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ON GROUP RINGS

GUY RENAULT

Note by M. Guy Renault,
presented by M. Jean Leray.

ABSTRACT. We characterize the rings A and groups G for which the group
rings A[G] are local, semi-local, or left perfect [14]. The recent work of M. P.
Malliavin [I3] and J. L. Pascaud permits the completion of results of [14] on
self-injective group rings.

A designates a ring with identity but which is not necessarily commutative, and
G is a group. The fields involved are not necessarily commutative. For an exposition
on group rings, consult J. Lambek [12] and P. Ribenboim [15].

1. LOCAL GROUP RINGS

We generalize a result of T. Gulliksen-P. Ribenboim-T. M. Viswanathan [8]
p. 153] obtained for the class of commutative group rings.

Theorem 1. Let A be a ring and G a group # e such that the group ring A[G| is
local. We then have the following properties:

(a) A is a local ring whose maximal left ideal will be denoted by M.
(b) The field K # A/M has characteristic p # 0.
(c) G is a p-group.
If, additionally, G is locally finite, these conditions are sufficient for A[G] to be
local.

The ring A is isomorphic to a quotient ring of A[G], hence (a). For the same
reason K[G] is a local ring. If H is a subgroup of G, then K[H] is local. Indeed,
let R (resp. R’) be the radical of K[G] (resp. K[H]). It follows from a result of
Connell [5] p. 665] that K[H|NR C R’; since R is is the fundamental ideal of K[G],
K[H] N R is the fundamental ideal of K[H]: this is a maximal left ideal which is
equal to R’ and K[H] is local. Let x # e be an element of G, H, the subgroup
generated by z. K[Hy) is a local ring and consequently the element e + z — 22 is
invertible. It is easy to see that this last condition implies the finiteness of Hy. Let

g be the order of . If ¢ is invertible in K, the element e — g~* Zg:_ol x; would
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be a nontrivial idempotent of K[G] which is not possible. We deduce immediately
properties (b) and (c).

Let A be a ring, G a locally finite group satisfying the conditions of the theorem.
Since G is locally finite, M A[G] is contained in the radical of A[G] [5], p. 665] and it
is sufficient to demonstrate that the ring K[G] is local, which easily results from the
following property that is well-known when the field is commutative. Let K be a
(not necessarily commutative) field of characteristic p # 0, and G a finite p-group.
Then K[G] is a local ring whose radical is a nil ideal.

Remark. Let G be the infinite p-group generated by three elements that is de-
scribed in [I0], and let k be the field of p elements. k[G] is a local ring although G
is not locally finite.

In what follows, A and G are commutative. The result of [8 p. 153] can also be
generalized in the following way:

Proposition 2. The following conditions are equivalent:
(1) A[G] is a semi-local ring.
(2) (a) A is a semi-local ring with radical R;
(b) G is finite or G is infinite and in this case A/R is a ring of characteristic
p# 0, G =Gy x Gy where G, is an infinite p-group, and where Gy is
a finite group whose order is not divisible by p.

The proof of this theorem is not difficult. For the implication (1) = (2) consult
3.

2. LEFT PERFECT GROUP RINGS [I]

Let’s recall that if A is left perfect, the finitely generated sub-modules of any
right A-module satisfy the descending chain condition [2]. The result that follows
was also obtained by Sheila Woods [16] by completely different methods.

Theorem 3. Let A be a ring and G be a group. The following are equivalent:
(1) A[G] is left perfect.

(2) (a) A is left perfect.
(b) G is finite.

(2) = (1): For the finitely generated right ideals of A[G], which are finitely
generated right A-modules, we verify the descending chain condition [2].

(1) = (2): Let R be the radical of A. The rings A, (A/R)[G], which are
quotient rings of A[G], are left perfect and it is sufficient to study the case when A
is a simple ring with center k. A[G] is a free k[G] -module , Lemma 12 of [I5] p. 150]
and the results of [2] show that k[G] is left perfect. Suppose G is infinite: then k[G]
is not semiprimary and it results in the following consequences: the characteristic
of k is p > 0 and there is a normal subgroup of H; of G whose order is divisible
by p [I2, p. 162], G/H, is infinite and k[G/Hi] is left perfect. There exists a
normal sub-group Hs of G containing H; such that p divides the order of Hs/Hj.
Evidentially, then, there is an increasing sequence of normal subgroups (H,,) of G
of order p*(™gq,,, p not dividing ¢,, such that s(n) > s(n —1). The Sylow theorems
permit the construction of an infinite strictly increasing sequence of finite p-groups
whose union is an infinite p-group Go. k[G] is a free k[Gp] -module by Lemma 12
of [I5 p. 150] and the results of [2] show that k[Gy] is left perfect. k[Go] is a local
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ring whose radical is the fundamental ideal w(Gp); the right socle of k[Gp] is not
zero since k[Go] is left perfect and Gy is finite [15] p. 137], which contradicts the
hypothesis made on G.

As a special case, we obtain the characterization of Artinian group rings [I. G.
Connell [5]].

3. SELF-INJECTIVE GROUP RINGS

Theorem 4. Let A be a ring and G be a group. The following conditions are
equivalent:
(1) The ring A[G] is left self-injective.
(2) (a) A is left self-injective;
(b) G is a finite group.

(2) = (1): This is a result of I. G. Connell [5].

(1) = (2): Following [5] we know that A is left self-injective. Let H be a
finitely generated subgroup of G, and w(H) be the right ideal of A[G] generated by
the elements 1 — h, h € H. According to [1I] we know the left annihilator of w(H)
is different from (0), so H is finite [I2], which proves that G is locally finite.

Suppose that G is an infinite group; following [9], G contains an infinite Abelian
subgroup G;. A[G] which is a free A[G;1] -module, is an injective A[G] -module
[, p. 123], in particular A[G1] is left self-injective. If H; is an infinite subgroup of
G1, A[G4] is an injective A[H;] -module, but as A[H;] is not a quasi-Frobenius ring
(See Theorem 3), this implies according to C. Faith [6], that the index of Hy in Gy
is finite. We deduce that the socle of Gy is of finite length and G; is an Artinian
Abelian group [7]. It is easy to see the problem is reduced to the case when G
is quasi-cyclic p-group. A contradiction results from the following proposition [cf.
also [13]].

Proposition 5. (Pascaud). Let A be a ring and G be the quasi-cyclic p-group
defined by generators x; and relations z; = ¥ +1- Then A[G] is not left self-injective.

A[G] is a free left A-module and we give B = Hom4(A[G], A[G]) a left A[G]
-module structure by definining x € A[G], f € B, (- f)(y) = f(yx) for y € A[G].

A[G] embeds into B in the following way: to each z =} a(g:)g; we associate
the endomorphism z: defined by #(g;) = a(g; ').

We denote by G; the group generated by x; and we consider the elements f, f;
of B defined by:

flg) = 1 if g =2}, 2ox11 for some k,
9= 0 otherwise

Filg) = 1 ifg= xékx%ﬂ for some k, [ with k <1
)= 0 otherwise

For all 4, f; is an element of A[G] and f is an element of B that does not belong

to A[G].

Lemma. (1) Let a,b be two elements of A|G;], x an element of G, x ¢ G;. The
relation a = bx implies a = b = 0. (2) If g is an element of G not belonging to
GQH_Q, then (]. - $2i+2) . f(g) =0.
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The proposition will result from the fact that A[G] + A[G]f is an essential ex-
tension of A[G]. Let a,b two elements of A[Ga;] with a +bf # 0 If g ¢ Gai42, the
support of bg does not meet Go;12 and according to the Lemma (1—x2;42)bf(g) =0
and consequently

y=(1—x242)(a+0bf) = (1 —x2+2)(a+bfi)

belongs to A[G]. If y = 0, according to the lemma we have a +bf; = 0, from which
it follows that a + bf = b(f — f;). Let ng be the smallest integer > ¢ + 1 such that
we have b(f, — fi) # 0; showing, as before, that

(1 — $2n0+2)(a + bf) - (1 - $2n0+2)b(fno - fz)

which is an element # 0 in A[G] according to property (1) of the Lemma.

89 avenue du Recteur-Pineau
86-Poitiers, Vienne
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The following changes were made to the original text owing to the high likelihood
that they were typographical mistakes:
(1) Page 1 third line of the introductory paragraph: “Lambek” was formerly
“Lambeck”.
(2) Page 2 third line of intro to Section 2: “Woods” was formerly “Wood”.
(3) Page 2 line -2: The k[G] at the beginning of the sentence was formerly
K[G].
Page 3 third line of Proposition 5: = = Zgi a(gi)g; was formerly x Zgi a(g;)gi-
) Page 3 first case in definition of f: the xop1 was formerly Xogyq.
(6) Page 4 line 2: a + bf # 0 was formerly a = bf #0
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