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Abstract

We look at two classical examples in the theory of numerical anal-
ysis, namely the Runge example for interpolation and Wilkinson’s ex-
ample (actually two examples) for rootfinding. We use the modern
theory of backward error analysis and conditioning, as instigated and
popularized by Wilkinson, but refined by Farouki and Rajan. By this
means, we arrive at a satisfactory explanation of the puzzling phe-
nomena encountered by students when they try to fit polynomials to
numerical data, or when they try to use numerical rootfinding to find
polynomial zeros. Computer algebra, with its controlled, arbitrary
precision, plays an important didactic role.

The function y = 1
1+25x2 on −1 ≤ x ≤ 1, called the Runge example1, is

used in many numerical analysis textbooks to show why high-degree polyno-
mial interpolation using equally-spaced nodes is bad. Unfortunately, most
textbooks omit or downplay the crucial qualification “using equally-spaced
nodes” and thereby leave the false impression that high-degree interpolation
is always bad.

Similarly, Wilkinson’s first example polynomial2

p20(x) =
20∏
k=1

(x− k) (1)

1Carl David Tolmé Runge (30 August 1856 − 3 January 1927) was a German mathe-
matician, physicist, and spectroscopist.

2James Hardy Wilkinson. Born: 27 September 1919 in Strood, Kent, England- Died: 5
October 1986 in Teddington, Middlesex, England. He worked with Turing in 1946. He won
the Chauvenet Prize in 1970 for mathematical exposition for his paper “The Perfidious
Polynomial” [10]. His book, “The Algebraic Eigenvalue Problem” was foundational for
the field of numerical linear algebra.
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is widely discussed as an example —maybe the canonical example— of poly-
nomial perfidy, this time for rootfinding, not interpolation. As we will dis-
cuss below, both examples are better explained using the theory of condi-
tioning, as developed for instance by Farouki and Rajan [7]. One considers
a polynomial

p(x) =
n∑

k=0

ckφk(x) (2)

expressed in some polynomial basis {φk(x)}nk=0 for polynomials of degree at
most n. The usual monomial basis φk(x) = xk is the most common, but by
no means best for all purposes. Farouki and Goodman [6] point out that
the Bernstein basis φk(x) =

(
n
k

)
xk(1 − x)n−k has the best conditioning in

general, out of all polynomial bases satisfying φk(x) ≥ 0 on the interval
0 ≤ x ≤ 1. Surprisingly, Corless and Watt [5] show Lagrange bases can be
better; see also J.M. Carnicer and Y. Khiar [3].

We now discuss Farouki and Rajan’s formulation. The idea is that one
investigates the effects of small relative changes to the coefficients ck, such
as might arise from data error or perhaps approximation or computational
error. The model is

p(x) + ∆p(x) =
n∑

k=0

ck(1 + δk)φk(x) (3)

where each |δk| ≤ ε, usually taken to be small. For instance, if ε = 0.005,
each coefficient can be in error by no more than 0.5%. In particular, zero
coefficients are not allowed to be disturbed at all.

Then,

|∆p(x)| =

∣∣∣∣∣
n∑

k=0

ck(1 + δk)φk(x)−
n∑

k=0

ckφk(x)

∣∣∣∣∣ (4)

=

∣∣∣∣∣
n∑

k=0

ckδkφk(x)

∣∣∣∣∣ . (5)

By the triangle inequality, this is
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≤
n∑

k=0

|ckδkφk(x)| (6)

≤

(
n∑

k=0

|ck||φk(x)|

)
max

0≤k≤n
|δk| (7)

≤ B(x) · ε (8)

where

B(x) =
n∑

k=0

|ck||φk(x)| (9)

serves, for each x, as a condition number for polynomial evaluation.
This is to be contrasted with the definition of “evaluation condition number”
that arises when thinking of error ∆x in the input: If x changes to x+ ∆x,
then y = f(x) changes to y + ∆y where calculus tells us that

∆y

y

.
=
xf ′(x)

f(x)
· ∆x

x
. (10)

Here C = xf ′(x)/f(x) is the condition number, and instead of B(x); but
B and C measure the responses to different types of error (coefficients and
input). We look at B, here.

Remark. There are many theorems3 in numerical analysis that say, effec-
tively, that when evaluating equation (2) in IEEE floating-point arithmetic,
that the computed result is exactly of the form (3) for |δk| < K.µ where
K is a modest constant and µ is the unit roundoff — in double precision,
2−53 .

= 10−16. This is one motivation to study the effects of such perturba-
tions, but there are others.

The Runge Example

If the equally-spaced nodes xk = −1 + 2k/n, k = 0 . . . n are used to interpo-
late a function with a single polynomial of degree at most n, and the basis

3See for instance those cited in chapter 2 of [4].
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functions

`k(x) =

n∏
j=0
j 6=k

(x− xj)

n∏
j=0
j 6=k

(xk − xj)
(11)

which are the Lagrange interpolation basis functions, are used, then the
coefficients are the values for the Runge function:

yk = f(xk) =
1

1 + 25x2
k

. (12)

Then the condition number of the interpolant is,

B(x) =

n∑
k=0

1

1 + 25x2
k

|`k(x)| . (13)

Choosing n = 5, 8, 13, 21, 34, 55, and 89, we plot B(x) on a logarithmic ver-
tical scale for −1 ≤ x ≤ 1. The result is in Figure 1. The Maple code used
to generate that figure is as follows (similar code using MATLAB can be
provided, but the Maple code below avoids numerical issues in the construc-
tion of B(x) by using exact rational arithmetic). We see that the maximum
values for B(x) occur near x = ±1, and that for any n there is an interval
over which B(x) is small.

Digits := 15:

Ns := [seq(combinat[fibonacci ](k), k=5..11) ]:

f := x -> 1/(1 + 25*x^2):

for N in Ns do

tau := [seq(-1 + 2*k/N, k=0..N)]:

rho := [seq(y[k], k=0..N)]:

p := CurveFitting[PolynomialInterpolation ](tau ,

rho , z, form=Lagrange):

B := map(abs , p):

BRunge := eval(B, [seq(y[k] = f(tau[k+1]), k=0..

N)]):
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pl[N] := plots[logplot ](BRunge , z=-1..1, color=

black):

end do:

plots[display ]([seq(pl[N], N in Ns)]);

This experiment well illustrates that interpolation of the Runge example
function on equally-spaced nodes is a bad idea. But, really, it is the nodes
that are bad.

“Generations of textbooks have warned readers that polynomial
interpolation is dangerous. In fact, if the interpolation points
are clustered and a stable algorithm is used, it is bulletproof.”

— L.N. Trefethen, [9]

For a full explanation of the Runge phenomenon, see chapter 3 of [9].

Figure 1: The condition number of the Runge example on equally-spaced
nodes with degrees n = 5, 8, 13, 21, 34, 55, and 89.

The Runge Example with Chebyshev Nodes

If instead we use xk = cos(πk/n), replacing the line

tau := [seq(-1 + 2*k/N, k=0..N)];

with

tau := [seq(evalf [2* Digits ](cos(Pi*k/N)), k=0..N)];
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thenB(x) climbs no higher than about 2. Indeed we can replace plots[logplot]
by just plot. See Figure 2.

Figure 2: The Runge example with Chebyshev nodes with degrees n =
5, 8, 13, 21, 34, 55, and 89.

This is an improvement, for n = 89, of about a factor of 1022. For a
detailed exposition of why this works, and when, see [4] and the Chebfun
project at www.chebfun.org.

Concluding remarks on the Runge example

An instructor of numerical analysis has to walk a tightrope: the students
need to be taught caution (maybe bordering on paranoia) but they also
need to learn when to trust their results. Learning to assess the sensitivity
of their expression (as programmed) to realistic changes in data values is an
important objective. It is true that people (not just people who are students)
don’t want correct but complicated answers, preferring simple answers that
they don’t have to worry about. The Runge example is a very clear case
where these ideas can be usefully and thoroughly explored.
On can go further and replace B(x) by its upper bound in terms of the
Lebesgue function B(x) ≤ L(x)||c||∞ where L(x) =

∑n
k=0 |φk(x)|k. This

more general analysis is useful, as in [9] but loses in our opinion the chance
to make a special retrospective diagnostic of the problem at hand. Moreover,
there are cases where B(x)� L(x)||c||∞ and this overestimation could lead
to the wrong conclusion.
The bad behavior of the Runge example shows up in other ways, notably
in the ill-conditioning of the Vandermonde matrix on those nodes. But the
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Vandermonde matrix is ill-conditioned on Chebyshev nodes, too [2]; so that
can’t be the whole story. The explanation offered here seems more apt.

Wilkinson’s First Polynomial

Let us now consider rootfinding. Suppose r is a simple zero of p(x): That
is, p′(x) 6= 0 and

0 = p(r) =
n∑

k=0

ckφk(r) . (14)

Suppose r+ ∆r is the corresponding zero of p+ ∆p. This really only makes
sense if ∆p is sufficiently small. Otherwise, the roots get mixed up. Then

0 = (p+ ∆p)(r + ∆r) = p(r + ∆r) + ∆p(r + ∆r) (15)

≈ p(r) + p′(r)∆r + ∆p(r) +O(∆2) (16)

to first order; since p(r) = 0 also we have

p′(r)∆r ≈ −∆p(r) (17)

or

|∆r| ≈
∣∣∣∣−∆p(r)

p′(r)

∣∣∣∣ ≤ B(r) · ε
|p′(r)|

(18)

where

B(r) =

n∑
k=0

|ck||φk(r)| (19)

as before is the condition number. For nonzero roots, the number

A(r) =
∣∣∣ rB(r)
p′(r)

∣∣∣ has
∣∣∆r

r

∣∣ ≤ A(r)ε giving a kind of mixed relative/absolute

conditioning. This analysis can be made more rigorous by using “pseudoze-
ros” as follows. Define, for given wk ≥ 0 not all zero,

Λε(p) := {z ; ∃∆ck with |∆ck| ≤ wkε and
n∑

k=0

(ck + ∆ck)φk(z) = 0} . (20)

Normally, we take wk = |ck| in which case we may write ∆ck = ckδk.
This is the set of all complex numbers that are zeros of “nearby” polynomials—
nearby in the sense that we allow the coefficients to change. This definition
is inconvenient to work with. Luckily, there is a useful theorem, which can
be found, for instance, in [4, Theorem 5.3], also see [8] and [1].
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Theorem 1. Given weights wk ≥ 0, not all zero, and a basis φk(z), define
the weighted ε-pseudozero set of p(z) as in equation (20). Suppose also that

δp(z) =

n∑
k=0

∆ckφk(z).

Moreover, let

B(λ) =
n∑

k=0

wk|φk(λ)|.

Then the pseudozero set of p(z) may be alternatively characterized as

Λε(p) = {z ; |p(z)| ≤ B(z) · ε} = {z ;

∣∣∣∣zp(z)p′(z)

∣∣∣∣ ≤ ∣∣∣∣zB(z)

p′(z)

∣∣∣∣ε} (21)

This is again a condition number; the same one, as in equation (9) if
wk = |ck|.
Wilkinson’s first polynomial is, with N = 20,

WN (x) =
N∏
k=1

(x− k) (22)

= (x− 1)(x− 2)(x− 3) · · · (x−N) . (23)

In this form, it is “bulletproof”. However, if we are so foolish as to expand
it into its expression in the monomial basis, namely,

WN (x) = xN − 1

2
N(N + 1)xN−1 + · · ·+ (−1)N ·N ! (24)

(for N = 20 this is x20− 210x19 + · · ·+ (20!)) and in this basis, φk = xk, the
condition number for evaluation

BN (x) = |x|N +
1

2
N(N + 1)|x|N−1 + · · ·+ |N !| . (25)

is very large. See Figure 3.
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Figure 3: The condition number of Wilkinson’s first polynomial (N = 20).

When we plot the condition number for root finding, A(r) =
∣∣∣ rBN (r)
W ′

N (r)

∣∣∣,
we find that for N = 20 (Wilkinson’s original choice), the maximum value
occurs at r = 16 and rB20(r)/|W ′20(r)| ≈ 1016. See Figure 4.

Figure 4: The condition number for rootfinding.

Working in single precision would give no figures of accuracy; double
precision (u ≈ 10−16) also does not guarantee any accuracy. For N = 30

we find rB30(r)
|W ′

30(r)| > 1021 sometimes; for N = 40 it’s 1028. Working with

the monomial basis for this polynomial is surprisingly difficult. Wilkinson
himself was surprised; the polynomial was intended to be a simple test
problem for his program for the ACE computer. His investigations led to
the modern theory of conditioning [10].

However, there’s something a little unfair about the scaling: the interval
0 ≤ x ≤ 20 when taken to the twentieth power covers quite a range of values.
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One wonders if matters can be improved by a simple change of variable.

The Scaled Wilkinson Polynomial

If we move the roots 1, 2, 3, . . . , 20 to the roots −1 + 2k/21, k = 1 . . . 30,
then they become symmetrically placed in −1 < x < 1, and this improves
matters quite dramatically, as we can see in Figure 5.

Figure 5: The condition number for the scaled Wilkinson polynomial, A(r) =∣∣∣ rBN (r)
W ′

N (r)

∣∣∣.
The condition number 1013 becomes just 103, and we have to go to

N = 60 to get condition numbers as high as 1013. The scaling seems to
matter. However, nearly all of the improvement comes from the symmetry;
WN will be even if N is even, and odd if N is odd, and this means half the
coefficients are zero and therefore not subject to (relative) perturbation.
If instead we scale to the interval [0, 2] we have a different story: for roots
2− 2k/21 the condition number B(x) reaches nearly the same heights as it
did on 0 ≤ x ≤ 20. See Figure 6. Similarly if we use [0, 1]. Thus we conclude
that symmetry matters.
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Figure 6: The condition number of scaled Wilkinson polynomial.

See Figure 7 for the pseudozeros of WN (x), where the contour levels are
10−14 and 10−18. The roots are visibly changed by extremely tiny pertur-
bations.

Figure 7: The pseudozeros of WN (x). The contour levels are 10−14 and
10−18. The interior is blacked out because contours are difficult to draw at
such sizes, in floating point arithmetic.

Wilkinson’s Second Example Polynomial

The story of Wilkinson’s second example is somehow more strange. The
polynomial is

C20(x) =

20∏
k=1

(x− 2−k) (26)
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and the roots are 1/2, 1/4, 1/8, 1/16, . . . , 1/220. Wilkinson expected that the clus-
tering of roots near zero would cause difficulty for his rootfinder, once the
polynomial was expanded:

C20(x) = x20 −

(
20∑
k=1

1

2k

)
x19 + · · ·+

20∏
k=1

2−k . (27)

But his program had no difficulty at all! This is because the monomial basis
is, in fact, quite well-conditioned near x = 0, and the condition number for
this polynomial can be seen in Figure 8 on 0 ≤ x ≤ 1.

Figure 8: The condition number for Wilkionson’s second example polyno-
mial (C20). In contrast to his first test problem, it is well-conditioned.

In contrast, the condition number for evaluation using the Lagrange basis
on equally-spaced nodes in [0, 1], plus either x0 = 0 or x0 = 1, is horrible:
for N = 20 it is already 1048, see Figure 9.

Figure 9: A portion of the condition number of C20 in the Lagrange basis
on the nodes k/20, 0 ≤ k ≤ 20.
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This computation conforms to Wilkinson’s intuition that things can go
wrong if roots are clustered. Also we can see the pseudozeros of C20 in
Figure 10. The required perturbations needed to make visible changes are
quite large: these roots are not very sensitive to changes in the monomial
basis coefficients.

Figure 10: The pseudozeros of C20. The contour levels are 10−1, 10−2, 10−3,
10−4, 10−6 and 10−8.

Another way to see this is to look at a problem where the roots are
clustered at 1, not at 0:

S20 =
N∏
k=1

(
x− (1− 2−k)

)
=

N∑
k=0

skx
k (28)

In this case the condition number is presented in Figure 11, and is huge. This
polynomial is very sensitive to changes in the monomial basis coefficients.

Figure 11: The condition number of S20.
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The condition number for evaluation using a Lagrange basis for S20 is
shown in Figure 12 (zoomed in for emphasis). Here the Lagrange basis is
also very sensitive.

Figure 12: The condition number of S20 in a Lagrange basis.

Consider also the pseudozeros of S20 in Figure 13. The contour levels
in Figure 13 are (from the outside in) 10−4, 10−6, 10−8, 10−10 and 10−15.
In order to see a better view of the pseudozeros, let’s consider the the first
contour, 10−4, which is the biggest curve in Figure 13. We know that

S20 + ∆S =

20∑
k=0

sk(1 + δk)xk (29)

where ∆S = s0δ0 + s1δ1x + s2δ2x
2 + · · · + s20δ20x

20. Now if we choose a
point between contour levels 10−4 and 10−6, for example p = 3 − 1.5i, we
can see that p is a zero of some S20 + ∆S(x) with all coefficients of ∆S that
have |δk| < 10−4. These are all small relative perturbations, that means
everything inside the contour level 10−4 is a zero of a polynomial that is
reasonably close to S20. This is somehow backward error. So everything
inside the contour level 10−4 is a zero of a polynomial closer to S20 (in this
sense) than 10−4. Everything inside the contour level 10−6 is a zero of a
polynomial closer that 10−6 to S20, and so on.
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Figure 13: The pseudozeros of S20. The contour levels are 10−4, 10−6, 10−8,
10−10 and 10−15.

Notice that the innermost contour, corresponding to 10−15, is visible to
the eye. This means that trivial (unit roundoff level in double precision)
changes in the coefficients make visible changes in the root.

Concluding remarks on the Wilkinson rootfinding examples

The first example polynomial,
∏20

k=1(x−k), is nearly universally known as a
surprising example. Yet there are very few places where one sees an elemen-
tary exposition of Wilkinson’s theory of conditioning using this example,
which is itself surprising because the theory was essentially born from this
example. We have here illustrated Wilkinson’s theory, as refined by Farouki
and Rajan, for the students.

“For accidental historical reasons therefore backward error anal-
ysis is always introduced in connexion with matrix problems. In
my opinion the ideas involved are much more readily absorbed if
they are presented in connexion with polynomial equations. Per-
haps the fairest comment would be that polynomial equations
narrowly missed serving once again in their historical didactic
role and rounding error analysis would have developed in a more
satisfactory way if they had not.”

— James H. Wilkinson, [10]
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A final word for the instructor

Backward error analysis is difficult at first for some kinds of students. The
conceptual problem is that people are conditioned to think of mathematical
problems as being exact; some indeed are, but many come from physical
situations and are only models, with uncertain data. The success of BEA
for floating point is to put rounding errors on the same footing as data or
modeling errors, which have to be studied anyway. This is true even if the
equations are solved exactly, by using computer algebra! The conditioning
theory for polynomials discussed here allow this to be done quite flexibly,
and are useful part of the analyst’s repertoire. Students need to know this.
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