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GROMOV-HAUSDORFF LIMITS OF KÄHLER MANIFOLDS

WITH RICCI CURVATURE BOUNDED BELOW

GANG LIU, GÁBOR SZÉKELYHIDI

Abstract. We show that non-collapsed Gromov-Hausdorff limits of polarized
Kähler manifolds, with Ricci curvature bounded below, are normal projective
varieties, and the metric singularities of the limit space are precisely given by
a countable union of analytic subvarieties. This extends a fundamental result
of Donaldson-Sun, in which 2-sided Ricci curvature bounds were assumed. As
a basic ingredient we show that, under lower Ricci curvature bounds, almost
Euclidean balls in Kähler manifolds admit good holomorphic coordinates. Fur-
ther applications are integral bounds for the scalar curvature on balls, and a
rigidity theorem for Kähler manifolds with almost Euclidean volume growth.

1. Introduction

The structure of Gromov-Hausdorff limits of Riemannian manifolds with Ricci
curvature bounded below has been studied extensively since the seminal work of
Cheeger-Colding [3, 4, 5, 6], with a great deal of more recent important progress
(see e.g. [10][12][13][9]). In the Kähler setting, the recent breakthrough work of
Donaldson-Sun [21] has led to many important advances. They proved in particular
that the Gromov-Hausdorff limit of a sequence of non-collapsed, polarized Kähler
manifolds, with 2-sided Ricci curvature bounds, is a normal projective variety. Our
first result is a generalization of this statement, removing the assumption of an
upper bound for the Ricci curvature.

Theorem 1.1. Given n, d, v > 0, there are constants k1, N > 0 with the following
property. Let (Mn

i , Li, ωi) be a sequence of polarized Kähler manifolds such that

• Li is a Hermitian holomorphic line bundle with curvature −
√
−1ωi;

• Ric(ωi) > −ωi, vol(Mi) > v, and diam(Mi, ωi) < d;
• The sequence (Mn

i , ωi) converges in the Gromov-Hausdorff sense to a limit
metric space X.

Then each Mn
i can be embedded in a subspace of CPN using sections of Lk1i , and

the limit X is homeomorphic to a normal projective variety in CP
N . Taking a sub-

sequence and applying suitable projective transformations, the Mi ⊂ CP
N converge

to X as algebraic varieties.

This result implies that, given bounds on n, d, v, only finitely many Hilbert
polynomials appear. An immediate corollary is the following.
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Corollary 1.1. Given n, d, v > 0, there are finitely many diffeomorphism types of
polarized Kähler manifolds (Mn, L, ω), of dimension n, such that Ric(ω) > −ω, the
curvature of L is −

√
−1ω, and vol(M) > v, diam(M) < d.

The strategy of proof of Theorem 1.1 follows Donaldson-Sun [21], and a key step
is the proof of the following partial C0-estimate, conjectured originally by Tian [49]
for Fano manifolds.

Theorem 1.2. Given n, d, v > 0, there are k2, b > 0 with the following prop-
erty. Suppose that (M,L, ω) is a polarized Kähler manifold with Ric(ω) > −ω,
vol(M) > v and diam(M,ω) < d. Then for all p ∈ M , the line bundle Lk2 admits
a holomorphic section s over M satisfying |s‖L2 = 1, and |s(p)| > b.

Tian [49] conjectured this result under a positive lower bound for the Ricci cur-
vature, with L = K−1

M , and proved it in the two-dimensional case [50]. Donaldson-
Sun [21] showed the result with two-sided Ricci curvature bounds, but arbitrary
polarizations, and later several extensions of their result were obtained (see e.g.
[15, 16, 30, 48, 43]). The result assuming a lower bound for the Ricci curvature,
with L = K−1

M was finally shown by Chen-Wang [17]. The improvement in our
result is that we allow for general polarizations.

Our next result addresses the structure of the singular set of the limit space
X . In the setting of Theorem 1.1, if the metrics along the sequence are Kähler-
Einstein, Donaldson-Sun [21] showed that the metric singular set of X is the same
as the complex analytic singular set of the corresponding projective variety (see
also Corollary 4.1). In our setting this is not necessarily the case, however we have
the following.

Theorem 1.3. Let (X, d) be a Gromov-Hausdorff limit as in Theorem 1.1. Then
for any ǫ > 0, X \ Rǫ is contained in a finite union of analytic subvarieties of X.
Furthermore, the singular set X \ R is equal to a countable union of subvarieties.

The “almost regular” set Rǫ ⊂ X is defined to be the set of points p satisfying
lim
r→0

r−2nVol(B(p, r)) > ω2n − ǫ in terms of the volume ω2n of the unit ball in C
n.

The regular set is then R = ∩ǫ>0Rǫ. Note that Rǫ is an open set, while in general
R may not be open.

Cheeger-Colding [4] showed that even in the Riemannian setting the Hausdorff
codimension of X \ R is at least 2, with more quantitative estimates obtained by
Cheeger-Naber [10]. Moreover, in a recent deep work of Cheeger-Jiang-Naber [9],
it was shown that for small ǫ the set X \ Rǫ has bounded (2n − 2)-dimensional
Minkowski content and is 2n− 2 rectifiable. These results show that the singular
set behaves well from the perspective of geometric measure theory. On the other
hand, the topology of the singular set could be rather complicated. In a recent paper
of Li and Naber [34] (see also example 3.2 of [9]), it was shown that even assuming
non-negative sectional curvature, non-collapsed limit spaces can have singular sets
that are Cantor sets. Our Theorem 1.3 shows that in sharp contrast with this, in the
polarized Kähler setting the singular set has strong rigidity properties. For example
if we perturb the Kähler metrics along our sequence locally inside a holomorphic
chart and assume that the geometric assumptions are preserved, then the metric
singular set can change by at most a countable set of points.

A basic technical ingredient in this work is the following result, which is of
independent interest.
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Theorem 1.4. There exists ǫ > 0, depending on the dimension n, with the follow-
ing property. Suppose that B(p, ǫ−1) is a relatively compact ball in a (not necessarily
complete) Kähler manifold (Mn, p, ω), satisfying Ric(ω) > −ǫω, and

dGH

(
B(p, ǫ−1), BCn(0, ǫ

−1)
)
< ǫ,

where dGH is the Gromov-Hausdorff distance. Then there is a holomorphic chart
F : B(p, 1) → Cn which is a Ψ(ǫ|n)-Gromov-Hausdorff approximation to its image.
In addition on B(p, 1) we can write ω = i∂∂̄φ with |φ − r2| < Ψ(ǫ|n), where r is
the distance from p.

Here, and throughout the paper, Ψ(ǫ1, . . . , ǫk|a1, . . . , al) denotes a function such
that for fixed ai we have limǫ1,...,ǫk→0 Ψ = 0. This result is an extension of Proposi-
tion 1.3 of [36], where the bisectional curvature lower bound was assumed. See also
[16, Proposition 1], where a similar conclusion is found under additional assump-
tions. A simple consequence of the result is that for any non-collapsed Gromov-
Hausdorff limit of Kähler manifolds with Ricci curvature bounded below, the set
Rǫ defined above has the structure of a complex manifold, for sufficiently small ǫ.

We give some further applications of this result. The first, Proposition 2.5, shows
that under Gromov-Hausdorff convergence to a smooth Kähler manifold, the scalar
curvature functions converge as measures. Here we state a simple corollary of this.

Corollary 1.2. Given any ǫ > 0, there is a δ > 0 depending on ǫ, n, satisfying the
following. Let B(p, 1) be a relatively compact unit ball in a Kähler manifold (M,ω)
satisfying Ric > −1, and dGH(B(p, 1), BCn(0, 1)) < δ. Then

∫
B(p,1/2) S < ǫ, where

S is the scalar curvature of ω.

When the manifold is polarized, non-collapsed, with Ricci curvature bounded
below, then we obtain the following integral bound for the scalar curvature on any
unit ball.

Proposition 1.1. Let B(p, 1) be a unit ball in a polarized Kähler manifold (Mn, L, ω),
satisfying Ric > −1, and vol(B(p, 1)) > v > 0. There is a constant C(n, v) depend-
ing on n, v such that

∫
B(p,1) S < C(n, v).

This is closely related to a question posed by Yau [54, Problem 9. p. 278],
on bounding the integral of scalar curvature on Riemannian manifolds with non-
negative Ricci curvature. An argument similar to [38, Proposition 2.7] shows that
under a bisectional curvature lower bound the same result holds even without the
polarization condition. See also Petrunin [42] for an analogous result, where the
sectional curvature is assumed to be bounded below, but non-collapsing is not
required.

The final application is the following, which was proved previously by the first
author [36] under the assumption of non-negative bisectional curvature.

Proposition 1.2. There exists ǫ > 0 depending on n, so that if Mn is a complete
noncompact Kähler manifold with Ric ≥ 0 and lim

r→∞
r−2nvol(B(p, r)) ≥ ω2n − ǫ,

then M is biholomophic to Cn. Here ω2n is the volume of the Euclidean unit ball.

We conclude this introduction with a brief description of the contents of the
paper. In Section 2 we prove Theorem 1.4 and the two applications mentioned
above. We then use the charts provided by Theorem 1.4 in Section 3 to construct



4 GANG LIU, GÁBOR SZÉKELYHIDI

global holomorphic sections of high powers of our line bundles, following the ap-
proach of Donaldson-Sun [21]. This leads to the partial C0 estimate, and the proof
of Theorem 1.1. In Section 4 we study the relation between the complex analytic
and metric singularities of X , proving Theorem 1.3. The argument in Section 3
uses the recent estimates of Cheeger-Jiang-Naber [9], but we show in the Appendix
that our results can be obtained independently of [9] by following the approach of
Chen-Donaldson-Sun [15]. In addition we prove a splitting result in the Appendix
which is well known to experts but does not seem to be written up in the setting
that we use.
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We also thank Aaron Naber for many fruitful discussions, as well as Richard Bamler
and Peter Topping for helpful suggestions. Special thanks also goes to Yum-Tong
Siu for the proof of Lemma 4.1.

2. Holomorphic charts near regular points

Our main goal in this section is to prove Theorem 1.4. We will first construct a
holomorphic chart by regularizing the metric using Perelman’s pseudolocality [41]
along the Ricci flow. The following is the basic input about the Ricci flow that we
need.

Proposition 2.1. There is a constant D > 0 such that given a > 0, for sufficiently
small ǫ > 0 the following holds. Let B(p, ǫ−1) be a relatively compact ball in a
Kähler manifold (Mn, g) satisfying Ric(g) > −ǫg, such that

dGH(B(p, ǫ−1), BCn(0, ǫ
−1)) < ǫ.

Then there is a Ricci flow solution g(t) on B(p, ǫ−1/2) for t ∈ [0, 1] with g(0) = g,
such that

• On the ball Bg(1)(p, 10D), in suitable coordinates, we have

|g(1)− gEuc|C5(gEuc) < Ψ(ǫ|n);
• The curvature along the flow satisfies |Rm| < a/t;
• We have the following estimates for the distance function along the flow:

dt(x, y) > d0(x, y)−D
√
t,

dt(x, y) < D(d0(x, y) +
√
t),

for x, y ∈ B(p, ǫ−1/2/2) and t ∈ [0, 1].

Proof. According to Cavalletti-Mondino [2], our assumptions imply that the Ψ(ǫ|n)-
almost Euclidean isoperimetric inequality holds in balls of radius ǫ−1/2 inside the
ball B(p, ǫ−1). We can then apply He [25, Lemma 2.4] (see also Hochard [26] and
Topping [53]) to conformally scale the metric g on a domain U ⊂ B(p, ǫ−1) to a
complete Riemannian metric (U, h), such that g = h on B(p, ǫ−1/2), the Ψ(ǫ|n)-
almost Euclidean isoperimetric inequality holds on balls of radius ǫ−1/2/8, and we
have a lower bound Sh ≥ −Ψ(ǫ|n) for the scalar curvature of h. As in [25] there
exists a Ricci flow solution h(t) for a definite time t ∈ [0, T ], satisfying |Rm| ≤ A/t
for t ∈ (0, T ]. We can choose A arbitrarily small, and T as large as we like if ǫ is
sufficiently small. The distance estimates follow from Lemma 3.5 and Lemma 3.7
in [25].
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To see the claim about comparing g(t) with the Euclidean metric, suppose we
have a sequence of such flows, with ǫi → 0. The curvature estimates, and the non-
collapsing estimate (see Lemma 3.1 in [25]) applied for large times, imply that in
the limit we end up with a (stationary) flow of flat metrics on R2n, and the claim
follows from this. �

We need the following estimate along a Ricci flow as above, similar to Lemma
2.3 in Huang-Tam [29].

Lemma 2.1. Suppose that we have a Ricci flow on B(p, ǫ−1/2) as given by Proposi-
tion 2.1, for sufficiently small ǫ > 0. Given constants A,Ak, l > 0 there are Ck > 0
satisfying the following. Let f ≥ 0 be a smooth function on B(p, ǫ−1/2)× [0, 1], such
that

• for all k > 0 f satisfies

(∂t −∆)f(x, t) ≤ A

t
max
0≤s≤t

f(x, s) +Akt
k,

on B(p, ǫ−1/2)× (0, 1).
• ∂kt f |t=0 = 0 for all k ≥ 0 on B(p, ǫ−1/2).
• supx∈B(p,ǫ−1/2) f(x, t) ≤ At−l for t ∈ (0, 1].

Then we have supx∈B(p,1) f(x, t) ≤ Ckt
k for all k ≥ 0, and t ∈ [0, 1].

Proof. The proof is similar to the first part of the proof of Huang-Tam [29], Lemma
2.3. We set φ(s) to be a cutoff function such that φ(s) = 0 for s ≥ 3/4, and φ(s) = 1
for s ≤ 1/4. Let Φ = φm for suitable m to be chosen later, and we set q = 1− 2/m.
This satisfies

0 ≤ Φ ≤ 1, −CmΦq ≤ Φ′ ≤ 0, |Φ′′| ≤ CmΦq,

for a constant Cm depending on m. Let us define ρ : Bg(1)(p, 9D) → R to be

given by ρ(x) = dg(1)(p, x)
2/(9D)2. Then |∇g(1)ρ|, |∆g(1)ρ| < C, and so as in

Lemma 2.2 in Huang-Tam [29], we have |∇g(t)ρ| < Ct−ca, |∆g(t)ρ| < Ct−1/2−ca for
a dimensional constant c (the constant a is the constant in the estimate |Rm| < a/t).
We choose ǫ sufficiently small, so that a satisfies ca < 1/4. Then

|∇g(t)ρ| < Ct−1/4, |∆g(t)ρ| < Ct−3/4.

We then set Ψ(x) = Φ(ρ(x)), so that by definition Ψ vanishes outside ofBg(1)(p, 9D)

for all t. We also let θ(t) = exp(−αt1−β) for α > 0, β ∈ (0, 1). For any K > A, let
F = ft−K . Then we have a constant C (which may change from line to line) such
that

(∂t −∆)F (x, t) ≤ −Kt−1−Kf(x, t) +
A

t
max
s≤t

t−Kf(x, s) +Akt
k−K

≤ −A
t
F (x, t) +

A

t
max
s≤t

F (x, s) + C,

and in addition F ≤ At−l−K . We will show that the smooth function

H(x, t) = θ(t)Ψ(x)F (x, t),

is a priori bounded on B(p, ǫ−1/2) × [0, 1]. Suppose that H achieves its maximum
at a point (x0, t0).
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At the maximum we have ∇H = 0, therefore Ψ∇F + F∇Ψ = 0, and so

∇Ψ · ∇F = −F |∇Ψ|2
Ψ

.

Note that by the estimates above we have

|∆Ψ| =
∣∣Φ′′(ρ)|∇ρ|2 +Φ′(ρ)∆ρ

∣∣ ≤ CmΨqt
−3/4
0 ,

and also
|∇Ψ|2
Ψ

≤ CmΨ2q−1t
−1/2
0 .

In addition, note that by the maximality of H at (x0, t0), for any s ≤ t0 we have

θ(s)F (x0, s) ≤ θ(t0)F (x0, t0),

and so since θ is decreasing, we have maxs≤t0 F (x0, s) ≤ F (x0, t0). It follows that
at (x0, t0)

(∂t −∆)F ≤ C.

At the maximum we can then compute

∆H = θF∆Ψ+ θΨ∆F + 2θ∇Ψ · ∇F
≥ −CmθFΨqt−3/4

0 − CmθFΨ
2q−1t

−1/2
0 + θΨ∆F,

and

∂tH = θ
(
− α(1 − β)t−β0 ΨF +Ψ∂tF

)
.

It follows that

0 ≤ (∂t −∆)H

≤ θΨ(∂t −∆)F + θ
[
− α(1 − β)t−β0 ΨF + CmΨqFt

−3/4
0 + CmΨ2q−1Ft

−1/2
0

]

≤ θ
[
CΨ− α(1 − β)t−β0 ΨF

+ Cm(ΨF )qt
−3/4−(1−q)(l+K)
0 + Cm(ΨF )2q−1t

−1/2−(2−2q)(l+K)
0

]
,

using that F ≤ At−l−K .
If we choose q very close to 1 (i.e. m very large), then we can choose β ∈ (0, 1)

so that β − 3/4− (1− q)(l+K) > 0 and β − 1/2− (2− 2q)(l+K) > 0. Then our

previous inequality implies (multiplying through by tβ0 ), that

0 ≤ −α(1− β)ΨF + CΨ+ Cm
[
(ΨF )q + (ΨF )2q−1

]
.

We can now choose α so large that α(1 − β) > 2Cm + 1. Then

(ΨF ) ≤ CΨ + Cm
[
(ΨF )q + (ΨF )2q−1 − 2(ΨF )

]
.

It follows that if ΨF is sufficiently large, then this leads to a contradiction, and so
ΨF ≤ C. This implies that H ≤ C at the maximum, as required. This implies the
estimate F ≤ C on Bg(1)(p, 8D), and the bounds for the distance along our Ricci
flow imply that Bg(0)(p, 1) ⊂ Bg(1)(p, 8D). �

Proposition 2.2. Suppose that we are in the situation of Proposition 2.1, with
sufficiently small ǫ. Then on a smaller ball B(p, r) we have a holomorphic chart
F : B(p, r) → Cn, such that for suitable r1, r2 > 0 the image of F satisfies

B(0, r1) ⊂ F (B(p, r)) ⊂ B(0, r2).
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Proof. We consider the Ricci flow g(t) on B = B(p, ǫ−1/2) provided by Proposi-
tion 2.1, and show that the metric g(1) is “approximately Kähler” in the sense that
on a smaller ball, B(p, r0), we have |∇iJ0| < C for i ≤ 5. Here we denote by J0
the fixed complex structure on B(p, ǫ−1/2) to distinguish it from another, time de-
pendent family of almost complex structures J(t) below. We follow the argument
given by Kotschwar [32] for preserving the Kähler condition along a Ricci flow,
using Lemma 2.1 (see also Huang-Tam [29], Shi [45]).

Following Kotschwar [32] we first define a family J(t) of almost complex struc-
tures by J(0) = J0, and

∂

∂t
Jab = RcbJ

a
c −RacJ

c
b .

It is convenient to introduce a differential operator Dt, in terms of which DtJ = 0
(see [32] for details). We also haveDtg = 0, and g remains Hermitian for the almost
complex structure J .

Define F,G ∈ End(∧2T ∗B) by

(Fη)(X,Y ) =
1

2
(η(X, JY ) + η(JX, Y )), (Gη)(X,Y ) = η(JX, JY ).

We then let

P̃ =
1

2
(Id +G), P̂ =

1

2
(Id−G).

On the complexification ∧2
C
T ∗B we have

P (2,0) =
1

2

(
P̂ −

√
−1F

)
, P (1,1) = P̃ , P (0,2) = P (2,0),

for the orthogonal projection maps onto ∧2,0B,∧1,1B,∧0,2B. We will control the
complex structure J along the flow in terms of the piece R̂ = R ◦ P̂ , where R :
∧2T ∗B → ∧2T ∗B is the curvature operator of g(t). The derivatives of J will then

be controlled by derivatives ∇iR̂. The evolution equations of these in turn depend
on derivatives ∇iP̂ . Using that the initial metric is Kähler, at t = 0 we have
∂kt∇iR̂ = 0 and ∂k+1

t ∇iP̂ = 0 for all k ≥ 0. For the calculations we also have the
commutation formulas (see Kotschwar [33, Lemma 4.3]) for a tensor X

[Dt,∇]X = ∇R ∗X +R ∗ ∇X
[Dt −∆,∇a] = 2RabdcΛ

c
d∇b + 2Rab∇b,

where Λ is a certain algebraic operation on tensors.
Let us write Ŝ = (∇R) ◦ P̂ and T̂ = (∇2R) ◦ P̂ . Here the action of P̂ is such

that for instance Ŝ(X, η) = (∇XR)P̂ (η) for a vector X and 2-form η. Note that

Ŝ = ∇R̂ + R ∗ ∇P̂ , and T̂ = ∇Ŝ + ∇R ∗ ∇P̂ . The advantage of Ŝ and T̂ over

∇R̂,∇2R̂ is that their evolution equations only involve up to two derivatives of P̂ ,
and their norms are controlled by |∇R|, |∇2R| since P̂ is a projection. From [33,
Proposition 4.5] we have

Dt∇P̂ = R ∗ ∇P̂ + P̂ ∗ Ŝ,
and so we also have

Dt∇2P̂ = ∇Dt∇P̂ +∇R ∗ ∇P̂ +R ∗ ∇2P̂

= R ∗ ∇2P̂ +∇R ∗ ∇P̂ +∇P̂ ∗ Ŝ + P̂ ∗ T̂ + P̂ ∗R ∗ ∇P̂ .
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Using the estimates for ∇iR along the flow, it follows that

(2.1)
∂t|∇P̂ | ≤

A

t
|∇P̂ |+ c|Ŝ|

∂t|∇2P̂ | ≤ A

t
|∇2P̂ |+ A

t3/2
|∇P̂ |+ c|T̂ |,

for a dimensional constant c.
For the evolution of the curvature we have (see [33, Proposition 4.7, Lemma 4.9])

(Dt −∆)R = R ∗R,
[(Dt −∆)R] ◦ P̂ = R ∗ R̂+ P̂ ∗R ∗ R̂.

It follows that

(Dt −∆)R̂ = [(Dt −∆)R] ◦ P̂ +R ∗ ∇2P̂ +∇R ∗ ∇P̂
= R ∗ R̂+ P̂ ∗R ∗ R̂+R ∗ ∇2P̂ +∇R ∗ ∇P̂ ,

and so

(2.2) (∂t −∆)|R̂| ≤ A

t
|R̂|+ A

t
|∇2P̂ |+ A

t3/2
|∇P̂ |.

Similarly we have

(Dt −∆)Ŝ = [(Dt −∆)∇R] ◦ P̂ +∇R ∗ ∇2P̂ +∇2R ∗ ∇P̂ .
Using the commutation relations,

[(Dt −∆)∇aR] ◦ P̂ = [∇(Dt −∆)R] ◦ P̂ + [2RabdcΛ
c
d∇bR+ 2Rab∇bR] ◦ P̂

For the term involving Λcd we have (see the calculation in [33, Proposition 4.13])

P̂ijklRabdcΛ
c
d∇bRklmn = R ∗ Ŝ +∇R ∗ R̂ ∗ P̂ .

It follows that

[(Dt −∆)∇aR] ◦ P̂ = ∇
(
[(Dt −∆)R] ◦ P̂

)
+ [(Dt −∆)R] ∗ ∇P̂

+R ∗ Ŝ +∇R ∗ R̂ ∗ P̂
= ∇R ∗ R̂ +R ∗ ∇R̂+∇P̂ ∗R ∗ R̂ + P̂ ∗ ∇R ∗ R̂+ P̂ ∗R ∗ ∇R̂
+R ∗R ∗ ∇P̂ +R ∗ Ŝ

= R ∗ Ŝ +∇R ∗ R̂+R ∗R ∗ ∇P̂ +R ∗ R̂ ∗ ∇P̂ + P̂ ∗ ∇R ∗ R̂
+ P̂ ∗R ∗ Ŝ + P̂ ∗R ∗R ∗ ∇P̂ .

This implies

(2.3) (∂t −∆)|Ŝ| ≤ A

t
|Ŝ|+ A

t3/2
|∇2P̂ |+ A

t2
|∇P̂ |+ A

t3/2
|R̂|.

For T̂ , we have

(Dt −∆)T̂ = [(Dt −∆)∇2R] ◦ P̂ +∇2R ∗ ∇2P̂ +∇3R ∗ ∇P̂ .
By the commutation relations again

[(Dt −∆)∇a∇R] ◦ P̂ = [∇(Dt −∆)∇R] ◦ P̂
+ [2RabdcΛ

c
d∇b∇R+ 2Rab∇b∇R] ◦ P̂ ,
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By the same argument as [33, Proposition 4.13], the term involving Λ satisfies

RabdcΛ
c
d∇b∇R ◦ P̂ = R ∗ T̂ +∇2R ∗ R̂ ∗ P̂ .

At the same time, we have

[∇(Dt −∆)∇R] ◦ P̂ = ∇
(
[(Dt −∆)∇R] ◦ P̂

)
+ [(Dt −∆)∇R] ∗ ∇P̂ .

Using the calculations above, and collecting various terms, we obtain

(2.4) (∂t −∆)|T̂ | ≤ A

t
|T̂ |+ A

t2
|∇2P̂ |+ A

t5/2
|∇P̂ |+ A

t2
|R̂|+ A

t3/2
|Ŝ|.

Given a constant K > 0, using Equations (2.1), (2.2), (2.3), (2.4), we have

∂tt
−K−1/2|∇P̂ | ≤ A−K − 1/2

t
t−K−1/2|∇P̂ |+ ct−K−1/2|Ŝ|

∂tt
−K |∇2P̂ | ≤ A−K

t
t−K |∇2P̂ |+ A

t
t−K−1/2|∇P̂ |+ ct−K |T̂ |

(∂t −∆)t−K−1|R̂| ≤ A−K − 1

t
t−K−1|R̂|+ A

t2
t−K |∇2P̂ |+ A

t2
t−K−1/2|∇P̂ |

(∂t −∆)t−K−1/2|Ŝ| ≤ A−K − 1/2

t
t−K−1/2|Ŝ|+ A

t2
t−K |∇2P̂ |

+
A

t2
t−K−1/2|∇P̂ |+ A

t
t−K−1|R̂|

(∂t −∆)t−K |T̂ | ≤ A−K

t
t−K |T̂ |+ A

t2
t−K |∇2P̂ |+ A

t2
t−K−1/2|∇P̂ |

+
A

t
t−K−1|R̂|+ A

t
t−K−1/2|Ŝ|

Let K > 3A+ 2 and define

Y = t−K |∇2P̂ |+ t−K−1/2|∇P̂ |
Z = t−K |T̂ |+ t−K−1/2|Ŝ|+ t−K−1|R̂|.

From the inequalities above we then obtain

∂tY ≤ cZ

(∂t −∆)Z ≤ A

t2
Y.

Note that Y is still smooth up to t = 0, and Y (x, 0) = 0 for all x. It follows that

Y (x, t) ≤ tcmax
s≤t

Z(x, s),

and therefore Z satisfies the inequality (for a larger choice of A)

(∂t −∆)Z(x, t) ≤ A

t
max
s≤t

Z(x, s).

All t-derivatives of Z vanish at t = 0 because the initial metric is Kähler. In
addition since P̂ is a projection map, the norms |R̂|, |Ŝ|, |T̂ | are controlled by
|R|, |∇R|, |∇2R|. By the curvature estimates along the flow we have Z ≤ A/tl

for some A, l. We can therefore apply Lemma 2.1 to obtain that Z ≤ Ckt
k on

B(p, 1). In turn this also implies that Y ≤ Ckt
k.
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We can apply the same argument to obtain estimates for further derivatives of
the curvature composed with P̂ , inductively. Analogously to the above, we have
inequalities

(∂t −∆)|∇iR ◦ P̂ | ≤ A

t
|∇iR ◦ P̂ |+ Ckt

k,

where we are using the inductive assumption to control |∇jR ◦ P̂ | for j < i. It

follows that on a smaller ball B(p, r0) we have |∇iR ◦ P̂ | < Ckt
k, for i < 5, say.

This in turn implies estimates |∇iP̂ | ≤ Ckt
k for 0 < i < 5.

We can now use this to control ∇iJ for 0 < i < 5. Indeed, the evolution of ∇J
has the form (see [32, Lemma 7])

Dt∇J = Ŝ ∗ J +R ∗ ∇P̂ ∗ J +R ∗ ∇J,
and so

∂t|∇J | ≤
A

t
|∇J |+ Ckt

k.

it follows that |∇J | ≤ Ckt
k, since all t-derivatives of ∇J vanish at t = 0. For the

higher derivatives of J we can use the commutation relation to get

Dt∇iJ = ∇Dt∇i−1J +R ∗ ∇i−1J +∇R ∗ ∇iJ

and so we can inductively find inequalities of the form

∂t|∇iJ | ≤ A

t
|∇iJ |+ Ckt

k,

for 0 < i < 5, say. We therefore have |∇iJ | ≤ Ckt
k for 0 < i < 5 on B(p, r0).

From these bounds we find that the curvature endomorphism satisfies, for a local
orthonormal frame ei, that

|R(ei, ej)Jek − JR(ei, ej)ek| ≤ Ckt
k,

and from this it follows that the Ricci endomorphism Rc also satisfies |Rc(Jei) −
JRc(ei)| ≤ Ckt

k. The evolution of J is given by ∂tJ = J ◦Rc−Rc ◦ J , and so we
find that |J − J0| ≤ Ckt

k. Similarly we can also obtain |∇i∂tJ | ≤ Ckt
k, and so we

can inductively obtain estimates |∇i(J −J0)| ≤ Ckt
k for i < 5, using the equations

Dt∇i(J − J0) = R ∗ ∇i(J − J0) +∇R ∗ ∇i−1(J − J0) +∇Dt∇i−1(J − J0).

Finally we can conclude that we have estimates |∇iJ0| ≤ Ckt
k on B(p, r0) for t ≤ 1.

By rescaling (and choosing ǫ smaller), we can assume that we have estimates
|∇iJ0| ≤ C with respect to the metric g(1), on Bg(p, 6D). By the properties of
the flow g(t) in Proposition 2.1 we can view g(1) as a metric on the Euclidean ball
BCn(0, 5D), close in C5 to the Euclidean metric, and so J0 has bounded deriva-
tives in terms of the Euclidean metric. After a linear change of coordinates with
bounded eigenvalues, we can assume that J0 is standard at the origin, and it still
has bounded derivatives. We can now find holomorphic functions on a small ball
Bg(1)(p, r0) which are perturbations of the complex linear functions, for instance

by the approach of Hörmander [28] using L2-estimates to the Newlander-Nirenberg
theorem. If we choose ǫ sufficiently small, then by the distance estimates along the
flow (applied for small t) we can obtain

Bg(1)(p, r0/3D) ⊂ Bg(0)(p, r0/2D) ⊂ Bg(1)(p, r0),
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since by the curvature estimates, for any small t0 > 0 we can assume that g(t) is
very close to g(1) for t ∈ [t0, 1]. Setting r = r0/2D, we thus obtain a holomorphic
chart as required. �

We next construct a bounded Kähler potential locally.

Proposition 2.3. There exist ǫ, C > 0 with the following property. Suppose that
B(p, ǫ−1) is relatively compact in a Kähler manifold (Mn, ω) satisfying Ric(ω) >
−ǫω, and in addition dGH(B(p, ǫ−1), BCn(0, ǫ

−1)). Then on B(p, C−1) we can write
ω = i∂∂̄φ with |φ| < C.

Proof. In Proposition 2.2 we have constructed a holomorphic chart on a small ball
around p, and by choosing ǫ smaller and scaling, we can assume that the chart

F : B(p, 1) → C
n

is defined on B(p, 1), and B(0, r1) ⊂ C
n is contained in its image. In terms of this

chart, we can view our metric ω as defining a metric on B(0, r1). We first “glue”
this metric onto CP

n in order to run the Ricci flow.
On B(0, r1) we can write ω = i∂∂̄ψ, where we can assume that ψ ≥ 0. Consider

the function

f(z) = log(1 + |z|2)− log(1 + r21/4),

on Cn, that is negative in B(0, r1/2) and positive elsewhere. It follows that for
sufficiently large K, if we take a regularized maximum

h(z) = m̃ax{ψ,Kf}
then η = i∂∂̄h is a well defined metric on Cn extending to a metric on CP

n, such
that η = ω in B(0, r1/4). The Kähler class [η] = K[ωFS], where ωFS is the Fubini-
Study metric. Note that since ∇F is bounded, we have F (B(p, δ1)) ⊂ B(0, r1/4)
for suitable δ1 > 0.

It follows from Tian-Zhang [52], that if K is large (not necessarily bounded a
priori), then we have a well defined Kähler-Ricci flow solution ηt for t ∈ [0, 1].
Since for the initial metric B(p, δ1) is Gromov-Hausdorff close to the Euclidean
ball, we can again apply the result of Cavalletti-Mondino [2] and the pseudolocality
theorem (alternatively we could apply the version of the pseudolocality theorem
proved by Tian-Wang [51]). We find that if ǫ is sufficiently small, then for small
δ2, T > 0 the metric ηT on the ball BηT (p, δ2) is Ψ(ǫ|n, T )-close to the Euclidean
metric in C5 (and it is Kähler), therefore ηT = i∂∂̄φT for a potential φT satisfying
|φT | < C. We will fix T below, depending on the distance estimates following from
the pseudolocality theorem.

Letting Ω be a fixed holomorphic volume form on BηT (p, δ2), we can find a family
of potentials φt for ηt on BηT (p, δ2) by solving the equation

(2.5)
d

dt
φt = log

ηnt
Ω
.

By pseudolocality we have the estimate |Ric(ηt)|ηt < C/t, and so the Ricci flow
equation ∂tηt = −Ric(ηt) implies that the eigenvalues λt of ηt relative to ηT satisfy
C−1t < |λt| < C/t. Therefore

∣∣∣∣log
ηnt
Ω

∣∣∣∣ < C| log t|,
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and so from Equation (2.5), together with the bound for φT , we obtain |φ0| < C.
Therefore the metric η has a bounded Kähler potential on the ball BηT (p, δ2). As
long as T is chosen sufficiently small, depending on the distance distortion estimates
as in Proposition 2.1, this ball contains the ball Bη(p, δ3) for suitable δ3. �

We now prove Theorem 1.4

Proof of Theorem 1.4. Suppose that we have a sequence ǫi → 0, and correspond-
ing balls B(pi, ǫ

−1
i ) with metrics gi as in the statement of the proposition. From

Proposition 2.3, we can assume that for large i, we have holomorphic charts Fi :
B(pi, 2) → Cn, and Kähler potentials φi for gi on B(pi, 2), with |φi| < C. In ad-
dition, by assumption, the B(pi, 2) converge to BCn(0, 2) in the Gromov-Hausdorff
sense.

We can now argue along the lines of the proof of Proposition 3.1 in [36] to show
that for sufficiently large i, on smaller balls B(pi, δ) with δ = δ(n) > 0 we can
find holomorphic charts zij , which give a Ψ(i−1)-Gromov-Hausdorff approximation

to the Euclidean ball B(0, δ). For this, note first that under the holomorphic
charts Fi above, we have B(0, r1) ⊂ Fi(B(pi, 2)) for some r1 > 0. We can assume
that Fi(pi) = 0 for all i. Let Ui ⊂ B(pi, 2) denote the connected component of
F−1
i (B(pi, r1/2)) containing pi. Then Ui is a Stein domain, which implies that we

can apply the Hörmander L2 existence theorem (see Demailly [14] Theorem 5.1)
on Ui with the trivial line bundle equipped with metric e−φi . Note that the φi are
uniformly bounded, and B(pi, r2) ⊂ Ui for a fixed r2 > 0 by the Cheng-Yau gradient
estimate for Fi. As in [36], using Cheeger-Colding [3] and Cheeger-Colding-Tian [8,
Section 9], we have harmonic functions wij on B(pi, 2) which give a Ψ(i−1)-Gromov-
Hausdorff approximation to B(0, 1), and in addition satisfy

−
∫

B(pi,1)

|∂̄wij |2 < Ψ(i−1).

Using the L2-estimate we can perturb the wij on Ui to holomorphic functions zij,

which still give a Ψ(i−1)-Gromov-Hausdorff approximation from B(pi, r2) to their
image in Euclidean space. Just as in [36, Claim 3.2], on a smaller ball B(pi, δ) the
zij define holomorphic charts for sufficiently large i.

Using our charts, we can now view the metrics ωi as defining metrics on the
Euclidean ball B(0, δ/2), with uniformly bounded potentials φi (i.e. we identify
the functions zij with zj). The identity map on B(0, δ/2) is then a Ψ(i−1)-Gromov-
Hausdorff approximation from ωi to the Euclidean metric ωEuc, while the gradient
bound for the holomorphic functions zi with respect to ωi implies that we have
a lower bound ωi > C−1ωEuc. The φi satisfy ∆ωiφi = 2n, and so using the
gradient estimate, we can take a limit φ∞ on B(0, δ/2). By the same argument
as the proof of Claim 3.1 below, the function φ∞ − r2 is pluriharmonic. It follows

that φ̃i = φi + (r2 − φ∞) are also Kähler potentials for ωi, and by construction

|φ̃i − r2i | < Ψ(i−1), where ri is the ωi-distance from pi . �

Using such holomorphic charts, the following proposition allows us to define
a complex structure on the almost regular set Rǫ in the limit space of Kähler
manifolds with Ricci curvature bounded below, for sufficiently small ǫ.

Proposition 2.4. There exists ǫ = ǫ(n) > 0 so that the following holds. Let
(Mn

i , pi, ωi) be a sequence of Kähler manifolds (not necessarily complete) so that
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Ric ≥ −ǫ and B(pi,
2
ǫ ) ⊂⊂ Mi, with dGH(B(pi, 2ǫ

−1), BCn(0, 2ǫ
−1)) < ǫ. Assume

that (Mn
i , pi) → (X, p) in the pointed Gromov-Hausdorff sense. Let (zi1, .., z

i
n) be

holomorphic charts on B(pi, 10) obtained using Theorem 1.4, and let us assume
zij → zj on B(p, 5). Then (z1, .., zn) is a homeomorphism from B(p, 3) to the
image.

Proof. The argument is similar to Proposition 6.1 of [35], and the main point is
to prove the injectivity. Suppose that x1, x2 ∈ B(p, 5), with d(x1, x2) = 10d 6= 0.
We will show that the coordinates (z1, ..., zn) separate them. Consider sequences
Mi ∋ xi1 → x1,Mi ∋ xi2 → x2. Then for large i, B(xi1, d) ∩ B(xi2, d) = ∅. Using
volume comparison, we see that B(xi1, ǫ

−1
0 d) is ǫ0d-Gromov-Hausdorff close to a

Euclidean ball if ǫ is sufficiently small, where ǫ0 is the parameter from Theorem 1.4.
It follows that we have holomorphic charts (zik1, ..., z

i
kn) around xk (k = 1, 2), which

give Gromov-Hausdorff approximations from each B(xik, d) to the Euclidean ball.
As in [36, Lemma 5.1], we can define plurisubharmonic weight functions

ψi = C(d)φi +
∑

k=1,2

λ
(
d−2

n∑

j=1

|zikj |2
)
log




n∑

j=1

|zikj |2



for a suitable constant C(d), and cutoff function λ supported in [0, 1/2), equal to 1
in [0, 1/4]. These have the property that e−ψi is not locally integrable at xi1, x

i
2.

Let us define the functions

fi = λ
(
d−2

n∑

j=1

|zi1j |2
)
,

which equal 1 in B(xi1, d/2), and zero outside of B(xi1, d). We have a uniform
bound ‖∂̄fi‖L2(e−ψi ) < C using the weight functions e−ψi , and so applying the

Hörmander estimate (as in the proof of Theorem1.4 the ball B(pi, 6) is contained
in a Stein domain), we can solve the equations ∂̄hi = ∂̄fi on B(pi, 6), with estimates
‖hi‖L2(e−ψi ) < C. Note that near xi1, x

i
2 this implies that ∂̄hi = 0, and since e−ψi

is not locally integrable near these points, we have hi(x
i
k) = 0 for k = 1, 2. This

shows that the holomorphic functions fi − hi separate the points xi1, x
i
2. Since

the construction is uniform in i, we obtain holomorphic functions of the zi which
separate x1, x2, and so x1, x2 must be separated by the zi. If we now let F =
(z1, . . . , zn), and Ω = F−1(B(0, 4)), we find that F is proper and injective, and
therefore it is a homeomorphism. �

Note that these local charts define a holomorphic atlas on Rǫ. For this it is
enough to note that if fi = fi(z

i
1, . . . , z

i
n) are uniformly bounded holomorphic func-

tions, and fi → f under the Gromov-Hausdorff convergence, then f is a holomor-
phic function of z1, . . . , zn.

To conclude this section, let us present two applications of Theorem 1.4.

Proposition 2.5. Let (Mn
i , ωi, pi) be a sequence of complete Kähler manifolds

with Ric > −1 and vol(B(pi, 1)) > v > 0. Assume that (Mn
i , pi) → (Mn, p) in

the pointed Gromov-Hausdorff sense, where Mn is a smooth Riemannian manifold.
Then the scalar curvatures Si of Mi converge to the scalar curvature S of M in the
measure sense. That is to say, for any points Mi ∋ qi → q ∈ M , and any r > 0,
we have

∫
B(qi,r)

Siω
n
i →

∫
B(q,r) Sω

n as i→ ∞.
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Remark 2.1. It is clear from the proof that this proposition is local in nature.
That is to say, the completeness of the Kähler metrics is not necessary, as long as
B(qi, r) is relatively compact in Mi.

Proof. It suffices to prove that there exists a subsequence of Mi so that the propo-
sition is true, and we only need to prove the result locally near p. By suitable scal-
ing, we may assume that dGH(B(p, 1

ǫ2 ), BCn(0,
1
ǫ2 )) < ǫ2 and Ric(Mi) ≥ −ǫ2. Here

ǫ = ǫ(n) is the small constant in Theorem 1.4. Thus we have holomorphic charts
(zi1, ..., z

i
n) on B(pi, 10) so that the coordinate maps (zi1, .., z

i
n) : B(pi, 10) → Cn

give Ψ(ǫ|n)-Gromov-Hausdorff approximations to their images. Let us assume that
the holomorphic charts (zi1, ..., z

i
n) converge to a chart (z1, ..., zn) on B(p, 8) as in

Proposition 2.4. This defines a complex structure J on the ball B(p, 8). Note that
a priori g is just a Riemannian metric on M , however we have the following.

Claim 2.1. The metric g on M is compatible with the complex structure J on
B(p, 8). That is to say, g is a Kähler metric with respect to J .

Proof. Note that the functions zij are all holomorphic, hence harmonic, and so
z1, .., zn are all complex harmonic on B(p, 8). Therefore, they are all smooth with
respect to the Riemannian metric g. In particular, this shows that the complex
structure J is smooth with respect to g. In addition, it follows that the compo-
sition of chart maps (zj)

−1 ◦ (zij) gives a holomorphic Ψ(i−1)-Gromov-Hausdorff

approximation from B(pi, 7) to its image in B(p, 8).
Let ui be such that

√
−1∂∂ui = ωi on B(pi, 10), given by Theorem 1.4. As

∆ui = 2n, ∇ui is uniformly bounded on B(pi, 9.5), and we can assume that ui con-
verges uniformly under the Gromov-Hausdorff convergence to a smooth function u
on B(p, 9), satisfying ∆u = 2n. Using our charts, the ui can be viewed as plurisub-
harmonic functions on B(p, 9) converging uniformly to u, and so ω =

√
−1∂∂u

is a closed positive (1, 1) current with smooth coefficients. To prove the claim,
it suffices to prove that the metric g is the same as the Kähler metric ω. Note
that ω is a well defined form on M , independent of the choice of bounded Kähler
potentials ui for ωi. This follows since if above we choose different potentials u′i
converging to u′, then vi = ui−u′i are pluriharmonic, and so is their uniform limit.
So

√
−1∂∂̄u′ =

√
−1∂∂̄u.

To compare these two smooth metrics, we can blow up a point p on M and
compare the metrics on the tangent space. Let τ > 0 be a small number. Let us
rescale the distance on Mi and M by 1

τ . Let the rescaled manifolds be (M τ
i , pτ,i)

and (M τ , pτ ), and the metrics be ωτ,i and ωτ , gτ . Then by applying Theorem 1.4

again, on B(pτ,i, 1) we have ωτ,i =
√
−1∂∂uτ,i. Let us say uτ,i → uτ on B(pτ , 1).

Notice that the limit of gτ as τ → 0 is the Euclidean metric, and by Theorem 1.4
the limit potentials uτ approach the distance squared |z|2 from the origin as τ → 0.
It follows that the limit of

√
−1∂∂uτ as τ → 0 is the Kähler form associated to the

Euclidean metric. This implies our claim. �

From now on, for a function u on B(p, 7), we may also think it is defined on
B(pi, 6) by lifting via the coordinate map.

Claim 2.2.
∫
B(pi,5)

|〈dzik, dzij〉 − 〈dzk, dzj〉|2 < Ψ(1i ).
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Proof. Pick q ∈ B(p, 6) and Mi ∋ qi → q. From a standard covering argument, it
suffices to prove that

(2.6) lim
ρ→0

lim
i→∞

−
∫

B(qi,ρ)

|〈dzik, dzij〉 − 〈dzk, dzj〉|2 = 0.

By subtracting constants, we may assume zij(qi) = zj(q) = 0 for all i, j, and in

addition, applying a linear transformation we can assume that 〈dzk, dz̄j〉(q) = δkj .
Let us rescale the distance on (Mi, qi) and (M, q) by 1

ρ . We also rescale zij, zj by
1
ρ . As M is a smooth manifold, 〈dzk, dzj〉 is a smooth function and so after scaling

we have 〈dzk, dzj〉 = δjk + Ψ(ρ) on B(q, 1). It follows that for sufficiently large i,
the zij define a Ψ(ρ)-Gromov-Hausdorff approximation to the Euclidean ball, and
so by [3], we have

(2.7) −
∫

B(qi,1)

|〈dzik, dz̄ij〉 − δjk|2 < Ψ(ρ).

The required equality (2.6) follows from this. �

Set si = dzi1 ∧ dzi2 ∧ . . . ∧ dzin and s = dz1 ∧ dz2 ∧ . . . ∧ dzn. Then Claim 2.2
implies that

(2.8)

∫

B(pi,5)

∣∣|s|2 − |si|2
∣∣ < Ψ(

1

i
).

Lemma 2.2. lim
i→∞

∫
B(pi,4)

∣∣log |si|2 − log |s|2
∣∣ωni = 0.

Proof. The Poincaré-Lelong equation says

(2.9)

√
−1

2π
∂∂ log |si|2 = Ric(Mi) ≥ −ǫωi.

According to Theorem 1.4, we may assume that on B(pi, 10), ωi =
√
−1∂∂ui and

ui → u uniformly. Let us say |ui| ≤ 1000 for all i. By (2.9), log |si|2 + 2πǫui is
plurisubharmonic on B(pi, 10). Set

(2.10)
vi = log |si|2 + 2πǫui,

v = log |s|2 + 2πǫu.

We need to show that vi converges to v in L1. If we were working on the same
space, then the lemma would follow from the standard theory of plurisubharmonic
functions since by (2.8), log |si|2 cannot go uniformly to −∞.

Claim 2.3. There exists a constant C, independent of i, so that
∫
B(pi,9)

|vi| ≤ C.

Proof. The argument will be similar to Proposition 2.7 of [38]. In the proof C
will be a large constant independent of i. The value might change from line to
line. Since vi has an upper bound independent of i, it suffices to prove

∫
B(pi,7)

vi is

uniformly bounded from below. Let Gi(x, y) be the Green’s functions on B(pi, 10).
Set

(2.11) Fi(x) = vi(x) +

∫

B(pi,10)

Gi(x, y)∆vi(y)dy.

Then Fi is harmonic, with the same boundary values as vi. By the maximum
principle, Fi ≤ sup

B(pi,10)

vi. Let us say Fi ≤ C. From (2.8), we can find a point
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xi ∈ B(pi, 1) so that v(xi) ≥ −C for all i. Since vi is subharmonic, Fi(xi) ≥ −C.
Then by the Cheng-Yau gradient estimate [18], we have |Fi| ≤ C on B(pi, 9).
Inserting x = xi in (2.11), we also obtain that

∫
B(pi,9)

∆vi(y)dy ≤ C, using the

lower bound for the Green’s function. By changing the radius 10 to 11 in (2.11),
we may assume that

∫
B(pi,10)

∆vi(y)dy ≤ C.

By integrating (2.11), we find
(2.12)∫

B(pi,9)

vi(x) =

∫

B(pi,9)

Fi(x) −
∫

B(pi,10)

(∫

B(pi,9)

Gi(x, y)dx

)
∆vi(y)dy ≥ −C,

using the upper bound for the Green’s function. �

To complete the proof of Lemma 2.2 we will use the argument in Hörmander [27],
Theorem 4.1.9 on page 94. Because of Claim 2.3, by passing to a subsequence, we
may assume that vi converges weakly as a measure to w on B(p, 7). By this we mean
that for any smooth function u with compact support on B(p, 9),

∫
Mi
uvi →

∫
M
uw.

We emphasize that a priori, w is merely a measure. In Hörmander’s proof, the
convolution is used to mollify the functions. Since Mi is not necessarily Euclidean,
we consider the heat flow. More precisely, let φ be a smooth cut-off function on M
so that φ = 1 on B(p, 8) and φ = 0 outside B(p, 9). Recall that we use the charts to
identify the different balls B(pi, 9), and by the gradient estimate we have a uniform
lower bound for ωi in the charts. It follows that we can assume |φ|, |∇φ|, |∆φ| < C
with respect to the metric ω on M as well as with respect to the metrics ωi. Define

(2.13)

vit(x) =

∫

Mi

Hi(x, y, t)φ(y)vi(y)dy,

wt(x) =

∫

M

H(x, y, t)φ(y)w(y)dy,

where Hi, H are heat kernels on Mi and M respectively. Note that for any t > 0,
wt is a function.

(2.14)

dvit
dt

=

∫

Mi

Hi(x, y, t)vi(y)∆φ(y)dy +

∫

Mi

Hi(x, y, t)φ(y)∆vi(y)dy

+ 2

∫

Mi

Hi(x, y, t)〈∇vi(y),∇φ(y)〉dy.

Notice that ∆φ has support outside of B(pi, 7). As vi(y) has a uniform L1 bound,
according to Li-Yau’s heat kernel estimate [39], on B(pi, 6), the first term will be
bounded by Ψ(t). The second term is nonnegative, since vi is subharmonic. For
the last term, we can do integration by parts to transform derivatives to the heat
kernel and φ. By the estimate for the derivative of the heat kernel [31], we find that
on B(pi, 6), the last term is bounded by Ψ(t). Therefore, we find that on B(pi, 6),

(2.15)
dvit
dt

≥ −Ψ(t).

Let η be a nonnegative smooth function so that η = 1 on B(p, 4), η = 0 outside
B(p, 5). According to the assumption,

(2.16)

∫

Mi

viη →
∫

M

wη.
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It is clear from (2.13) that

(2.17)

∣∣∣∣
∫

M

(wη − wtη)

∣∣∣∣ ≤ Ψ(t).

For each fixed t > 0, we haveHi(x, y, t) → H(x, y, t). Therefore, vit → wt uniformly
on each compact set. By the almost monotonicity (2.15), given any δ > 0, there
exists a > 0 sufficiently small so that on B(pi, 6),

(2.18) wa − vi + δ > 0

for all sufficiently large i. Note that by the volume convergence theorem of Colding
[19], we have

(2.19)

∫

Mi

waη →
∫

M

waη.

Putting (2.16)-(2.19) together, we find that for sufficiently large i,

(2.20)

∫

Mi

|wa − vi + δ|η ≤ Ψ(a, δ).

Then we obtain that

(2.21) lim
λ→+∞

lim inf
i→∞

∫

Eλi

vi = 0,

where Eλi = {x ∈ B(pi, 4)|vi(x) ≤ −λ}. Notice that on B(p, 4), log |s|2 is bounded
from below. Recall that vi, v are defined in (2.10). Lemma 2.2 follows by putting
(2.8) and (2.21) together. �

Let h be a smooth function of compact support on B(p, 4). Note that by the
Poincaré-Lelong equation, the scalar curvature is given by

(2.22) Si =
1

2π
∆ log |si|2.

Therefore
(2.23)

2π

(∫

Mi

hSi −
∫

M

hS

)
=

∫

Mi

log |si|2∆h−
∫

M

log |s|2∆h

=

∫

Mi

(log |si|2 − log |s|2)∆h+

∫

Mi

log |s|2(∆ωih−∆ωh)

+ (

∫

Mi

log |s|2∆ωh−
∫

M

log |s|2∆h).

As we noticed before, ∆h with respect to ωi is uniformly bounded. Therefore,
according to Lemma 2.2, the first term approaches zero as i → ∞. Note that
by Claim 2.2,

∫
Mi

|∆ωh − ∆ωih| → 0. Therefore, the second term converges to

zero. Finally, the last term converges to zero by the volume convergence theorem
of Colding [19]. We obtained the following.

Lemma 2.3. Let h be a smooth function of compact support on B(p, 4). Then
lim
i→∞

∫
Mi
hSi =

∫
M
hS.
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Note that Si + 2n ≥ 0 for all i. For any r1 < r < r2, we can find smooth
functions f and g so that 0 ≤ f, g ≤ 1; f = 1 on B(p, r1), f has compact support
on B(p, r); g = 1 on B(p, r), g has compact support on B(p, r2). For sufficiently
large i we have

(2.24)

∫

Mi

f(Si + 2n) ≤
∫

B(pi,r)

(Si + 2n) ≤
∫

Mi

g(Si + 2n).

We can apply Lemma 2.3. Letting i → ∞ and r1, r2 → r, we obtain the proof of
Proposition 2.5. �

Corollary 1.2 is immediate from Proposition 2.5. We will prove Proposition 1.1
after Proposition 3.3.

Finally we prove Proposition 1.2. We state it again here for convenience.

Proposition 2.6. There exists ǫ(n) > 0 so that if Mn is a complete noncompact
Kähler manifold with Ric ≥ 0 and lim

r→∞
r−2nvol(B(p, r)) ≥ ω2n − ǫ, then M is

biholomophic to Cn.

The argument is very similar to [36, Theorem 4.1], with the three circle theorem
replaced by the three annulus type result from Donaldson-Sun [22, Proposition 3.7].
In our setting, the relevant statement is the following.

Lemma 2.4. Given δ ∈ (0, 1) there exists ǫ > 0 with the following property. Sup-
pose that lim

r→∞
r−2nvol(B(p, r)) ≥ ω2n−ǫ. Then for any r > 0, and any holomorphic

function f on B(p, 2r) we have that

−
∫

B(p,r)

|f |2 ≥ 22(1−δ)−
∫

B(p,r/2)

|f |2 implies −
∫

B(p,2r)

|f |2 ≥ 22(1−δ)−
∫

B(p,r)

|f |2,

and

−
∫

B(p,r)

|f |2 ≥ 22(1+δ)−
∫

B(p,r/2)

|f |2 implies −
∫

B(p,2r)

|f |2 ≥ 22(1+δ)−
∫

B(p,r)

|f |2.

Proof. By the volume monotonicity we have r−2nvol(B(p, r)) ≥ ω2n − ǫ for all
r. After rescaling, we can assume that in the statement of the Lemma we have
r = 1. We can then argue by contradiction, just as in [22, Proposition 3.7] (see also
Ding [20, Theorem 0.7]). If the first conclusion were to fail, then we could extract
a limiting harmonic function f on the Euclidean ball BCn(0, 2), such that

−
∫

B(0,1)

|f |2 ≥ 22(1−δ)−
∫

B(0,1/2)

|f |2, but −
∫

B(0,2)

|f |2 ≤ 22(1−δ)−
∫

B(0,1)

|f |2.

Such an f would have to be homogeneous of degree 1 − δ, but there is no such
harmonic function on Euclidean space. The other conclusion follows similarly. �

Proof of Proposition 2.6. First note that once ǫ is sufficiently small, we can apply
Theorem 1.4 to arbitrary balls inM . In particular for any R we obtain holomorphic
functions zR1 , . . . , z

R
n which provide a Ψ(ǫ)-Gromov-Hausdorff approximation from

B(p, 2R) to BCn(0, 2R). We can assume zRi (p) = 0. Once ǫ is sufficiently small, we
have

−
∫

B(p,2R)

|zRi |2 ≤ 23−
∫

B(p,R)

|zRi |2,
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and so iterating Lemma 2.4 we have

−
∫

B(p,2k)

|zRi |2 ≤ C23k−
∫

B(p,1/2)

|zRi |2,

whenever 2k < R. Let us define uRi in the span of the zRi , so that

−
∫

B(p,1)

uRi ū
R
j = δij .

The estimate above implies that we can extract limit holomorphic functions u1, . . . , un
on M as R → ∞, that are L2-orthonormal on B(p, 1), and

−
∫

B(p,R)

|ui|2 ≤ CR3/2

for all R > 1. We will show that (u1, . . . , un) provides a biholomorphism from M
to Cn if ǫ is sufficiently small.

We next prove the properness of the map given by the ui. For R > 1 let us
choose a new basis vRi for the span of the ui, so that

−
∫

B(p,R)

vRi v
R
j = cRi δij , and −

∫

B(p,1)

vRi v
R
j = δij ,

for some constants cRi . We then have
∑ |vRi |2 =

∑ |ui|2. Let λRi = supB(p,R) |vRi |,
and define wRi = vRi /λ

R
i . Then just as in [36, Claim 4.2], an argument by contra-

diction shows that if ǫ is sufficiently small, then the RwRi give an R
100n -Gromov-

Hausdorff approximation from B(p,R) to the Euclidean ball BCn(0, R). In particu-
lar
∑ |wRi |2 > 1/2 on ∂B(p,R). At the same time, using Lemma 2.4 with δ = 1/2,

and the fact that vRi (p) = 0 (so that vRi has at least linear growth on small scales),
we have

−
∫

B(p,R)

|vRi |2 ≥ C−1R−
∫

B(p,1)

|vRi |2 = C−1R.

It follows that λRi ≥ C−1/2R1/2. Therefore on ∂B(p,R) we have
∑

|ui|2 =
∑

|vRi |2 ≥ C−1/2R1/2
∑

|wRi |2 ≥ 1

2
C−1/2R1/2.

This implies that the map given by (u1, . . . , un) :M → Cn is proper.
We assert that the holomorphic n-form du1 ∧ . . . ∧ dun cannot vanish at any

point. Note that on each ball B(p,R) the functions ui are obtained as a limit of uRi
which satisfy that duR1 ∧ . . .∧duRn is nowhere vanishing. Therefore if du1∧ . . .∧dun
were to vanish at a point, then it would have to be identically zero. In this case the
image of (u1, . . . , un) would have dimension at most n− 1 in C

n, so the preimage
of a point would be a compact subvariety in M of dimension at least 1. This
contradicts that by Theorem 1.4 we can find holomorphic charts on arbitrarily
large balls in M . Since Cn is simply connected, it follows that (u1, . . . , un) must
be a biholomorphism. �

3. Constructing projective embeddings

Suppose that (Mn
i , ωi, Li) is a sequence of compact polarized Kähler manifolds

with Ric(Mi) > −1, diam(Mi) < d, vol(Mi) > v and such that the curvature of Li is
the Kähler metric ωi. Let us assume that the sequenceMi converges in the Gromov-
Hausdorff sense to the limit X . Our goal is to show that X is homeomorphic to a
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normal projective variety, following Donaldson-Sun [21]. As in [21], the main step
is the construction of holomorphic sections of suitable powers of Li, uniformly in i.
We can follow the argument in [21] fairly closely, the main new difficulty being that
in our setting we do not have smooth convergence of the metrics on the regular
set. To overcome this we will use the existence of good holomorphic charts on
the regular set (or rather the set Rǫ for small ǫ) provided by Theorem 1.4. The
argument is simplified by using the recent estimate of Cheeger-Jiang-Naber [9] on
the codimension 2 Minkowski content of the singular set, but see the Appendix for
a proof which avoids this.

We prove the following.

Proposition 3.1. Given ν, ζ > 0 there are K, ǫ, C > 0 with the following prop-
erty. Let (Mn, L, ω) be a polarized Kähler manifold such that Ric(ω) > −ǫω, and
vol(B(q, 1)) > ν for all q ∈ M . Suppose that dGH(B(p, ǫ−1), B(o, ǫ−1)) < ǫ for
a metric cone (V, o). Then Lm admits a holomorphic section s over M for some

m < K, such that ‖s‖L2 ≤ C, and ||s(x)| − e−md(x,p)
2/2| < ζ for x ∈ B(p, 1).

Note that if (Mn, ω) satisfies Ric > −1, diam(M) < d, vol(M) > v, then by
volume comparison, there is a ν > 0, depending on d, v such that vol(B(p, r)) >
νr2n for all r ≤ 1. Thus scaled up copies of M will satisfy the local non-collapsing
assumption in the statement of the proposition.

Proof. We will argue by contradiction, so suppose that the sequence (Mn
i , pi, Li, ωi)

satisfying the assumptions converges in the pointed Gromov-Hausdorff sense to
(V, o). We will show that there is an m > 0 such that for sufficiently large i, Lmi
admits a suitable section for the points pi.

From Theorem 1.4, volume comparison, and Cheeger-Colding theory, we have
an ǫ = ǫ(n) > 0 such that if q ∈ V satisfies r−2nvol(B(q, r)) > ω2n − ǫ for some
r < ǫ, then we have a holomorphic chart on B(q, ǫr). In terms of this we define the
singular set Σ of V as points q which satisfy lim

r→0
r−2nvol(B(q, r)) ≤ ω2n − ǫ. Note

that Σ is a closed set. Let Σρ be the ρ-neighborhood of Σ and set U = B(o,R)\Σρ.
Here R is sufficiently large and ρ if sufficiently small, to be chosen later, depending
on the parameters n, ν.

We can cover U by a finite number of small geodesic balls U ′j (j = 1, .., N ,
N depends on R, ρ) with center qj , such that the balls U j = ǫU ′j with the same
centers, but radius scaled by ǫ, still cover U . The radii of the U ′j can be chosen to
be a fixed small constant, depending on R, ρ.

Let Ui be the lift of U back to Mi, under the Gromov-Hausdorff approximation.
By Theorem 1.4 and our choice of ǫ, for sufficiently large i, we have uniform holo-
morphic charts (U ji , (z

j
i1, ..., z

j
in)) covering Ui. Moreover, by Proposition 2.4 the

holomorphic charts on U ji converge to charts on U j , with holomorphic transition
functions. Thus U admits a holomorphic structure.

From Theorem 1.4, on each U ji , there is a function ρij so that
√
−1∂∂ρij = ωi

and ρij is very close to the distance squared from the center of U ji . In particular
these ρij are uniformly bounded, independent of i. Observe ∆ρij = 2n, so Yau’s
estimate gives us uniform gradient bound on a smaller interior domain. Therefore,
by passing to a subsequence, we may assume ρij → ρj uniformly.
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Claim 3.1. On each U j, ρj − r2 is a pluriharmonic function with respect to the
holomorphic structure constructed above, where r is the distance function to the
vertex o ∈ V .

Proof. First, ρj − r2 is a bounded Lipschitz function. To prove the result, we show
that if α is any smooth (n−1, n−1) form with respect to the holomorphic structure,
with compact support in U j , then

∫

Uj
(ρj − r2)∂∂α =

∫

Uj
∂∂̄(ρj − r2) ∧ α = 0.

According to Cheeger-Colding [3], there is a sequence of functions hi on the U ji
converging to r2 as i→ ∞, and such that

lim
i→∞

∫

Uji

|ωi −
√
−1∂∂̄hi|2ωi ωni = 0.

The claim then follows from the fact that under our charts

lim
i→∞

∣∣∣∣∣

∫

Uji

∂∂(ρij − hi) ∧ α
∣∣∣∣∣ ≤ lim

i→∞

∫

Uji

|∂∂(ρij − hi)|ωi |α|ωiωni = 0.

Here we used that |α|ωi is uniformly bounded since our holomorphic charts have
uniformly bounded gradients, and so the ωi have uniform lower bounds in terms of
the charts. �

Since U ji is contained in a holomorphic chart, the line bundle Li over U ji is
isometric to a trivial holomorphic line bundle with weight e−ρij . Let sij be a

holomorphic section over U ji so that |sij | = e−ρij 6= 0. Note that if U ji ∩Uki 6= ∅, the
(holomorphic) transition functions fijk = sik

sij
are uniformly bounded. Therefore,

after taking a subsequence, we may assume that the line bundles Li converge to a
Hermitian holomorphic line bundle (L, h) over U .

The line bundle L is trivial over each Uj with weight e−ρj . By Claim 3.1 the

metric er
2

h on L is flat over U , but since U is not necessarily simply connected,

(L, er
2

h) need not be a trivial holomorphic line bundle with the flat metric. To deal
with the possible presence of holonomy we follow Donaldson-Sun’s argument. For
the reader’s convenience, we include some details. Pick a point q ∈ U ∩ ∂BV (o, 1).
As U is connected, we can join q with qj (recall qj is the center of geodesic balls
Uj) by smooth curves lj ⊂ U (in terms of holomorphic structure of U). Now let s′

be a vector in the fibre of L over q so that |s′| = 1. We can parallel transport s′

along lj , to get vectors s′j in the fibre of L over qj . Let us parallel transport s′j in
the geodesic ball Uj . Since L is flat and Uj is contained in a holomorphic chart, s′j
is well-defined.

Claim 3.2. Given any δ > 0, if we replace L by Lm, where m is some number that
is bounded by a constant K(δ, n, ν, R, ρ), then in the overlap Uj ∩Uk we can ensure
that |s′j − s′k|er2h < δ.

Proof. Notice that the norms under er
2

h of the s′j are all equal to one. So s′j =

s′ke
√
−1θjk . As Uj ∩ Uk is connected, θjk is constant. (s′j)

m = (s′k)
me

√
−1mθjk . To

prove the claim, we just need to find m so that mθjk is close to 2π times an integer
for all j, k ≤ N . It follows from elementary number theory that such m exists. The
bound follows from the fact that N depends only on n, ν,R, ρ. �
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Let us fix a very small δ = δ(n, ν), to be determined later. From now on, we
replace L by Lm, where m < K(δ, n, ν, R, ρ). Let us still call the new line bundle
L. Let us also rescale the metric (Mi, pi, ωi, Li) by (Mi, pi,mωi, L

m
i ). Since m is

a fixed number, the new sequence which we still call (Mi, pi, ωi) will converge to

(V, o). We can consider the same U ⊂ V . A priori, the charts U ji might be different,
but we shall make the centers qj be the same. Note that |s′j − s′k|er2h reflects the
holonomy and homotopy preserves the holonomy since L is flat. Thus the claim
implies that |s′j − s′k|er2h < δ. Note that s′j is a holomorphic section of L over U j.

Under the convergence Li → L, we can find holomorphic sections sij on Li over U
j
i

so that sij → s′j. Then, for sufficiently large i we have |sij − sik| ≤ 2δe−
1

2
r2 ≤ 2δ.

Moreover, |sij| ≤ 10e−
1

2
r2 for large i.

By a standard partition of unity, we can glue the sections sij together to a smooth

section ŝi of Li over Ui so that |∂ŝi|2 < γ, |ŝi−sij | < min(10δ, 20e−
1

2
r2). Here γ is a

small number depending only on n, ν, δ, R, ρ, and we are using the smooth structure
given by our holomorphic charts.

Similarly to [21], we introduce the first standard cut-off function ψ1
i , supported

in B(pi, R), and the second cut-off function ψ2
i , supported outside B(pi, ρ).

To define the third cut-off function ψ3
i , first recall the cut-off function in [40],

page 871. More precisely, if ǫ′ ≪ ǫ ≪ 1 (constants independent of i) we define a

cut-off function ψ(t) = 1, if t ≥ ǫ; ψ(t) = ( tǫ )
ǫ if 2ǫ′ ≤ t ≤ ǫ; ψ(t) = (2 ǫ

′

ǫ )
ǫ( tǫ′ − 1),

if ǫ′ ≤ t ≤ 2ǫ′; ψ(t) = 0 otherwise.
Let Σi ⊂ Mi so that Σi converges to the singular set Σ under the Gromov-

Hausdorff approximation. Let Σir be the r-tubular neighborhood of Σi. For x ∈
B(pi, R), let di(x) = dist(x,Σi). According to Cheeger-Jiang-Naber’s theorem
[9] and the volume convergence theorem [19], for ǫ′ < r < 2ǫ, if i is sufficiently
large, vol(Σir ∩B(pi, R)) ≤ C(n, ν,R)r2. Let the third cut-off function be ψ3

i (x) =
ψ(di(x)). Note |ψ′| is decreasing from 2ǫ′ to ǫ and 10|ψ′(2t)| ≥ |ψ′(t)| for any
2ǫ′ ≤ t ≤ 1

2ǫ. By the calculation in [40], for i large enough, we can make∫
B(pi,R) |∇ψ3

i |2e−r
2

as small as we want, provided ǫ′ and ǫ are small enough.

Recall that U is the complement of Σρ in B(o,R). Let us assume ρ < 1
10ǫ

′. As

in [21], the smooth section s̃i = ψ1
i ψ

2
i ψ

3
i ŝi satisfies

• s̃i supported in B(pi, R)\(B(pi, ρ) ∪ Σiǫ′).

•
∫
|∂s̃i|2 < γ2 (can be as small as we want, if we set the parameters R, ρ, ǫ, ǫ′

properly).
• |∇s̃i| ≤ C(n, ν) on Ui\Σi10ǫ
• |s̃i − sij | ≤ C(n, ν)δ on a slightly smaller subdomain of Ui.

By Hörmander’s L2 estimate, we can find a holomorphic section si on Mi so that
if we set s′′i = si − s̃i, then

∫
Mi

|s′′i |2 ≤ 10γ2. As si has uniform L2 bound, |∇si|
is uniformly bounded. Thus, on Ui\Σi10ǫ, ∇s′′i is uniformly bounded. Therefore,
by the integral estimate of s′′i , s

′′
i is very small in Vi = Ui\Σiǫ0. Here ǫ0 is a small

number depending only on n, ν, γ2. This means that on Vi, si is close to s̃i, hence

|si|2 is close to e−r
2

i on Vi (here ri is the distance to pi). But as a set, Vi is Hausdorff
close to B(pi, R). Then by the gradient estimate of si, we find that |si|2 is very

close to e−r
2

i on B(pi, R).
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Since s̃i vanishes outside of B(pi, R), s
′′
i is holomorphic on Mi\B(pi, R). As∫

|s′′i |2 ≤ 10γ2, we can make sure that |s′′i |2 < c(n, ν, d)γ2 on Mi\B(pi, 2R). Now
we can choose appropriate parameters so that Proposition 3.1 holds. �

Now let us take a look at the special case when the cone V in Proposition 3.1
splits off R2n−2. Note that when |Ric| is bounded, we actually have V = R2n

in this case, by Cheeger-Colding-Tian [8]. In general (V, o) is isometric R2n−2 ×
W , where (W, o′) is a two dimensional metric cone. Let us write the metric on
W as dr2 + r2dθ2, where 0 ≤ θ ≤ α and α is the cone angle of W . By [8],
the factor R2n−2 has a natural linear complex structure. The conical metric on
W also determines a natural complex structure. Thus (V, o) can be identified
with Cn. Let the standard holomorphic coordinates be given by (z1, .., zn−1, zn),
where z1, .., zn−1 are the standard linear coordinates on the first factor R2n−2 and

zn(r, θ) = r
2π
α e

2π
√

−1θ
α .

Fix ζ small, and let s be the holomorphic section of Lm constructed in Proposi-
tion 3.1. For simplicity of notation let us replace L by Lm (i.e. replace ω by mω).

Set h = − log |s|2, so that
√
−1∂∂h = ω. In addition h is close to the distance

squared from p. In particular, if we define Ω′ as the sublevel set h < 1000, then
if ζ is chosen small, we have B(p, 10) ⊂ Ω′ ⊂⊂ B(p, 100). Let Ω be the connected
component of Ω′ containing B(p, 10). Then Ω is a Stein manifold.

Using the same argument as Lemma 4.6 of [35] (the proof there only requires
the Ricci curvature lower bound), we have the following.

Lemma 3.1. We can find n complex harmonic functions w′
1, ..., w

′
n on B(p, 100)

so that w′
k is Ψ(ǫ|n, ν)-close to zk under the Gromov-Hausdorff approximation.

Furthermore,
∫
B(p,100)

|∂w′
k|2 ≤ Ψ(ǫ|n, ν).

We can solve the ∂ problem on Ω by using the weight e−h. By a similar argument
to before, we find holomorphic functions w1, . . . , wn on B(p, 10) which are Ψ(ǫ|n, ν)-
close to the z1, . . . , zn. By using the same argument as on page 18 of [35], we find
that if ǫ is sufficiently small, (w1, .., wn) gives a holomorphic chart on B(p, 5). We
have therefore obtained the following result (see also Proposition 12 in [15]).

Proposition 3.2. Let (M,L, ω) be a polarized Kähler manifold satisfying Ric > −1
and vol(B(p, 1)) > ν for all p ∈ M . There exists ǫ = ǫ(n, ν) so that the following
holds. Assume that dGH(B(p, ǫ−1), BV (o, ǫ

−1)) < ǫ, where (V, o) is a metric cone
splitting off R2n−2. Then there exists a holomorphic chart (w1, ..., wn) on B(p, 5)
such that (w1, ...., wn) is Ψ(ǫ|n, ν)-close to a standard holomorphic coordinate chart
on (V, o).

As a consequence of this we have the following result analogous to Proposi-
tion 2.5.

Proposition 3.3. Suppose that (Mn
i , Li, ωi) is a sequence of polarized Kähler man-

ifolds with Ric > −1, vol(B(qi, 1)) > ν > 0 for all qi ∈ Mi. For pi ∈ Mi, assume
that (Mi, pi) converges to a metric cone (V, o) in the pointed Gromov-Hausdorff
sense, where V = R2n−2 ×W with (W, o′) a two-dimensional cone. Then

lim
i→∞

∫

B(pi,1)

Siω
n
i = ω2n−2(2π − α),

where ω2n−2 is the area of the unit ball in R2n−2 and α ∈ (0, 2π) is the cone angle
of W . Note that the distributional scalar curvature of W is (2π − α)δo′ .
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Proof. The proof of Proposition 2.5 can be used essentially verbatim, using that un-
der our assumptions Proposition 3.2 gives suitable holomorphic charts on B(pi, 10).
The main difference is that now on the limit space the function |s| = |dz1∧. . .∧dzn|
vanishes along the singular set, and so log |s| is unbounded. Instead of the statement
of Lemma 2.2, we have that for any neighborhood U of the singular set (identified
with a subset of B(pi, 4) using the chart),

lim
i→∞

∫

B(pi,4)\U

∣∣log |si|2 − log |s|2
∣∣ωni = 0.

Then just as in (2.23) we will have

(3.1) lim
i→∞

∫

Mi\U
log |si|2∆ωih =

∫

V \U
log |s|2∆ωh.

Notice that on sufficiently small neighborhoods U of the singular set, the integrals
of both log |s| and log |si| can be made arbitrarily small. The former by direct
calculation, and the latter by the estimate (2.20). It then follows from (3.1) that

lim
i→∞

∫

Mi

log |si|2∆ωih =

∫

V

log |s|2∆ωh,

which implies the required result. �

Using this result, together with Cheeger-Jiang-Naber’s [9] bounds we now prove
Proposition 1.1, which we state again for the reader’s convenience.

Proposition 3.4. Let B(p, 1) be a unit ball in a polarized Kähler manifold (Mn, L, ω)
satisfying Ric > −1, such that vol(B(p, 1)) > v > 0. Then

∫
B(p,1) S < C(n, v).

Proof. For any l > 0, let Al denote the supremum of
∫
B(p,1) |S| over all unit balls

as in the statement, with the additional condition that Ric < l. Our goal is to
show that Al is bounded independently of l. Note that any Al is finite by volume
comparison. Also it is convenient to replace the condition vol(B(p, 1)) > v > 0 by

r−2nvol(B(q, r)) > v′ > 0, for all q ∈ B(p, 1) and r < 1,

since this condition is preserved when passing to smaller balls. The two conditions
imply each other for suitable v, v′ by volume comparison.

Let us recall the following notion from Cheeger-Jiang-Naber [9, Definition 1.3]. A
ball B(x, r) in a metric space is (k, ǫ)-symmetric if there is a metric cone X ′ = Rk×
C(Z) with vertex x′ splitting an isometric factor ofRk, such that dGH(B(x, r), B(x′, r)) <
ǫr. From Corollary 1.2 and Proposition 3.3 we find that there are constants ǫ, C1 > 0
with the following property. If B(q, ǫ−1) is a ball in a polarized Kähler manifold
with Ric > −1, vol(B(q, 1)) > v, and B(q, ǫ−1) is (2n − 2, ǫ2)-symmetric, then∫
B(q,1) |S| < C1.

Let r > 0 be small, to be chosen later, and set k = 2n− 3. As in [9], let S2n−3
ǫ2,r

denote the points x ∈ B(p, 1) such that B(x, s) is not (2n − 2, ǫ2)-symmetric for
any s ∈ [r, 1). Let us choose x1, . . . , xNr ∈ S2n−3

ǫ2,r such that B(xi, r) cover S2n−3
ǫ2,r ,

while B(xi, r/3) are disjoint. By [9, Remark 1.10] we have that Nrr
2n−3 ≤ Cǫ. In

addition, if Ric < l, then after scaling the ball B(xi, r) to unit size, it will still have
Ricci curvature bounded by l. We can assume that r−2 is an integer so the scaled
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up manifold is still polarized. It follows by scaling that
∫

B(xi,r)

|S| < r2n−2Al.

If y 6∈ ⋃B(xi, r), then by definition there is an s ∈ [r, 1) such that B(y, s) is
(2n− 2, ǫ2)-symmetric. It follows, after rescaling the result above that

∫

B(y,ǫs)

|S| < (ǫs)2n−2C1.

We can now cover B(p, 1) \ ⋃B(xi, r) by such balls B(yj , ǫsj), such that the
B(yj , ǫsj/5) are disjoint. We then have

∑

j

(ǫsj)
2n < C2,

and ∫

B(p,1)\⋃i B(xi,r)

|S| ≤
∑

j

∫

B(yj,ǫsj)

|S| ≤ C1

∑

j

(ǫsj)
2n−2 < C1C2(ǫr)

−2,

using sj ≥ r. In sum we get
∫

B(p,1)

|S| < Nrr
2n−2Al + C1C2(ǫr)

−2 ≤ rCǫAl + C1C2(ǫr)
−2.

We now choose r so that rCǫ < 1/2. It follows that

Al ≤
1

2
Al + C′,

where C′ is independent of l. This implies our result. �

Let us now return to the setting of the beginning of the section, i.e. (Mn
i , Li, ωi)

are polarized Kähler manifolds with Ric(ωi) > −ωi, diam(Mi) < d, vol(Mi) < v,
converging to X in the Gromov-Hausdorff sense. Given Proposition 3.1, an argu-
ment by contradiction implies the partial C0-estimate and separation of points:

Proposition 3.5. Given any point p ∈ X, take a sequence Mi ∋ pi → p. There
exist δ = δ(n, v, d) > 0, K(n, v, d) ∈ N and holomorphic sections si over L

m
i (m <

K(n, v, d)) so that
∫
|si|2 = 1, |si(pi)| ≥ δ.

Furthermore, given any two points p, q ∈ X with d(p, q) > a > 0 and sequences
Mi ∋ pi → p,Mi ∋ qi → q, we can find holomorphic sections s1i , s

2
i of Lm(m <

K(n, v, a, d)) and δ = δ(n, v, a, d) so that

•
∫
|s1i |2 + |s2i |2 < 1;

• |s1i (pi)| = δ, s1i (qi) = 0;
• s2i (pi) = 0, |s2i (qi)| = δ.

By following the same arguments as in [21, Section 4.3.1] we can prove that X
is homeomorphic to a projective variety and after suitable projective embeddings
a subsequence of the Mi converge to X as algebraic varieties. In addition, Propo-
sition 3.2 implies that X is complex analytically regular near the points p ∈ X
which admit tangent cones splitting off R2n−2. The remainder of X has Hausdorff
dimension at most 2n − 4 by [4], which implies as in [21] that X is normal. This
completes the proof of Theorem 1.1.



26 GANG LIU, GÁBOR SZÉKELYHIDI

4. Complex analytic and metric singularities

As in the previous section, given n, d, v, let (Mn
i , ωi, Li) be polarized Kähler

manifolds with Ric(Mi) > −1, diam(Mi) < d, vol(Mi) > v, such thatMi converge in
the Gromov-Hausdorff sense to X . Then X has the structure of a normal projective
variety, and it is also a metric space. In this section we will study the relation
between the singular sets of X in the metric sense and in the complex analytic
sense.

Pick a point p ∈ X , and take a sequence Mi ∋ pi → p. As a consequence of
Proposition 3.1, for sufficiently large i, there exists r0 > 0 independent of i and
a smooth ui on B(pi, r0) so that

√
−1∂∂ui = ωi and ui(x) is close to d2(x, pi).

Since Ric(ωi) > −ωi, Θi = Ric(ωi) +
√
−1∂∂ui is a closed positive current on

B(pi, r0). Now assume that p is a complex analytically regular point on X(i.e., a
non-singular point on the variety X). By shrinking the value of r0 if necessary,
by solving the ∂̄-problem with weights e−ui , we can find uniform holomorphic
charts (zi1, ..., z

i
n) on B(pi, r0) so that the charts converge to a holomorphic chart

(U, (z1, .., zn)) near p. As before, we can use these charts to identify the balls
B(pi, r0/2) with corresponding subsets of U . Let us say zj(p) = 0 for all j = 1, ..., n,
and define

vi =
1

2π
log |dzi1 ∧ dzi2 ∧ . . . ∧ dzin|2 + ui.

Note that Θi =
√
−1∂∂vi ≥ 0. Since U is an open set, |dzi1 ∧dzi2∧ . . .∧dzin| cannot

go to zero uniformly, as i→ ∞. Thus vi cannot go uniformly to −∞. By taking a
subsequence, we may assume that vi converges, in L

1
loc sense (with respect to the

Lebesgue measure given by the charts), to a plurisubharmonic function v on U . As
ui has uniformly bounded gradient (note that ∆ui = 2n), we can also assume that
ui → u uniformly. Define

(4.1) Ric =
√
−1∂∂(v − u).

Then Ric, as a closed (1, 1) current, is well defined on the complex analytically
regular part of X . Note that Ric is a closed positive current, up to

√
−1∂∂u for a

bounded function u. Thus the Lelong number for Ric, given by

(4.2)
1

2π
lim inf
x→p

log |dz1 ∧ dz2 ∧ . . . ∧ dzn|2
log |z(x)| ,

is well defined. Here the numerator can be defined as the limit of log |dzi1 ∧ dzi2 ∧
. . . ∧ dzin|2.

The main result in this section is the following

Proposition 4.1. A point p ∈ X is regular in the metric sense if and only if it is
complex analytically regular and the Lelong number for Ric vanishes at p.

Proof. It is clear from Theorem 1.4 that if p is regular in the metric sense, then
p must be complex analytically regular. Now let us prove that if X is complex
analytically regular at p and the Lelong number for Ric is zero at p, then p is a
regular point in X in the metric sense. We first need some preliminary results.

Claim 4.1. There exists a > 0, b = b(n, v, d) > 0 so that for all r < a, and
any point q ∈ ∂B(p, r), there exists a holomorphic function f on B(p, 4r) so that
f(p) = 0, sup

B(p,2r)

|f | = 1 and |f(q)| > b.
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Proof. Assume that the claim is false. Then there exist sequences ri, bi → 0 and
qi ∈ ∂B(p, ri) so that for all holomorphic functions fi on B(p, 4ri) with fi(p) = 0
and sup

B(p,2ri)

|fi| = 1, |fi(qi)| < bi. By passing to a subsequence, we may assume that

(Xi, pi, di) = (X, p, dri ) converges to a metric cone (V, o) in the pointed Gromov-

Hausdorff sense. Assume qi → q ∈ ∂B(o, 1).
To get a contradiction, we can prove results similar to Theorem 1.4 and Propo-

sition 2.9 of [22] (alternatively, Proposition 6.1 in [36]). The proof follows by a
very minor modification, so we skip the details. Then on (V, o) we can find a holo-
morphic function vanishing at o but nonzero at q, which we can lift to (Xi, pi)
for sufficiently large i. The lifted holomorphic functions will have a uniform lower
bound at qi, giving a contradiction. It is clear from the argument that b depends
only on n, v, d. �

Claim 4.2. Let p be a complex analytically regular point on X. Let (z1, ..., zn)
be a holomorphic chart near p, such that zj(p) = 0 for all j. Then there exists
α = α(n, v, d) > 0, C > 0, c > 0 so that cr(q)α ≤ |z(q)| ≤ Cr(q) for all q
sufficiently close to p. Here r is the distance function to p.

Proof. The inequality |z(q)| ≤ Cr(q) follows directly from the gradient estimate.
Now we prove the first inequality. Let a > 0, b = b(n, v, d) > 0 be the constants in
Claim 4.1. Let us fix a small r0 < a. We may assume that B(p, 2r0) is contained
in the holomorphic chart (z1, ..., zn). For any ρ > 0, let Uρ be the open set so
that |z| < ρ. Since (z1, .., zn) is a holomorphic chart, for δ sufficiently small, we
may assume that Uδ ⊂ B(p, 2r0). Pick an arbitrary q ∈ ∂B(p, r0). According to
Claim 4.1, there exists a holomorphic function f on B(p, 4r0) so that f(p) = 0,
sup

B(p,2r0)

|f | = 1, |f(q)| > b. If q ∈ Uδ, we restrict f to Uδ. As f(p) = 0, by the

standard Hadamard three circle theorem on BCn(0, δ) we find |f(q)|
|z(q)| ≤ supUδ

|f |
δ ,

thus |z(q)| ≥ bδ. If q /∈ Uδ, then by definition |z(q)| ≥ bδ. Since q is arbitrary
on ∂B(p, r0), we find that Ubδ ⊂ B(p, r0). Iterating this result, we obtain that
Ubkδ ⊂ B(p, 21−kr0), which implies the first inequality cr(q)α ≤ |z(q)|. �

Claim 4.3. Assume that p is not a regular point in the metric sense. Then there
exist ǫ > 0 and r0 > 0 satisfying the following. For all r < r0, if nonzero holomor-
phic functions f1, .., fn on B(p, 4r) satisfy fj(p) = 0 and

∫
B(p,r) fjfk = 0 for j 6= k,

then there exists 1 ≤ l ≤ n so that

−
∫
B(p,2r)

|fl|2
−
∫
B(p,r) |fl|2

≥ 22+10nǫ.

Remark 4.1. From the proof it follows that ǫ depends only on ω2n− lim
r→0

vol(B(p,r))
r2n ,

where ω2n is the volume of the unit ball of Cn.

Proof. If this is not the case, then we can find sequences ǫi → 0, ri → 0, and
nonzero holomorphic functions fi1, ..., fin on B(p, 4ri) so that fij(p) = 0 and∫
B(p,ri)

fijf ik = 0 for j 6= k. Also for all j,

−
∫
B(p,2ri)

|fij |2
−
∫
B(p,ri)

|fij |2
< 22+10nǫi .
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Define (Xi, pi, di) = (X, p, dri ). By passing to a subsequence, we may assume that

(Xi, pi) converges in the pointed Gromov-Hausdorff sense to a tangent cone (V, o)
at p. We trivially lift fij to B(pi, 4) on Xi. By normalization, we may assume that
−
∫
B(pi,1)

|fij |2 = 1 for all j. Then after taking a further subsequence, fij converges

uniformly on each compact set of B(o, 2) to linearly independent complex harmonic
functions hj . These satisfy −

∫
B(o,1)

|hj |2 = 1, hj(o) = 0 for all j, and −
∫
B(o,2)

|hj |2 ≤ 4.

By the spectral decomposition for the Laplacian on the cross section, the hj can be
extended as degree one homogeneous complex harmonic functions on V . Therefore
we have 2n linearly independent real harmonic functions of linear growth which all
vanish at o. Then it is well known that (V, o) is isometric to R2n (see Proposition 5.2
in the Appendix). This contradicts the assumption that p is not a regular point. �

Now let p ∈ X be a regular point in the complex analytic sense, but not in
the metric sense. We claim that the Lelong number of Ric at p is positive. Let
(z1, .., zn) be a holomorphic chart around p. For r0 small, we may assume B(p, 2r0)
is contained in the chart. By suitable scaling and orthogonalization of zj , we may
assume

(4.3) zj(p) = 0, −
∫

B(p,2r0)

|zj|2 = 1, (j = 1, ..., n),

(4.4)

∫

B(p,2r0)

zjzk = 0, for j 6= k.

By scaling the metric, let us assume without loss of generality that r0 = 1. Then
by the gradient estimate

(4.5) |dz1 ∧ . . . ∧ dzn| ≤ C = C(n, v, d) on B(p, 1).

Let E be the linear space spanned by z1, ..., zn. On E, we have two norms, given
by L2 integration over B(p, 2) and B(p, 1). After a simultaneous diagonalization
with respect to these two norms, we may assume that zj are also L2 orthogonal
on B(p, 1). Let ǫ be the positive number appearing in Claim 4.3. We may assume
that B(p, 10) is sufficiently close to a metric cone, such that

(4.6)
−
∫
B(p,2) |zj|2

−
∫
B(p,1)

|zj|2
≥ 22−ǫ

for all j, since on the cone there are no non-constant sublinear harmonic functions.
According to Claim 4.3, we can find l so that

−
∫
B(p,2) |zl|2

−
∫
B(p,1) |zl|2

≥ 22+10nǫ.

Define z′j = zj2
−ǫ for j 6= l; z′l = zl2

(n−1)ǫ, so that

dz′1 ∧ dz′2 ∧ . . . ∧ dz′n = dz1 ∧ dz2 ∧ . . . ∧ dzn
at any point. Moreover, from (4.6) we have

−
∫

B(p,1)

|2z′k|2 ≤ 2−ǫ

for all k. Using the gradient estimate we obtain that on B(p, 12 ),

|dz1 ∧ dz2 ∧ . . . ∧ dzn| = |dz′1 ∧ dz′2 ∧ . . . ∧ dz′n| ≤ C2−0.5nǫ ≤ C2−ǫ.
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Here C is the same constant as in (4.5). By iteration, we obtain that for all
0 < r < 1, on B(p, r),

|dz1 ∧ dz2 ∧ . . . ∧ dzn| ≤ 2Crǫ.

According to Claim 4.2, Claim 4.3, the Lelong number for 2πRic at p is given by

lim inf
x→p

log |dz1 ∧ dz2 ∧ . . . ∧ dzn|2(x)
log |z(x)| ≥ lim inf

x→p

2 log(2Cr(x)ǫ)

log(cr(x)α)
=

2ǫ

α
> 0.

This means that if p is complex analytically regular and the Lelong number for Ric
vanishes at p, then p is regular in the metric sense.

We are left to prove that if p is regular in the metric sense, then the Lelong
number for Ric vanishes at p. Since p is metric regular, for any fixed small ǫ > 0,
by scaling, we may assume that B(p, 1ǫ ) is ǫ-Gromov Hausdorff close to a ball in
Cn. Then we can find a holomorphic map F = (f1, ..., fn) on B(p, 100) which gives
a Ψ(ǫ|n)-Gromov Hausdorff approximation to its image in Cn. As in the proof of
Theorem 1.4, F is a holomorphic chart on B(p, 1). Without loss of generality, we

may assume fj(p) = 0,
∫
B(p,1) fjfk = 0 for j 6= k. We have

(4.7)
−
∫
B(p,2)

|fj |2
−
∫
B(p,1)

|fj |2
≤ 4 + Ψ(ǫ|n),

and since B(p, r) is Φ(ǫ|n)r-Gromov-Hausdorff close to a Euclidean ball for all
r > 0, just as in Lemma 2.4 we conclude that

(4.8) 4−Ψ(ǫ|n) ≤
−
∫
B(p,2r) |fj |2
−
∫
B(p,r) |fj |2

≤ 4 + Ψ(ǫ|n)

for all r < 1. For any r > 0, we may assume that the f1, ..., fn are orthogonal
simultaneously with respect to the L2 inner products on B(p, 1) and B(p, r). Now
let cj be constants (depending on r) so that sup

B(p,r)

|cjfj | = r. Define f ′
j = cjfj.

As in the proof of Proposition 2.6, arguing as in Claim 4.2 of [36], we see that
F ′ = (f ′

1, .., f
′
n) is a Ψ(ǫ|n)r-Gromov-Hausdorff approximation to a ball in Cn. The

Cheeger-Colding [3] estimate (see Equation (2.7)) implies that

sup
B(p,r)

|df ′
1 ∧ df ′

2 ∧ . . . ∧ df ′
n| ≥ c(n) > 0,

and note that by (4.8),

−
∫

B(p,2r)

|fj|2 ≥ c(n)r2+Ψ(ǫ|n).

Thus

|cj | ≤ C(n)r−Ψ(ǫ|n),

and so

sup
B(p,r)

|df1 ∧ df2 ∧ . . . ∧ dfn| ≥ c(n)rΨ(ǫ|n).

It follows that the Lelong number at p satisfies

lim inf
x→p

log |df1 ∧ df2 ∧ . . . ∧ dfn|2(x)
2π log |F (x)| ≤ lim inf

x→p

2 log(c(n)r(x)Ψ(ǫ|n))

2π log(Cr(x))
= Ψ(ǫ|n).



30 GANG LIU, GÁBOR SZÉKELYHIDI

As ǫ is arbitrary, we find that the Lelong number at p is zero. The proof of
Proposition 4.1 is complete. �

Let A be the complex analytically singular set of X . Let c be a positive constant,
and let Hc be set of points whose Lelong number for Ric is at least c on X\A. By
Siu’s theorem [47], Hc is a complex analytic set of X\A. We thank Professor Siu
for providing the proof of the following.

Lemma 4.1. The topological closure of Hc in X is a complex analytic set.

Proof. The problem is local on X . For any p ∈ X , take a sequence Mi ∋ pi → p.
For sufficiently large i, there exists r0 > 0 independent of i and smooth functions
ui on B(pi, 2r0) so that

√
−1∂∂ui = ωi and ui(x) is close to d2(x, pi). Write

U = B(p, r0) and assume ui → u uniformly on U . Now assume that p is a complex
analytically singular point on X . Then Θ = Ric +

√
−1∂∂u is a closed positive

(1, 1) current on U\A. It is clear that the Lelong number for Θ is the same as
Lelong number for Ric. By shrinking U if necessary, we may assume that (U, p) is
a normal subvariety of (Ω, 0) ⊂ (CN , 0). We can trivially extend Θ as a positive

closed (N − n + 1, N − n + 1)-current Θ̂ on Ω\A. Since U is a normal variety, A
has complex dimension at most n− 2. Thus the codimension of A in Ω is at least

N − n + 2. According to [46], Θ̂ extends to a closed positive current on Ω. By
applying Siu’s theorem again, we proved the lemma. �

The following is a generalization of Donaldson-Sun’s Proposition 4.14 in [21],
where the Einstein case was treated (although their proof applies in the case of
bounded Ricci curvature too).

Corollary 4.1. Suppose that theMi above have uniformly bounded Ricci curvature.
Then the metric singular set coincides with the complex analytic singular set on X.

Proof. Let p be a complex analytically regular point. It suffices to prove that
p is metric regular. According to Proposition 4.1, it suffices to show that the
Lelong number for Ric vanishes at p. Recall the bounded function u in the last
lemma. Let us assume |Ric(Mi)| ≤ C. Then as a closed positive (1, 1) current,

Θ = Ric + C
√
−1∂∂u ≤ 2C

√
−1∂∂u. Note that the Lelong number for Θ is the

same as for Ric at p. By monotonicity, the Lelong number of Θ is no greater than
the Lelong number of the positive (1, 1)-current 2C

√
−1∂∂u. But u is bounded,

therefore the Lelong number for Ric vanishes at p.
�

Theorem 1.3 is a direct consequence of Proposition 4.1. For the reader’s conve-
nience, we rewrite it here.

Theorem 4.1. Let (X, d) be a Gromov-Hausdorff limit as in Theorem 1.1. Then
for any ǫ > 0, X \ Rǫ is contained in a finite union of analytic subvarieties of X.
Furthermore, X \ R is equal to a countable union of subvarieties.

Here R consists of points x ∈ X with tangent cone C
n, while Rǫ is the set of

points p so that ω2n − lim
r→0

Vol(B(p,r))
r2n < ǫ.. In view of the main result of [35], we

can use the same argument to obtain the following.

Theorem 4.2. Let (X, p) be the pointed Gromov-Hausdorff limit of complete Kähler
manifolds (Mn

i , pi) with bisectional curvature lower bound −1 and vol(B(pi, 1)) ≥
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v > 0. Then X is homeomorphic to a normal complex analytic space. The metric
singular set X \ R is exactly given by a countable union of complex analytic sets,
and for any ǫ > 0, each compact subset of X \ Rǫ is contained in a finite union of
subvarieties.

5. Appendix

In the proof of Proposition 3.1 we used the estimate of Cheeger-Jiang-Naber [9]
for the volumes of tubular neighborhoods of the singular set, in order to control
the cutoff functions ψ3

i . In this appendix we first give an alternative argument,
following the approach of Chen-Donaldson-Sun [15], which is independent of the
results in [9]. First note that the cone V = R2n−2 × W for a two-dimensional
cone (W, o′) has singular set R2n−2 × {o′}, and so we can directly see the required
estimate for the volumes of its tubular neighborhoods. Therefore Propositions 3.2
and 3.3 hold without appealing to [9].

We can now argue similarly to [15] to show that the singular sets in any cone
(V, o) arising in Proposition 3.1 have good cutoff functions (even closer to what we
do are Propositions 12, 13 and 14 of the arXiv version of [48]). More precisely,
suppose that (Mi, Li, ωi) is a sequence as in Proposition 3.1 such that (Mi, pi)
converges to a cone (V, o) for some pi ∈Mi. Recall that the singular set is Σ ⊂ V ,
consisting of points q ∈ V such that limr→0 r

−2nvol(B(q, r)) ≤ ω2n − ǫ, where ǫ is
obtained from Theorem 1.4. We then have the following.

Proposition 5.1. For any compact set K ⊂ V and κ > 0 there is a function χ
on V , equal to 1 on a neighborhood of K ∩ Σ, supported in the κ-neighborhood of
K ∩Σ, and such that

∫
K |∇χ|2 < κ.

Proof. Let us fix K,κ. Suppose that we have distance functions di on B(pi, 2R) ⊔
B(o, 2R), realizing the Gromov-Hausdorff convergence, where R is large so that
K ⊂ B(o,R). For q ∈ B(o,R), and ρ ∈ (0, 1), define

V (i, q, ρ) = ρ2−2n

∫

Ui(q,ρ)

(Si + 2n)ωni ,

where Ui(q, ρ) = {x ∈ B(pi, 2) : di(x, q) < ρ}. Note that Si + 2n ≥ 0.
Let us denote by D ⊂ K∩Σ the set of points which have a tangent cone splitting

off R2n−2, and let S2 = Σ \ D. Proposition 3.3 implies that for any x ∈ D there
exists a ρx > 0 such that V (i, x, ρx) < A for a fixed constant A, for sufficiently large
i. At the same time by Proposition 3.3 we also have a constant c0 > 0 (depending
on n, v, d, ǫ) such that for any x ∈ D and δ > 0 there is an rx < δ such that
V (i, x, rx) > c0 for sufficiently large i (here note that the two dimensional cones
appearing in tangent cones of points in D have cone angles bounded strictly away
from 2π).

By Cheeger-Colding’s [4] the Hausdorff dimension of S2 is at most 2n− 4, so for
any small ǫ > 0 we can cover S2 ∩K with balls Bµ such that

∑

µ

r2n−3
µ < ǫ.

The set

J = (K ∩ Σ) \ ∪µBµ
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is compact, J ⊂ D, and so it is covered by the balls B(x, ρx) with x ∈ D. We
choose a finite subcover corresponding to x1, . . . , xN , and set

W =

N⋃

j=1

B(xj , ρxj) ⊂ V,

Wi =

N⋃

j=1

Ui(xj , ρxj) ⊂Mi.

For sufficiently large i we then get an estimate

(5.1)

∫

Wi

(Si + 2n)ωni < C,

where C depends on ǫ,N , but not on i.
We claim that the compact set J ⊂ D has finite (2n− 2)-dimensional Hausdorff

measure. To prove this, recall that for any small δ > 0 and all x ∈ D ∩ J we have
rx < δ such that V (i, x, rx) > c0 for large i. By a Vitali type covering argument we
can find a disjoint, finite sequence of balls B(yk, ryk) in W , for k = 1, . . . , N ′ such
that B(yk, 5ryk) cover all of J . It follows that

H2n−2
δ (J) ≤

N ′∑

k=1

52n−2r2n−2
yk

.

At the same time for each yk, we have the estimate

r2−2n
yk

∫

Ui(yk,ryk )

(Si + 2n)ωni > c0,

for sufficiently large i. Taking i even larger we can assume that the Ui(yk, ryk) are
disjoint, since they converge in the Gromov-Hausdorff sense to the disjoint balls
B(yk, ryk). Using (5.1) we therefore have

N ′∑

k=1

c0r
2n−2
yk < C.

Since δ was arbitrary (and C is independent of δ), this implies that H2n−2(J) ≤ C′.
It follows that J has capacity zero, in the sense that for any κ > 0 we can find a

cutoff function η1 supported in the κ-neighborhood of J , such that ‖∇η1‖L2 ≤ κ/2,
and η1 = 1 on a neighborhood U of J (see for instance [1, Lemma 2.2] or [23,
Theorem 3, p. 154]). The set (K ∩ Σ) \ U is compact, and so it is covered by
finitely many of our balls Bµ from before. Because of this, as in [21], we can find a
good cutoff function η2, with ‖∇η2‖L2 ≤ κ/2 (if ǫ at the beginning was sufficiently
small), such that η2 is supported in the κ-neighborhood of (K ∩ Σ) \ U and with
η2 = 1 on a neighborhood of (K ∩ Σ) \ U . Then η = 1− (1− η1)(1− η2) gives the
required cutoff function. �

We next prove a result essentially contained in Cheeger-Colding-Minicozzi [7],
that we used in the proof of Proposition 4.1.

Proposition 5.2. Let (V, o) denote a tangent cone of a non-collapsed limit space
of manifolds with Ricci curvature bounded from below. Suppose that there are k
linearly independent harmonic functions u1, . . . , uk on V that are homogeneous of
degree one. Then we have a splitting V = R

k × Y .
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Proof. By assumption we have a sequence B(pi, 2) of balls in Riemannian manifolds
with Ric > −i−1, such that B(pi, 2) → B(o, 2) in the Gromov-Hausdorff sense. We
will prove the following: for any δ > 0, we can find an r > 0 and δ-splitting maps
ui : B(pi, r) → Rk for sufficiently large i. Since V is a cone, after scaling up by r−1

and taking a diagonal sequence, we find a sequence B(p′i, 1) → B(o, 1) such that
each B(p′i, 1) admits an i−1-splitting map. From this it follows that B(o, 1/2) splits
an isometric factor of Rk. For this, see Cheeger-Colding [3], or Cheeger-Naber [11,
Definition 1.20, Lemma 1.21].

Before we begin let us recall the notion of a δ-splitting map. A map u =
(u1, . . . , uk) : B(p, r) → R

k is a δ-splitting map, if it is harmonic, and satisfies

(1) |∇u| < 1 + δ,
(2) −

∫
Br(p)

| 〈∇uα,∇uβ〉 − δαβ |2 < δ2,

(3) r2−
∫
Br(p)

|∇2uα|2 < δ2.

Consider again our sequence B(pi, 2) → B(o, 2). We can assume that

−
∫

B(o,2)

〈∇uα,∇uβ〉 = δαβ ,

and since the uα are homogeneous, this implies that for all r we have

−
∫

B(o,r)

〈∇uα,∇uβ〉 = δαβ .

We can find a sequence of harmonic functions uαi on B(pi, 2) such that under the
Gromov-Hausdorff convergence we have uαi → uα uniformly on each compact set,
and moreover for any 0 < r < 2,

(5.2) lim
i→∞

−
∫

B(pi,r)

〈∇uαi ,∇uβi 〉 = δαβ .

Let fi denote a harmonic function of the form uαi or 1√
2
(uαi ±uβi ) for α 6= β. By the

Bochner formula ∆|∇fi|2 ≥ −Ψ(i−1)|∇fi|2, and so by the mean value inequality,
for sufficiently large i we have

sup
B(pi,1.5)

|∇fi|2 ≤ C.

It follows that for any 0 < r < 1.5 we have

(5.3) lim
i→∞

−
∫

B(pi,r)

|∇fi|2 = 1.

As the gradient of fi is uniformly bounded, we find the above convergence is uniform
on the interval a < r < 1, where a > 0 is any constant.

Note that supB(pi,r) |∇fi|2 ≥ 1/2, and so for large i

sup
B(pi,1)

|∇fi|2 ≤ 2C sup
B(pi,r)

|∇fi|2.

Given ǫ > 0, we can then choose r0 > 0 depending on ǫ, C, such that for all
sufficiently large i there is some r ∈ (r0, 1/10), perhaps depending on i, satisfying

sup
B(pi,3r)

|∇fi|2 ≤ (1− ǫ)−1 sup
B(pi,r)

|∇fi|2.
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Consider now the functions vi = supB(pi,3r) |∇fi|2 − |∇fi|2. Then on B(pi, 3r),
vi ≥ 0,

∆vi ≤ Ψ(i−1) sup
B(pi,3r)

|∇fi|2 = Ψ(i−1),

and

inf
B(pi,r)

vi = sup
B(pi,3r)

|∇fi|2 − sup
B(pi,r)

|∇fi|2 ≤ ǫ sup
B(pi,3r)

|∇fi|2.

From the weak Harnack inequality, once i is sufficiently large,

−
∫

B(pi,2r)

vi ≤ C(Ψ(i−1) + ǫ sup
B(pi,3r)

|∇fi|2) ≤ 2ǫC sup
B(pi,3r)

|∇fi|2.

This implies

(1− 2Cǫ) sup
B(pi,3r)

|∇fi|2 ≤ −
∫

B(pi,2r)

|∇fi|2,

where C depends only on the non-collapsing constant, through the Sobolev inequal-
ity. Recall r (depending on i) has a lower bound r0, and so by (5.3),

lim
i→∞

−
∫

B(pi,2r)

|∇fi|2 = 1.

It follows that for sufficiently large i we have

sup
B(pi,2r0)

|∇fi|2 ≤ sup
B(pi,3r)

|∇fi|2 ≤ 1 + Cǫ.

Therefore,

−
∫

B(pi,2r0)

||∇fi|2 − 1| < Ψ(ǫ).

We now apply this to fi = uαi , and to fi =
1√
2
(uαi ± uβi ), and use the polarization

identity
1

2
|∇(uαi + uβi )|2 −

1

2
|∇(uαi − uβi )|2 = 2〈∇uαi ,∇uβi 〉.

Using also (5.2) we find that for sufficiently large i (depending on ǫ), we have

−
∫

B(pi,2r0)

∣∣∣〈∇uαi ,∇uβi 〉 − δαβ
∣∣∣ < Ψ(ǫ).

Since at the same time |∇uαi |2 ≤ 1 + Ψ(ǫ), we can use the Bochner formula, using
a cutoff function φ as in Cheeger-Colding [3] supported in B(pi, 2r0), equal to 1 in
B(pi, r0). We find that for sufficiently large i,

−
∫

B(pi,r0)

|∇2uαi |2 ≤ −
∫

B(pi,2r0)

1

2
φ∆(|∇uαi |2 − 1)−Ψ(1/i)−

∫

B(pi,2r0)

φ|∇uαi |2

≤ Cr−2
0 −
∫

B(pi,2r0)

∣∣∣|∇uαi |2 − 1
∣∣∣− Ψ(1/i)

≤ r−2
0 Ψ(ǫ).

If ǫ is chosen sufficiently small, depending on δ > 0, then this shows that ui =
(u1i , . . . , u

k
i ) is a δ-splitting map on B(pi, r0), for sufficiently large i. �
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[27] Hörmander, L. The analysis of linear partial differential operators I. Distribution theory and

Fourier analysis. Second Edition. Springer-Verlag, Berlin, 1990
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