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A SYMMETRIC FORMULA FOR HYPERGEOMETRIC SERIES

CHUANAN WEI
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ABSTRACT. In terms of Dougall’s 2 Ha series identity and the series rearrange-
ment method, we establish an interesting symmetric formula for hypergeometric
series. Then it is utilized to derive a known nonterminating form of Saalschiitz’s
theorem. Similarly, we also show that Bailey’s gs series identity implies the
nonterminating form of Jackson’s g¢7 summation formula. Considering the re-
versibility of the proofs, it is routine to show that Dougall’s 2 Ho series identity
is equivalent to a known nonterminating form of Saalschiitz’s theorem and Bai-
ley’s 616 series identity is equivalent to the nonterminating form of Jackson’s g¢r7
summation formula.

1. INTRODUCTION

For an integer n and a complex number z, define the shifted factorial to be
(#)n =T(z +n)/I(2),
where I'(x) is the well known gamma function

F(:z:):/ t*“le7t'dt with Re(x) > 0.
0

Following Andrews, Askey and Roy [2], define the hypergeometric series by

ag, a1, ‘-, Qp e (ao)r(a1)k - (ar)k
rFs Zl = z".
B T ,;) RLD1)k - - (bs)k

Then Saalschiitz’s theorem (cf. |2 p. 69]) can be stated as

a,b,—n 1= (c—a)n(c—b)n- 1)

(©n(c—a—=b)n

A known nonterminating form of it (cf. [2 p. 92]) reads as

3y

1 +a+b—c—n

a,bc+d—a—-b-1 l,c—a,c—b
32 } 1| =3k 1
c,d c—a—b+1l,c+d—a—b>
T(c)T'(d) 1 Pe)(d)T(c—a—bT(d—a—10) @)
F@)I®)I(c+d—a—-b)a+b—c T(c—a)l(c—bI(d—a)l(d—0)’
provided Re(d — a —b) > 0. The known proof of ([Z) comes from a transformation
formula involving three 3F, series given by the contour integration method. The
reader is referred to [2, Section 2.4] for details.
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Following Slater [12], define the bilateral hypergeometric series to be

ai, az, -+, Qr

_bla b27 ) bs

THS

(1) (b2)k -+ (bs)k
Thus Dougall’s o Hs series identity (cf. [2, p. 110]) can be written as

[a,b ‘ | _ T -ara - Hrerre+d—a-b-1) )
c,d N I(c—a)l'(c—=bI(d—a)l'(d—0) ’

where Re(c+d—a—0b) > 1.

o s (@)k(a2) - (an)k
|-x

=—00

oHy

For an integer n and two complex numbers x, ¢ with |¢| < 1, define the g¢-shifted
factorial by

: Y —zq* P G

For simplification, we shall frequently adopt the following notations:
(1,22, T3 Qoo = (215 @)oo (725 @)oo+ (Tr5 @)oo
(T1, 22, T3 Q) = (215 )n (225 -+ (T3 @

Following Gasper and Rahman [4], define the basic hypergeometric series and bilateral
basic hypergeometric series to be

ag, Qi, -0 o (aouala"' aar;Q)k k (k) s—r k
r®s ¢z = {—1 q2} 2
o bla 7bs ];0 (q’bla"' absaq)k ( )
ay, a, ---,Qr o (al,a%... 7ar;Q)k & (k) s—r o
rs Gz = { —1)Fq\2 } 2",
bl; b2, ,bs k;w (b17b27"' 7b87q)k ( )

Then the nonterminating form of Jackson’s g¢7 summation formula (cf. [4, p.54]) and
Bailey’s g1 series identity (cf. [4, p.140]) can be expressed as

a, Q\/—u _q\/aa bu c, d7 €, f
87 49
\/aa _\/av qa’/ba qa/c, qa’/dv qa’/ev qa’/f

_b (qa,¢,d,e, f,qb/a,qb/c, qb/d, gb/e, qb/ [ q) oo
a (qa/b,qa/c,qa/d,qa/e,qa/ f,bc/a,bd/a,be/a,bf /a,qb*/a;q)co

y le/a,qb/ﬁ,—qb/\/a,b,bc/a,bd/a,be/a,bf/a q'q]
T vrva—b/vaabja ab/e ab/d avje,avs s 1T

(ga,b/a,qa/cd,qa/ce,qa/cf, qa/de, qa/df , qa/ef; @) (4)
(ga/c,qa/d,qa/e,qa/ f,bc/a,bd/a,be/a,bf |a;q)so

with qa? = bedef,
qva,—qv/a,b,c,d,e qa®
oo [\ﬂ —va,qa/b,qa/c,qa/d, qa/e v @]
q,qa,q/a,qa/be, ga/bd, qa/be, qa/cd, qa/ce, qa/de
- [q/ b,q/c,q/d,q/e,qa/b,qa/c,qa/d, qa/e, qa*/bede
provided |ga®/bede| < 1. The original proof of (@) comes from a three term relation
of g7 series offered by the g-integration method. The reader may consult [4, Section

2.11] for details. Recently, the research of g-congruence attracts several mathemati-
cians. Some nice results can be seen in the papers [5l [6].

q] : (5)
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In 2006, Chen and Fu [3] established some semi-finite forms of bilateral basic hy-
pergeometric series in accordance with Cauchy’s method. Subsequently, Jouhet [7]
deduced (@) from @) in the same way. Several years later, Wei, Yan and Li [13]
derived similarly @) from (2. More results related to Cauchy’s method can be found
in the papers [14] [T5].

Inspired by the works just mentioned, it is natural to consider the inverse of Cauchy’s
method. According to the series rearrangement method, we shall deduce (2] from (3]
in Section 2 and show that () implies @) in Section 3.

2. A SYMMETRIC FORMULA FOR HYPERGEOMETRIC SERIES

Theorem 1. Let a,b,c,d be complex numbers. Then
L(a)TB)T(e)M(dT(a+b+c+d—1)

T(a+c)lNa+dT(b+c)I'(b+d)
where the symbol on the left hand side stands for

®(a,b;c,d) + ®(c,d;a,b) =

ZTa+kIb+EMNa+b+c+d—1+k
T ( )I( )I( )

labied) =) T BT+ btcr M@t brdeh)

k=0
Proof. Split the bilateral series into two parts to obtain
1—a,1-0
14+c¢,1+d

= (1 )1 z b)z
; (1 + )z + z;oo 1 d)z
2

2 Hy

’ 1

(1 =+ C)l(l + d)l ab = (1 + a)l(l + b)z

T(1+c)T(1 +d) i T(1—a+d)T(1—b+1i)
(1-a)P(1 =b) Z Tl +c+i)l(1+d+1i)

1=

+

I'(a)T(b) i (1 —c+9)T(1—d+1)
D(=o)P(=d) & T(1+a+i)I(L+b+1)

By means of the case d =1 of (3]):

oF

¢ I'(c—a)l(c—1b)’ (6)

a, b ‘ 1] _T(@l(c—a-1b)

we can proceed as follows:

1—a,1-0
oHy ‘1
14c¢,1+d
~ T(1+orQ i (1—a+i) (1—b+i) c,d )
T -a)l(1 = I(1+i)0 QIdctd+i) " |1acrdari
a)T(D) ~=T(1—c+i)T(1—d+i a,b
e D DR e AL L !
cF Z:O L(1+4r 1+a+b+z) l4+a+b+i
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B iiF 1-—a+i)I'QA -0+ (c+k)'(d+k)
B I‘(l—a (1-b) &4 TA+i)l(l+ctd+i+k)I(1+k)
N 1 i Tl —c+ i) A —d+)T(a+ k)LD +E)
D(—oT(=d) =& TA+)T(1+a+bd+i+kI(1+k)
= E)D(d+ k l—a,1-b
:cdz L(c+k)I'(d+ k) ,
= T+ kI(1+c+d+k) l+c+d+k
1—c1—-d
1+k 1+a+b+k) l+a+bt+k

B cdz Pc+k)I(d+kT(a+b+c+d—1+k)
B Fl+kl(a+c+d+k)T(b+c+d+k)

N Cdz Fla+k)ITOb0+k)(a+b+c+d—1+k)
F1+kT(a+b+c+k)T(a+b+d+k)

Employing the substitutions a -1 —a,b - 1—b,c = 1+¢,d - 1+ d in @), we get

D@1+ T+ dT(a+b+c+d—1)
Ta+c)'(a+d)T(b+c)T'(b+d)

1—(1,1—()‘1
14+c¢ 14+d

The combination of the last two equations produces

cdz EY(d+k)(a+b+c+d—1+k)
E(a+c+d+k)T(b+c+d+k)

Eb+k)T(e+b+c+d—1+k)
) (a+b+c+ k)T (a+b+d+k)

Lo+

Z e

F@) IO+l +dla+b+c+d—1)
F(a+c)l(a+ '+ c)L'(b+d)

Dividing both sides by cd, we achieve Theorem [1I ([

The symmetric formula is beautiful and it includes some known results as special
cases. On the research of reciprocity formulas, the reader is referred to the papers
[, 8, @, 10, 11].

When b = —n, Theorem [1 reduces to the following summation formula:

- (1—=c)n(l —d)p
1—a—c)p(l—a—d),’

a,a+c+d—1—n,—n

a+c—n,a+d—n

which is equivalent to (). Thus Theorem [l can be regarded as the nonterminating
form of ().

When ¢ = a and d = b, Theorem [[l reduces to the following summation formula:

a+2,2+b | | 2TCaT)(a+ b{a+b)

a,b,2a+2b—1 ‘ 11 _ 1T(a)T(B)T(a + 26)T'(2a + b)
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It can also be attained by letting a — 2a + 2b — 1, ¢ — a in Dixon’s 3Fy-series
identity(ct. [2, p. 72]):
1‘|

A+l +a-bIl+a—c)l(1+5—b—c)
CT(l+al(1+4¢-bl(1+%—-cl(l1+a—-b—c)’
provided Re(14§ —b—c) > 0.

a,b,c
3by

l1+a—-b,14a—c

Now we begin to prove (2)) by using Theorem [l In terms of (6l), we have
®(c,d;a,b)
2 T(c+ET(d+kT(a+b+ct+d—1+k)

k=
Sir@+kﬁm+b+c+d—1+m
= 241

a+db+d
1+ kT(a+b+c+2d+k) ‘

a+b+c+2d+k

T d+kT(a+bt+e+d—1+kT(a+d+)T(b+d+j
S (d+ F)T( )T( HI( J)

= T+ KT+ )0(a + b+ c+2d + k + /)T (a + d)(b + d)

da+b+c+d-—1

*SiFm+d+ﬂr@+d+ﬁm@rm+b+c+d_U
N F1+)(a+b+c+2d+ j)T(a+d)T(b+d)

K

a+b+c+2d+j

I dT(a+b+c+d—1T(a+d+5)T(b+d+j)
Tla+db+dT1+d+ )T (a+b+c+d+])

Jj=0

Tdla+btcetd—1)""7

l,a+d,b+d
1+¢a+b+c+d%
Substitute the relation into Theorem [I] to obtain
(@) (a+b+c+d—1)
Fla+b+c)T(a+b+d)

a+b+c,a+b+d

a,ba+b+c+d—1 ’11

+ ! F
dla+b+ectd—1)""

La+db+d '

l+d,a+b+c+d
_ T(@PBT (DA (a+b+c+d—1)
T+ ol(a+dI(b+c)T'(b+d)

Performing the replacements ¢ =+ d —a — b, d = ¢— a — b in the last equation, we get
@) to complete the proof.

In a word, we have derived the nonterminating form of Saalschiitz’s theorem (2]) from
Dougall’s o Hy series identity (B via the series rearrangement method. By reversing
the process, it is not difficult to realize that we can also deduce (B]) from () through
the series rearrangement method. In this sense, (@) and (@) are equivalent with each
other.
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3. BAILEY’S 61/)6 SERIES IDENTITY IMPLIES THE NONTERMINATING FORM
OF JACKSON’S g¢p7 SUMMATION FORMULA

The case e = a of (@) is

o5 [ a,qv/a, —q\/a,b,c,d ‘ qa] B ((qa,qa/bc, qa/bd, qa/cd; q) oo T

Va, —/a,qa/b,qa/c,qa/d |~ bed qa/b,qa/c,qa/d, qa/bed; q)

where |ga/bed| < 1. Tt is well known that Jackson’s s¢7 summation formula (cf. [4]

p. 43])
g; q]

can be derived from (7)) in accordance with the series rearrangement method. Now
we start to prove (@) according to (&), (@) and (). Split the bilateral series on the
left hand side of (B into two parts to achieve

a, Q\/—u _Q\/E, b7 C, d7 q1+na2/b0d7 q_n
\/_5 _\/aa qa/b7 qCL/C, qa/da qiand/av q1+

_ (qa,qa/bc,qa/bd, qa/cd; q)r
(ga/b,qa/c,qa/d, qa/bed; q)y

(8)

(q,qa/cd, qa/ce,qa/cf,qa/de,qa/df,qa/ef, qa/cdef, qcdef [a; q) oo
(qe, qd, qe, qf, qa/cde, qa/cdf, qa/cef, qa/def, qa?/cdef; q) oo

q Cde —q Cde yedefa,cdf Ja,cef /a,def a

[ cd [ cd
Cf:fa_ %7Qf7qequ7qc

B Z 1 —¢**cdef/a (cde/a,cdf /a,cef/a,def]a;q)s ( qa? >k
1—cdef/a (af,qe,qd, qc; Q) cdef

. qa®

& cdef

= Vs

N Z 1 —¢*cdef/a (cde/a,cdf/a,cef/a,def/a;q)k( qa® )k

1 —cdef/a (afsqe,qd, qc; @)k cde f
Z 1 — ¢*cdef/a (cde/a,cdf |a,cef /a,def/a;q)x ( qa® )k
a 1 —cdef/a (qf, qe, qd, qc; ) cdef

qa® (1 —q®a/edef)(1 —1/c)(1 —1/d)(1 —1/e)(1 —1/f)
cdef (1 —a/edef)(1 —qa/def)(1 — qa/cef)(1 — qa/cdf)(1 — ga/cde)

" Z 1 — g****a/cde f (g/c.q/d qa/e.q/f; D)k < qa’ )’“ ()
1—q2a/cdef (qa/def,q?a/cef,q?a/cdf,q?a/cde; q)i \ cdef )

Denote the two sums on the right hand side by Q(a,c¢,d, e, f) and O(a,c,d, e, f),
respectively. Above all, we can calculate Q(a, ¢, d, e, f) as follows:

Qa,c,d e, f)
Zl—q%cdef/a(cdef/a ceefJa,def/a,cdfa; q) (qa2 )k
N 1—cdef/a (¢,qd,qc,qef; q)k cdef

ef.qvef,—avef.e, f,qa/cd, ¢ cdef Ja,q"
Vef,—Vef.af qe,cdef/a,q**ajcd, " TFef

QQQ]
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oo o0

> L—q%ef (ef,e f.qa/cd, ¢ cdef/a,q " q);i
1—ef (¢,qfqe, cdef]a, g Fajed, g Fef;q),

" 1 —q**cdef/a (cdef/a,cef/a,def/a,cd/a;q)k( qa’® )k

1 —cdef/a (¢,9d, qc, qe f; @) cde f
_ i L—q%ef (ef.e, f.qa/cd, cef a, def [asq)i(gede f /as gz (@)
1- e.f (q7 va ge, Cdef/a’a qda qc; q)l(q€f7 Q)Qz e.f
*icdef /a, gt /cdef /a, —q* T/ cdef [a, g cef a, ¢'def /a, cd/a qa®
X 605 , G
cdef/a, _qz cdef/a, ql-l-zd7 ql-‘rzc7 q1+2zef cdef

_ (qa/c,qa/d, qa/ef, chef/a Q)oo Z 1—q%ef (ef.e fief/a;q)i (@)i
(qc, qd, qef, qa?/cdef; q) o L—ef (q,9f qe,qa;9); \ef
a, Q\/a, —Q\/E, qa2/0d8f7 c, da qzefa qu

Va,—a,cdefa,qafc, ga/d, ¢ a/ef, g Fia | "1
_ (qa/c,qa/d, qa/ef,chef/a 7)o Z 1—q¢% (a,qa®/cdef,c.d, e, f;q),
(gc,qd, gef,qa?/edef; q) s l-a q,cdef/a qa/c,qa/d, qf, qe; q);
" (qef; )25 s q¥ef, q1+JM7 —q"ef,¢’e,q’ f,ef /a qa
(9a; 4)2; VT, —geT, g f e, 20 | T ef
_ (g,9a/c,qa/d,qa/e, qa/ [, qedef/a; @)oo
(ga,qc,qd, qe, qf,qa”/cdef; q)oo
% a, Q\/av _q\/aa qa2/0d8f7 ¢, da €, f .
"V, —/a, edef /a,qa/e.qa/d, qafe,qa] |
Similarly, ©(a,c,d, e, f) can be manipulated as
6(0’7 C, d7 €, f)
L@ (L= @afedef)(1—1/)(1 = 1/d)(1 = 1/e)(1 — 1))
~cdef (1 —a/cdef)(1 — qa/def)(1 — qa/cef)(1 — qa/cdf)(1 — qa/cde)

. (@ q°ajcdef,q*a?/c*def, g*a®|cd’ef, q*a? [ede? f, % [cde [*; q)o
(¢%a/cde, ¢?a/cdf, q?a/cef,q*a/def, qa?/cdef, ¢3ad/c?d?e? f?; q) oo

X8¢7[

g’a’ 99 ga qa  ga
czdzezfz’q czdzezfz’ —4q 02d282j27 cdej’ cde’ cdf’ cef’ def
X 8P a9
g2a® ¢?a® _ g’a  ¢Pa® ¢?a® ?a® a® 7
c2d2e2 f2 c2d2e2 27 cdef’ cdef?’ cde?f’ cd?ef’ c2def

Substituting the last two equations into (@), we attain [ after some regular simpli-
fications.

In conclusion, we have deduced the nonterminating form of Jackson’s g¢7 summation
formula ) from Bailey’s ¢t/ series identity (Bl via the series rearrangement method.
By reversing the process, it is conventional to understand that we can also derive
@) from @) through the series rearrangement method. In this sense, @) and (&) are
equivalent with each other.
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