is equal to fj or fj, all logarithmic averages in (8)
vanish and the identity holds trivially for d = 1. Thus, without loss of generality, we

can assume that for j = 1, . . . , ℓ we have E
log
n∈N|fj(n)| > 0 (note that by our assumptions

the average exists). Using Theorem 3.1 for ℓ = 1, g1 = fj, and h1 = 0, we deduce that

E
log
p∈P(1− |fj(p)|) = 0.3 Hence, we can work under the assumption that

(9) |fj| ∼ 1, for j = 1, . . . , ℓ.

Next, for k ∈ N and j = 1, . . . , ℓ, we denote by f−k
j the function fk

j and let K =

Kf1,...,fℓ be the subset of Zℓ defined as follows

K :=
{
(k1, . . . , kℓ) ∈ Z

ℓ :
ℓ∏

j=1

f
kj
j ∼ χ for some Dirichlet character χ

}
.

Using (9) and properties (i)-(iii) of Lemma 3.4, and since products and complex con-
jugates of Dirichlet characters are Dirichlet characters, we get that K is a subgroup of
Z
ℓ. Since every subgroup of Z

ℓ is finitely generated, K is finitely generated. We let
FK = FK,f1,...,fℓ be the following set of multiplicative functions

FK :=
{ ℓ∏

j=1

f
kj
j : (k1, . . . , kℓ) ∈ K

}
.

We have that FK is finitely generated under multiplication. Let {f0,1, . . . , f0,r}, for some
r ∈ N, be a set of generators for FK . Then for j = 1, . . . , r there exist Dirichlet characters
χj such that f0,j ∼ χj. If d ∈ N is a common period of all these Dirichlet characters, then

for j = 1, . . . , r we have χj(dn+1) = 1 for every n ∈ N. Let f ∈ FK , then f =
∏r

j=1 f
kj
0,j

for some k1, . . . , kr ∈ Z. Since f0,j ∼ χj for j = 1, . . . , r, we get from property (iii) of

3We note that the ℓ = 1 case of Theorem 3.1 admits a simple elementary proof via the Turàn-Kubilius
inequality.



FURSTENBERG SYSTEMS OF MULTIPLICATIVE FUNCTIONS AND APPLICATIONS 12

Lemma 3.4 that f ∼
∏r

j=1 χ
kj
j , and since χj(p) = 1 for all j ∈ {1, . . . , r} and all p ∈ Pd,

we deduce from property (iv) of Lemma 3.4 that E
log
p∈Pd

|f(p)− 1| = 0 (we also used that

Pd has positive relative density in P). Hence,

(10) E
log
p∈Pd

|f(p)− 1| = 0, for every f ∈ FK .

We now show that (8) holds. Let g̃ :=
∏m

j=1 gj . Since gj ∈ {f1, . . . , fℓ, f1, . . . , fℓ} for

j = 1, . . . , r, using (9) and properties (ii) and (iii) of Lemma 3.4, we get that g̃ ∼
∏ℓ

j=1 f
kj
j

for some k1, . . . , kℓ ∈ Z, where we continue to use the notation fk for f−k if k is a negative
integer. We consider two cases. If g̃ /∈ FK , then g̃ ≁ χ for all Dirichlet characters χ,

in which case (8) holds because by Theorem 3.5 we have E
log
n∈N

∏m
j=1 gj(n + hj) = 0 for

all h1, . . . , hm ∈ Z. On the other hand, if g̃ ∈ FK , we see that (8) holds by combining
Theorem 3.1 (with Pd in place of P) and (10). This completes the proof. �

We are going to use the following consequence of Proposition 3.6 which is better suited
for our purposes:

Corollary 3.7. Let f1, . . . , fℓ : Z → U be multiplicative functions. There exists d ∈
N such that the following holds: If f1, . . . , fℓ admit log-correlations on the sequence of
intervals N, then the limit on the right hand side below exists and we have

(11) E
log
n∈N

m∏

j=1

gj(n+ hj) = Ep∈Pd
E
log
n∈N

m∏

j=1

gj(n+ phj)

for all m ∈ N, all h1, . . . , hm ∈ Z, and all g1, . . . , gm ∈ {f1, . . . , fℓ, f1, . . . , fℓ}.

Proof. This follows immediately from Proposition 3.6 and the fact that by Proposition 2.7
the limit Ep∈Pd

on the right hand side exists and as a consequence the limit E∗
p∈Pd

is equal
to the limit Ep∈Pd

. �

3.3. An ergodic consequence. Using Proposition 2.3 we deduce from Corollary 3.7 the
following ergodic result concerning joint Furstenberg systems of multiplicative functions:

Theorem 3.8. Let f1, . . . , fℓ : Z → U be multiplicative functions. There exists d ∈ N

such that the following holds: If (X,µ, T ) is a joint Furstenberg system of f1, . . . , fℓ, and
if F0,1, . . . , F0,ℓ are as in Proposition 2.3, then we have

(12)

∫

X

m∏

j=1

T hjFj dµ = Ep∈Pd

∫

X

m∏

j=1

T phjFj dµ

for all m ∈ N, all h1, . . . , hm ∈ Z, and all F1, . . . , Fm ∈ {F0,1, . . . F0,ℓ, F0,1, . . . , F0,ℓ}.

4. The structure of Furstenberg systems of multiplicative functions

The goal of this section is to prove Theorem 1.5. In the next section we use this
structural result to prove Theorems 1.1-1.3.

4.1. Proof of Theorem 1.5. Given a system (X,µ, T ) and d ∈ N we define the system
of arithmetic progressions with steps in Pd as follows:

Definition 4.1. Let (X,µ, T ) be a system and let XZ be endowed with the product
σ-algebra. For d ∈ N we write µ̃d for the probability measure on XZ defined as follows:
For every m ∈ N and all F−m, . . . , Fm ∈ L∞(µ), we let

(13)

∫

XZ

m∏

j=−m

Fj(xj) dµ̃d(x) := Ep∈Pd

∫

X

m∏

j=−m

T pjFj dµ,
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where x := (xj)j∈Z and the limit on the right hand side exists by Theorem 2.6. The

measure µ̃d is invariant under the shift transformation S on XZ and induces a system
(XZ, µ̃d, S), which we call the system of arithmetic progressions with steps in Pd associ-
ated with the system (X,µ, T ).

Remark. For d = 1 the system (XZ, µ̃1, S) coincides with the system of arithmetic
progressions with prime steps introduced in [14, Definition 3.8].

The relevance of the systems (XZ, µ̃d, S) to our problem is demonstrated by the fol-
lowing result:

Proposition 4.2. Let f1, . . . , fℓ : Z → U be multiplicative functions. Then there exists
d ∈ N such that any joint Furstenberg system (X,µ, T ) of the multiplicative functions
f1, . . . , fℓ is a factor of the system (XZ, µ̃d, S).

Proof. We can assume that the joint Furstenberg system is defined on the space X :=
(Uℓ)Z and T is the shift transformation on X. We denote elements of X by x =
(x1(k), . . . , xℓ(k))k∈Z, where x1(k), . . . , xℓ(k) ∈ U for k ∈ Z, and elements of XZ with
x = (xn)n∈Z, where xn ∈ X for n ∈ Z. Hence, x = (xn,1(k), . . . , xn,ℓ(k))k,n∈Z can be
identified with (xn,1, . . . , xn,ℓ)n∈Z, where xn,j = (xn,j(k))k∈Z for j = 1, . . . , ℓ.

We define the map π : XZ → X as follows: For x = (xn,1, . . . , xn,ℓ)n∈Z ∈ XZ let

(π(x))(n) := (xn,1(0), . . . , xn,ℓ(0)) = (F0,1(xn,1), . . . , F0,ℓ(xn,ℓ)), n ∈ Z,

where
Fh,j(x) := xj(h), x ∈ X, h ∈ Z, j ∈ {1, . . . , ℓ}.

For n ∈ Z we have

(π(Sx))(n) = (F0,1((Sx)n), . . . , F0,ℓ((Sx)n)) = (F0,1(xn+1,1), . . . , F0,ℓ(xn+1,ℓ)) =

(π(x))(n + 1) = (Tπ(x))(n).

Thus
π ◦ S = T ◦ π.

Next, we claim that µ̃d ◦ π
−1 = µ. Indeed, for all m ∈ N, all h1, . . . , hm ∈ Z, and all

k1, . . . , km ∈ {±1, . . . ,±ℓ}, using identity (12) in Theorem 3.8 and the definition of µ̃d

given in (13), we have

∫

X

m∏

j=1

Fhj ,kj(x) dµ(x) =

∫

X

m∏

j=1

F0,kj (T
hjx) dµ(x) = Ep∈Pd

∫

X

ℓ∏

j=1

F0,kj (T
phjx) dµ(x) =

∫

XZ

m∏

j=1

F0,kj(xhj
) dµ̃d(x) =

∫

XZ

m∏

j=1

(Fhj ,kj ◦ π)(x) dµ̃d(x),

where we let Fh,−k := Fh,k for h ∈ Z and k ∈ {1, . . . , ℓ}. Since the algebra generated

by the functions Fh,1, . . . , Fh,ℓ, Fh,1, . . . , Fh,ℓ, h ∈ Z, is dense in C(X) with the uniform
topology, the claim follows.

Therefore, π : (XZ, µ̃d, S) → (X,µ, T ) is a factor map and the proof is complete. �

Our next task is to obtain structural results for the systems (XZ, µ̃d, S). This crucially
depends on the following result from [14] which deals with the case where d = 1:

Theorem 4.3. Let (X,µ, T ) be a system. Then the system (XZ, µ̃1, S)

(i) has no irrational spectrum;
(ii) has ergodic components isomorphic to direct products of infinite-step nilsystems

and Bernoulli systems.

Remark. The infinite-step nilsystems and the Bernoulli systems are allowed to be trivial.
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The proof of Theorem 4.3 uses some deep ergodic machinery such as the main result
from [23] (or [33]) regarding characteristic factors of Furstenberg averages, results about
arithmetic progressions on nilmanifolds, and properties of partially strongly stationary
systems. It also uses indirectly (via the use of variants of limit formulas obtained in [15])
some deep number theoretic input such as the Gowers uniformity of the W -tricked von
Mangoldt function from [20, 21, 22]. Luckily, we do not have to modify the argument
from [14] in order to get a similar result for the measures µ̃d; instead, we make use of the
following simple observation, which allows us to use Theorem 4.3 as a “black box”:

Lemma 4.4. Let (X,µ, T ) be a system and µ̃d, d ∈ N, be the measures on XZ defined
by (13). Then µ̃d ≤ φ(d) µ̃1 for every d ∈ N.

Proof. It suffices to show that for all m ∈ N and all non-negative F−m, . . . , Fm ∈ L∞(µ)
we have ∫

XZ

m∏

j=−m

Fj(xj) dµ̃d(x) ≤ φ(d)

∫

XZ

m∏

j=−m

Fj(xj) dµ̃1(x).

This follows immediately from (13), the fact that the relative density dP(Pd) of the set
Pd in the primes is 1/φ(d), and the estimate

Ep∈Pd
a(p) ≤ (dP(Pd))

−1
Ep∈P a(p)

which holds for all sequences a : P → R
+ assuming that the limits on the left and right

hand side exist. �

Combining Theorem 4.3 and Lemma 4.4 we deduce the following:

Theorem 4.5. Let (X,µ, T ) be a system. Then for every d ∈ N the system (XZ, µ̃d, S)

(i) has no irrational spectrum;
(ii) has ergodic components isomorphic to direct products of infinite-step nilsystems

and Bernoulli systems.

Proof. By Lemma 4.4 we have µ̃d ≤ φ(d) µ̃1, hence the measure µ̃d is absolutely con-
tinuous with respect to the measure µ̃1. This implies that the spectrum of the system
(XZ, µ̃d, S) is a subset of the spectrum of the system (XZ, µ̃1, S), so the former has no
irrational spectrum since the same holds for the latter by Theorem 4.3. Furthermore,
if µ̃1 =

∫
Ω µ̃1,ω dP (ω) is the ergodic decomposition of the measure µ̃1, then the ergodic

decomposition of the measure µ̃d is µ̃d =
∫
Ω µ̃1,ω dPd(ω) for some probability measure Pd

that is absolutely continuous with respect to P . This implies that property (ii) holds for
the ergodic components of the measure µ̃d since it holds for the ergodic components of
the measure µ̃1 by Theorem 4.3. �

Theorem 1.5 now follows by combining Proposition 4.2 and Theorem 4.5.

4.2. An alternative proof of Theorem 1.5 for some special cases. In some inter-
esting special cases we can prove Theorem 1.5 (and hence Theorems 1.1-1.3) using an
alternative approach that avoids the use of Theorem 3.5. We present the details below,
let us emphasize though, that this alternative approach breaks down when fj(P) is an
infinite subset of the unit circle for some j ∈ {1, . . . , ℓ}, and we do not see how to avoid
the use of Theorem 3.5 in order to cover such cases.

4.2.1. The case where f1(P), . . . , fℓ(P) are finite subsets of T. Suppose first that the
multiplicative functions f1, . . . , fℓ are such that fj(P) is a finite subset of T for j =
1, . . . , ℓ. Let (X,µ, T ) be a joint Furstenberg system associated with these multiplicative
functions and a sequence of intervals N. Then there exist c1, . . . , cℓ ∈ U, a subset A of
P, and a sequence of intervals M = ([Mk])k∈N with Mk → ∞, such that

(i) fj(p) = cj , j = 1 . . . , ℓ, for all p ∈ A;
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(ii) dlog
M,P(A) := E

log
M,p∈P 1A(p) exists and is positive;

(iii) the averages

E
log
M,p∈A

∫

X

m∏

j=−m

T pjFj dµ

exist for all m ∈ N and F−m, . . . , Fm ∈ L∞(µ),

where we used the notation

E
log
M,p∈A a(p) := lim

k→∞
E
log
p∈A∩[Mk]

a(p)

for a : P → C, if the limit exists. Using Theorem 3.1 and property (i), we get as in
the proof of Proposition 4.2, using the factor map π : XZ → X defined by (π(x))(n) :=
(c1 xn,1(0), . . . , cℓ xn,ℓ(0)), that the system (X,µ, T ) is a factor of the system (XZ, µ∗, S)
where the measure µ∗ is defined as follows: For every m ∈ N and all F−m, . . . , Fm ∈
L∞(µ), we let

(14)

∫

XZ

m∏

j=−m

Fj(xj) dµ
∗(x) := E

∗
M,p∈A

∫

X

m∏

j=−m

T pjFj dµ,

where the limit on the right hand side exists by property (iii). Since d∗
M,P(A) > 0 (by

property (ii)), we get that for every sequence a : P → R
+ for which the limits below exist

that

E
log
M,p∈Aa(p) ≤ C lim

k→∞
E
log
p∈P∩[Mk]

a(p) = C Ep∈P a(p)

where C := (dlog
M,P(A))

−1 (the last identity holds because limmkto∞ E
log
p∈P∩[Mk]

a(p) =

Ep∈P a(p) since the last limit is assumed to exist). Using this estimate in the case where
a(p) :=

∫
X

∏m
j=−m T pjFj dµ, p ∈ P, is non-negative, we get that the measures µ̃1 and µ∗,

defined by (13) and (14) respectively, satisfy the estimate

∫

XZ

m∏

j=−m

Fj(xj) dµ
∗(x) ≤ C Ep∈P

∫

X

m∏

j=−m

T pjFj dµ = C

∫

XZ

m∏

j=−m

Fj(xj) dµ̃1(x)

for all m ∈ N and all non-negative F−m, . . . , Fm ∈ L∞(µ). Hence, µ∗ ≤ C µ̃1, and as
in the proof of Theorem 4.5 we conclude that the system (XZ, µ∗, S) satisfies properties
(i) and (ii) of Theorem 4.5. Since (X,µ, T ) is a factor of the system (XZ, µ∗, S), it also
satisfies these two properties.

4.2.2. The case of real valued multiplicative functions. Let (X,µ, T ) be a joint Fursten-
berg system associated with the multiplicative functions f1, . . . , fℓ : Z → [−1, 1] and a se-
quence of intervals N. Suppose first that for some j ∈ {1, . . . , ℓ} we have En∈N|fj(n)| = 0,
say for j = ℓ. Then all correlations involving the function fℓ are trivial. As a conse-
quence, the joint Furstenberg system associated with the functions f1, . . . , fℓ and N is
isomorphic (in the measure theoretic sense) to the joint Furstenberg system associated
with the functions f1, . . . , fℓ−1 and N. Hence, it suffices to prove Theorem 1.5 in the
case where En∈N|fj(n)| 6= 0 for j = 1, . . . , ℓ. As in the first part of the proof of Propo-

sition 3.6 we get that E
log
p∈P(1 − |fj(p)|) = 0 for j = 1, . . . , ℓ. Hence, fj ∼ f ′

j for some

f ′
j : P → {−1, 1} for j = 1, . . . , ℓ. As a consequence, in the identity of Theorem 3.1 we

can replace the weights cp,m =
∏m

j=1 gj(p) with the weights c′p,m :=
∏m

j=1 g
′
j(p), where

for j = 1, . . . ,m, if gj(p) is fk(p) or fk(p) for some k ∈ {1, . . . , ℓ}, then g′j(p) is f ′
k(p) or

f ′
k(p) respectively. Using this new identity, we deduce Theorem 1.5 as in the case treated

above where fj(P) is finite for j = 1, . . . , ℓ.
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5. Proof of Theorems 1.1-1.3

We will use the following disjointness result, proved in [14, Corollary 3.13]:

Proposition 5.1. Let (X,µ, T ) be a system with ergodic components isomorphic to direct
products of infinite-step nilsystems and Bernoulli systems. Let (Y, ν,R) be a zero entropy
system with at most countably many ergodic components.

(i) If the two systems have disjoint irrational spectrum, then for every joining σ of
the two systems and function F ∈ L∞(µ) that is orthogonal to Krat(T ), we have∫

X×Y

F (x)G(y) dσ(x, y) = 0

for every G ∈ L∞(ν).
(ii) If the two systems have no common eigenvalue except 1, then for every joining

σ of the two systems and function G ∈ L∞(ν) that is orthogonal in L2(ν) to all
R-invariant functions, we have∫

X×Y

F (x)G(y) dσ(x, y) = 0

for every F ∈ L∞(µ).

5.1. Proof of Theorem 1.1. We follow the argument used in [14, Section 3.9]. Arguing
by contradiction, suppose that under the assumptions of Theorem 1.1 we do not have
uniform convergence to 0 of the related averages. Then there exist a strongly aperiodic
multiplicative function f : N → U, which we extend to Z in an arbitrary way, a topological
dynamical system (Y,R), positive integers Nk → ∞, points yk ∈ Y , k ∈ N, and a function
g0 ∈ C(Y ) such that the averages

E
log
n∈[Nk]

g0(R
nyk) f(n)

converge to a non-zero number as k → ∞. After passing to a subsequence which we

denote again by ([Nk])k∈N, we can further assume that the averages Elog
n∈[Nk]

δRnyk converge

(as k → ∞) weak-star to an R-invariant probability measure ν and the limit

(15) lim
k→∞

E
log
n∈[Nk]

g(Rnyk)

m∏

j=1

fj(n+ hj)

exists for all m ∈ N, h1, . . . , hm ∈ Z, f1, . . . , fm ∈ {f, f}, and g ∈ C(Y ). Note that,
by our assumptions, the system (Y, ν,R) has zero entropy and at most countably many
ergodic components.

Let X := U
Z, T : X → X be the shift transformation, and x0 ∈ X be defined by

x0(n) := f(n), n ∈ Z.

Then the convergence (15) implies that the limit

lim
k→∞

E
log
n∈[Nk]

g(Rnyk)
( m∏

j=1

Ghj

)
(T nx0)

exists for all m ∈ N, h1, . . . , hm ∈ Z, g ∈ C(Y ), and Gh ∈ {Fh, Fh}, h ∈ Z, where
Fh(x) = x(h), x ∈ X, h ∈ Z. Since the algebra generated by the functions Fh, Fh, h ∈ Z,
is dense in C(X) with the uniform topology, we deduce that the sequence of measures

E
log
n∈[Nk]

δ(Tnx0,Rnyk), k ∈ N,

converges weak-star to some probability measure σ on X × Y that satisfies

(16) lim
k→∞

E
log
n∈[Nk]

g(Rnyk)
m∏

j=1

fj(n + hj) =

∫

X×Y

m∏

j=1

Ghj
(x) g(y) dσ(x, y)
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for all m ∈ N, h1, . . . , hm ∈ Z, f1, . . . , fm ∈ {f, f}, and g ∈ C(Y ), where Gh is Fh or Fh

according to whether fj is f or f . By construction, σ is invariant under T ×R.

The projection of σ on Y is the weak-star limit of the sequence of measures Elog
n∈[Nk]

δRnyk ,

k ∈ N, which is the measure ν, and thus the corresponding measure preserving system
has zero entropy and at most countably many ergodic components.

The projection of σ on X is the weak-star limit of the sequence of measures Elog
n∈[Nk]

δTnx0 ,

k ∈ N. It is thus a T -invariant measure µ which is the Furstenberg measure associated
with f and N = ([Nk])k∈N by Proposition 2.3. Hence, σ is a joining of the systems
(X,µ, T ) and (Y, ν,R).

By the ℓ = 1 case of Proposition 4.2 and its proof, there exists d ∈ N such that
(X,µ, T ) is a factor of the system (XZ, µ̃d, S), with factor map π : XZ → X given by

(π(x))(k) := xk(0), x = (xn)n∈Z ∈ XZ, k ∈ Z.

We define the joining σ̃ of the systems (XZ, µ̃d, S) and (Y, ν,R) by
∫

XZ×Y

H(x) · g(y) dσ̃(x, y) :=

∫

X×Y

Eµ̃d
(H | X)(x) · g(y) dσ(x, y)

for every H ∈ L∞(µ̃d) and g ∈ L∞(ν), where Eµ̃d
(H | X) in L1(ν) is determined by the

property
∫
A
Eµ̃d

(H | X) dµ =
∫
π−1(A)H dµ̃d for every A ∈ X .

We show now that the systems (XZ, µ̃d, S) and (Y, ν,R) verify the assumptions of part
(i) of Proposition 5.1. By Theorem 4.5, the system (XZ, µ̃d, S) has no irrational spectrum
and its ergodic components are isomorphic to direct products of infinite-step nilsystems
and Bernoulli systems. We show next that the function F ′

0 := F0 ◦ π is orthogonal
to the rational Kronecker factor of the system (XZ, µ̃d, S), in fact, we establish the
stronger property that F ′

0 is orthogonal to the Kronecker factor of this system. By a well
known consequence of the spectral theorem for unitary operators, this is equivalent to
establishing that

(17) En∈N

∣∣∣
∫

XZ

F ′
0 · S

nF ′
0 dµ̃d

∣∣∣ = 0.

By the Definition 4.1 of the measure µ̃d and since for n ∈ N we have F ′
0(x)F

′
0(S

nx) =

F0(x0)F0(xn), we get for every n ∈ N that
∫

XZ

F ′
0 · S

nF ′
0 dµ̃d = Ep∈Pd

∫

X

F0 · T
pnF0 dµ.

By (4), for every h ∈ N we have
∫

X

F0 · T
hF0 dµ = E

log
n∈N f(n) f(n+ h) = 0

where the vanishing of the average follows from Theorem 2.10 and our assumption that
f is strongly aperiodic. Combining the above identities we get (17).

By part (i) of Proposition 5.1, we have

0 =

∫

XZ×Y

F ′
0(x)·g0(y) dσ̃(x, y) =

∫

X×Y

F0(x)·g0(y) dσ(x, y) = lim
k→∞

E
log
n∈[Nk]

g0(R
nyk) f(n)

where the last identity follows by (16). This contradicts our initial assumption that

limk→∞ E
log
n∈[Nk]

g0(R
nyk) f(n) 6= 0 and completes the proof. �

5.2. Proof of Theorem 1.3. We follow the argument used in [14, Section 3.11].
Arguing by contradiction, suppose that the conclusion of Theorem 1.3 fails. Then

there exist ℓ ∈ N, multiplicative functions f1, . . . , fℓ : N → U, which we extend to Z in
an arbitrary way, a topological dynamical system (Y,R), a point y0 ∈ Y that is generic
for a measure ν such that the system (Y, ν,R) has zero entropy and at most countably
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many ergodic components all of which are totally ergodic, and a function g0 ∈ C(Y )
orthogonal in L2(ν) to all R-invariant functions, such that for some h0,1, . . . , h0,ℓ ∈ Z the
identity (1) fails, namely, the averages

(18) E
log
n∈[N ] g0(R

ny0)
ℓ∏

j=1

fj(n+ h0,j)

do not converge to 0 as N → ∞.
Let X := (Uℓ)Z, T : X → X be the shift transformation, and x0 ∈ X be defined by

x0(n) := (f1(n), . . . , fℓ(n)), n ∈ Z.

If x = (x1(n), . . . , xℓ(n))n∈Z ∈ X, where xj(n) ∈ U for j = 1, . . . , ℓ, n ∈ Z, we let

Fh,j(x) := xj(h), h ∈ Z, j ∈ {1, . . . , ℓ}.

As in the proof of Theorem 1.1 in the previous subsection, we define a sequence of
intervals N = (Nk)k∈N, with Nk → ∞, such that the averages (18), taken along N,
converge to some non-zero number, and a measure σ on X × Y which is the weak-star
limit of the sequence of measures

E
log
n∈[Nk]

δ(Tnx0,Rny0), k ∈ N.

In particular, the identity

(19) E
log
n∈N g(Rny0)

ℓ∏

j=1

fj(n + hj) =

∫

X×Y

ℓ∏

j=1

Fhj ,j(x) g(y) dσ(x, y)

holds for all h1, . . . , hℓ ∈ Z, and g ∈ C(Y ).
By construction, σ is invariant under T × R. By assumption and the definition of

genericity, the projection of σ on Y is the measure ν, and thus the system (Y, ν,R) has
zero entropy, at most countably many ergodic components, and no rational eigenvalue
except 1. Moreover, the projection of σ on X is the weak-star limit of the sequence of

measures E
log
n∈[Nk]

δTnx0 , k ∈ N. It is thus a T -invariant measure µ which is the joint

Furstenberg measure associated with the multiplicative functions f1, . . . , fℓ and N by
Proposition 2.3. Hence, by Proposition 4.2, for some d ∈ N the system (X,µ, T ) is a
factor of the system (XZ, µ̃d, S). By Theorem 1.5, the system (XZ, µ̃d, S) has no irrational
spectrum and its ergodic components are isomorphic to direct products of infinite-step
nilsystems and Bernoulli systems.

From the previous discussion it follows that the function g0 and the systems (XZ, µ̃d, S)
and (Y, ν,R) satisfy the hypothesis of the second part of Proposition 5.1. Hence, for every

joining σ̃ of these systems and f̃ ∈ L∞(µ̃d), we have
∫
f̃(x) g0(y) dσ̃(x, y) = 0. Since σ

is a joining of the systems (X,µ, T ) and (Y, ν,R), and the system (X,µ, T ) is a factor
of (XZ, µ̃d, S), the measure σ can be lifted to a joining σ̃ of (XZ, µ̃d, S) and (Y, ν,R). It
follows that for every f ∈ L∞(µ) we have

∫
f(x) g0(y) dσ(x, y) = 0. We deduce that

E
log
n∈N g0(R

ny0)
ℓ∏

j=1

fj(n+ h0,j) =

∫

X×Y

ℓ∏

j=1

Fh0,j ,j(x) · g0(y) dσ(x, y) = 0.

This contradicts our assumption that Elog
n∈N g0(R

ny0)
∏ℓ

j=1 fj(n+h0,j) 6= 0 and completes
the proof of Theorem 1.3.

5.3. Block complexity and proof of Theorem 1.2. We start with some definitions.
Let A be a non-empty finite set. The set A is endowed with the discrete topology and
AZ with the product topology and with the shift T . For n ∈ N, a word of length n is
a sequence u = u1 . . . un of n letters where u1, . . . , un ∈ A, and we write [u] = {x ∈
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AZ : x1 . . . xn = u1 . . . un}. A subshift is a closed non-empty T -invariant subset X of AZ.
It is transitive if it has at least one dense orbit under T .

Let (X,T ) be a transitive subshift that is equal to the closed orbit of some point
ω ∈ AZ. For every n ∈ N we let Ln(X) denote the set of words u of length n such that
[u] ∩X 6= ∅. Then Ln(X) is also the set of words of length n that occur (as consecutive
values) in ω. Note that the set L(X) :=

⋃
n∈N Ln(X) determines X. The block complexity

of X or of ω is defined by pX(n) = |Ln(X)| for n ∈ N. We say that the subshift (X,T )
(or the sequence ω) has linear block growth if lim infn→∞ pX(n)/n < ∞. We are going
to use the following consequence of a result from [4] (or [11, Theorem 7.3.7]), that was
obtained in [14, Section 7.1]:

Proposition 5.2. Let (X,T ) be a transitive subshift with linear block growth. Then
(X,T ) admits only finitely many ergodic invariant measures.

This result was proved in [3] under the stronger hypothesis that (X,T ) is minimal.

Proof of Theorem 1.2. We argue as in [14, Section 7.2] where a similar result was proved
for the Liouville function. Let A be the range of f , which we have assumed to be a
finite subset of U. Suppose that f has linear block growth. We extend f to a two sided
sequence, which we denote by y0 ∈ AZ, by letting y0(n) := 1 for non-positive n ∈ Z;
then the extended sequence still has linear block growth. Let Y be the closed orbit of y0
in AZ and let R be the shift on Y . Then (Y,R) is a transitive subshift, and since it has
linear block growth it has zero topological entropy. Moreover, by Proposition 5.2 this
system admits only finitely many ergodic invariant measures. Note that for every n ∈ N

we have f(n) = F0(R
ny0), where F0 : A

Z → U is the map defined by F0(y) := y(0) for
y = (y(n))n∈Z ∈ Y . By Theorem 1.1 we get

0 = E
log
n∈N F0(R

ny0) f(n) = E
log
n∈N |f(n)|2 6= 0,

where we used our assumption that f does not converge to zero in logarithmic density.
We have thus established a contradiction and the proof is complete. �
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