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Abstract

We introduce and study the permanence properties of the class of linear transfers between proba-
bility measures and the dual class of Kantorovich operators between continuous functions. The class of
linear transfers contains all cost minimizing mass transports, but also Balayage operations, martingale
mass transports, the Schrödinger bridge associated to a reversible Markov process, optimal Skorokhod
embeddings, and the weak mass transports of Talagrand, Marton, Gozlan and others. The class also
includes various stochastic mass transports to which Monge-Kantorovich theory does not apply. We also
introduce the cone of convex transfers, which include any p-power (p > 1) of a linear transfer, but also
the logarithmic entropy, optimal mean field plans, the Donsker-Varadhan information, and certain free
energy functionals. This first paper is mostly focused on exhibiting examples that point to the perva-
siveness of the concept in the important quest of correlating probability distributions. Duality formulae
for general transfer inequalities follow in a very natural way. We also associate to each linear transfer, a
corresponding effective transfer (or a generalized Peierls barrier) and a dual effective Kantorovich opera-
tor, that could be seen as a generalization of the effective Lagrangians and Hamiltonians in weak KAM
theory. In a forthcoming paper, we show how it allows, in particular, for the development of a stochastic
counterpart of the Fathi-Mather theory.
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1 Introduction

Stochastic control problems and several other analytical and statistical procedures that correlate two prob-
ability distributions share many of the useful properties of optimal mass transportation between probability
measures. However, these correlations often lack at least two of the useful features of Monge-Kantorovich
theory [43]. For one, they are not symmetric, meaning that the problem imposes a specific direction from
one of the marginal distributions to the other. Moreover, many of those do not arise as cost minimizing
problems associated to functionals c(x, y) that assign “a price for moving one particle x to another y.” As
such, they are not readily amenable to the duality theory of Monge-Kantorovich. In this paper, we isolate
and study a notion of transfers between probability measures that encapsulates both the deterministic and
stochastic versions of transport problems studied by Mikami-Thieulin [34]) and Barton-Ghoussoub [3], the
optimal Skorokhod embeddings of Ghoussoub-Kim-Pallmer [20], but also includes the weak mass transports
of Talagrand [41, 42], Marton [29, 30] and Gozlan et al. [22, 24], the logarithmic entropy, optimal mean field
plans [38], the Donsker-Varadhan information [11], and many other energy correlation functionals.

This first paper introduces the unifying concepts of linear and convex mass transfers and exhibits several
examples that illustrate the potential scope of this approach. The underlying idea has been implicit in
many related works and should be familiar to the experts. But, as we shall see, the systematic study of
these structures add clarity and understanding, allow for non-trivial extensions, and open up a whole new
set of interesting problems. The ultimate purpose is to extend many of the remarkable properties enjoyed
by standard mass transportations to linear and convex transfers, and hence to the stochastic case, or at
least to weak mass transports. This is a vast undertaking. We therefore decided –for this first paper–
to give a sample of the results that can be inspired and eventually extended from the standard theory of
mass transport. We chose to state here the most basic permanence properties of the cones of transfers and
to establish general duality formulas for potential comparisons between different transfers that extend the
work of Bobkov-Götze [3], Gozlan-Leonard [22], Maurey [32] and others. We also show how the approach
of Bernard-Buffoni [1, 2] on Fathi’s weak KAM [12] and Mather theory [31] extend to linear transfers, and
therefore could, for example, be applied to the stochastic case. We will pursue this in a forthcoming paper [7].
Furthermore, we shall present in [8] a notion of linear and convex multi-transfers between several probability
distributions that will –among other things– extend the theory of multi-marginal mass transportation.

We shall focus here on probability measures on compact spaces, even though the right settings for most
applications and examples are complete metric spaces, or at least Rn. This will allow us to avoid the
usual functional analytic complications, and concentrate on the algebraic aspects of the theory. The simple
compact case will at least point to results that can be expected to hold and be proved –albeit with additional
analysis and suitable hypothesis – in more general situations. In the case of Rn, which is the setting for
many examples stated below, the right duality is between the space Lip(Rn) of all bounded and Lipschitz
functions and the space of Radon measures with finite first moment.

With this in mind, we shall denote by C(X) (resp. USC(X)), (resp LSC(X)) to be the spaces of
continuous (resp., upper semi-continuous), (resp., lower semi-continuous) functions on a compact space X.
The class of signed (resp., probability) measures on X will be denoted by M(X) (resp., P(X)).

If now T :M(X)×M(Y )→ R∪{+∞} is a proper convex functional, we shall denote by D(T ) its effective
domain, that is the set where it takes finite values. We shall always assume that D(T ) ⊂ P(X) × P(Y ),
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where P(X) is the set of probability measures on X. The “partial domains” of T are then denoted by,

D1(T ) = {µ ∈ P(X);∃ν ∈ P(Y ), (µ, ν) ∈ D(T )} and D2(T ) = {ν ∈ P(Y ); ∃µ ∈ P(X), (µ, ν) ∈ D(T )}.

We consider for each µ ∈ P(X) (resp., ν ∈ P(Y )) the partial maps Tµ on P(Y ) (resp., Tν on P(X)) given
by ν → T (µ, ν) (resp., µ→ T (µ, ν)).

Definition 1 Let X and Y be two compact spaces, and let T : P(X) × P(Y ) → R ∪ {+∞} be a proper
bounded below, convex and weak∗ lower semi-continuous functional on M(X)×M(Y ). We say that

1. T is a backward linear transfer, if there exists a map T− : C(Y ) → LSC(X) such that for each
µ ∈ D1(T ), the Legendre transform of Tµ on M(Y ) satisfies:

T ∗µ (g) =
∫
X
T−g(x) dµ(x) for any g ∈ C(Y ). (1)

2. T is a forward linear transfer, if there exists a map T+ : C(X) → USC(Y ) such that for each
ν ∈ D2(T ), the Legendre transform of Tν on M(X) satisfies:

T ∗ν (f) = −
∫
Y
T+(−f)(y) dν(y) for any f ∈ C(X). (2)

We shall call T+ (resp., T−) the forward (resp., backward) Kantorovich operator associated to T .

By Legendre transform of Tν , we mean here

T ∗ν (f) = sup{
∫
X

fdµ− Tν(µ);µ ∈ P(X)} = sup{
∫
X

fdµ− T (µ, ν); µ ∈ P(X)}.

This is because we are assuming that Tν and Tµ are equal to +∞ whenever µ and ν are not probability
measures. So, if T is a forward linear transfer on X × Y , then for any µ ∈ P(X) and ν ∈ P(Y ), we have

T (µ, ν) = sup
{∫

Y

T+f(y) dν(y)−
∫
X

f(x) dµ(x); f ∈ C(X)
}
, (3)

while if T is a backward linear transfer on X × Y , then

T (µ, ν) = sup
{∫

Y

g(y) dν(y)−
∫
X

T−g(x) dµ(x); g ∈ C(Y )
}
. (4)

We shall say that a transfer T is symmetric if

T (ν, µ) := T (ν, µ) for all µ ∈ P(X) and ν ∈ P(Y ).

Note that if T is a backward linear transfer with Kantorovich operator T−, then T̃ (µ, ν) := T (ν, µ) is a
forward linear transfer with Kantorovich operator T̃+f = −T−(−f). This means that if T is symmetric,
then T+f = −T−(−f).
The class of linear transfers is quite large and ubiquitous in analysis. To start with, it contains all cost
minimizing mass transports, that is functionals on P(X)× P(Y ) of the form,

Tc(µ, ν) := inf
{∫

X×Y
c(x, y)) dπ;π ∈ K(µ, ν)

}
, (5)

where c(x, y) is a continuous cost function on the product measure space X × Y , and K(µ, ν) is the set of
probability measures π on X×Y whose marginal on X (resp. on Y ) is µ (resp., ν) (i.e., the transport plans).
A consequence of the Monge-Kantorovich theory is that cost minimizing transports Tc are both forward and
backward linear transfers. The Schrödinger bridge problem associated to a reversible Markov process [14] is
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also a symmetric backward and forward linear transfer.
Other examples, which are only one-directional linear transfers, are the various Martingale mass transports,
the weak mass transports of Marton, Gozlan and collaborators. However, what motivated us to develop the
concept of transfers are the stochastic mass transports, which do not minimize a given cost function between
point particles, since the cost of transporting a Dirac measure to another is often infinite. This said, we
should show however that if the set {δx;x ∈ X} is contained in D1(T ), then we can represent such a linear
transfer as a generalized mass transport, a notion recently formalized by Gozlan et al. [24].

Note that we did not specify any property on the maps T+ and T−. However, the fact that they arise
from a Legendre transform imposes on them certain properties such as those exhibited in the following.

Definition 2 If X and Y are two compact spaces, say that a map T− : C(Y ) → LSC(X) (resp., T+ :
C(X)→ USC(Y )) is a convex operator (resp., a concave operator), if it satisfies the following conditions:

1. If f1 6 f2 in C(Y ) (resp., in C(X)), then T−f1 6 T−f2 (resp., T+f1 6 T+f2).

2. For any λ ∈ [0, 1], f1, f2 in C(Y ) (resp., in C(X)), we have

T−(λf1 + (1− λ)f2) 6 λT−f1 + (1− λ)T−f2 (resp., T+(λf1 + (1− λ)f2) > λT+f1 + (1− λ)T+f2.

3. For any constant c ∈ R and f ∈ C(Y ) (resp., C(X)), there holds that T−(f + c) = T−f + c (resp.,
T+(f + c) = T+f + c.

4. T− (resp., T+) is 1−Lipshitz, i.e. ‖T−f1 − T−f2‖ 6 ‖f1 − f2‖.

5. If (fn)n, f in C(Y ) (resp., in C(X)) are such that fn → f weakly, then

T−f 6 lim inf
n

T−fn (resp., T+f > lim supn T
−fn).

Note that T− (resp., T+) extend –with the same properties– to operators T− : LSC(Y ) → LSC(X) (resp.,
T+ : USC(X)→ LSC(Y )).

We leave it to the reader to check that the backward (resp., forward) maps in Definition 1 are necessarily
convex (resp., concave) operators.

Note also that conversely, any convex operator T (resp., concave) defines a backward (resp., forward)
linear transfer via the formula

T (µ, ν) =

{
sup

{ ∫
Y
g(y) dν(y)−

∫
X
Tg(x) dµ(x); g ∈ C(Y )

}
if µ ∈ P(X), ν ∈ P(Y ),

+∞ otherwise.
(6)

Indeed, it is clear that Tµ > Γ∗
T,µ

, where Γ
T,µ

is the convex continuous function on C(Y ) defined by Γ
T,µ

(g) =∫
X
Tg(x) dµ(x) and that Tµ = Γ∗

T,µ
on the probability measures on Y . If now ν is a positive measure with

λ := ν(Y ) > 1, then

Γ∗
T,µ

(ν) = sup
{∫

Y

g(y) dν(y)−
∫
X

Tg(x) dµ(x); g ∈ C(Y )
}
> nλ−

∫
X

T (n) dµ = n(λ− 1)−
∫
X

T (0) dµ,

where we have used property (3) to say that T (n) = n + T (0). Hence Γ∗
T,µ

(ν) = +∞. A similar reasoning
applies to when λ < 1 and for the concave case.

The class of linear transfers has remarkable permanence properties. The two most important ones are
stability under inf-convolution and tensorization, which allow to create an even richer class of transfers, such
as the ballistic stochastic optimal transport and broken geodesics of transfers. However, a natural and an even
richer family of transfers is the class of convex transfers, which are essentially suprema of linear transfers.
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Definition 3 A proper convex and weak∗ lower semi-continuous functional T : P(X)×P(Y )→ R∪{+∞}
is said to be a backward convex transfer (resp., forward convex transfer), if there exists a family of backward
linear transfers (resp., forward linear transfers) (Ti)i∈I such that for all µ ∈ P(X), ν ∈ P(Y ),

T (µ, ν) = sup
i∈I
Ti(µ, ν). (7)

In other words, a backward convex transfer (resp., forward convex transfer) can be written as:

T (µ, ν) = sup
{∫

Y

g(y) dν(y)−
∫
X

T−i g(x) dµ(x); g ∈ C(Y ), i ∈ I
}
, (8)

respectively,

T (µ, ν) = sup
{∫

Y

T+
i f(y) dν(y)−

∫
X

f(x) dµ(x); f ∈ C(X), i ∈ I
}
. (9)

where (T−i )i∈I (resp., (T+
i )i∈I) is a family of convex operators from C(Y ) → LSC(X) (resp., concave

operators from C(X)→ LSC(Y )).

In addition to linear transfers, we shall see that any p-power (p > 1) of a linear transfer is a convex transfer in
the same direction. More generally, for any convex increasing real function γ on R+ and any linear backward
(resp., forward) transfer, the map γ(T ) is a convex backward (resp., forward) transfer.

Note that if a T is convex backward (resp., forward) transfer, then

Tµ = (S−µ )∗ and Tν = (S+
ν )∗, (10)

where S−µ (g) = inf
i∈I

∫
X
T−i g(x) dµ(x) for g ∈ C(Y ) and S+

ν (f) = sup
i∈I

∫
Y
T+
i (−f)(y) dν(y) for f ∈ C(X).

However, we only have
T ∗µ 6 S−µ and T ∗ν 6 −S+

ν , (11)

since S−µ (resp., S+
ν ) are not necessarily convex (resp., concave). We can therefore introduce the notions of

completely convex transfers for when we have equality above, that is when S−µ is a convex operator (resp., S+
µ

is concave) and T ∗µ = S−µ (resp., T ∗ν = −S+
ν ). For instance, this will be the case for the following generalized

entropy,

T (µ, ν) =

∫
X

α(
dν

dµ
) dµ, if ν << µ and +∞ otherwise, (12)

which is a backward completely convex transfer, whenever α is a strictly convex lower semi-continuous
superlinear real-valued function on R+. The important example of the logarithmic entropy

H(µ, ν) =

∫
X

log(
dν

dµ
) dν, if ν << µ and +∞ otherwise, (13)

is of course one of them, but it is much more as we now focus on a remarkable subset of the cone of completely
convex transfers, which is the class of entropic transfers, that we define as follows:

Definition 4 Let α (resp., β) be a convex increasing (resp., concave increasing) real function on R, and let
T : P(X) × P(Y ) → R ∪ {+∞} be a proper (jointly) convex and weak∗ lower semi-continuous functional.
We say that

• T is a β-backward transfer, if there exists a convex operator T− : C(Y )→ LSC(X) such that for each
µ ∈ D1(T ), the Legendre transform of Tµ on M(Y ) satisfies:

T ∗µ (g) = β
(∫
X
T−g(x) dµ(x)

)
for any g ∈ C(Y ).

5



• T is a α-forward transfer, if there exists a concave operator T+ : C(X)→ USC(Y ) such that for each
ν ∈ D2(T ), the Legendre transform of Tν on M(X) satisfies:

T ∗ν (f) = −α
(∫
Y
T+(−f)(y) dν(y)

)
for any f ∈ C(X).

So, if T is an α-forward transfer on X × Y , then for any probability measures µ ∈ P(X) and ν ∈ P(Y ), we
have

T (µ, ν) = sup
{
α

(∫
Y

T+f(y) dν(y)

)
−
∫
X

f(x) dµ(x); f ∈ C(X)
}
, (14)

while if T is a β-backward transfer, then

T (µ, ν) = sup
{∫

Y

g(y) dν(y)− β
(∫

X

T−g(x) dµ(x)

)
; g ∈ C(Y )

}
. (15)

Entropic transfers are completely convex transfers. A typical example is of course the logarithmic entropy,
since it can be written as

H(µ, ν) = sup{
∫
X

f dν − log(

∫
X

ef dµ); f ∈ C(X)}, (16)

making it a log-backward transfer. The Donsker-Varadhan information is defined as

I(µ, ν) :=

{
E(
√
f,
√
f), if µ = fν,

√
f ∈ D(E)

+∞, otherwise,
(17)

where E is a Dirichlet form with domain D(E) on L2(ν). It is another example of a backward completely
convex transfer, since it can also be written as

I(µ, ν) = sup{
∫
X

f dν − log ‖P f1 ‖L2(µ); f ∈ C(X)}, (18)

where P ft is an associated (Feynman-Kac) semi-group of operators on L2(ν). More examples of α-forward
transfers and β-backward transfers with readily computable Kantorovich operators can be obtained by
convolving entropic transfers with linear transfers of the same direction.

In section 7, we show how the concepts of linear and convex transfers lead naturally to more transparent
proofs and vast extensions, of many well known duality formulae for transport-entropy inequalities.

In section 8, we associate to any backward linear transfer T and its Kantorovich operator T , a corre-
sponding effective backward linear transfer T∞ and its effective Kantorovich operator T∞. T∞ is obtained
by an infinite inf-convolution process, while T∞ is obtained by an infinite iteration procedure, which lead to
fixed points for such a non-linear operator. In the case of a linear Kantorovich operator (the push-forward
transfer) this reduces to classical ergodic theory. If now T is the optimal mass transport minimizing a cost
given by the generating function of a Lagrangian L on a compact manifold M , that is

cL(y, x) := inf{
∫ 1

0

L(t, γ(t), γ̇(t)) dt; γ ∈ C1([0, 1),M); γ(0) = y, γ(1) = x}, (19)

the Kantorovich operator is then given by the Lax-Oleinik semi-group, whose fixed points correspond to
weak KAM solutions as described by Fathi [12]. The extension of this result to general transfers allows for
a similar approach for the stochastic counterpart of Mather theory. This will be the subject of a companion
paper [7].
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2 Examples of linear mass transfers

2.1 Elementary linear mass transfers

Example 1: The push-forward transfer
The identity transfer is the map I on P(X)× P(X) defined by

I(µ, ν) =

{
0 if µ = ν
+∞ otherwise.

(20)

The corresponding Kantorovich operators are the identity map, that is T+f = T−f = f .
More generally, if σ is a continuous map from X to Y , then

Iσ(µ, ν) =

{
0 if σ#µ = ν
+∞ otherwise.

(21)

is a backward linear transfer with Kantorovich operator given by T−f = f ◦ σ.
Similarly, any probability measure π on X × Y induces a forward and backward linear transfer in the

following way:

Iπ(µ, ν) =

{
0 if µ = π1 and ν = π2.
+∞ otherwise,

(22)

where π1 (resp., π2) is the first (resp., second) marginal of π. In this case,

T−f(x) =

∫
Y

f(y)d πx(y) and T+f(y) =
∫
X
f(x)d πy(x), (23)

where (πx)x (resp., (πy)y) is the disintegration of π with respect to π1 (resp., π2).

Example 2: The prescribed Balayage transfer
Given a convex cone of continuous functions A ⊂ C(X), where X is a compact space, one can define an

order relation between probability measures µ, ν on X, called the A-balayage, in the following way.

µ ≺A ν if and only if
∫
X
ϕdµ 6

∫
X
ϕdν for all ϕ in A.

Say that a probability measure π on X ×X is an A-dilation if δx ≺A πx, where (πx)x is the disintegration
of π with respect to its first marginal π1.
To each A-dilation π, one can define a backward linear transfer as in (22) above. In this case, the corre-
sponding backward Kantorovich transfer is again, T−f(x) =

∫
Y
f(y)d πx(y).

Example 3: The prescribed Skorokhod transfer
Writing Z ∼ ρ if Z is a random variable with distribution ρ, and letting (Bt)t denote Brownian motion,

and S the corresponding class of –possibly randomized– stopping times. For a fixed τ ∈ S, one can associate
a backward linear transfer in the following way:

Tτ (µ, ν) =

{
0 if B0 ∼ µ and Bτ ∼ ν.
+∞ otherwise.

(24)

Its backward Kantorovich operator is then T−f(x) = Ex[f(Bτ )], where the expectation is with respect to
Brownian motion satisfying B0 = x.

2.2 Zero-cost linear mass transfers

Example 4: The null transfer
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This is simply the map N (µ, ν) = 0 for all probability measures µ on X and ν on Y . It is easy to see
that it is both a backward and forward linear transfer with Kantorovich operators,

T−f ≡ supy∈Y f(y) and T+f ≡ infx∈X f(x). (25)

Note that

N (µ, ν) = inf{Iσ(µ, ν);σ : X → Y } = inf{Iπ(µ, ν);π is a transfer plan on X × Y }, (26)

where Iσ and Iπ are the push-forward transfers defined in Example 1. This is a particular case, i.e., when
the cost is trivial, of a relaxation result of Kantorovich (e.g., see Villani [43]).

Example 5: The Balayage transfer
Let A be a closed convex cone in C(X), and define now the backward balayage transfer Bb on P(X)×P(X)

via

Bb(µ, ν) =

{
0 if µ ≺A ν
+∞ otherwise.

(27)

A generalized version of a Theorem of Strassen [39] yields the following relationship:

Proposition 5 Assume the cone A is proper, separates the points of X, and that it is stable under finite
suprema. Then, for any two probability measures µ, ν on X, the following are equivalent:

1. µ ≺A ν.

2. There exists an A-dilation π on X ×X such that µ = π1 and ν = π2.

From this follows that
Bb(µ, ν) = inf{Bπ(µ, ν);π is an A-dilation}. (28)

Moreover, a generalization of Choquet theory developed by Mokobodoski and others [35] yields that for every
µ ∈ P(X), we have

sup{
∫
X

f dσ; µ ≺A σ} =

∫
X

f̂ dµ,

where

f̂(x) = inf{g(x); g ∈ −A, g > f on X} = sup{
∫
X

fdσ; εx ≺A σ}.

It follows that (Bb)∗µ(f) =
∫
X
f̂ dµ, which means that Bb is a backward linear transfer whose Kantorovich

operator is T−f = f̂ . We can also define the forward balayage transfer as

Bf (µ, ν) =

{
0 if ν ≺A µ
+∞ otherwise.

(29)

In this case, the forward Kantorovich operator is T+f = f̌ , where

f̌(x) = sup{h(x);h ∈ A, h 6 f on X} = inf{
∫
X

fdσ; εx ≺A σ}.

• A typical example is when X is a convex compact space in a locally convex topological vector space
and A is the cone of continuous convex functions. In this case, T−f = f̂ (resp., T+f = f̌) is the
concave envelope of f , and which was the context of the original Choquet theory.

• If X is a bounded subset of a normed space (E, ‖ · ‖), then A can be taken to be the cone of all
norm-Lipschitz convex functions.
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• If X is an interval of the real line, then one can consider A to be the cone of increasing functions.

• If X is a pseudo-convex domain of Cn, then one can take A to be the cone of Lipschitz plurisubharmonic
functions (see [15]). In this case, if ϕ is a Lipschitz function, then the Lipschitz plurisubharmonic
envelope of ϕ, i.e., the largest Lipschitz PSH function below ϕ is given by the formula

ϕ̌(x) = inf{
∫ 2π

0

ϕ(P (eiθ)
dθ

2π
;P : C→ X polynonial withP (0) = x}.

Note that ϕ̂ = −ψ̌, where ψ = −ϕ.

Example 6: The Skorokhod transfer
Again, letting S be the class of –possibly randomized– Brownian stopping times, and define

SK(µ, ν) =

{
0 if B0 ∼ µ and Bτ ∼ ν for some τ ∈ S,
+∞ otherwise.

(30)

The following is a classical result of Skorokhod. See, for example [17] for a proof in higher dimension.

Proposition 6 Let A be the cone of Lipschitz subharmonic functions on a domain Ω in Rn. Then, the
following are equivalent for two probability measures µ and ν on Ω.

1. µ ≺A ν (i.e, µ and ν are in subharmonic order).

2. There exists a stopping time τ ∈ S such that B0 ∼ µ and Bτ ∼ ν.

This means that SK is a backward linear transfer with Kantorovich operator given by T−f = f∗∗, which is
the smallest Lipschitz superharmonic function above f . This can also be written as T−f = Jf , where Jf (x)
is a viscosity solution for the heat variational inequality,

max {f(x)− J(x),∆J(x)} = 0. (31)

Another representation for Jf is given by the following dynamic programming principle,

Jf (x) := sup
τ∈S

Ex
[
f(Bτ )

]
. (32)

2.3 Cost optimizing mass transports are backward and forward linear transfers

The examples in this subsection correspond to cost minimizing transfers, where a cost c(x, y) of moving two
states is given.

Example 7: Monge-Kantorovich transfers
Any function c ∈ C(X × Y ) determines a backward and forward linear transfer. This is Monge-

Kantorovich theory of optimal transport. One associates the map Tc on P(X) × P(Y ) to be the optimal
mass transport between two probability measures µ on X and ν on Y , that is

Tc(µ, ν) := inf
{∫

X×Y
c(x, y)) dπ;π ∈ K(µ, ν)

}
, (33)

where K(µ, ν) is the set of probability measures π on X × Y whose marginal on X (resp. on Y ) is µ (resp.,
ν) (i.e., the transport plans). Monge-Kantorovich theory readily yields that Tc is a linear transfer. Indeed,
if we define the operators

T+
c f(y) = inf

x∈X
{c(x, y) + f(x)} and T−c g(x) = sup

y∈Y
{g(y)− c(x, y)}, (34)
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for any f ∈ C(X) (resp., g ∈ C(Y )), then Monge-Kantorovich duality yields that for any probability measures
µ on X and ν on Y , we have

Tc(µ, ν) = sup
{∫

Y

T+
c f(y) dν(y)−

∫
X

f(x) dµ(x); f ∈ C(X)
}

= sup
{∫

Y

g(y) dν(y)−
∫
X

T−c g(x) dµ(x); g ∈ C(Y )
}
.

This means that the Legendre transform (Tc)∗µ(g) =
∫
X
T−c g(x) dµ(x) and T−c is the corresponding backward

Kantorovich operator. Similarly, (Tc)∗ν(f) = −
∫
Y
T+
c (−f)(y) dν(y) on C(X) and T+

c is the corresponding
forward Kantorovich operator. See for example Villani [43].

Example 7.1: The trivial Kantorovich transfer
Any pair of functions c1 ∈ C(X), c2 ∈ C(Y ) defines trivially a linear transfer via

T (µ, ν) =

∫
Y

c2 dν −
∫
X

c1 dµ.

The Kantorovich operators are then T+f = c2 + inf(f − c1) and T−g = c1 + sup(g − c2).

Example 7.2: The Csiszár-Kullback-Pinsker transfer
This is simply the total variation distance between two probability measures ν and µ on X, defined by

‖ν − µ‖TV = sup{|ν(A)− µ(A)|;A measurable subset of X}, (35)

with forward (resp., backward) Kantorovich operator given by

T+f(y) = min{ inf
x 6=y

f(x) + 1, f(y)}, while T−g(x) = max{sup
x 6=y

g(y)− 1, g(x)}. (36)

It is actually a cost minimizing optimal transport, where the cost is given by the Hamming metric.

Example 7.3: The Kantorovich-Rubinstein transfer
If d : X ×X → R is a lower semi-continuous metric on X, then

T (µ, ν) = ‖ν − µ‖∗Lip := sup

{∫
X

u d(ν − µ);u measurable, ‖u‖Lip 6 1

}
(37)

is a linear transfer, where here ‖u‖Lip := supx 6=y
|u(y)−u(x)|
d(x,y) . The corresponding forward Kantorovich oper-

ator is then the Lipshitz regularization T+f(x) = inf{f(y) + d(y, x); y ∈ X}, while T−f(x) = sup{f(y) −
d(x, y); y ∈ X}. Note that T+ ◦ T−f = T−f .

Example 7.4: The Brenier-Wasserstein distance [9]
If c(x, y) = 〈x, y〉 on Rd × Rd, and µ, ν are two probability measures of compact support on Rd, then

W2(µ, ν) = inf
{∫

Rd×Rd
〈x, y〉 dπ;π ∈ K(µ, ν)

}
.

Here, the Kantorovich operators are

T+f(x) = −f∗(−x) and T−g(y) = (−g)∗(−y), (38)

where f∗ is the convex Legendre transform of f .
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Example 7.5: Optimal transport for a cost given by a generating function (Bernard-Buffoni [1])
This important example links the Kantorovich backward and forward operators with the forward and

backward Hopf-Lax operators that solve first order Hamilton-Jacobi equations. Indeed, on a given compact
manifold M , consider the cost:

cL(y, x) := inf{
∫ 1

0

L(t, γ(t), γ̇(t)) dt; γ ∈ C1([0, 1),M); γ(0) = y, γ(1) = x}, (39)

where [0, 1] is a fixed time interval, and L : TM → R ∪ {+∞} is a given Tonelli Lagrangian that is convex
in the second variable of the tangent bundle TM . If now µ and ν are two probability measures on M , then

TL(µ, ν) := inf
{∫

M×M
cL(y, x) dπ;π ∈ K(µ, ν)

}
is a linear transfer with forward Kantorovich operator given by T+

1 f(x) = Vf (1, x), where Vf (t, x) being the
value functional

Vf (t, x) = inf
{
f(γ(0)) +

∫ t

0

L(s, γ(s), γ̇(s)) ds; γ ∈ C1([0, 1),M); γ(t) = x
}
. (40)

Note that Vf is –at least formally– a solution for the Hamilton-Jacobi equation{
∂tV +H(t, x,∇xV ) = 0 on [0, 1]×M,

V (0, x) = f(x).
(41)

Similarly, the backward Kantorovich potential is given by T−1 g(y) = Wg(0, y), Wg(t, y) being the value
functional

Wg(t, y) = sup
{
g(γ(1))−

∫ 1

t

L(s, γ(s), γ̇(s)) ds; γ ∈ C1([0, 1),M); γ(t) = y
}
, (42)

which is a solution for the backward Hamilton-Jacobi equation{
∂tW +H(t, x,∇xW ) = 0 on [0, 1]×M,

W (1, y) = g(y).
(43)

2.4 One-sided linear transfers arising from constrained mass transports

We now give examples of linear transfers, which do not fit in the framework of Monge-Kantorovich theory.
Cost minimizing mass transport with additional constraints give examples of one-directional linear transfers.
We single out the following:

Example 8: Martingale transports are backward linear transfers
Martingale transports are C-dilations when C is the cone of convex continuous functions on Rn. In this

case, µ ≺C ν is sometimes called the Choquet order for convex functions. Note that x is the barycenter of a
measure ν if and only if δx ≺C ν, where δx is Dirac measure at x.
So if µ, ν are two probability measures, we then consider MT (µ, ν) to be the susbet of K(µ, ν) consisting of the
martingale transport plans, that is the set of probabilities π on Rd×Rd with marginals µ and ν, such that for
µ-almost x ∈ Rd, the component πx of its disintegration (πx)x with respect to µ, i.e. dπ(x, y) = dπx(y)dµ(x),
has its barycenter at x. As mentioned above,

MT (µ, ν) 6= ∅ if and only if µ ≺C ν. (44)

One can also use the probabilistic notation, which amounts to minimize EP c(X,Y ) over all martingales
(X,Y ) on a probability space (Ω,F , P ) into Rd × Rd (i.e. E[Y |X] = X) with laws X ∼ µ and Y ∼ ν (i.e.,
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P (X ∈ A) = µ(A) and P (Y ∈ A) = ν(A) for all Borel set A in Rd). Note that in this case, the disintegration
of π can be written as the conditional probability πx(A) = P(Y ∈ A|X = x).

If now c : Rd × Rd → R is a continuous cost function, then the corresponding martingale transport is a
backward linear transfer in the following way:

TM (µ, ν) =

{
inf{

∫
Rd×Rd c(x, y) dπ(x, y);π ∈MT (µ, ν)} if µ ≺C ν

+∞ if not.
(45)

The backward Kantorovich operator is then given by

T−Mf(x) = f̂c,x(x), where f̂c,x is the concave envelope of the function fc,x : y → f(y) + c(x, y).

See Henri-Labordère [26] and Ghoussoub-Kim-Lim [16] for higher dimensions.

Example 9: General stochastic transports are backward linear transfers (Mikami-Thieulin [34])
Given a Lagrangian L : [0, 1]×Rd×Rd → R, we define the following stochastic counterpart of the optimal

transportation problem mentioned above.

TL(µ, ν) := inf

{
E
[∫ 1

0

L(t,X(t), βX(t,X(t))) dt

]∣∣∣∣X(0) ∼ µ,X(1) ∼ ν,X(·) ∈ A
}

(46)

Here A refers to the set of Rd-valued continuous semimartingales X(·) such that there exists a measurable
drift βX : [0, T ]× C([0, 1])→M∗ where

• ω 7→ βX(t, ω) is B(C([0, t]))+-measurable for all t.

• W (t) := X(t)−X(0)−
∫ t

0
βX(s,X) ds is a σ[X(s) : s ∈ [0, t]]-Brownian motion.

This stochastic transport does not fit in the standard optimal mass transport theory since it does not
originate in optimization a cost between two deterministic states. However, under certain conditions on
the Lagrangian, Mikami and Thieulin [34] proved that the map (µ, ν) → TL(µ, ν) is jointly convex and
weak∗-lower semi-continuous on the space of measures and that

TL(µ, ν) = sup

{∫
M

f(x) dν −
∫
M

Vf (0, x) dµ; f ∈ C∞b
}
, (47)

where Vf solves the Hamilton-Jacobi-Bellman equation

∂V

∂t
+

1

2
∆V (t, x) +H(t, x,∇V ) = 0, V (1, x) = f(x). (HJB)

In other words, TL is a backward linear transfer with a Kantorovich operator being T−L f = Vf (0, ·), where
Vf (t, x) can be written as

Vf (t, x) = sup
X∈A

{
E
[
f(X(1))−

∫ 1

t

L(s,X(s), βX(s,X)) ds

∣∣∣∣X(t) = x

]}
. (48)

Example10: Optimally stopped stochastic transport are backward linear transfers (Ghoussoub-Kim-Palmer
[18, 19])

Consider the optimal stopping problem

TL(µ, ν) = inf

{
E

[∫ T

0

L(t,X(t), βX(t,X(t))) dt

]
;X(0) ∼ µ, T ∈ S, X(T ) ∼ ν,X(·) ∈ A

}
, (49)
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where S is the set of possibly randomized stopping times. In this case, TL is a backward linear transfer with
Kantorovich potential given by T−L f = V̂f (0, ·), where

V̂f (t, x) = sup
X∈A

sup
T∈S

{
E

[
f(X(T ))−

∫ T

t

L(s,X(s), βX(s,X)) ds

∣∣∣∣∣X(t) = x

]}
, (50)

which is –at least formally– a solution V̂f (t, x) of the quasi-variational Hamilton-Jacobi-Bellman inequality,

min

{
Vf (t, x)− f(x),

−∂tVf (t, x)−H
(
t, x,∇Vf (t, x)

)
− 1

2∆Vf (t, x)

}
= 0. (51)

Example 11: Optimal Skorokhod embeddings are backward linear transfers (Ghoussoub-Kim-Palmer [20])
Let L(t, x) be a Lagrangian only depending on time and space and consider for any Radon probability

measures µ, ν with finite expectations, the correalation

T (µ, ν) := inf
{
E
[ ∫ τ

0

L(t, Bt)dt
]
; τ ∈ S(µ, ν)

}
, (52)

where S(µ, ν) denotes the set of –possibly randomized– stopping times with finite expectation such that ν is
realized by the distribution of Bτ (i.e, Bτ ∼ ν in our notation), where Bt is Brownian motion starting with
µ as a source distribution, i.e., B0 ∼ µ. We shall assume T (µ, ν) = +∞ if S(µ, ν) = ∅, which is the case if
and only if µ and ν are not in subharmonic order. It has been proved in [20] that under suitable conditions,

T (µ, ν) := sup
ψ

{∫
Rd
ψ(z)ν(dz)−

∫
Rd
Jψ(0, y)µ(dy); ψ ∈ C(Rd)

}
, (53)

where Jψ : R+ × Rd → R is defined via the dynamic programming principle

Jψ(t, x) := sup
τ∈Rt,x

{
Et,x

[
ψ(Bτ )−

∫ τ

t

L(s,Bs)ds
]}
, (54)

where the expectation superscripted with t, x is with respect to the Brownian motions satisfying Bt = x,
and the minimization is over all finite-expectation stopping times Rt,x on this restricted probability space
such that τ ≥ t. In other words, T−ψ = Jψ(0, ·) is a backward linear transfer. Note that Jψ(t, x) can be see
as a “variational solution” for the quasi-variational Hamilton-Jacobi-Bellman equation:

min

{
J(t, x)− ψ(x)

− ∂
∂tJ(t, x)− 1

2∆J(t, x) + L(t, x)

}
= 0. (55)

2.5 Weak optimal transports

Other examples of linear transfers arise from the work of Marton, who extended the work of Talagrand.

Example 12: Marton transports are backward linear transfers (Marton [29, 30])
These are transports of the following type:

Tγ,d(µ, ν) = inf

{∫
X

γ

(∫
Y

d(x, y)dπx(y)

)
dµ(x);π ∈ K(µ, ν)

}
, (56)

where γ is a convex function on R+ and d : X×Y → R is a lower semi-continuous functions. Marton’s weak
transfer correspond to γ(t) = t2 and d(x, y) = |x− y|, which in probabilistic terms reduces to

T2(µ, ν) = inf
{
E[E[|X − Y | |Y ]2];X ∼ µ, Y ∼ ν

}
. (57)
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This is a backward linear transfer with Kantorovich potential

T−f(x) = sup

{∫
Y

f(y)dσ(y)− γ
(∫

Y

d(x, y) dσ(y)

)
; σ ∈ P(Y )

}
.

Example 12.1: A barycentric cost function (Gozlan et al. [24])
Consider the (weak) transport

T (µ, ν) = inf

{∫
X

‖x−
∫
Y

ydπx(y)‖ dµ(x);π ∈ K(µ, ν)

}
. (58)

Again, this is a backward linear transfer, with Kantorovich potential

T−f(x) = sup{f∗∗(y)− ‖y − x‖; y ∈ Rn}.

where f∗∗ is the concave envelope of f , i.e., the smallest concave usc function above f .

Example 12.2: Schrödinger bridge (Gentil-Leonard-Ripani [14])
Fix some reference non-negative measure R on path space Ω = C([0, 1],Rn), and let (Xt)t be a random

process on Rn whose law is R. Denote by R01 the joint law of the initial position X0 and the final position
X1, that is R01 = (X0, X1)#R. For probability measures µ and ν on Rn, the maximum entropy formulation
of the Schrödinger bridge problem between µ and ν is defined as

SR(µ, ν) = inf{
∫
Rn×Rn

log(
dπ

dR01
) dπ;π ∈ K(µ, ν}. (59)

For example (See [14]), assume R is the reversible Kolmogorov continuous Markov process associated with
the generator 1

2 (∆ − ∇V · ∇) and the initial mesure m = e−V (x)dx for some function V . Then, under
appropriate conditions on V (e.g., if V is uniformly convex), then

T (µ, ν) = SR(µ, ν)− 1

2

∫
Rn

log(
dµ

dm
) dµ− 1

2

∫
Rn

log(
dν

dm
) dν

is a forward linear transfer with Kantorovich operator

T+f(x) = logERxe
f(X1) = logS1(ef )(x),

where (St) is the semi-group associated to R. It is worth noting that T is symmetric, that is T (µ, ν) =
T (ν, µ), which means that it is also a backward linear transfer. Note that when V = 0, the process is

Brownian motion with Lebesgue measure as its initial reversing measure, while when V (x) = |x|2
2 , R is the

path measure associated with the Ornstein-Uhlenbeck process withe the Gaussian as its initial reversing
measure.

3 A representation of linear transfers as generalized optimal mass
transports

We now consider whether any transfer T on X ×Y arises from a cost minimizing mass transport. Note first
that transfers need not be defined on Dirac measures, a prevalent situation in stochastic transport problems.
Moreover, even if the set of Dirac measures {(δx, δy); (x, y) ∈ X×Y } ⊂ D(T ), and we can then define a cost
function as c(x, y) = T (δx, δy), and its associated optimal mass transport Tc(µ, ν), we then only have

Tc(µ, ν) > T (µ, ν). (60)
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Indeed, for every x ∈ X, we have

T−g(x) = T ∗δx(g) = sup{
∫
Y
gdν − T (δx, ν); ν ∈ P(Y )} > sup{g(y)− c(x, y); y ∈ Y } = T−c g(x),

hence,

T (µ, ν) = sup{
∫
Y

gdν −
∫
X

T−g dµ; g ∈ C(Y )} 6 sup{
∫
Y

gdν −
∫
X

T−c g dµ; g ∈ C(Y )} = Tc(µ, ν).

Moreover, the inequality (60) is often strict.
Motivated by the work of Marton and others, Gozlan et al. [24] introduced the notion of weak transport.

It consists of considering cost minimizing transport plans, where cost functions between two points are
replaced by generalized costs c on X×P(Y ), where σ → c(x, σ) is convex and lower semi-continuous. As the
following proposition shows. this notion turns out to be equivalent to the notion of backward linear transfer,
at least in the case where Dirac measures belong to the first partial effective domain of the map T , that is
when {δx;x ∈ X} ⊂ D1(T ).

Proposition 7 Let T : P(X)× P(Y )→ R ∪ {+∞} be a functional such that {δx;x ∈ X} ⊂ D1(T ). Then,
T is a backward linear transfer if and only if there exists a lower semi-continuous function c : X ×P(Y )→
R ∪ {+∞} with σ → c(x, σ) convex on P(Y ) for each x ∈ X such that for every µ ∈ P(X), and ν ∈ P(Y ),
we have

T (µ, ν) = inf
π
{
∫
X

c(x, πx) dµ(x);π ∈ K(µ, ν)}. (61)

The corresponding backward Kantorovich operator is given for every g ∈ C(Y ) by

T−g(x) = sup{
∫
Y

g(y) dσ(y)− T (x, σ);σ ∈ P(Y )}. (62)

Note that we have identified here any π ∈ K(µ, ν) with its disintegration that gives a probability kernel
π : X → P(X) such that ν(A) =

∫
X
πx(A)dµ(x).

Proof: Consider first a lower semi-continuous function c : X ×P(Y )→ R∪ {+∞} with σ → c(x, σ) convex
on P(Y ) for each x ∈ X, and let

Tc(µ, ν) := inf
π

∫
X

c(x, πx) dµ(x);π ∈ K(µ, ν)}.

We first prove that Tc is a backward linear transfer with a Kantorovich operator given by

T−c g(x) = sup{
∫
Y

g(y) dσ(y)− c(x, σ);σ ∈ P(Y )}. (63)

This will then imply that if T is any backward linear transfer with Kantorovich operator T−, and if c(x, σ) =
T (δx, σ), then T−g(x) = T−c g(x) and therefore T (µ, ν) = Tc(µ, ν).
First, it is easy to show that Tc is a convex lower semi-continuous function on P(X)×P(Y ). Consider now
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the Legendre transform of (Tc)µ, that is

(Tc)∗µ(g) = sup{
∫
Y

g dν − Tc(µ, ν); ν ∈ P(Y )}

= sup{
∫
Y

g(y) dν(y)−
∫
X

c(x, πx) dµ(x); ν ∈ P(Y ), π ∈ K(µ, ν)}

= sup{
∫
X

∫
Y

g(y)dπx(y) dµ(x)−
∫
X

c(x, πx) dµ(x);π ∈ K(µ, ν)}

6 sup{
∫
X

∫
Y

g(y)dσ(y) dµ(x)−
∫
X

c(x, σ) dµ(x);σ ∈ P(Y )}

6
∫
X

{ sup
σ∈P(Y )

{
∫
Y

g(y)dσ(y)− c(x, σ)} dµ(x)}

=

∫
X

T−c g(x)dµ(x).

On the other hand, use your favorite selection theorem to find a measurable selection x → π̄x from X to
P(Y ) such that

T−c g(x) =

∫
Y

g(y)dπ̄x(y)− c(x, πx) for every x ∈ X.

It follows that

(Tc)∗µ(g) = sup{
∫
Y

g dν − Tc(µ, ν); ν ∈ P(Y )}

>
∫
X

{
∫
Y

g(y)dπx(y)− c(x, πx)} dµ(x)

=

∫
X

T−c g(x)dµ(x),

hence (Tc)∗µ(g) =
∫
X
T−c g(x)dµ(x) and T− = T−c .

Conversely, if T is a backward linear transfer with T− as a Kantorovich operator, then by setting c(δx, σ) =
T (δ, σ), we have T− = T−c g and we are done.

4 Operations on linear mass transfers

Denote by LT −(X × Y ) (resp., LT +(X × Y )) the class of backward (resp., forward) linear transfers on
X × Y . The following proposition is an immediate consequence of the properties of the Legendre transform.

Proposition 8 The class LT −(X×Y ) (resp., LT +f(X×Y )) is a convex cone in the space of convex weak∗

lower continuous functions on P(X)× P(Y ).

1. (Scalar multiplication) If a ∈ R+\{0} and T is a backward linear transfer with Kantorovich operator
T−, then the transfer (aT ) defined by (aT )(µ, ν) = aT (µ, ν) is also a backward linear transfer with
Kantorovich operator on C(Y ) defined by,

T−a (f) = aT−(
f

a
). (64)

2. (Addition) If T1 and T2 are backward linear transfers on X × Y with Kantorovich operator T−1 , T−2
respectively, and such that X ⊂ D(T1)∩D(T2), then (T1 +T2)(µ, ν) := T1(µ, ν)+T2(µ, ν) is a backward
linear transfer on X × Y , with Kantorovich operator given on C(Y ) by

T−f(x) = inf{T−1 g(x) + T−2 (f − g)(x); g ∈ C(Y )}. (65)
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Similar statements hold for LT +f(X × Y ).

Definition 9 Consider the following operations on transfers.

1. (Inf-convolution) Let X1, X2, X3 be 3 spaces, and suppose T1 (resp., T2) are functionals on P(X1)×
P(X2) (resp., P(X2) × P(X3)). The convolution of T1 and T2 is the functional on P(X1) × P(X3)
given by

T (µ, ν) := T1 ? T2 = inf{T1(µ, σ) + T2(σ, ν); σ ∈ P(X2)}. (66)

2. (Tensor product) If T1 (resp., T2) are functionals on P(X1) × P(Y1) (resp., P(X2) × P(Y2)) such
that X1 ⊂ D(T1) and X2 ⊂ D(T2), then the tensor product of T1 and T2 is the functional on P(X1 ×
X2)× P(Y1 × Y2) defined by:

T1 ⊗ T2(µ, ν) = inf

{∫
X1×X2

(
T1(x1, πx1,x2

) + T2(x2, πx1,x2
)
)
dµ(x1, x2);π ∈ K(µ, ν)

}
.

The following easy proposition is important to what follows.

Proposition 10 The following stability properties hold for the class of backward linear transfers.

1. If T1 (resp., T2) is a backward linear transfer on X1×X2 (resp., on X2×X3) with Kantorovich operator
T−1 (resp., T−2 ) , then T1 ? T2 is also a backward linear transfer on X1×X3 with Kantorovich operator
equal to T−1 ◦ T

−
2 .

2. If T1 (resp., T2) is a backward linear transfer on X1 × Y1 (resp., X2 × Y2) such that X1 ⊂ D(T1) and
X2 ⊂ D(T2), then T1 ⊗ T2 is a backward linear transfer on (X1 ×X2) × (Y1 × Y2), with Kantorovich
operator given by

T−g(x1, x2) = sup{
∫
Y1×Y2

f(y1, y2)dσ(y1, y2)− T1(x1, σ1)− T2(x2, σ2); σ ∈ K(σ1, σ2)}. (67)

Moreover,

T1 ⊗ T2(µ, ν1 ⊗ ν2) 6 T1(µ1, ν1) +

∫
X1

T2(µx1
2 , ν2) dµ1(x1), (68)

where dµ(x1, x2) = dµ1(x1)dµx1
2 (x2).

Note that a similar statement holds for forward linear transfers, modulo order reversals. For example, if T1

and T2) are forward linear transfer, then T1 ? T2 is a forward linear transferon X1 × X3 with Kantorovich
operator equal to T+

2 ◦ T
+
1 .

Proof: For 1), we note first that if T1 (resp., T2) is jointly convex and weak∗-lower semi-continuous on
P(X1) × P(X2) (resp., P(X2) × P(X3)), then both (T1 ? T2)ν : µ → (T1 ? T2)(µ, ν) and (T1 ? T2)µ : ν →
(T1 ?T2)(µ.ν) are convex and weak∗-lower semi-continuous. We now calculate their Legendre transform. For
g ∈ C(X3),

(T1 ? T2)∗µ(g) = sup
ν∈P(X3)

sup
σ∈P(X2)

{∫
X3

g dν − T1(µ, σ)− T2(σ, ν)

}
= sup

σ∈P(X2)

{(T2)∗σ(g)− T1(µ, σ)}

= sup
σ∈P(X2)

{∫
X2

T−2 (g) dσ − T1(µ, σ)

}
= (T1)∗µ(T−2 (g))

=

∫
X1

T−1 ◦ T
−
2 g dµ.
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In other words, T1 ? T2(µ, ν) = sup
{ ∫

X3
g(x) dν(x)−

∫
X1
T−1 ◦ T

−
2 g dµ; f ∈ C(X3)

}
.

2) follows immediately from the last section since we are defining the tensor product as a generalized cost
minimizing transport, where the cost ion X1 ×X2 × P(Y1 × Y2) is simply,

T ((x1, x2), π) = T1(x1, π1) + T2(x1, π2),

where π1, π2 are the marginals of π on Y1 and Y2 respectively. T1 ⊗T2 is clearly its corresponding backward
transfer with T− being its Kantorovich operator.

More notationally cumbersome but straightforward is how to write the Kantorovich operators of the
tensor product T−g(x1, x2) in terms of T−1 and T−2 , in order to establish (68).

Example 13: Stochastic ballistic transfer (Barton-Ghoussoub [3])
Consider the stochastic ballistic transportation problem defined as:

B(µ, ν) := inf

{
E

[
〈V,X(0)〉+

∫ T

0

L(t,X, βX(t,X)) dt

]∣∣∣∣∣V ∼ µ,X(·) ∈ A, X(T ) ∼ ν

}
, (69)

where we are using the notation of Example 9. Note that this a convolution of the Brenier-Wasserstein
transfer of Example 7.3 with the general stochastic transfer of Example 9. Under suitable conditions on L,
one gets that

B(µ, ν) = sup

{∫
g dν −

∫
ψ̃g dµ; g ∈ Cb

}
, (70)

where h̃ is the concave legendre transform of −h and ψg is the solution to the Hamilton-Jacobi-Bellman
equation

∂ψ

∂t
+

1

2
∆ψ(t, x) +H(t, x,∇ψ) = 0, ψ(1, x) = g(x). (HJB)

In other words, B is a backward linear transform with Kantorovich operator T−g = ψ̃g.

Remark 1 (Lifting convolutions to Wasserstein space) Let X0, X1, ...., Xn be compact spaces, and suppose
for each i = 1, ..., n, we have a cost function ci : Xi−1 × Xi, we consider the following cost function on
X0 ×Xn, defined by

c(y, x) = inf {c1(y, x1) + c2(x1, x2)....+ cn(xn−1, x); x1 ∈ X1, x2 ∈ X2, ..., xn−1 ∈ Xn−1} .

Let µ (resp., ν be probability measures on X0 (resp., Xn).

1. The following then holds on Wasserstein space:

Tc(µ, ν) = inf{Tc1(µ, ν1) + Tc2(ν1, ν2)...+ Tcn(νn−1, ν); νi ∈ P(Xi), i = 1, ..., n− 1}, (71)

and the infimum is attained at ν̄1, ν̄2, ..., ν̄n−1.

2. The following duality formula holds:

Tc(µ, ν) = sup
{∫

Xn

T+
cn ◦ T

+
cn−1

◦ ...T+
c1f(x) dν(x)−

∫
X0

f(y) dµ(y); f ∈ C(X0)
}

= sup
{∫

Xn

g(x) dν(x)−
∫
X0

T−cn ◦ T
−
cn−1

... ◦ T−c1g(x); g ∈ C(Xn)
}
.

We note a few more elementary properties of linear transfers.
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Proposition 11 Let T : P(X) × P(Y ) → R ∪ {+∞} be a proper (jointly) convex and weak∗ lower semi-
continuous on M(X)×M(Y ). If T is both a forward and backward linear transfer, and if {(δx, δy); (x, y) ∈
X × Y } ⊂ D(T ), then for any g ∈ C(Y ) such that T+g ∈ C(X) (resp.,f ∈ C(X) such that T−f ∈ C(Y ))

T+ ◦ T−g(y) > g(y) for y ∈ Y, T− ◦ T+f(x) 6 f(x) for x ∈ X, (72)

and
T− ◦ T+ ◦ T−g = T−g and T+ ◦ T− ◦ T+g = T+g. (73)

Proof: Write for ν ∈ P(Y ),∫
Y

T+ ◦ T−g dν = −T ∗ν (−T−g)

= − sup{−
∫
X

T ∗δx(g) dµ(x)− T (µ, ν);µ ∈ P(X)}

= inf{
∫
X

T ∗δx(g) dµ(x) + T (µ, ν);µ ∈ P(X)}

> inf{
∫
X

T ∗δx(g) dµ(x) +

∫
Y

g dν −
∫
X

T ∗δx(g) dµ;µ ∈ P(X)}

=

∫
Y

g dν.

The last item follows from the above and the positivity property of the Kantorovich operators.

Remark 2 By analogy with the case of cost optimizing mass transports, and assuming that a transfer is both
forward and backward, we can say that a function f in C(X) is T -concave if it is of the form f = T− ◦ T+g
for some g ∈ C(X). It follows from the last proposition that

T (µ, ν) = sup
{∫

Y

T+f(y) dν(y)−
∫
X

f(x) dµ(x); f ∈ C(X), f is T -concave
}
. (74)

Similarly, we can say that a function g in C(Y ) is T -convex if it is of the form g = T+ ◦ T−f for some
f ∈ C(Y ). In this case,

T (µ, ν) = sup
{∫

Y

g(y) dν(y)−
∫
X

T−g dµ(x); g ∈ C(Y ), g is T -convex
}
. (75)

Duality for projections on subsets of Wasserstein space

Let T be a linear transfer on X × Y and K a closed convex set of probability measures on Y . We consider
the following minimization problem

inf{T (µ, σ);σ ∈ K}, (76)

which amounts to finding “the projection” of µ on K, when the “distance” is given by the transfer T . In
some cases, the set K := C(ν) is a convex compact subset of P(Y) that depends on a probability measure ν
in such a way that the following map

S(σ, ν) =

{
0 if σ ∈ C(ν)
+∞ otherwise.

is a backward transfer on Y × Y . It then follows that

inf{T (µ, σ);σ ∈ C(ν)} = inf{T (µ, σ) + S(σ, ν);σ ∈ P(X )} = T ? S(µ, ν).
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If now T− (resp., S−) is the backward Kantorovich operator for T (resp., S), then by Proposition 13, the
Kantorovich operator for T ? S is T− ◦ S−, that is

inf{T (µ, σ);σ ∈ C(ν)} = sup{
∫
Y

g dν −
∫
X

T− ◦ S−g dµ; g ∈ C(Y )}. (77)

Here is an example motivated by a recent result of Gozlan-Juillet [25].

Example 14: Projection on the set of balayées of a given measure
Consider the problem

P(µ, σ) = inf{Tc(µ, σ);σ ≺C ν}, (78)

where Tc is the optimal mass transport associated to a cost c(x, y) on X × Y , and ≺C is the convex order
on a convex compact set Y . Then,

P(µ, ν) = Tc ? B(µ, ν)

where Bb is the backward Balayage transfer. It follows that P is a backward linear transfer with Kantorovich
operator being the composition of those for Tc and Bb, that is

T−f(x) = sup{f̂(y)− c(x, y); y ∈ Y }.

where f̂ is the concave envelope of f on Y . We note that this is the same Kantorovich operator as for the
(weak) barycentric transport

T cB(µ, ν) = inf

{∫
X

c(x,

∫
Y

ydπx(y)) dµ(x);π ∈ K(µ, ν)

}
,

at least in the case where c(x, y) = α(x− y) for some convex lower semi-continuous α : R→ R+ (See [24]).
This then yields that P(µ, ν) = T (µ, ν).

Note that the martingale transport of Example 8 can be written as

T cM = Tc + Bb,

while the (weak) barycentric transport
T cB = Tc ? Bb.

Similar manipulations can be done when the balayage is given by the cones of subharmonic or plurisubhar-
monic functions.

5 Examples of convex and entropic transfers

We now give a few examples of convex and entropic transfers, which are not necessarily linear transfers.
First, recall that the increasing Legendre transform (resp., decreasing Legendre transform) of a function
α : R+ → R (resp., β : R+ \ {0} → R) is defined as

α⊕(t) = sup{ts− α(s); s > 0} resp., β	(t) = sup{−ts− β(s); s > 0} (79)

By extending α to the whole real line by setting α(t) = +∞ if t < 0, and using the standard Legendre
transform, one can easily show that α is convex increasing on R+ if and only if α⊕ is convex and increasing
on R+. We then have the following reciprocal formula

α(t) = sup{ts− α⊕(s); s > 0}. (80)

Similarly, if β is convex decreasing on R+ \ {0}, we have

β(t) = sup{−ts− β	(s); s > 0}. (81)

20



Proposition 12 Let α : R+ → R (resp., β : R+\{0} → R) be a convex (resp., concave) increasing functions.

1. If T is a linear backward (resp., forward) transfer with convex Kantorovich operator T− (resp., concave
Kantorovich operator T+), then α(T ) is a backward convex transfer (resp., forward convex transfer)
with Kantorovich operators (T−s )s>0 (resp.,(T+

s )s>0, where

T−s f = sT−(
f

s
)− α⊕(s) (resp., T+

s f = sT+( fs )− α⊕(s). (82)

In particular, for any p > 1, T p is a convex forward (resp., backward) transfer.

2. If E is a β-backward transfer with Kantorovich operator E−, then it is a backward convex transfer with
Kantorovich operators (T−s )s>0 given by

T−s f = sT−f + (−β)	(s). (83)

3. Similarly, if E is an α-forward transfer with Kantorovich operator E+, then it is a forward convex
transfer with Kantorovich operators (T+

s )s>0 given by

T+
s f = sT+f − α⊕(s). (84)

Proof: For 1) it suffices to write

α(T (µ, ν)) = sup
{
s

∫
Y

T+f dν − s
∫
X

f dµ− α⊕(s); s ∈ R+, f ∈ C(X)
}

= sup
{∫

Y

sT+(
h

s
) dν − α⊕(s)−

∫
X

h dµ; s ∈ R+, h ∈ C(X)
}
,

which means that α(T ) is a forward convex transfer with Kantorovich operators T+
s f = sT+(hs )− α⊕(s).

For 2) use the fact that (−β) is convex decreasing to write

T (µ, ν)) = sup{
∫
Y

g dν − β
( ∫

X

T−g dµ); g ∈ C(Y )}

= sup{
∫
Y

g dν + sup
s>0
{
∫
X

−sT−g dµ− (−β)	(s)}; g ∈ C(Y )}

= sup{
∫
Y

g dν − s
∫
X

T−g dµ− (−β)	(s); s > 0, g ∈ C(Y )}.

Hence T is the supremum of backward linear transfers.

Example 14: General entropic functionals are backward completely convex transfers
Consider the following generalized entropy,

Tα(µ, ν) =

∫
X

α(|dν
dµ
|) dµ, if ν << µ and +∞ otherwise, (85)

where α is any strictly convex lower semi-continuous superlinear (i.e., lim
t→+∞

α(t)
t = +∞) real-valued function

on R+. It is then easy to show [23] that

T ∗µ (f) = inf{
∫
X

[α⊕(f(x) + t)− t] dµ(x); t ∈ R}, (86)
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In other words, Tα is a backward completely convex transfer, with Kantorovich operators

T−t f(x) = α	(f(x) + t)− t.

Example 15: The logarithmic entropy is a backward log-transfer
The relative logarithmic entropy H(µ, ν) is defined as

H(µ, ν) :=
∫
X

log( dνdµ ) dν if ν << µ and +∞ otherwise.

It can also be written as

H(µ, ν) :=
∫
X
h( dνdµ ) dµ if ν << µ and +∞ otherwise,

where h(t) = t log t− t+ 1, which is strictly convex and positive. Since h∗(t) = et − 1, it follows that

H∗µ(f) = inf{
∫
X

(etef(x) − 1− t) dµ(x); t ∈ R} = log

∫
X

ef dµ.

In other words, H(µ, ν) = sup{
∫
X
f dν − log

∫
X
ef dµ; f ∈ C(X)}, and H is therefore a backward β-transfer

with β(t) = log t, and E−f = ef is a convex Kantorovich operator.
H is a convex backward transfer since

H(µ, ν) = sup{
∫
X

f dν − log

∫
X

ef dµ; f ∈ C(X)}

= sup{
∫
X

f dν + sup
s>0
{
∫
X

−sef dµ− β	(s)}; f ∈ C(X)}

= sup{
∫
X

f dν − s
∫
X

ef dµ− β	(s); s > 0, f ∈ C(X)}.

In other words, it is backward completely convex with Kantorovich operators T−s f = sef+β	(s) where s > 0.

Example 16: A mean-field planning problem (Orrieri-Porretta-Savaré [38])
Let L : Rd × Rd → R be a Tonelli Lagrangian and F : Rd × L∞([0, T ];P(Rd))→ R be a functional that

is convex in the second variable and consider the following correlation between two probability measures µ
and ν,

T (µ, ν) =: min

∫ T

0

∫
Rd
L(x,v) ρ(t, dx) dt+

∫ T

0

F (x, ρ(t, dx)) dt : v ∈ L2(ρ(t, dx) dt), (87)

subject to ρ and v satisfying

∂tρ−∆ρ+∇ · (ρv) = 0, ρ(0, ·) = µ , ρ(T, ·) = ν. (88)

One can show that T is both a completely convex forward and backward transfer. Indeed, for each ` ∈
C([0, T ],Rd), we consider the Kantorovich operator on C(Rd),

T`(u) = u`(T, x)−
∫∫

Q

F ∗(x, `(t, x)) dx

where u`(t, x) is a solution of the Hamilton-Jacobi equation

−∂tu+H(x,Du) = ` in (0, T )× Rd,
u(0, x) = u(x).
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A standard min-max argument then yields that

T (µ, ν) = sup

{∫
Rd
T`u dν −

∫
Rd
u dµ;u ∈ C(Rd), ` ∈ C([0, T ],Rd)

}
= sup

{∫
Rd
u`(T, x)dν −

∫
Rd
u`(0, x) dµ(x)−

∫∫
Q

F ∗(x, `(t, x)) dx; −∂tu` +H(x,Du`) = ` in Q

}
.

Here F ∗(x, `) = sup
{
〈`, ρ〉 − F (x, ρ);m ∈ L∞([0, T ];P(Rd))

}
and Q = (0, 1)× Rd.

Another (stochastic) completely convex -but only backward- transfer can be defined as

T (µ, ν) =: min

∫ T

0

∫
Rd
L(x,v) ρ(t, dx) dt+

∫ T

0

F (x, ρ(t, dx)) dt : v ∈ L2(ρ(t, dx) dt), (89)

subject to ρ and v satisfying

∂tρ−∆ρ+∇ · (ρv) = 0, ρ(0, ·) = µ , ρ(T, ·) = ν. (90)

Example 17: The Fisher-Donsker-Varadhan information is a backward completely convex transfer [11]
Consider an X -valued time-continuous Markov process (Ω,F , (Xt)t≥0, (Px)x∈X ) with an invariant prob-

ability measure µ. Assume the transition semigroup, denoted (Pt)t≥0, to be completely continuous on
L2(µ) := L2(X ,B, µ). Let L be its generator with domain D2(L) on L2(µ) and assume the correspond-
ing Dirichlet form E(g, g) := 〈−Lg, g〉µ for g ∈ D2(L) is closable in L2(µ), with closure (E ,D(E)). The
Fisher-Donsker-Varadhan information of ν with respect to µ is defined by

I(µ|ν) :=

{
E(
√
f,
√
f), if ν = fµ,

√
f ∈ D(E)

+∞, otherwise.
(91)

Note that when (Pt) is µ-symmetric, ν 7→ I(µ|ν) is exactly the Donsker-Varadhan entropy i.e. the rate

function governing the large deviation principle of the empirical measure Lt := 1
t

∫ t
0
δXsds for large time t.

The corresponding Feynman-Kac semigroup on L2(µ)

Put g(x) := Exg(Xt) exp

(∫ t

0

u(Xs) ds

)
. (92)

It has been proved in [44] that I∗µ(f) = log ‖P f1 ‖L2(µ), which yields that I is a backward completely convex
transfer.

I∗µ(f) = log ‖P f1 ‖L2(µ) =
1

2
log ‖P f1 ‖2L2(µ) =

1

2
log sup{

∫
|P f

1
g|2 dµ; ‖g‖L2(µ) 6 1}.

In other words, with β(t) = log t, we have

I(µ, ν) = sup{
∫
Y

f dν − 1

2
log sup{

∫
X

|P f1 g|2 dµ; ‖g‖L2(µ) 6 1}; f ∈ C(X)}

= sup{
∫
Y

f dν + sup
s>0

sup
‖g‖L2(µ)61

1

2
{
∫
X

(−s|P f1 g|2 − β	(s)) dµ}; f ∈ C(X)}

= sup{
∫
Y

f dν − inf
s>0

inf
‖g‖L2(µ)61

1

2
{
∫
X

(s|P f1 g|2 + β	(s)) dµ}; f ∈ C(X)}

= sup{
∫
Y

f dν −
∫
X

T−s,gf dµ ; s ∈ R+, ‖g‖L2(µ) 6 1, f ∈ C(X)}.
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Hence, it is a backward completely convex transfer, with convex Kantorovich operators (T−s,g)s,g defined by

T−s,gf = s
2 |P

f
1
g|2 + 1

2β
	(s).

Example 18: A convex transfer which is not completely convex
Let Ω ⊂ Rd be a Borel measurable subset with 1 < |Ω| < ∞, λ := 1

|Ω| , and define for any two given

probability measures µ, ν on Ω, the correlation,

Tλ(µ, ν) =

{
0 if ν ∈ Cλ(µ)

+∞ otherwise,
(93)

where Cλ(µ) := {ν ∈ P(Ω) ; λ
∣∣∣ dν

dµ

∣∣∣ 6 1µ-a.e.}. Note that when µ = λ dx|Ω (the uniform measure on Ω),

Tλ(λ dx|Ω, ν) =

{
0 if

∣∣ dν
dx

∣∣ 6 1 Lebesgue-a.e.

+∞ otherwise.
(94)

We claim that Tλ is a backward convex transfer but not a completely backward convex transfer. Indeed, for
the first claim, consider αm(t) := (λt)m log(λt) for m > 1 and t > 0, and define

Tm(µ, ν) :=

{∫
Ω
αm

(∣∣∣ dν
dµ

∣∣∣) dµ, if ν << µ,

+∞ otherwise.
(95)

By Example 14, Tm is a backward completely convex transfer, and

(Tm,µ)∗(f) = inf{
∫

Ω

[α⊕m(f(x) + t)− t] dµ(x) ; t ∈ R}. (96)

The function α⊕m can be explicitly computed as

α⊕m(t) =

{
e−1+ 1

m−1W (βmt)
[
βmt+ 1

me
W (βmt)

]
if t > − λ

m−1e
−1,

0 if t < − λ
m−1e

−1.
(97)

where βm := m−1
λm e

m−1
m , and W is the Lambert-W function. It is easy to see that Tλ(µ, ν) = supm Tm(µ, ν);

hence it is a backward convex transfer (as a supremum of backward convex transfers).
However, Tλ is not a completely backward convex transfer, since

(Tλ,µ)∗(f) = (sup
m
Tm,µ)∗(f) 6 inf

m
T ∗m,µ(f) =

∫
f

λ
dµ,

with the inequality being in general strict.
Note that this also implies that the Wasserstein projection on the set Cµ, that is

W 2
2 (P1[ν], ν) = inf{W 2

2 (σ, ν);

∣∣∣∣ dσ

dx

∣∣∣∣ 6 1} = inf{Tλ(λ dx|Ω, σ) +W 2
2 (σ, ν) ; σ ∈ P(Ω)} (98)

is in fact an inf-convolution of a convex-but not completely convex - transfer Tλ with the linear transfer W 2
2 ,

and no duality formula can then be extracted.

6 Operations on convex and entropic transfers

Denote by CT −(X × Y ) (resp., CT +(X × Y )) the class of backward (resp., forward) completely convex
transfers. They are clearly convex cones in the space of convex weak∗-lower semi-continuous functions on
P(X) × P(Y ). They also satisfy the following permanence properties. The most important being that the
inf-convolution with linear transfers generate many new examples of convex and entropic transfers..
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Proposition 13 Let F be a backward completely convex transfer with Kantorovich operators (F )−i , Then,

1. If a ∈ R+ \ {0}, then aF ∈ CT −(X × Y ) with Kantorovich operators given by F−a,i(f) = aF−i ( fa ).

2. If T is a backward linear transport on Y ×Z with Kantorovich operator T−, then F ? T is a backward
completely convex transfer with Kantorovich operators given by F−i ◦ T−.

Proof: Immediate. For 2) we calculate the Legendre dual of (F ? T )µ at g ∈ C(Z) and obtain,

(F ? T )∗µ(g) = sup
ν∈P(Z)

sup
σ∈P(Y )

{∫
Z

g dν −F(µ, σ)− T (σ, ν)

}
= sup

σ∈P(Y )

{T ∗σ (g)−F(µ, σ)}

= sup
σ∈P(Y )

{∫
Y

T−g dσ −F(µ, σ)

}
= (F)∗µ(T−(g))

= inf
i∈I

∫
X

F−i ◦ T
−g(x)) dµ(x).

The same properties hold for entropic transfers. That we will denote by E as opposed to T to distinguish
them from the linear transfers. We shall use E+ and E− for their Kantorovich operators.

Proposition 14 Let β : R → R be a concave increasing function and let E be a β-backward transfer with
Kantorovich operator E−. Then,

1. If λ ∈ R+ \ {0}, then λE is a (λβ)-backward transfer with Kantorovich operator E−λ (f) = E−( fλ ).

2. Ẽ is a ((−β)	)⊕-forward convex transfer with Kantorovich operator Ẽ+h = −E−(−h).

3. If T is a backward linear transfer on Y ×Z with Kantorovich operator T−, then E ? T is a a backward
β-transfer on X × Z with Kantorovich operator equal to E− ◦ T−. In other words,

E ? T (µ, ν) = sup
{∫

Z

g(y) dν(y)− β(

∫
X

E− ◦ T−g(x)) dµ(x)); g ∈ C(Z)
}
. (99)

Proof: 1) is trivial. For 2) note that since β is concave and increasing, then

T̃ (ν, µ)) = T (µ, ν))

= sup{
∫
Y

g dν − β
( ∫

X

T−g dµ); g ∈ C(Y )}

= sup{
∫
Y

g dν + sup
s>0
{
∫
X

−sT−g dµ− (−β)	(s)}; g ∈ C(X)}

= sup{
∫
Y

g dν − s
∫
X

T−g dµ− (−β)	(s); s > 0, g ∈ C(X)}

= sup{s
∫
X

−T−(−h) dµ− (−β)	(s)−
∫
Y

h dν; s > 0, g ∈ C(X)

= sup{((−β)	)⊕(

∫
X

−T−(−h) dµ)−
∫
Y

h dν; s > 0, h ∈ C(X)}.
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In other words, T̃ is a (β	)⊕-forward convex transfer.
For 3) we calculate the Legendre dual of (E ? T )µ at g ∈ C(Z) and obtain,

(E ? T )∗µ(g) = sup
ν∈P(Z)

sup
σ∈P(Y )

{∫
Z

g dν − E(µ, σ)− T (σ, ν)

}
= sup

σ∈P(Y )

{T ∗σ (g)− E(µ, σ)}

= sup
σ∈P(Y )

{∫
Y

T−g dσ − E(µ, σ)

}
= (E)∗µ(T−(g))

= β
(∫

X

E− ◦ T−g(x)) dµ(x)).

A similar statement holds for α-forward transfers where α is now a convex increasing function on R+. But
we then have to reverse the orders. For example, if T (resp., E) is a forward linear transfer on Z ×X (resp.,
a forward α-transfer on X×Y ) with Kantorovich operator T+ (resp., E+), then T ?E is a forward α-transfer
on Z × Y with Kantorovich operator equal to E+ ◦ T+. In other words,

T ? E (µ, ν) = sup
{
α
( ∫

Y

E+ ◦ T+f(y)) dν(y)
)
−
∫
X

f(x) dµ(x); f ∈ C(X)
}
. (100)

7 Subdifferentials of linear and convex transfers

If T is a linear transfer, then both Tµ and Tν are convex weak∗ lower semi-continuous and one can therefore
consider their (weak∗) subdifferential ∂Tµ (resp., ∂Tν) in the sense of convex analysis. In other words,

g ∈ ∂Tµ(ν) if and only if T (µ, ν′) > T (µ, ν) +
∫
Y
g d(ν′ − ν) for any ν′ ∈ P(Y ).

In other words, g ∈ ∂Tµ(ν) if and only if Tµ(ν)+T ∗µ (g) = 〈g, ν〉. Since Tµ(ν) = T (µ, ν) and T ∗µ (g) =
∫
T−g dµ,

we then obtain the following characterization of the subdifferentials.

Proposition 15 Let T be a backward (resp., forward) linear transfer. Then the subdifferential of Tµ :
P(Y )→ R ∪ {+∞} at ν ∈ P(Y ) (resp., Tν : P(X)→ R ∪ {+∞} at µ ∈ P(X)) is given by

∂Tµ(ν) =

{
g ∈ C(Y ) :

∫
Y

g(y) dν(y)−
∫
X

T−g(x) dµ(x) = T (µ, ν)

}
(101)

respectively,

∂Tν(µ) =

{
f ∈ C(X) :

∫
Y

T+f(y) dν(y)−
∫
X

f(x) dµ(x) = T (µ, ν)

}
(102)

In other words, the subdifferential of Tµ at ν (resp., Tν at µ) is exactly the set of maximisers for the dual
formulation of T (µ, ν).

It is easy to see that the same expressions hold - with the necessary modifications - for backward completely
convex transfers (resp., forward completely convex transfers), as well as β-backward transfers (resp., α-
forward transfers).

In the following, we observe some elementary consequences for elements in the subdifferential.

Proposition 16 Suppose T is a linear backward transfer such that the Dirac masses are contained in D1(T ).
Fix µ ∈ P(X) and ν ∈ P(Y ), and suppose the infimum in T (µ, ν) is achieved by π̄ with disintegration w.r.t.
µ denoted by π̄x, that is

T (µ, ν) =

∫
X

T (x, πx) dµ(x).
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Then, for each f̄ ∈ ∂Tµ(ν), we have

T−f̄(x) =

∫
Y

f̄(y) dπ̄x(y)− T (x, π̄x), for µ-a.e. x ∈ X.

Proof: Indeed, if f̄ ∈ ∂Tµ(ν), then by definition∫
Y

f̄(y) dν(y)−
∫
X

T−f̄(x) dµ(x) = T (µ, ν) =

∫
X

T (x, π̄x) dµ(x),

that is
∫
X

[
T−f̄(x)−

∫
Y
f̄(y) dπ̄x(y) + T (x, π̄x)

]
dµ = 0. Since T−f̄(x) = supσ

{∫
f̄ dσ − T (x, σ)

}
, the

quantity in the brackets is non-negative and we get our claim.

Proposition 17 Suppose T is a linear backward transfer such that the Dirac masses are contained in D1(T ).
Fix µ, and suppose ν 7→ T (µ, ν) is strictly convex. If ∂Tµ(ν) is non-empty for some ν ∈ P(Y ), then the
infimum in T (µ, ν) is attained, i.e., there exists π̄ such that T (µ, ν) =

∫
X
T (x, πx) dµ(x).

Proof: If f̄ ∈ ∂Tµ(ν), then
∫
f̄ dν−

∫
T−f̄ dµ = T (µ, ν). From the expression T−f̄(x) = supσ

{∫
f̄ dσ − T (δx, σ)

}
,

we know the supremum will be achieved by some σx. Defining π̃ by dπ̃(x, y) = dµ(x) dσx(y), and the right
marginal of π̃ by ν̃, we integrate against µ to achieve∫

T−f̄ dµ =

∫
f̄ dν̃ −

∫
T (δx, σx) dµ.

This shows that T (µ, ν̃) = infπ∈Γ(µ,ν̃)

∫
T (δx, πx) dµ =

∫
T (δx, σx) dµ, and consequently, f̄ ∈ ∂Tµ(ν̃). But

by strict convexity, this can only be true if ν̃ = ν.
The following can be seen as Euler-Lagrange equations for variational problems on spaces of measures,

and follows closely [13].

Proposition 18 Let Tα(µ, ν) :=
∫
X
α
(

dν
dµ

)
dµ be the generalised entropy transfer considered in Example 14,

and let T be any linear backward transfer. For a fixed µ, consider the functional Iµ(ν) := Tα(µ, ν)−T (µ, ν),
and assume ν̄ realises infν∈P(X) Iµ(ν). Then, there exists f̄ ∈ ∂Tµ(ν̄) such that the following Euler-Lagrange
equation holds for ν̄−a.e. x ∈ X,

α′
(

dν̄

dµ

)
= f̄ + C,

where C is a constant.
If Tα is replaced with the logarithmic entropic transfer H(µ, ν) =

∫
log( dν

dµ ) dν, then

log

(
dν̄

dµ

)
= f̄ + C.

Proof: Recall that Tα(µ, ν) :=
∫
X
α(| dν

dµ |) dµ if ν << µ (and +∞ otherwise) is a backward completely
convex transfer, with

T ∗µ (f) = inf

{∫
X

[α⊕(f(x) + t)− t] dµ(x) ; t ∈ R
}
,

where T−t f(x) := α	(f(x) + t) − t. are the corresponding Kantorovich transfers. Here α ∈ C1, is strictly
convex and superlinear. It follows that

α′(| dν
dµ
|) ∈ ∂Tµ(ν).

We can see this either directly from the subdifferential definition, or from observing

α⊕(α′(| dν
dµ
|)) =

dν

dµ
α′(| dν

dµ
|)− α(| dν

dµ
|).
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In particular,

T ∗µ
(
α′(| dν

dµ
|)
)

=

∫
X

α⊕
(
α′(| dν

dµ
|)
)

dµ.

The rest is an easy adaptation of Theorem 2.2 in [13].

8 Transfer inequalities

Let T be a transfer, and let E1, E2 be entropic transfers on X×X. Standard Transport-Entropy or Transport-
Information inequalities are usually of the form

T (σ, µ) 6 λ1E1(µ, σ) for all σ ∈ P(X), (103)

T (µ, σ) 6 λ2E2(µ, σ) for all σ ∈ P(X), (104)

T (σ1, σ2) 6 λ1E1(σ1, µ) + λ2E2(σ2, µ) for all σ1, σ2 ∈ P(X), (105)

where µ is a fixed measure, and λ1, λ2 are two positive reals. In our terminology, Problem 103 (resp., 104),
(resp., 105) amount to find µ, λ1, and λ2 such that

(λ1E1) ? (−T ) (µ, µ) > 0, (106)

(λ2E2) ? (−T̃ ) (µ, µ) > 0, (107)

(λ1Ẽ1) ? (−T ) ? (λ2E2) (µ, µ) > 0, (108)

where T̃ (µ, ν) = T (ν, µ). Note for example that

Ẽ1 ? (−T ) ? E2 (µ, ν) = inf{Ẽ1(µ, σ1)− T2(σ1, σ2) + E2(σ2, ν); σ1, σ2 ∈ P(Z)}.

We shall therefore write duality formulas for the transfers E1 ? (−T ), E2 ? (−T̃ ) and Ẽ1 ? (−T ) ? E2 between
any two measures µ and ν, where T is any convex transfer, while E1, E2 are entropic transfers.

8.1 Backward convex to backward completely convex inequalities

We would like to prove inequalities such as

F2(σ, µ) 6 F1(µ, σ) for all σ ∈ P(X), (109)

where both F1 and F2 are backward convex transfers. We then apply it to Transport-Entropy inequalities
of the form

F(σ, µ) 6 λE ? T (µ, σ) for all σ ∈ P(X), (110)

where F is a backward convex transfer, while E is a β-entropic transfer and T is a backward linear transfer.

Proposition 19 Let F1 be a backward completely convex transfer with Kantorovich operator (F−1,i)i∈I on

X1 ×X2, and F2 is a backward convex transfer on X2 ×X3 with Kantorovich operator (F−2,j)j∈J .

1. The following duality formula hold:

F1 ?−F2 (µ, ν) = inf
f∈C(X3)

inf
j∈J

sup
i∈I

{
−
∫
X1

F−1,i ◦ F
−
2,jf dµ−

∫
X3

f dν

}
. (111)

2. If F1 is a β-backward transfer on X1 ×X2 with Kantorovich operator E−1 , then

F1 ?−F2 (µ, ν) = inf
f∈C(X3)

inf
j∈J

{
−β(

∫
X1

E−1 ◦ F
−
2,jf dµ)−

∫
X3

f dν

}
. (112)
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Proof: Write

F1 ?−F2 (µ, ν) = inf{F1(µ, σ)−F2(σ, ν); σ ∈ P(X2)}

= inf
σ∈P(X2)

{
F1(µ, σ)− sup

f∈C(X3)

sup
j∈J

{∫
X3

f dν −
∫
X2

F−2,jf dσ

}}

= inf
σ∈P(X2)

inf
f∈C(X3)

inf
j∈J

{
F1(µ, σ)−

∫
X3

f dν +

∫
X2

F−2,jf dσ

}
= inf

f∈C(X3)
inf
j∈J

{
− sup
σ∈P(X2)

{−
∫
X2

F−2,jf dσ −F1(µ, σ)} −
∫
X3

f dν

}

= inf
f∈C(X3)

inf
j∈J

{
−(F1)∗µ(−F−2,jf)−

∫
X3

f dν

}
= inf

f∈C(X3)
inf
j∈J

{
− inf
i∈I

∫
X1

F−1,i ◦ −F
−
2,jf dµ−

∫
X3

f dν

}
= inf

f∈C(X3)
inf
j∈J

sup
i∈I

{
−
∫
X1

F−1,i ◦ −F
−
2,jf dµ−

∫
X3

f dν

}
.

2) If F1 is a β-backward transfer on X1×X2 with Kantorovich operator E−1 , then use in the above calculation
that (F1)∗µ(−F−2,jf) = β(

∫
X1
E−1 ◦ −F

−
2,jf dµ).

Corollary 20 Let F be a backward convex transfer on Y2×X2 with Kantorovich operators (F−i )i∈I and let
E be a backward β-transfer on X1×Y1 with Kantorovich operator E−. Let T be a backward linear transfer on
Y1×Y2 with Kantorovich operator T− and λ > 0. Then, for any fixed pair of probability measures µ ∈ P(X1)
and ν ∈ P(X2), the following are equivalent:

1. For all σ ∈ P(Y2), we have F(σ, ν) 6 λ E ? T (µ, σ).

2. For all g ∈ C(X2) and i ∈ I, we have β
( ∫

X1
E− ◦ T− ◦ −1

λ F
−
i (λg) dµ

)
+
∫
X2
g dν 6 0.

In particular, if we apply the above in the case where E is the logarithmic entropy, that is

H(µ, ν) =
∫
X

log( dνdµ ) dν if ν << µ and +∞ otherwise, (113)

which is a backward β-transfer with β(t) = log t and E−f = ef as a backward Kantorovich operator.

Corollary 21 Let F be a backward convex transfer on X2×Y2 with Kantorovich operators (F−i )i∈I and let E
be a backward β-transfer on X1×Y1. with Kantorovich operator E−. Let T be a backward linear transfer on
Y1×Y2 with Kantorovich operator T− and λ > 0. Then, for any fixed pair of probability measures µ ∈ P(X1)
and ν ∈ P(X2), the following are equivalent:

1. For all σ ∈ P(Y ), we have F(σ, ν) 6 λH ? T (µ, σ).

2. For all g ∈ C(X2), we have sup
i∈I

∫
X1
eT

−◦−1
λ F

−
i (λg) dµ 6 e

−
∫
X2

g dν
.

In particular, if T is the identity transfer and F is a backward linear transfer, then

F(σ, ν) 6 λH (σ, µ) for all σ ∈ P(Y ) ⇔
∫
X1
e−F

−(λg) dµ 6 e−
1
λ e
−

∫
X2

g dν
for all g ∈ C(X2).

(114)
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8.2 Forward convex to backward completely convex transfer inequalities

We are now interested in inequalities such as

F2(ν, σ) 6 F1(µ, σ) for all σ ∈ P(X), (115)

where both F1 and F2 are backward convex transfers, and in particular, Transport-Entropy inequalities of
the form

F(ν, σ) 6 λE ? T (µ, σ) for all σ ∈ P(X), (116)

where E is a β-entropic transfer and T is a backward linear transfer. But we can write (117) as

F̃2(σ, ν) 6 F1(µ, σ) for all σ ∈ P(X), (117)

where now F̃2(σ, ν) = F2(ν, σ) is a forward convex transfer. So, we need to establish the following type of
duality.

Proposition 22 Let F1 be a backward completely convex transfer with Kantorovich operator (F−1,i)i∈I on

X1 ×X2, and let F2 be a forward convex transfer on X2 ×X3 with Kantorovich operator (F+
2,j)j∈J .

1. The following duality formula then holds:

F1 ?−F2 (µ, ν) = inf
g∈C(X2)

inf
j∈J

sup
i∈I

{
−
∫
X1

F−1,i(−g) dν −
∫
X3

F+
2,j(g) dν

}
. (118)

2. If F1 is a β-backward transfer on X1 ×X2 with Kantorovich operator E−1 , then

F1 ?−F2 (µ, ν) = inf
g∈C(X2)

inf
j∈J

{
−β(

∫
X1

E−1 (−g) dµ)−
∫
X3

F+
j (g) dν

}
. (119)

3. If F1 is a backward β-transfer with Kantorovich operator E−1 , and F2 is a forward α-transfer with
Kantorovich operator E+

2 , then

F1 ?−F2 (µ, ν) = inf
g∈C(X2)

{
−β(

∫
X1

E−1 (−g) dµ)− α(

∫
X3

E+
2 g dν)

}
. (120)

4. In particular, if E is a backward β-transfer with Kantorovich operator E−, and T is a forward linear
transfer with Kantorovich operator T+, then

E ?−T (µ, ν) = inf
g∈C(X2)

{
−β(

∫
X1

E−(−g) dµ)−
∫
X3

T+g dν

}
. (121)
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Proof: 1) Assume F1 is a backward completely convex transfer with Kantorovich operator F−1,i, and F2 is

a forward convex transfer with Kantorovich operator F+
2,j , then

F1 ?−F2 (µ, ν) = inf{F1(µ, σ)−F2(σ, ν); σ ∈ P(X2)}

= inf
σ∈P(X2)

{
F1(µ, σ)− sup

g∈C(X2)

{
sup
j∈J

(

∫
X3

F+
2,jg dν)−

∫
X2

g dσ

}}

= inf
σ∈P(X2)

inf
g∈C(X2)

inf
j∈J

{
F1(µ, σ)−

∫
X3

F+
2,jg dν +

∫
X2

g dσ

}
= inf

g∈C(X2)
inf
j∈J

{
− sup
σ∈P(X2)

{−
∫
X2

g dσ −F1(µ, σ)} −
∫
X3

F+
2,jg dν)

}

= inf
g∈C(X2)

inf
j∈J

{
−(F1)∗µ(−g)−

∫
X3

F+
2,j(g) dν

}
= inf

g∈C(X2)
inf
j∈J

{
−(inf

i∈I

∫
X1

F−1,i(−g) dν −
∫
X3

F+
2,j(g) dν

}
= inf

g∈C(X2)
inf
j∈J

sup
i∈I

{
−
∫
X1

F−1,i(−g) dν −
∫
X3

F+
2,j(g) dν

}
2) If F1 is a β-backward entropic transfer with Kantorovich operator E−, it suffices to note in the above
proof that (F1)∗µ(g) = β(

∫
X
E−1 (−g) dµ).

3) If now F2 is a forward α-transfer with Kantorovich operator E+
2 , then it suffices to note in the above

proof that (F2)∗ν(g) = α(
∫
X
E+

2 g dν).
4) corresponds to when α(t) = t.

Corollary 23 Let F be a backward convex transfer on X2× Y2 with Kantorovich operators (F−i )i∈I and let
E be a backward β-transfer on X1×Y1 with Kantorovich operator E−. Let T be a backward linear transfer on
Y1×Y2 with Kantorovich operator T− and λ > 0. Then, for any fixed pair of probability measures µ ∈ P(X1)
and ν ∈ P(X2), the following are equivalent:

1. For all σ ∈ P(Y2), we have F(ν, σ) 6 λ E ? T (µ, σ).

2. For all g ∈ C(X2), we have β
( ∫

X1
E− ◦ T−g) dµ

)
6 inf
i∈I

1
λ

∫
X2
F−i (λg)dν.

In particular, if E2 is a backward β2-transfer on X2×Y2 with Kantorovich operator E−2 , and E1 is a backward
β1-transfer on X1 × Y1 with Kantorovich operator E−1 , then the following are equivalent:

1. For all σ ∈ P(Y2), we have E2(ν, σ) 6 λ E1 ? T (µ, σ).

2. For all g ∈ C(X2) and i ∈ I, we have β1

( ∫
X1
E−1 ◦ T−g) dµ

)
6 1

λβ2(
∫
X2
E−2 (λg)dν).

Proof: Note that here, we need the formula for (E ? T ) ? (−F̃)(µ, ν). Since F̃ is now a forward convex
transfer with Kantorovich operators equal to F̃+

i (g) = −F−i (−g), we can apply Part 2) of Proposition 22 to
F2 = 1

λ F̃ and F1 = E ? T , which is a β-backward transfer with Kantorovich operator E− ◦ T−, to obtain

(E ? T ) ? (−F̃)(µ, ν) = inf
g∈C(X2)

inf
j∈J

{
−β(

∫
X1

E− ◦ T−g dµ) +
1

λ

∫
X3

F−j (λg) dν

}
.

A similar argument applies for 2).
We now apply the above to the case where E is the backward logarithmic transfer to obtain,

Corollary 24 Let F be a backward convex transfer on X2 × Y2 with Kantorovich operators (F−i )i∈I . Let T
be a backward linear transfer on Y1 × Y2 with Kantorovich operator T− and λ > 0. Then, for any fixed pair
of probability measures µ ∈ P(X1) and ν ∈ P(X2), the following are equivalent:
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1. For all σ ∈ P(Y2), we have F(ν, σ) 6 λH ? T (µ, σ)

2. For all g ∈ C(X2), we have log
( ∫

X1
eT

−g dµ
)
6 inf
i∈I

1
λ

∫
X2
F−i (λg)dν.

Remark 3 An immediate application of (4) in Proposition 22 is the following result in [10]

inf{W2(µ, σ) +H(dx, σ);σ ∈ P(Rd)} = inf{− log

∫
e−f

∗
dx+

∫
f dµ; f ∈ C(Rd)}, (122)

where Conv(Rd) is the cone of convex functions on Rd, and W2(µ, σ) = −W2(σ, µ̄), the latter being the
Brenier transfer of Example 7.3 and µ̄ is defined as

∫
f(x)dµ̄(x) =

∫
f(−x)dµ(x). Note that in this case,

T+f(x) = −f∗(−x), E−f = ef and β(t) = log t, and since g∗∗ 6 g,

inf{W2(µ, σ) +H(dx, σ);σ ∈ P(Rd)} = H ? (−W2)(dx, µ̄)

= inf{− log

∫
e−g dx+

∫
g∗(x) dµ; g ∈ C(Rd)}

= inf{− log

∫
e−f

∗
dx+

∫
f dµ; f ∈ Conv(Rd)}.

What is remarkable in the result of Cordero-Erausquin and Klartag [10] is the characterization of those
measures µ (the moment measures) for which there is attainment in both minimization problems.

8.3 Maurey-type inequalities

We are now interested in inequalities of the following type: For all σ1 ∈ P(X1), σ2 ∈ P(X2), we have

F(σ1, σ2) 6 λ1T1 ?H1(σ1, µ) + λ2T2 ?H2(σ2, ν). (123)

This will requires a duality formula for the expression Ẽ1 ? (−T ) ? E2, where F is a backward convex transfer
and E1, E2 are forward entropic transfers.

Theorem 1 Assume F is a backward convex transfer on Y1 × Y2 with Kantorovich operators (F−i )i∈I , E1
(resp., E2) is a forward α1-transfer on Y1 ×X1 (resp., a forward α2-transfer on Y2 ×X2) with Kantorovich
operator E+

1 (resp., E+
2 ), then for any (µ, ν) ∈ P(X1)× P(X2), we have

Ẽ1 ? (−F) ? E2 (µ, ν) = inf
i∈I

inf
f∈C(X3)

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ) + α2(

∫
X2

E+
2 (f) dν)

}
. (124)

Proof: If E1 a forward α1-transfer on Y1 × X1, then Ẽ1 is a backward −(α⊕1 )	-transfer on X1 × Y1 with

Kantorovich operator Ẽ−1 g = −E+
1 (−g). Apply Proposition 19 with F1 = Ẽ1, and F2 = F to get

Ẽ1 ? (−F) (µ, ν) = inf
f∈C(X3)

inf
i∈I

{
(α⊕1 )	

( ∫
X1

−E+
1 ◦ F

−
i f dµ)−

∫
X3

f dν

}
= inf

f∈C(X3)
inf
i∈I

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ)−

∫
X3

f dν

}
.

Write now,

Ẽ1 ? (−F) ? E2 (µ, ν) = inf
{
Ẽ1 ? (−F)(µ, σ) + E2(σ, ν); σ ∈ P(Y2)

}
= inf

σ∈P(Y2)
inf

f∈C(X3)
inf
i∈I

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ)−

∫
X3

f dσ + E2(σ, ν)

}
= inf

i∈I
inf

f∈C(X3)

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ)− sup

σ∈P(Y2)

{
∫
Y2

f dσ − E2(σ, ν)}

}

= inf
i∈I

inf
f∈C(X3)

{
α1

( ∫
X1

E+
1 ◦ F

−
i f dµ) + α2(

∫
X2

E+
2 (−f) dν)

}
.
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Corollary 25 Assume E1 (resp., E2) is a forward α1-transfer on Z1 ×X1 (resp., α2-transfer on Z2 ×X2)
with Kantorovich operator E+

1 (resp., E+
2 ). Let T1 (resp., T2) be forward linear transfers on Y1 × Z1 (resp.,

Y2×Z2) with Kantorovich operator T+
1 (resp., T+

2 ), and let F be a backward convex transfer on Y1×Y2 with
Kantorovich operators (F−i )i. Then, for any given λ1, λ2 ∈ R+ and (µ, ν) ∈ P(X1) × P(X2), the following
are equivalent:

1. For all σ1 ∈ P(Y1), σ2 ∈ P(Y2), we have

F(σ1, σ2) 6 λ1T1 ? E1(σ1, µ) + λ2T2 ? E2(σ2, ν). (125)

2. For all g ∈ C(Y2) and all i ∈ I, we have

λ1α1

( ∫
X1

E+
1 ◦ T

+
1 ◦ (

1

λ1
F−i g) dµ

)
+ λ2α2(

∫
X2

E+
2 ◦ T

+
2 (
−1

λ2
g) dν) > 0. (126)

Proof: It suffices to apply the above with the forward λiαi-transfers Fi := λiTi ? Ei, whose Kantorovich
operators are Fi(g) = E+

i ◦ T
+
i ( gλi ) for i = 1, 2.

By applying the above to Ei(µ, ν) =: H the forward logarithmic entropy where αi(t) = − log(−t) and
Kantorovich operator E+f = e−f , we get the following extension of a celebrated result of Maurey [32].

Corollary 26 Assume F is a backward convex transfer on Y1 × Y2 with Kantorovich operators (F−i )i∈I ,
and let T1 (resp., T2) be forward linear transfer on Y1 ×X1 (resp., Y2 ×X2) with Kantorovich operator T+

1

(resp., T+
2 ), then for any given λ1, λ2 ∈ R+ and (µ, ν) ∈ P(X1)× P(X2), the following are equivalent:

1. For all σ1 ∈ P(X1), σ2 ∈ P(X2), we have

F(σ1, σ2) 6 λ1T1 ?H(σ1, µ) + λ2T2 ?H(σ2, ν). (127)

2. For all g ∈ C(Y2) and all i ∈ I, we have

(

∫
X1

e−T
+
1 ◦

1
λ1
F−
i g dµ

)λ1
(

∫
X2

e−T
+
2 ( 1

−λ2
g) dν)λ2 6 1. (128)

If T1 = T2 are the identity transfer, then the above is equivalent to saying that for all g ∈ C(Y2) and all
i ∈ I, we have

(

∫
X1

e
−1
λ1
F−
i g dµ

)λ1
(

∫
X2

e
1
λ2
g dν)λ2 6 1. (129)

9 Effective transfers and a general discrete weak KAM theory

Let X be a compact metric space, and let T be a backward linear transfer on P(X) × P(X) with T as a
corresponding backward Kantorovich operator. We will be looking for fixed points of T , which correspond
to Fathi’s notion of weak KAM solutions ([12], [1]) in the case of a transfer induced by a mass transport
corresponding to a cost induced by the generating function of a Lagrangian (Example 7.4).

Theorem 2 Suppose T is a backward linear transfer on P(X)×P(X) that is weak∗-continuous on M(X),
and let T be the corresponding backward Kantorovich operator that maps C(X) into C(X). Then, there exists
a constant c = c(T ) ∈ R, a backward linear transfer T∞ on P(X)×P(X), and a corresponding Kantorovich
operator T∞ such that

1. For all µ and ν in P(X), we have T∞(µ, ν) = (T + c) ? T∞(µ, ν) and T∞(µ, ν) = T∞ ? T∞(µ, ν).
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2. For all f ∈ C(X), we have T∞ ◦ T∞f = T∞f .

3. The constant −c(T ) = inf{T (µ, µ);µ ∈ P(X)} is attained by a probability measure µ̄ in the set C :=
{µ ∈ P(X) ; T∞(µ, µ) = 0} such that

(µ̄, µ̄) ∈ D := {(µ, ν) ∈ P(X)× P(X) : T (µ, ν) + T∞(ν, µ) = −c}. (130)

4. For every f ∈ C(X), the function u = T∞f is a solution for the equation

Tnu− nc = u for every n ∈ N, (131)

and moreover, every solution of (131) is of this form.

By analogy with the weak KAM theory of Fathi and Mather, we shall say that T∞ (resp., T∞) is the
effective transfer or the generalized Peierls barrier (resp., effective Kantorovich operator) associated to T .
The constant c(T ) is the Mané critical value, while the Mather measures are those µ̄ where the infimum in
(3) is attained. The functions u solving equation (131) will be called weak KAM solutions for T . The set A
is the analogue of the projected Aubry set, and D can be seen as a generalized Aubry set [12].

Lemma 27 For each n ∈ N, Let Tn = T ? T ? .... ? T be the transfer obtained from T by iterating its
convolution n-times. Then,

1. For all µ, ν ∈ P(X), we have Tn(µ, ν) = sup
{ ∫

X
g(y) dν(y)−

∫
X
Tng(x); g ∈ C(X)

}
.

2. The sequence of transfers (Tn)n is equicontinuous, and there exists a positive constant C > 0 and a
number c ∈ R such that

|Tn(µ, ν)− cn| 6 C for all µ, ν ∈ P(X) and n ∈ N. (132)

Proof: 1) is immediate from Proposition 10.
For 2), we follow an argument of Bernard-Buffoni [1]. Since T is weak∗ continuous and X is compact, there
exists a modulus of continuity δ : [0,∞)→ [0,∞), with limt→0 δ(t) = δ(0) = 0 such that

|T (µ, ν)− T (µ′, ν′)| 6 δ(W2(µ, µ′) +W2(ν, ν′)), for all µ, µ′, ν, ν′ ∈ P(X). (133)

Since for all σ1, . . . , σn−1 ∈ P(X), the map

(µ, ν) 7→ T (µ, σ1) + T (σ1, σ2) + . . .+ T (σn−1, ν)

also has the same modulus of continuity δ, then Tn does too, as the infimum of functions with the same
modulus of continuity, also has the same modulus of continuity. Define the sequences

Mn := max {Tn(µ, ν) ; µ, ν ∈ P(X)}
mn := min {Tn(µ, ν) ; µ, ν ∈ P(X)} .

Then Mn is sub-additive, while mn is super-additive. Indeed, there exists µ, ν ∈ P(X) such that, for all
σ ∈ P(X),

Mn+k = Tn+k(µ, ν) 6 Tn(µ, σ) + Tk(σ, ν) 6Mn +Mk.

The argument for mn is the same with reverse inequalities.
By the equicontinuity of Tn, the difference Mn −mn is bounded above by a constant C independent of n.
Therefore it is well known that Mn

n decreases to M := infn
Mn

n , while mn
n increases to m := supn

mn
n . Then

the string of inequalities

nM − C 6Mn − C 6 mn 6 Tn(µ, ν) 6Mn 6 mn + C 6 nm+ C

implies M 6 m+ 2C
n for all n; hence c := m = M .
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Proposition 28 Under the condition that c = 0, there exists a backward linear transfer T∞ on P(X)×P(X)
with associated Kantorovich operator T∞ satisfying the following properties.

1. For every f ∈ C(X), we have T ◦ T∞f = T∞f and T∞ ◦ T∞f = T∞f . The operator T∞ is given
explicitly by

T∞f(x) = lim
n→∞

Tn ◦ lim sup
m→∞

Tmf(x), (134)

and T∞(µ, ν) = sup
{∫
X
f dν −

∫
X
T∞f dµ

}
. Moreover, the fixed points of T and the fixed points of

T∞ are the same.

2. For all µ, ν ∈ P(X) and n ∈ N, we have

T∞(µ, ν) = Tn ∗ T∞(µ, ν) and T∞(µ, ν) = T∞ ∗ T∞(µ, ν). (135)

3. sup
{∫
X
T∞f d(ν − µ) ; f ∈ C(X)

}
6 T∞(µ, ν) 6 lim infn→∞ Tn(µ, ν).

4. The set A := {µ ∈ P(X); T∞(µ, µ) = 0} is non-empty and for every µ, ν ∈ P(X), we have

T∞(µ, ν) = inf{T∞(µ, σ) + T∞(σ, ν), σ ∈ A}, (136)

and the infimum on A is attained.

5. We have
inf{T (µ, µ);µ ∈ P(X)} = 0, (137)

and the infimum is attained by a measure µ̄ ∈ A such that

(µ̄, µ̄) ∈ D := {(µ, ν) ∈ P(X)× P(X) : T (µ, ν) + T∞(ν, µ) = 0}. (138)

Proof: (1) By Lemma 27, Tn is equicontinuous with modulus of continuity δ. Therefore, for each f ∈ C(X),
x 7→ Tnf(x) is uniformly continuous with the same modulus of continuity δ. Moreover, f 7→ Tnf is 1-
Lipschitz with respect to the sup-norm. Indeed,

Tnf(x) = sup
ν∈P(X)

{∫
X

f dν − Tn(δx, ν)

}
= sup
ν∈P(X)

{∫
X

f dν − Tn(δy, ν) + Tn(δy, ν)− Tn(δx, ν)

}
6 sup
ν∈P(X)

{∫
X

f dν − Tn(δy, ν) + δ(d(x, y))

}
= Tnf(y) + δ(d(x, y)).

Interchanging x and y we conclude the continuity. For 1-Lipschitz,

Tnf(x) = sup
ν∈P(X)

{∫
X

f dν − Tn(δx, ν)

}
6 sup
ν∈P(X)

{∫
X

g dν − Tn(δx, ν)

}
+ ‖f − g‖∞

= Tng(x) + ‖f − g‖∞.

Interchanging f and g we conclude.
Define T∞1 f(x) := lim supn→∞ Tnf(x). The assumption c = 0 ensures that T∞1 f(x) <∞, and T∞1 satisfies
the same properties above as T . We have the following monotonicity:

T ◦ T∞1 f(x) > T∞1 f(x), for all f ∈ C(X) and all x ∈ X. (139)
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Indeed, since
{

supk>n T
kf
}
n

is a sequence of continuous functions which pointwise decreases monotonically

to the continuous function T∞1 f , the sequence supk>n T
kf converges uniformly to T∞1 f . We conclude by

the Lipschitz property of T .
Therefore, for each f ∈ C(X) and x ∈ X, {Tn ◦ T∞1 f(x)}n is a monotone sequence. The assumption c = 0
implies it is uniformly bounded in n, hence the pointwise limit exists and is finite, and we may define an
operator T∞ by

T∞f(x) := lim
n→∞

Tn ◦ T∞1 f(x). (140)

Note that again T∞ satisfies the same properties as T ; in particular it is a convex operator. Moreover,
x 7→ T∞f(x) is continuous, and therefore, the convergence is uniform. Then, by the Lipschitz property of
T , we get that T ◦ (Tn ◦ T∞1 )f converges uniformly to T ◦ T∞f . In other words,

T∞f = lim
n→∞

Tn ◦ T∞1 f = lim
n→∞

Tn+1 ◦ T∞1 f = T ◦ T∞f. (141)

Finally, suppose f ∈ C(X) is a fixed point of T . Then Tnf = f , so T∞1 f = f , and consequently Tn◦T∞1 f = f .
Letting n→∞, we get T∞f = f .
Conversely, suppose f is a fixed point of T∞. Since T∞f is a fixed point of T from above, we get that
Tf = f .

(2) Define

T∞(µ, ν) := sup

{∫
X

f dν −
∫
X

T∞f dµ ; f ∈ C(X)

}
. (142)

Since T∞ is a convex operator, T∞ is a backward linear transfer. From 1), we get immediately the conclusion
of 2), by Proposition 10.

(3) Note that T∞f > T∞1 f = lim supn T
nf , so

T∞(µ, ν) = sup
f∈C(X)

{∫
X

f dν −
∫
X

T∞f dµ

}
6 sup
f∈C(X)

{∫
X

f dν −
∫
X

lim sup
n

Tnf dµ

}
6 sup
f∈C(X)

lim inf
n

{∫
X

f dν −
∫
X

Tnf dµ

}
(Fatou)

6 lim inf
n

sup
f∈C(X)

{∫
X

f dν −
∫
X

Tnf dµ

}
= lim inf

n
Tn(µ, ν).

On the other hand, from T∞ ◦ T∞f = T∞f ,

T∞(µ, ν) = sup

{∫
X

f dν −
∫
X

T∞f dµ ; f ∈ C(X)

}
> sup

{∫
X

T∞f d(ν − µ) ; f ∈ C(X)

}
.

(4) This argument is a minor modification of the one given in [1], to account for the fact that T∞ is in
general only weak∗ lower semi-continuous and not weak∗ continuous. Fix µ, ν ∈ P(X). By 2), there exists
σ1 ∈ P(X) such that

T∞(µ, ν) = T∞(µ, σ1) + T∞(σ1, ν).

Similarly, there exists a σ2 such that

T∞(σ1, ν) = T∞(σ1, σ2) + T∞(σ2, ν).

36



Combining the above two equalities, we obtain

T∞(µ, ν) = T∞(µ, σ1) + T∞(σ1, σ2) + T∞(σ2, ν).

Note also that
T∞(µ, σ1) + T∞(σ1, σ2) = T∞(µ, σ2). (143)

This follows from

T∞(µ, ν) = T∞(µ, σ1) + T∞(σ1, σ2) + T∞(σ2, ν)

> T∞ ∗ T∞(µ, σ2) + T∞(σ2, ν)

= T∞(µ, σ2) + T∞(σ2, ν)

> T∞ ∗ T (µ, ν)

= T∞(µ, ν).

Hence all the inequalities are equalities; in particular (143).
After k times we have

T∞(µ, ν) =

k∑
i=0

T∞(σi, σi+1)

where σ0 := µ and σk+1 := ν. This inductively generates a sequence {σk} with the property

m∑
i=`

T∞(σi, σi+1) = T∞(σ`, σm+1)

whenever 0 6 ` < m 6 k. In particular, for any subsequence σkj , we have

T (µ, σk1) +

m∑
j=1

T∞(σkj , σkj+1
) + T∞(σkm+1

, ν) = T∞(µ, ν). (144)

Extract a weak∗ convergent subsequence {σkj} to some σ̄ ∈ P(X). By weak∗ l.s.c. of T∞, we have

lim inf
j
T∞(σkj , σkj+1) > T∞(σ̄, σ̄).

In particular, given ε > 0, for all but finitely many j,

T∞(σkj , σkj+1
) > T∞(σ̄, σ̄)− ε. (145)

Therefore, by refining to a further (non-relabeled) subsequence if necessary, we obtain a subsequence {σkj}
satisfying (145) for all j. By further refinement, we may also assume,

T∞(µ, σk1) > T∞(µ, σ̄)− ε. (146)

Therefore, by refining to a further (non-relabeled) subsequence if necessary, we obtain a subsequence {σkj}
with properties (144), (145), and (146).

Moreover, for all m large enough (depending on ε), we have

T∞(σkm+1
, ν) > T∞(σ̄, ν)− ε (147)

Applying the inequalities of (145), (146), and (147), to (144), we obtain

T∞(µ, ν) > T∞(µ, σ̄) +mT∞(σ̄, σ̄) + T∞(σ̄, ν)− (m+ 2)ε
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for all large enough m. From the fact that T∞ = T∞ ∗ T∞, the above inequality is only possible if

T∞(σ̄, σ̄) 6
m+ 2

m
ε 6 2ε.

As ε is arbitrary, we obtain T∞(σ̄, σ̄) 6 0, and consequently T∞(σ̄, σ̄) = 0 (the reverse inequality following
from T∞ = T∞ ∗ T∞).

Finally, we note that T∞(µ, ν) = T∞(µ, σkj ) + T∞(σkj , ν) for all j, so at the lim inf, we find

T∞(µ, ν) > T∞(µ, σ̄) + T∞(σ̄, ν).

The reverse inequality is immediate from T∞ = T∞ ∗ T∞.
(5) By the assumption c = 0, we have T (µ, µ) > 0 for all µ. Therefore it suffices to find µ̄ such that

T (µ̄, µ̄) = 0. We may construct a sequence (µk) ⊂ A such that (µk, µk+1) ∈ D. The set D is convex by
convexity of both T and T∞. Therefore, the Cesaro averages ( 1

n

∑n
k=1 µk,

1
n

∑n
k=1 µk+1) belong to D.

Denoting νn := 1
n

∑n
k=1 µk, we have (νn, νn + 1

n (µn+1 − µ1)) ∈ D. Extracting a weak∗ convergent
subsequence νnj converging to some µ̄ ∈ A (since, in particular νn ∈ A and A is weak∗ closed), we use the
fact that (νn, νn + 1

n (µn+1 − µ1)) ∈ D and weak∗ continuity of T (resp. weak∗ l.s.c. of T∞) to find

T (µ̄, µ̄) 6 −T∞(µ̄, µ̄) = 0,

which concludes the proof.
Theorem 2 now follows from Proposition 28 by replacing the transfer T by T + c and T by T − c.

Remark 4 The case of a cost minimizing mass transport: Consider the setting of a regular mass
transport, with a continuous cost A on X ×X.

T (µ, ν) := inf
π∈K(µ,ν)

∫
X×X

A(x, y) dπ(x, y).

Then, under the assumption that c = 0, a computation yields that

T∞f(x) = sup
y
{f(y)−A∞(x, y)} where A∞(x, y) := lim inf

n→∞
An(x, y),

and the generalized Peierl’s barrier is an optimal mass transport with cost A∞(x, y),

T∞(µ, ν) = inf
π∈Γ(µ,ν)

∫
A∞(x, y) dπ(x, y).

Therefore, the objects T∞, T∞, above, reduce to those studied by Bernard-Buffoni [2].

Remark 5 The case of Pushforward Transfers
Recall the pushforward transfer of Example 1: For σ : X → X a continuous map,

I(µ, ν) =

{
0 if σ#µ = ν
+∞ otherwise.

(148)

This transfer is not weak∗ continuous so strictly speaking the above theorem does not apply, however
the operator T∞ as defined in (134) can still make sense, and it is of the form T∞f = f ◦ σ∞, where
σ∞(x) := lim supm→∞ σm(x).

If one takes X = [0, 1] ⊂ R and σ(x) = x2, then σ∞(x) = 0, if x ∈ [0, 1) and 1 if x = 1. If σ(x) = 1− x,
then σ∞(x) = max{x, 1 − x}. In both examples, it is easy to check that T∞f is a fixed point of T . Note
that for σ(x) = x2, σ∞ is not continuous, yet T∞ is not satisfies the other convexity properties but not on
spaces of continuous functions. This points towards a possible extension of the theory beyond this class and
to other spaces of measurable functions The role of the weak∗ continuity assumption on T was to ensure
that T∞ is a backward Kantorovich operator in the definition we have adopted throughout this paper.
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Mathématiques Pures et Aplliquées, 80(7):669–696, 2001.

[6] S.G. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic
Sobolev inequalities. Journal of Functional Analysis, 163:1–28, 1999.

[7] M. Bowles, N. Ghoussoub, Linear Transfers and Stochastic Weak KAM Theory, Preprint (August 2018).

[8] M. Bowles, N. Ghoussoub, A Theory of Multi-transfers and Applications, in preparation (2018).

[9] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure
Appl. Math., 44 (1991), 375-417.

[10] D. Cordero-Erausquin, B. Klartag, Moment measures, J. Funct. Anal. 268, no. 12, (2015), 3834-3866.

[11] M.D. Donsker and S.R.S. Varadhan, Asymptotic evaluations of certain Markov process expectations for
large time, III. Comm. Pure Appl. Math., 29:389–461, 1976.

[12] A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, preliminary version, Lyon, version X, 2018.

[13] J. Fontbona, N. Gozlan, and J-F. Jabir, A variational approach to some transport inequalities, Ann.
Inst. H. Poincar Probab. Statist. Volume 53, Number 4 (2017), 1719-1746.

[14] I. Gentil, C. Lonard, L. Ripani, About the analogy between optimal transport and minimal entropy,
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[35] G. Mokobodzki, Cônes de potentiels et noyaux subordonnés, C.I.M.E., 1. Ciclo Stresa 1969, Potential
Theory, 207-248 (1970).

[36] P.-M. Samson, Concentration inequalities for convex functions on product spaces, Stochastic inequalities
and applications, Progr. Probab., vol. 56, Birkhäuser, Basel, 2003, pp. 33–52.
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