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Abstract: For a one-dimensional super-Brownian motion with density X(t, x), we construct a random
measure Lt called the boundary local time which is supported on ∂{x : X(t, x) = 0} =: BZt, thus confirming
a conjecture of Mueller, Mytnik and Perkins [14]. Lt is analogous to the local time at 0 of solutions to an
SDE. We establish first and second moment formulas for Lt, some basic properties, and a representation in
terms of a cluster decomposition. Via the moment measures and the energy method we give a more direct
proof that dim(BZt) = 2− 2λ0 > 0 with positive probability, a recent result of Mueller, Mytnik and Perkins
[14], where −λ0 is the lead eigenvalue of a killed Ornstein-Uhlenbeck operator that characterizes the left tail
of X(t, x). In a companion work [7], the author and Perkins use the boundary local time and some of its
properties proved here to show that dim(BZt) = 2− 2λ0 a.s. on {Xt(R) > 0}.
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1. Introduction & Statement Of Main Results

Super-Brownian motion is a Markov process taking values in the space of finite measures on R
d, MF (Rd), equipped

with the topology of weak convergence. We denote this process by X = (Xt : t ≥ 0) and denote by PXX0
and

EXX0
, respectively, a probability and its expectation under which X is a super-Brownian motion with initial data

X0 ∈ MF (Rd). In one dimension, Xt is almost surely an absolutely continuous random measure and thus has a
density we denote by X(t, x). The density is jointly continuous (and will exist) for t > 0, and is continuous with
Hölder index 1

2 − ǫ in the spatial variable for all ǫ > 0 (see [17], for example, where this is implicit in the proof
of Theorem III.4.2). It was shown by Konno and Shiga in [10] and independently by Reimers in [18] that X(t, x)
satisfies the following stochastic partial differential equation (SPDE):

(1.1)
∂X(t, x)

∂t
=

∆X(t, x)

2
+
√

X(t, x)Ẇ (t, x),

where Ẇ (t, x) is a space-time white noise. For a complete discussion of such equations, including the precise defi-
nition of a solution, see [20] and [10].

Before we discuss our results, we briefly introduce the canonical measure of super-Brownian motion. The canonical
measure N0 is a σ-finite measure on C([0,∞),MF (R))\{0} defined as the weak limit

N0(X ∈ ·) := lim
N→∞

NPXδ0/N (X ∈ ·).

When restricted to {Xt > 0} for t > 0, N0 is a finite measure; in particular we have N0({Xt > 0}) = 2/t (see Theo-
rem II.7.2 of [17]). N0 is a fundamental object; it describes the behaviour of a single cluster, that is, the descendants
of a single ancestor at the origin, of super-Brownian motion. (Likewise Nx is a cluster started from x and is just
a shift of N0.) An important fact, which we will describe more precisely later on, is that super-Brownian motion
under PXX0

can be understood as a superposition of canonical clusters. We will use the notation Xt and X(t, x) to

denote the superprocess and its density, respectively, under both PXX0
and N0. The law of the process will always

be clear from context. For a complete overview of the canonical measure, including proofs of the properties just
stated, see Section II.7 of [17].
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In a recent work by Mueller, Mytnik and Perkins [14], the authors studied the small-scale asymptotic behaviour of
X(t, x), as well as the boundary of its zero set. We define the random set Zt = {x ∈ R : X(t, x) = 0}. The boundary
of the zero set BZt is then defined as

BZt := ∂Zt = {x ∈ Zt : (x− ǫ, x+ ǫ) ∩ Zct 6= ∅ ∀ǫ > 0},
where the second equality holds by continuity of the density. The results in [14] involve an eigenvalue λ0 ∈ (12 , 1)
which we describe in greater detail shortly. The authors of [14] show that the left tail of the distribution of X(t, x)
behaves like

(1.2) PXX0
(0 < X(t, x) < a) ≍ t−1/2−λ0 a2λ0−1

as a ↓ 0, where f(a) ≍ g(a) means that f(a) is bounded above and below by cg(a) for different constants c. The
upper bound is uniform in x and the lower bound required a localizing assumption. For details, see Section 4 and
in particular Theorem 4.8 of [14]. Let dim(B) denote the Hausdorff dimension of a set B ⊆ R.

Theorem A. (Mueller, Mytnik, Perkins [14].) Under PXX0
, dim(BZt) ≤ 2 − 2λ0 almost surely on {Xt > 0} and

dim(BZt) ≥ 2 − 2λ0 with positive probability.

Because λ0 ∈ (1/2, 1), the dimension satisfies 2 − 2λ0 ∈ (0, 1). The lower bound was conjectured to hold with full
probability on {Xt > 0}, implying that dim(BZt) = 2 − 2λ0 almost surely on {Xt > 0}. The difficulty in proving
that the lower bound for the dimension holds with probability one on {Xt > 0} is owing to the delicate nature of
the BZt. It is not monotone in the initial conditions nor in the measure Xt itself.

We will construct a random measure Lt, which we call the boundary local time of Xt, supported on BZt. (See
Theorems 1.1 and 1.2.) The existence of Lt was conjectured in Section 5.1 of [14]. Once we have constructed Lt,
we use it to give a simpler alternative proof of the lower bound in Theorem A. Our method is to show that Lt
has finite p-energy for all p < 2 − 2λ0; in particular, see Theorem 1.3 below. In a future work [7], Lt and several
of its properties derived here, including Theorem 1.2(a), Proposition 1.6 and Theorem 1.9, will be used to resolve
the problem left open in Theorem A and Theorem 1.3, showing that dim(BZt) = 2−2λ0 almost surely on {Xt > 0}.

We now give a description of λ0. Define a function F (x) by

(1.3) F (x) := − logPXδ0
(

{X(1, x) = 0}
)

= N0

(

{X(1, x) > 0}
)

> 0.

The second equality is standard and is a consequence of (1.14) below. Section 3, from (3.5) to (3.13), provides a
thorough overview of F as the limit as λ → ∞ of the family of functions {V λ1 }λ>0 which characterize the Laplace
transform of the density X(t, x). Let Af(x) = 1

2f
′′(x) − x

2f
′(x) denote the infinitesimal generator of a standard,

one-dimensional Ornstein-Uhlenbeck process Y . For a bounded, continuous function φ with limits at infinity (F
is such a function), Aφf = Af − φf is the generator of an Ornstein-Uhlenbeck process with Markovian killing
corresponding to φ; that is, for a sample path {Ys : s ∈ [0,∞)} ∈ C([0,∞);R), we define the lifetime of the process
as ρφ, after which it is “killed,” or put into an inert cemetery state. The distribution of ρφ is given by

(1.4) P (ρ > t |Y ) = exp

(

−
∫ t

0

φ(Ys) ds

)

for t > 0.

Section 2 develops the relevant theory for these processes and their generators. In particular, Theorem 2.1 states
that Aφ, taken as an operator on the appropriate Hilbert space, has countable orthonormal family of eigenfunctions
{ψφn}∞n=0 with corresponding discrete spectrum 0 ≥ −λφ0 ≥ −λφ1 ≥ · · · → −∞. We define λ0 = λF0 > 0. As we
have noted, it was shown in [14] that λ0 ∈ (1/2, 1). Numerical estimates by Zhu [22], for which the stated dig-
its are expected to be accurate, suggest that λ0 ≈ 0.8882. This implies that the value of dim(BZt) from Theorem
A, 2−2λ0, is approximately 0.224. A more detailed discussion of the numerics can be found in the introduction of [7].

The method the authors of [14] used to show (1.2) involved computing the asymptotic behaviour of the Laplace
transform of the density. In particular (see Proposition 4.5 of that work),

lim
λ→∞

tλ0 λ2λ0 EXX0

(
∫

φ(x)X(t, x) e−λX(t,x)dx

)

= c0

∫∫

φ(w0 +
√
tz) exp

(

−1

t

∫

F (z + t−1/2(w0 − x0) dX0(w0)

)

ψF0 (z) dm(z) dX0(x0)(1.5)
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for every bounded Borel function φ, where m(dz) denotes the unit variance Gaussian measure in one dimension, c0
is a positive constant and ψF0 is the lead eigenfunction of AF . For a super-Brownian motion with density X(t, x), for
λ > 0 we define the measure Lλt ∈ MF (R) by dLλt (x) = λ2λ0e−λX(t,x)X(t, x) dx. That is, for a bounded measurable
function φ : R → R, we define

(1.6) Lλt (φ) = λ2λ0

∫

φ(x)X(t, x) e−λX(t,x)dx.

Lλt is defined the same way under PXX0
and N0. The scaling factor of λ2λ0 can be deduced from (1.5). The convergence

of EXX0
(Lλt (φ)) as λ → ∞, noted in (1.5), led the authors of [14] to conjecture (Section 5.1 of that reference) that

there is a random measure Lt on R such that Lλt → Lt in MF (R) in probability. Our main result is the verification
of this conjecture. In all that follows, X0 ∈ MF (R).

Theorem 1.1. Let t > 0. Under both PXX0
and N0 there is a random measure Lt(dx) ∈ MF (R), supported on BZt,

such that Lλt → Lt in measure as λ → ∞, and there is a sequence λn → ∞ such that Lλn
t → Lt a.s. as n → ∞.

Moreover, under PXX0
or N0, for all bounded and continuous functions φ, Lλt (φ) → Lt(φ) in L2 as λ→ ∞.

Theorem 1.2. (a) PXX0
(Lt > 0 |Xt > 0) > 0 and N0(Lt > 0 |Xt > 0) ≥ 1−λ0

2 for all t > 0.

(b) Lt is atomless almost surely under PXX0
and N0.

Definition. Lt is the boundary local time of Xt.

We note that Zt will contain intervals, unlike the zero set of a Brownian motion (which is equal to its bound-
ary). It is easy to see that Lt is supported on BZt from the fact that as λ gets large, Lλt concentrates on
{x : 0 < X(t, x) = O(λ−1)}, and properties of the weak topology on MF (R) (see the proof of Theorem 1.1 in
Section 4). For fixed t > 0, x→ X(t, x) is a continuous path taking values in R

+ = [0,∞). BZt is the set of points
where this path begins and ends its excursions from 0. As Lt is supported on BZt, in this sense Lt is a local time
of x→ X(t, x) on these excursion endpoints, and hence the boundary local time of X(t, ·).

The existence of a measure supported on BZt allows us to use the energy method to study its dimension. We will
provide a second moment formula for Lt, with which we compute the expectation of energy integrals of the form

(1.7)

∫∫

|x− y|−p dLt(x) dLt(y).

If Lt > 0 and the above energy is finite, then dim(supp(Lt)) ≥ p by Frostman’s connection between energy integrals
and Hausdorff dimension (see Theorem 4.27 of Mörters and Peres [13]). We introduce some notation. For h : R2 → R,
define (Lt × Lt)(h) by

(Lt × Lt)(h) =

∫∫

h(x, y) dLt(x) dLt(y).

For p > 0, we define hp(x, y) = |x− y|−p. The second moment formula for Lt allows us to establish the following.

Theorem 1.3. EXX0
((Lt×Lt)(hp)) and N0((Lt×Lt)(hp)) are finite for all p < 2−2λ0. Moreover, dim(BZt) = 2−2λ0

almost surely on {Lt > 0} under both measures.

The fact that dim(BZt) ≤ 2− 2λ0 P
X
X0

-a.s. is already known from Theorem A, and from this it follows easily under
N0, as we point out in the proof of Theorem 1.3. By the above, the lower bound, ie. dim(BZt) ≥ 2 − 2λ0, holds
with at least the probability that Lt > 0, as in Theorem 1.2(a). This plays an important role in Hughes-Perkins
[7]; in Theorem 1.2 of [7] we show that with respect to both PXX0

and N0, Lt > 0 almost surely on {Xt > 0},
thus improving part (a) of Theorem 1.2 above and establishing almost sure non-degeneracy of Lt. Combined with
Theorem 1.3, this will show that dim(BZt) = 2 − 2λ0 almost surely on {Xt > 0}.

There are a number of other potential uses for such a local time. We now discuss some possibilities. By sampling
a point from Lt, we are able to “view Xt from the perspective of a typical point in BZt.” More precisely, one can
define QX0((Z,Xt) ∈ A) = EXX0

(
∫

1A(z,Xt) dLt(z)) and study properties of the Palm measure QX0(Xt ∈ · |Z = z).
The behaviour of Xt near BZt is complex and there is still much that is not understood about it. For example,
the density has an improved modulus of continuity and is nearly Lipzschitz (ie. Hölder 1 − η for all η > 0) at
points in BZt (see Theorem 2.3 of [16]). This suggests that BZt would be small, but despite this BZt has positive
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dimension. Constructing and studying the Palm measure described above would give a more structured approach
for investigating this phenomenon.

As a local time, Lt has the potential to study pathwise uniqueness in the SPDE (1.1), a problem which remains
open, assuming a similar role as that of the semi-martingale local time in the Yamada-Watanabe Theorem for one-
dimensional SDEs (see Theorem V.40 of Rogers and Williams [19]). It may also provide insight in the behaviour
of some discrete processes; super-Brownian motion in high dimensions is the scaling limit of a number of lattice
models and interacting particle systems. In dimension one, it is still the scaling limit of branching random walk
(for example see [21] or Theorem II.5.1(iii) of [17]). One could obtain information about the boundaries of such
approximating processes by proving a limit theorem establishing weak convergence of the laws of their discrete local
times to that of Lt. Of course, Lt allows for us to study BZt more directly, as we have done in Theorem 1.3. In
fact, with Lt it may be possible to determine the exact Hausdorff measure function of BZt.

We now discuss the method of our proof. Upper bounds on second moments of Lλt were obtained in Section 5.1 of
[14], but in order to establish the existence of Lt we require exact asymptotics, which are more delicate. The main
ingredient is the following convergence result. In order to state it we need to introduce some notation. Recall that
m(dx) denotes the centred unit variance Gaussian measure. Let ψ0 = ψF0 (the eigenfunction of AF corresponding
to eigenvalue −λ0). The constant C1.4 is given explicitly in (5.80), and the function ρ is defined in (5.81). The
function V∞,∞

t is defined in Section 3 as V∞,∞
t (x1, x2) = N0 ({X(t, x1) > 0} ∪ {X(t, x2) > 0}) (see (3.20)).

Theorem 1.4. There exists a constant C1.4 > 0 and continuous function ρ : R×R → (0, 1] such that for bounded
Borel h : R2 → R,

lim
λ,λ′→∞

N0((Lλt × Lλ
′

t )(h))

= C2
1.4

∫ t

0

(t− s)−2λ0

[
∫∫

EB0

(

exp

(

−
∫ s

0

V∞,∞
t−u (

√
t− s z1 +Bs −Bu,

√
t− s z2 +Bs −Bu) du

)

× h(
√
t− s z1 +Bs,

√
t− s z2 +Bs)

)

ρ(z1, z2)ψ0(z1)ψ0(z2) dm(z1) dm(z2)

]

ds.

Moreover, the limit is finite for all bounded h.

That the formula above is finite is not obvious, as λ0 > 1/2; we discuss this in more detail shortly. From the above
we can deduce that {Lλt (φ)}λ>0 is Cauchy in L2(N0) and therefore has a limit by completeness; in particular see
Corollary 4.1 and its proof. We then argue that the limit is in fact the integral with respect to a unique measure,
which is Lt. The proof of Theorem 1.4 is long and technical; Section 5 is entirely devoted to it. We use the Laplace
functional to obtain a Feynman-Kac type representation for N0(Lλt (φ)Lλ

′

t (φ)) and then establish its convergence.
The reason we do so under N0 is because the Feynman-Kac formulas are simpler in this setting. We now present
first and second moment formulas for Lt under N0; as one would expect, the second moment formula in part (b)
agrees with the limit of N0((Lλt ×Lλ

′

t )(h)) given in Theorem 1.4. The terms C1.4 and ρ are the same that appeared
in that result.

Theorem 1.5. (a) For a bounded or non-negative Borel function φ : R → R,

(1.8) N0(Lt(φ)) = C1.4 t
−λ0

∫

φ(
√
tz)ψ0(z) dm(z).

(b) For measurable h : R2 → R, either bounded or non-negative,

N0((Lt × Lt)(h))

=C2
1.4

∫ t

0

(t− s)−2λ0

[
∫∫

EB0

(

exp

(

−
∫ s

0

V∞,∞
t−u (

√
t− s z1 +Bs −Bu,

√
t− s z2 +Bs −Bu) du

)

× h(
√
t− s z1 +Bs,

√
t− s z2 +Bs)

)

ρ(z1, z2)ψ0(z1)ψ0(z2) dm(z1) dm(z2)

]

ds.(1.9)

Moreover, (1.9) is finite for all bounded h.
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As we noted earlier, finiteness of (1.9) is not obvious since λ0 > 1/2 (although it is implicit in the proof of
Theorem 1.4), which can make (1.9) hard to use; for applications, the following upper bound for second moments
is easier to apply than the exact formula. The value θ is defined as θ =

∫

ψ0 dm. Y is an Ornstein-Uhlenbeck
process started at z1 with corresponding expectation EYz1 . The exponential term in the first bound of the following
proposition can be interpreted as a survival probability of Y , producing a wλ0 term which makes the integral finite.
(The proofs of Theorem 1.3 and Theorem 1.2(b) in Section 4 both use this technique.)

Proposition 1.6. For a non-negative Borel function h : R2 → R,

N0((Lt × Lt)(h)) ≤C2
1.4

∫ t

0

w−2λ0

[
∫∫

EYz1

(

exp

(

−
∫ log(t/w)

0

F (Yu) du

)

× h(
√
tYlog(t/w),

√
tYlog(t/w) +

√
w(z2 − z1))

)

ψ0(z1)ψ0(z2) dm(z1) dm(z2)

]

dw.(1.10)

Moreover,

(1.11) N0(Lt(1)2) ≤
C2

1.4θ
2

1 − λ0
t1−2λ0 .

As we have alluded to, applying (1.10) with h(x, y) = |x− y|−p gives an upper bound for the expectation of energy
integrals of the form (1.7), which is how we prove Theorem 1.3.

Thus far, we have not commented on the proofs of existence and properties of Lt under PXX0
. The proofs rely on

the conditional representation in terms of canonical clusters, which we will discuss shortly. First, in order to keep
the moment results together, we state our results regarding the moments of Lt under PXX0

.

Theorem 1.7. For a bounded or non-negative Borel function φ : R → R,

(1.12) EXX0
(Lt(φ)) = C1.4 t

−λ0

∫∫

φ(x0 +
√
tz) exp

(

−1

t

∫

F (z + t−1/2(x0 − y0) dX0(y0)

)

ψ0(z) dm(z) dX0(x0).

(b) There is a constant C1.7 such that

(1.13) EXX0
(Lt(1)2) ≤ C1.7

(

X0(1) t1−2λ0 +X0(1)2 t−2λ0
)

.

We note that the right hand side of (1.12) is equal to that of (1.5), and so was originally computed in Proposition
1.5 of [14] as limλ→∞ EXX0

(Lλt (φ)). The fact that the same formula gives the mean measure of Lt then follows from

the L2 convergence of Lλt (φ), as in Theorem 1.1.

We first establish the existence of Lt, as well as its properties, under the measure N0, owing to the fact that the
second moments of Lλt admit simpler formulas in this case. In order to prove the same for super-Brownian motion,
we need to use the relationship between super-Brownian motion under PXX0

and the canonical measure, which we
now describe. We recall that Nx is a σ-finite measure such that Nx({Xt > 0}) = 2/t which describes the “law”
of a single cluster of super-Brownian motion started at x; that is, the descendants of a single ancestor at x. More
precisely, super-Brownian motion is a superposition of canonical clusters; for a bounded, non-negative Borel function
φ : R → R,

(1.14) EXX0
(exp (−Xt(φ))) = exp

(

−
∫∫

1 − e−µt(φ)dNx0(µ) dX0(x0)

)

.

This expression for the Laplace functional is in fact a consequence of a distributional equality between super-
Brownian motion under PXX0

and a Poisson point process of canonical clusters. For X0 ∈ MF (R), let NX0(·) =
∫

Nx(·) dX0(x) and let ΘX0 be a Poisson point process on C([0,∞),MF (R)) with intensity NX0 . We define a
MF (R)-valued process (Xt : t ≥ 0) by

(1.15) Xt(·) =

{

∫

µt(·) dΘX0 (µ) if t > 0,

X0(·) if t = 0.

5



By Theorem 4 of Section IV.3 of [11], (Xt : t ≥ 0) is a super-Brownian motion with initial measure X0. The “points”
of the point process ΘX0 are the clusters of X . For fixed t > 0, (1.15) leads to

Xt =
∑

j∈It
µjt ,

where {µjt : j ∈ It} are the points of a Poisson point process with finite intensity NX0(µt ∈ · |µt > 0}. Let
X̄0(·) = X0(·)/X0(1). Assuming our probability space is rich enough to allow us to choose random relabellings of
these points, by the above we can write

(1.16) Xt =

N
∑

i=1

X i
t ,

where N is Poisson(2X0(1)/t) and, given N , {X i
t : i = 1, . . . , N} are iid with distribution NX̄0

(Xt ∈ · |Xt > 0). We
can and do condition on the values of the initial points of the clusters, denoted by x1, . . . , xN , which are iid points
with distribution X̄0, in which case X i

t has conditional distribution Nxi(Xt ∈ · |Xt > 0). In order to prove the
existence and properties of Lt with respect to a super-Brownian motion Xt, we realize the super-Brownian motion
as a point process and express Xt as above. Conditioning on N and applying (1.16), we can write Lλt (φ) as

Lλt (φ) = λ2λ0

∫

[

N
∑

i=1

X i(t, x)

]

e−λ
∑N

i=1X
i(t,x) φ(x) dx.

The almost sure existence of boundary local times corresponding to the canonical clusters allows us to take this
limit quite easily and so establish that Lt exists under PXX0

(ie. Theorem 1.1). Furthermore, we obtain a conditional
representation for Lt in terms of its clusters; this allows us to transfer the properties of Lt under N0 to Lt under
PXX0

. Let Lit denote the boundary local time of X i
t . In the statement that follows, we assume that we have realized

Xt using (1.16).

Theorem 1.8. Let Xt be super-Brownian motion under PXX0
and Lt be its boundary local time. Conditional on N ,

we have

dLt(x) =

N
∑

i=1

1
(

∑

j 6=i
Xj(t, x) = 0

)

dLit(x)

= 1(X(t, x) = 0)

N
∑

j=1

dLit(x).(1.17)

Remark. Given the nature of BZt, we expect this behaviour. In the cluster decomposition, each cluster has a
boundary local time of its own. Since each is supported on the boundary of its respective zero set, the local time
Lt of Xt will be equal to the sum of cluster local times, except the boundary of the zero set of one cluster may be
“swallowed” by the support of another, hence the indicator functions.

The idea of representing the boundary local time of Xt in terms of the boundary local time of its clusters is
not restricted to a super-Brownian motion and its comprising canonical clusters. The following formulation of the
same principle will be useful in Hughes-Perkins [7]. Recall that a sum of independent super-Brownian motions is a
super-Brownian motion.

Theorem 1.9. Suppose X1, . . . , Xn are independent super-Brownian motions with corresponding boundary local
times Lit at time t > 0, for i = 1, . . . , n. Let X =

∑n
i=1X

i and let Lt be the boundary local time of Xt. Then

dLt(x) =

n
∑

i=1

1
(

∑

j 6=i
Xj(t, x) = 0

)

dLit(x)

= 1(X(t, x) = 0
)

n
∑

i=1

dLit(x).
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One example of superprocesses satisfying the above conditions follows from (III.1.3) of [17]. Let X0 ∈ MF (R) and
suppose that {A1, . . . , An} is a Borel partition of R. Define X i as the contribution to X from ancestors at time
0 which are in Ai. (This makes X i a super-Brownian motion with initial measure X0(· ∩ Ai); a precise definition

of X i may be given in terms of the historical process as in the above reference.) Then X =
∑N
i=1X

i satisfies the
conditions of the above theorem.

Notations. We will make use of the common convention that C denotes any positive constant whose value is not
important. The value of C may change line to line in a derivation; to bring attention to the fact that the constant
has changed, we will sometimes label the new constant C′. We write f ∼ g if limx f(x)/g(x) = 1, where the limit
will be clear from context. As the reader has probably inferred, we will write µ > 0 when a measure has positive
mass (that is, to indicate that µ(1) > 0). For an interval I ⊆ R, let C(I,R) denote the space of continuous maps
from I to R.

Let St denote the semi-group of Brownian motion and pt the associated heat kernel (the Gaussian density of vari-
ance t). Let N (x0, σ

2) denote the law of a one-dimensional Gaussian with mean x0 and variance σ2.

Organization of Paper. The paper is organized as follows. Section 2 gives a brief overview of the theory of
one-dimensional Ornstein-Uhlenbeck processes with Markovian killing. Our method relies on a change of variables
which allow us to express certain quantities in terms of eigenvalue problems involving these processes’ generators.
Section 3 describes fundamental background connecting the Laplace functional of super-Brownian motion to a
family of semi-linear PDEs. We also introduce the families V λ and V λ,λ

′

, which play a key role in our analysis.
Section 4 contains the proofs of all our main results, including existence and properties of Lt and the cluster
representations, with the exception of Theorem 1.4. The proof of this result is reserved for Section 5.

Acknowledgements. The author gratefully acknowledges the assistance of Ed Perkins, his thesis supervisor, who
introduced him to the problem and provided many useful insights and suggestions during its resolution, and gave
close readings of the manuscript at several stages during its preparation. Any remaining inconsistencies are the sole
responsibility of the author.

2. Killed Ornstein-Uhlenbeck Processes

As above, we define the operator A by Af(x) = f ′′(x)
2 − xf ′(x)

2 . The Markov process generated by A is a one-
dimensional Ornstein-Uhlenbeck process with mean zero. We denote this process by Y , denote its law when started
at x by P Yx with corresponding expectation EYx . For general initial conditions Y0 ∼ µ ∈ M1(R) (the space of prob-
ability measures on R), we write its law as P Yµ . Y has a stationary measure, the unit variance Gaussian measure,
m. When Y0 ∼ m, the process is reversible and can be defined for time values in R. We will denote the law of this
stationary process on R by P Y .

We now introduce the notions of killing and lifetime for the process (Yt : t ≥ 0). Let φ ∈ C+([−∞,∞],R), the
space of non-negative continuous functions with limits at ±∞. We will call such functions killing functions. Let
Aφf(x) = Af(x) − f(x)φ(x). Aφ is the generator of an Ornstein-Uhlenbeck process subjected to Markovian killing

at rate φ(Yt). The lifetime of the killed process is ρφ = inf{t > 0 :
∫ t

0
φ(Ys) ds > e}, where e is an independent

Exp(1) random variable. We recall that the distribution of ρφ is given by (1.4).

The generators A and Aφ correspond to strongly continuous contraction semigroups on L2(m). The following
theorem is proved in [14], where it is stated as Theorem 2.3. We note that the statement of the result in that paper
had a misprint when describing the convergence of of the transition densities, which appeared in part (c). We have
corrected the statement, which is in part (b) of the following.

Theorem 2.1. For φ ∈ C+([−∞,∞]), the following statements hold.
(a) Aφ has complete orthonormal family of C2 eigenfunctions {ψn : n ≥ 1} in L2(m) satisfying Aφψn = −λnψn,
where 0 ≤ λ0 ≤ λ1 ≤ · · · → ∞. Furthermore, −λ0 is a simple eigenvalue and ψ0 > 0.
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(b) For t > 0, the diffusion Y generated by Aφ has a jointly continuous transition density qt(x, y) with respect to
m, given by

(2.1) qt(x, y) =

∞
∑

n=0

e−λntψn(x)ψn(y),

where the series converges in L2(m×m) and uniformly absolutely on sets of the form [ǫ,∞) × [−ǫ−1, ǫ−1]2 for all
ǫ > 0.

(c) For 0 < δ < 1
2 , there exists a constant cδ > 0 such that

(2.2) qt(x, y) ≤ cδe
−λ0teδ(x

2+y2) for all t ≥ s∗(δ),

where s∗(δ) > 0 is the solution of

(2.3) 2δ =
e−s

∗/2 − e−s
∗

1 − e−s∗
.

(d) Denote θ =
∫

ψ0 dm. For all t ≥ 0 and x ∈ R,

(2.4) eλ0tPx(ρφ > t) = θψ0(x) + r(t, x),

where, for any δ > 0, there is a constant cδ > 0 such that

ψ0(x) ≤ cδe
δx2

,(2.5)

|r(t, x)| ≤ cδe
δx2

e−(λ1−λ0)t.(2.6)

(e) As T → ∞, Px(Y ∈ ·| ρφ > T ) → P Y,∞x weakly on C([0,∞),R), where P Y,∞x is the law of the diffusion with the
transition density

(2.7) q̃t(x, y) ≡ qt(x, y)
ψ0(y)

ψ0(x)
eλ0t

with respect to m.

The bounds in part (c) of the above easily imply the following estimates, which we will often use. For 0 < δ < 1/2,
there is a constant Cδ > 0 such that

(2.8) P Yx (ρφ > t) ≤ Cδe
δx2

e−λ0t ∀x ∈ R, t > 0.

This implies that there is a constant C > 0 such that

(2.9) P Ym (ρφ > t) ≤ Ce−λ0t ∀ t > 0.

The following limit result is a simple consequence of the eigenfunction expansion for qt(x, y).

Lemma 2.2. For all x, y ∈ R,
lim
t→∞

eλ0tqt(x, y) = ψ0(x)ψ0(y).

The convergence is uniform on compact sets.

Proof. For all t > 0 and x, y ∈ R, from (2.1), we have

(2.10) eλ0tqt(x, y) = ψ0(x)ψ0(y) +

∞
∑

n=1

e−(λn−λ0)tψn(x)ψn(y).

The absolute value of the sum above is bounded above by

e−(λ1−λ0)(t−1)
∞
∑

n=1

e−(λn−λ0)|ψn(x)ψn(y)|.

By Theorem 2.1(b) with t = 1, the series in the above is convergent, and the convergence is uniform on compact
sets. Part (a) of the same theorem states that −λ0 is a simple eigenvalue. Hence λ1−λ0 > 0 and the above vanishes
as t → ∞; in fact, because the series converges uniformly on compacts to a continuous limit, the above vanishes
uniformly on compacts as t→ ∞, so (2.10) gives the result.
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It will be useful for us to study the distribution of the process Y when conditioned on survival and its endpoint.
Hereafter we assume that Y has killing function φ ∈ C+([−∞,∞],R) and we denote its lifetime by ρ. For fixed
T > 0 and z ∈ R, consider the [0, T ]-indexed inhomogeneous Markov process taking values in R with transition
density (with respect to dm(y2))

(2.11) q̂s,t(y1, y2) =
qt−s(y1, y2) qT−t(y2, z)

qT−s(y1, z)

for 0 ≤ s < t < T . (The kernels are degenerate when t = T , since YT = z.) Below we verify that the finite
dimensional distributions defined by this transition kernel have an extension to a (necessarily) unique law on
C([0, T ],R), which we denote by P Yx (· | ρ > T, YT = z) when the initial point is x ∈ R, and show that it gives
an explicit version of the suggested regular conditional distribution for all z ∈ R. We then establish that for fixed
S > 0, P Yx (Y |[0,S] ∈ · | ρ > T, YT = z) converges weakly to P Y,∞x (Y |[0,S] ∈ ·) as T → ∞ for all z ∈ R.

Lemma 2.3. (a) Let x ∈ R and T > 0. For all z ∈ R, the finite dimensional distributions described in (2.11), with
initial value x, have a unique extension to C([0, T ],R). The resulting laws P Yx (· | ρ > T, YT = z) are continuous in
z and define a regular conditional probability for Y |[0,T ]

under P Yx conditioned on YT .

(b) Let x, z ∈ R, S > 0 be fixed. Then Px(Y |[0,S] ∈ · | ρ > T, YT = z) converges weakly on C([0, S],R) to

P Y,∞x (Y |[0,S] ∈ ·) as T → ∞.

(c) For all S,K > 0,
{

Px(Y |[0,S] ∈ · | ρ > T, YT = z) : |x|, |z| ≤ K,T ≥ S
}

is tight on C([0, S],R).

Before proving the lemma, we make an observation concerning time reversals of Y under P Yx (· | ρ > T, YT = z). For
T > 0 and t ∈ [0, T ], define Ŷt = YT−t. Let x, z ∈ R. For 0 < t1 < t2 < T and φ1, φ2 bounded Borel functions, we
have

EYx (φ1(Ŷt1)φ2(Ŷt2)
∣

∣ ρ > T, YT = z)

=
1

qT (x, z)

∫∫

φ1(y1)φ2(y2) qT−t2(x, y2) qt2−t1(y2, y1) qt1(y1, z) dm(y1) dm(y2)

= EYz (φ1(Yt1 )φ2(Yt2)
∣

∣ ρ > T, YT = x),

where the last equality uses qt(x, y) = qt(y, x). The above equality of distributions can be extended to general finite
dimensional distributions. Because the extension of the finite dimensional distributions to a law on C([0, T ],R) (ie.
from Lemma 2.3(a)) is unique, we therefore have that for all x, z ∈ R,

P Yx (Ŷ |[0,T ]
∈ · | ρ > T, YT = z) = PYz (Y |[0,T ]

∈ · | ρ > T, YT = x).(2.12)

As a last note, we will sometimes denote the law P Yx (· | ρ > T, YT = z) simply by PYx (· |YT = z) when it is clear
from context that we are working with the killed process.

Proof of Lemma 2.3. Let x, z ∈ R and T > 0. We define a distribution PYx (· | ρ > T, YT = z) on finite (time indexed)
collections of random variables which describes the finite dimensional distributions (FDDs) of the inhomogeneous
Markov process with transition density (2.11). For 0 = t0 < t1 < . . . < tn < T and bounded, continuous functions
φ1, . . . , φn, the n-dimensional FDD of (Yt1 , . . . , Ytn) under P Yx (· | ρ > T, YT = z) is defined as

(2.13) EYx

( n
∏

i=1

φi(Yti)

∣

∣

∣

∣

ρ > T, YT = z

)

=
1

qT (x, z)

∫
[ n
∏

i=1

φi(yi)qtn−tn−1(yn−1, yn)

]

qT−tn(yn, z)

n
∏

i=1

dm(yi)

where we use the convention y0 = x. We note that (2.13) also defines the FDDs of a regular conditional distribution
of (Yt : t ∈ [0, T ]) under P Yx conditioned on YT = z (which is why we have used this notation). Thus when we have
established that these laws extend to a probability on C([0, T ],R), we will have explicitly constructed a version of
the regular conditional distribution.

To prove that P Yx (· | ρ > T, YT = z) extends to a probability on C([0, T ],R), we will establish a tightness criterion.
We consider the fourth moments of increments of Y . Let 0 < s < t < T . Expanding using (2.13), we have

EYx ((Yt − Ys)
4 | ρ > T, YT = z)

=
1

qT (x, z)

∫∫

(y2 − y1)4qs(x, y1) qt−s(y1, y2) qT−t(y2, z) dm(y1) dm(y2).(2.14)
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We now collect some elementary bounds and inequalities which will allow us to obtain a useful upper bound for
the above. First, we note that while qt(x, y) is a transition density with respect to m, it will sometimes be useful to
express it as a density with respect to the Lebesgue measure. Since p1(·) is the density of m, we have

(2.15) qt(x, y) dm(y) = qt(x, y) p1(y) dy.

We will use a comparison with an un-killed Ornstein-Uhlenbeck process. The transition kernel of a standard
Ornstein-Uhlenbeck process is described by, for 0 ≤ s < t,

(Yt − Ys |Ys = y) ∼ N (e−(t−s)/2y, 1 − e−(t−s)).

Let kt(x, y) denote the a transition density of an un-killed Ornstein-Uhlenbeck process with respect to Lebesgue
measure. Then for x, y ∈ R and t > 0,

(2.16) kt(x, y) =
(2π)−1/2

√
1 − e−t

exp
(

−(y − e−t/2x)2
/

2(1 − e−t)
)

.

The transition densities of the killed Ornstein-Uhlenbeck process are bounded above by those of the un-killed
process. This implies that

(2.17) (i) qt(x, y) dm(y) ≤ kt(x, y) dy, (ii) qt(x, y) p1(y) ≤ kt(x, y)

It is easy to establish from (2.16) that there is a constant c > 0 such that

(2.18) kt(x, y) ≤ cpt(y − xe−t/2) for all t ≤ 2 and x, y ∈ R.

where we recall that pt(·) is the Gaussian density of variance t. Let K > 0. From (2.17)(ii) and (2.18) it follows
that there is a constant C1(K) such that

(2.19) qT−t(y2, z) ≤ kT−t(y2, z)p1(z)−1 ≤ C1(K)√
T − T ′ ∀ y2 ∈ R, z ∈ [−K,K], and t ≤ T ′ < T.

Next, we note that it holds by elementary formulas for moments of Gaussians that there is a constant c > 0 such
that

(2.20)

∫

(y2 − y1)4pt(y2) dy2 ≤ c (t2 + |y1|4) ∀ y1 ∈ R, t > 0.

Finally, observe that qT (·, ·) is bounded below by the transition density of Y with constant killing function ‖φ‖∞.
Thus for all K > 0 and M ≥ 1, from (2.15) we have

(2.21) qT (x, z) ≥ e−‖φ‖∞TkT (x, z)p1(z)−1 ≥ δ(K,M) ∀x, z ∈ [−K,K], T ∈ [M−1,M ]

for a sufficiently small constant δ(K,M) > 0.

Let 0 < T ′ < T and suppose that 0 < s < t ≤ T ′ such that t− s ≤ 1. Let K > 0 and suppose that x, z ∈ [−K,K].
Using (2.17)(i) to bound qs(x, y1)dm(y1) and qt−s(y1, y2)dm(y2), and (2.19) to bound qT−t(y2, z), from (2.14) we
obtain that

EYx ((Yt − Ys)
4 | ρ > T, YT = z)

≤ C1(K) (T − T ′)−1/2

qT (x, z)

∫

ks(x, y1)

[
∫

(y2 − y1)4kt−s(y1, y2)dy2

]

dy1

≤ C1(K) (T − T ′)−1/2

qT (x, z)

∫

ks(x, y1)

[
∫

c(y2 − y1)4pt−s(y2 − e−(t−s)/2y1)dy2

]

dy1,(2.22)

where the second inequality uses (2.18). Changing variables and applying (2.20), we obtain that

(2.23)

∫

c(y2 − y1)4pt−s(y2 − e−(t−s)/2y1)dy2 ≤ C(|y1|4(1 − e−(t−s)/2)4 + (t− s)2) ≤ C(1 + |y1|4)(t− s)2,
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where in the second inequality we have 1− e−x ≤ x for x ≥ 0 and (t− s)4 ≤ (t− s)2 (since t− s ≤ 1). Substituting
this into (2.22), we obtain that

(2.24) EYx ((Yt − Ys)
4 |YT = z) ≤ C1(K) (T − T ′)−1/2

qT (x, z)
(t− s)2

∫

C ks(x, y1) (|y1|4 + 1) dy1.

Recall that we have assumed x, z ∈ [−K,K]. By (2.16) it is clear that for K > 0, the integral is bounded above by
some constant C2(K) > 0 for all x ∈ [−K,K] and s > 0. Using this along with (2.21), with a choice of M ≥ 1 for
which T ∈ [M−1,M ], from the above we deduce the following:

For all x, z ∈[−K,K], 0 < s < t ≤ T ′ such that t− s ≤ 1,

EYx ((Yt − Ys)
4 |YT = z) = C2(K) δ(K,M)−1 C1(K) (T − T ′)−1/2 × (t− s)2.(2.25)

Let T ′ = 2T/3. Hereafter we consider increments of size at most 1 ∧ T/3. We have that (2.25) holds for all
0 < s < t ≤ 2T/3 such that t− s ≤ 1 ∧ T/3 with constant C2(K)δ(K,M)−1C1(K)(T/3)−1/2. It remains to show
that it also holds on [2T/3, T ]. To do so, we make use of reversibility. Suppose T/3 ≤ s < t < T . Then

EYx ((Yt − Ys)
4
∣

∣YT = z)

=
1

qT (x, z)

∫∫

(y2 − y1)4 qs(x, y1) qt−s(y1, y2) qT−t(y2, z) dm(y1) dm(y2)

= EYz ((YT−s − YT−t)
4
∣

∣YT = x),(2.26)

where the last equality uses qt(x, y) = qt(y, x) (a consequence of (2.1)) and (2.13). Since 0 < T − t < T − s ≤ 2T/3,
by (2.25) and (2.26) we have that for all x, z ∈ [−K,K] and T/3 ≤ s < t < T such that t− s ≤ 1 ∧ T/3,

EYx ((Yt − Ys)
4 | ρ > T, YT = z) = C2(K) δ(K,T )−1 C1(K) (T/3)−1/2 × (t− s)2.

Combined with the previous statement that this holds for all 0 < s < t ≤ 2T/3, we have that

For all x, z ∈[−K,K], 0 < s < t < T such that t− s ≤ 1 ∧ T/3,
EYx ((Yt − Ys)

4 |YT = z) ≤ C2(K) δ(K,M)−1 C1(K) (T/3)−1/2 × (t− s)2.(2.27)

The above proof can be easily modified to obtain the same bound (with a potential change to the constant) for
increments in which s = 0 or t = T , and we omit it. Thus by (2.27) and the Kolmogorov Continuity Theorem,
P Yx (· | ρ > T, YT = z) has a unique extension to a probability on C([0, T ],R), also denoted by P Yx (· | ρ > T, YT = z).
As we noted earlier, this gives an explicit construction of the regular conditional distribution (Yt : t ∈ [0, T ]) under
P Yx given ρ > T and YT = z, Additionally, suppose that zn → z and that zn ∈ [−K,K] for all n ≥ 1. From
(2.27), {P Yx (·| ρ > T, YT = zn) : n ≥ 1} is tight. It is clear from (2.13) and continuity of qt(·, ·) that the FDDs of
P Yx (· | ρ > T, YT = zn) converge to those of P Yx (· | ρ > T, YT = z). Thus the aforementioned tightness proves that
P Yx (· | ρ > T, YT = zn) converges to P Yx (· | ρ > T, YT = zn) as a law on C([0, T ],R). Thus we have proved part (a).

Before proving (b), we note the following consequence of (2.27) and its proof. Let S,K > 0 and fix M > 1 such
that S ∈ [M−1,M ]. By considering increments of (Ys : s ∈ [0, S]) but allowing the time T at which we condition
YT = z to take values in [S,M ], we have that

(2.28) {P Yx (Y |[0,S] ∈ · | ρ > T, YT = z) : |x|, |z| ≤ K,T ∈ [S,M ]} is tight.

Next we turn to part (b). Fix S > 0 and x, z ∈ R. We now check that the FDDs of (Ys : s ∈ [0, S]) under
P Yx (· | ρ > T, YT = z) converge to those of (Ys : s ∈ [0, S]) under P Y,∞ as T → ∞. Let 0 < t1 < t2 ≤ S and let φ1
and φ2 be bounded and continuous functions. Then from (2.13), we have

EYx (φ1(Yt1)φ2(Yt2)
∣

∣ ρ > T, YT = z)

=
1

qT (x, z)

∫∫

φ1(Yt1)φ2(Yt2) qt1(x, y1) qt2−t1(y1, y2) qT−t2(y2, z) dm(y1) dm(y2)

=
eλ0t2

eλ0T qT (x, z)

∫∫

φ1(Yt1)φ2(Yt2) qt1(x, y1) qt2−t1(y1, y2) eλ0(T−t2)qT−t2(y2, z) dm(y1) dm(y2).(2.29)
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By Lemma 2.2, we have

(2.30) lim
T→∞

eλ0(T−t)qT−t(y2, z) = ψ0(y2)ψ0(z), lim
T→∞

eλ0T qT (x, z) = ψ0(x)ψ0(z).

Moreover, applying (2.2) with δ = 1/8, we have that

(2.31) eλ0(T−t)qT−t(y2, z) ≤ cey
2
2/8+z

2/8 ∀ y2, z ∈ R, t ∈ (0, S] and T ≥ S + s∗(1/8),

where s∗(1/8) is as in (2.3). Using (2.31) (replacing t with t2) and (2.17)(i) we obtain the following bound for the
integrand in (2.29):

|φ1(Yt1)φ2(Yt2) qt1(x, y1) qt2−t1(y1, y2) e
λ0(T−t2)qT−t2(y2, z)| dm(y1) dm(y2)

≤ ez
2/8‖φ1‖∞‖φ2‖∞ey

2
2/8kt1(x, y1)kt2−t1(y1, y2) dy1 dy2

for all T ≥ S+s∗(1/8). By (2.16), kt1(x, y1) and kt2−t1(y1, y2) are Gaussians with variance at most 1, and so a short
argument shows that the above quantity is integrable. This allows us to use Dominated Convergence in (2.29), so
by (2.30) we have

lim
T→∞

Ex(φ1(Yt1)φ2(Yt2)
∣

∣YT = z)

=
eλ0t2

ψ0(x)ψ0(z)

∫∫

φ1(Yt1)φ2(Yt2) qt1(x, y1) qt2−t1(y1, y2)ψ0(y2)ψ0(z) dm(y1) dm(y2)

=

∫∫

φ1(Yt1)φ2(Yt2)

[

eλ0t1qt1(x, y1)
ψ0(y1)

ψ0(x)

] [

eλ0(t2−t1)qt2−t1(y1, y2)
ψ0(y1)

ψ0(y2)

]

dm(y1) dm(y2)

=

∫∫

φ1(Yt1)φ2(Yt2) q̃t1(x, y1) q̃t2−t1(y1, y2) dm(y1) dm(y2) = EY,∞x (φ1(Yt1)φ2(Yt2)).

The above argument can be easily generalized to n-fold FDDs for all n ≥ 2, (the δ = 1/8 in (2.31) can be reduced
to handle larger n) and thus we have the desired convergence of the FDDs as T → ∞. In order to obtain weak
convergence of the laws on C([0, S],R), we need tightness of the distributions as T → ∞. To prove that the
distributions are tight we will analyse the fourth moments of increments, as in (2.14), but first we obtain one more
bound. We note that by Lemma 2.2 and joint continuity of (T, (x, y)) → qT (x, y), it holds that for all K > 0,

(2.32) eλ0T qT (x, z) ≥ δ(K) > 0 ∀x, z ∈ [−K,K], T ≥ 1

for sufficiently small δ(K) > 0. Let K > 0 and x, z ∈ [−K,K]. In (2.14), we bound qT−t(y2, z) above using (2.31)
and bound the other transition densities using (2.17), which gives

EYx ((Yt − Ys)
4 | ρ > T, YT = z)

≤ eλ0t+z
2/8

eλ0T qT (x, z)

∫

ks(x, y1)

[
∫

(y2 − y1)4 kt−s(y1, y2) ey
2
2/8dy2

]

dy1

≤ eλ0S+K
2/8 δ(K)−1

∫

ks(x, y1)ey
2
1/4

[
∫

c (y − y1(1 − e−(t−s)/2))4pt−s(y) ey
2/4 dy

]

dy1

≤ eλ0S+K
2/8 δ(K)−1

∫

c′ ks(x, y1)ey
2
1/4

[
∫

c′ (y − y1(1 − e−(t−s)/2))4 p2(t−s)(y) dy

]

dy1

for all T ≥ S + s∗(1/8). In the second inequality we have used (2.32) as well as (2.18) and a change of variables.
The third follows from a short calculation and the fact that t− s ≤ 1. Applying (2.20) to the above and arguing as
in (2.23), we obtain that, for all T ≥ S + s∗(1/8),

EYx ((Yt − Ys)
4 | ρ > T, YT = z)

≤ eλ0S+K
2/8 δ(K)−1 (t− s)2 C

∫

ks(x, y1) ey
2
1/4 (1 + |y1|4) dy1,

≤ C3(S,K) (t− s)2 ∀x, z ∈ [−K,K], 0 ≤ s < t ≤ S such that t− s ≤ 1,(2.33)
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for a constant C3(S,K) > 0, where to see that the integral is bounded uniformly for |x| ≤ K, we use the fact, from
(2.16), that ks(x, y1) is Gaussian with mean absolutely bounded by |x| and variance less than 1. The fact that (2.33)
holds for all T ≥ S + s∗(1/8) implies that the laws PYx (Y |[0,S] ∈ · | ρ > T, YT = z) are tight as T → ∞. Combined

with the convergence of the FDDs to those of P Y,∞x , this proves (b).

Observe that (2.33) proves part (c) if we restrict to T ≥ S + s∗(1/8). If we choose M ≥ 1 such that M−1 < S <
S + s∗(1/8) < M , then (2.28) gives tightness of the laws for T ∈ [S, S + s∗(1/8)]. Combining these two cases gives
desired tightness and proves (c).

3. Some non-linear PDE

Let Bb+(R) denote the space of bounded, non-negative Borel functions. Recall that St denotes the semigroup of
Brownian motion. By Theorem III.5 of [11], for φ ∈ Bb+(R), there exists a unique non-negative solution, denoted

V φt (x), to the evolution equation

(3.1) Vt = St(φ) −
(
∫ t

0

St−s(V
2
s /2) ds

)

,

such that

(3.2) EXX0

(

e−Xt(φ)
)

= e−X0(V
φ
t )

for all X0 ∈ MF (R). Applying the above with X0 = δx, (1.14) gives

(3.3) Nx

(

1 − e−Xt(φ)
)

= V φt (x).

We are interested in the case when the initial data is a measure, and also in the differential form of the equation.
The integral equation (3.1) has a corresponding PDE, which is the following:

(3.4)
∂V

∂t
=

1

2

∂2V

∂x2
− V 2

2
for (t, x) ∈ (0,∞) × R, Vt → φ as t ↓ 0.

In [1], this equation was shown to have a unique C1,2 solution when φ ∈ MF (R), where Vt → φ is understood as
weak convergence. By Lemma 2.1 of [15], this solution is also the unique solution to (3.1). We denote the unique

solution to (3.1) and (3.4) by V φt . Part (d) of the same lemma establishes that if φn → φ weakly as n → ∞, then

V φn

t (x) → V φt (x) for all t > 0, x ∈ R. We note from (3.1) that V φn

t ≤ Stφn ≤ ct−1/2φn(R). Using this and the
fact that Xt has a bounded, continuous density, if we approximate measures by functions in Bb+(R), we can take

bounded limits in (3.2) and (3.3) to establish that (3.2) and (3.3) hold for V φt when φ ∈ MF (R).

Notation: As Xt is absolutely continuous, when φ ∈ MF (R) we interpret Xt(φ) as
∫

X(t, x) dφ(x).

We now state some useful properties of solutions to (3.4). For a proof, see Lemma 2.6 in [15].

Proposition 3.1. Let φ, ψ ∈ MF (R).

(a) (Monotonicity) If φ ≤ ψ, then 0 ≤ V φt ≤ V ψt for all t > 0.

(b) (Sub-additivity) V φ+ψt ≤ V φt + V ψt for all t > 0.

We now let φ = λδx ∈ MF (R) for λ > 0, so that Xt(φ) = λX(t, x). Denote by V λt the unique, non-negative C2,1

solution to the initial value problem

∂V

∂t
=

1

2

∂2V

∂x2
− V 2

2
for (t, x) ∈ (0,∞) × R, Vt → λδ0 weakly as t ↓ 0.(3.5)

This family was originally studied in [8]. It is an exercise to use (3.5) or the scaling properties of super-Brownian
motion to show that V λt (x) satisfies the following space-time scaling relationship. For λ, r > 0, we have

(3.6) V λrt (x) = λ2V rλ2t(λx).
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By translation invariance in the initial conditions of (3.5), and by (3.2) and (3.3) we have

EXδ0
(

e−λX(t,x)
)

= e−V
λ
t (x),(3.7)

N0

(

1 − e−λX(t,x)
)

= V λt (x)(3.8)

for all x ∈ R and t > 0. It is clear from (3.7) that V λt increases to a limit as λ → ∞. In the PDE literature this
was established in [8], where it was shown that V λ converges locally uniformly as λ → ∞ to a function V∞

t on
(0,∞) × R. Heuristically, V∞

t is the solution of (3.5) when λ = +∞. Rigorously, it is the unique solution to the
following problem:

∂V

∂t
=

1

2

∂2V

∂x2
− V 2

2
for (t, x) ∈ (0,∞) × R,

lim
t↓0

Vt(x) = 0 ∀x 6= 0, lim
t↓0

∫

Bǫ

V∞
t (x) dx = +∞ ∀ ǫ > 0,(3.9)

where Bǫ = B(0, ǫ), the ball with radius ǫ centered at the origin. V∞
t was introduced and shown to solve (3.9) in

[2]; uniqueness of the solution is a consequence of Theorem 3.5 of [12]. Taking λ → ∞ in (3.8), we see that V∞
t

satisfies

(3.10) V∞
t (x) = N0({X(t, x) > 0}).

We recall that (see Theorem II.7.2 of [17])

(3.11) N0({Xt > 0}) = 2/t.

Thus (3.10) implies that

(3.12) V∞
t (x) ≤ 2/t ∀x.

Taking λ2 = 1/t and letting r → ∞ in (3.6), one obtains that V∞
t (x) = t−1V∞

1 (t−1/2x).

Definition: F (x) := V∞
1 (x).

Then we have V∞
t (x) = t−1F (t−1/2x). It was shown in [2] that F is the solution to an ODE problem. (In fact, their

PDEs and ODEs have different (constant) coefficients, but Section 3 of [14] shows that F is a rescaled version of
the function they study.) F is the unique solution of

(i) F ′′(x) + xF ′(x) + F (x)(2 − F (x)) = 0

(ii) F > 0, F ∈ C2(R)(3.13)

(iii) F ′(0) = 0, F (x) ∼ c1|x|e−x
2/2 as |x| → ∞

for some c1 > 0. We recall that f(x) ∼ h(x) means f(x)/h(x) → 1 as x → ∞. This F is the function we discussed
in the introduction, for which −λ0 is the lead eigenvalue of the operator AF . In particular, by evaluating (3.10) at
t = 1 we can recover (1.3), our preliminary definition.

As part of the proof of Theorem A, the authors of [14] computed the rate of convergence of V λt to V∞
t . In particular,

Proposition 4.6 of that reference states that

(3.14) sup
x∈R

[

V∞
t (x) − V λt (x)

]

≤ Ct−1/2−λ0λ1−2λ0

for some constant C. (This is closely connected to (1.5).) A similar lower bound with the same power of λ is
established in the same proposition. We will make frequent use of (3.14) in this work to bound error terms arising
when we make approximations to obtain an eigenvalue problem. Let Y be an Ornstein-Uhlenbeck process. We define
ZT (Y ) as

(3.15) ZT (Y ) = exp

(
∫ T

0

F (Ys) − V e
s/2

1 (Ys) ds

)

.
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Since V e
s/2

1 ↑ V∞
1 = F as s → ∞, the integrand is converging to zero. As ZT (Y ) is increasing in T , we can define

Z∞(Y ) := limT→∞ ZT (Y ). By (3.14), we can easily deduce that the (monotone) limit

(3.16) Z∞(Y ) := lim
T→∞

ZT (Y )

exists and is finite, and that moreover there is a constant CZ > 0 such that, uniformly for all Y ,

(3.17) ZT (Y ) ≤ Z∞(Y ) ≤ CZ <∞ ∀T > 0.

Finally, we introduce another family of solutions to (3.4), which arise when we compute second moments of Lλt ;

we will evaluate expressions that involve the density at two points x1, x2 ∈ R. Let V
(λ,λ′),(x1,x2)
t denote V φt when

φ = λδx1 + λ′δx2 ∈ MF (R). When we evaluate this function at 0 we simply write V
(λ,λ′),(x1,x2)
t (0) = V λ,λ

′

t (x1, x2).
In particular, by (3.4), this is equivalent to

(3.18) V λ,λ
′

t (x1, x2) = N0

(

1 − e−λX(t,x1)−λ′X(t,x2)
)

.

We will make frequent use of the fact that this family of solutions is translation invariant in the initial conditions of

(3.4). This implies that V
(λ,λ′),(x1,x2)
t (y) = V λ,λ

′

t (y−x1, y−x2). The family satisfies the following scaling relationship:

(3.19) V rλ,cλ
′

t (x1, x2) = λ2V
r,cλ′/λ
λ2t (λx1, λx2) = (λ′)2V rλ/λ

′,c
(λ′)2t (λ′x1, λ

′x2),

for all λ, λ′, r, c > 0. Taking limits and applying bounded convergence in (3.2), we see that V λ,λ
′

t (x1, x2) has a
monotone limit as λ, λ′ → ∞ (by Proposition 3.1(a)). We denote this limit V∞,∞

t (x1, x2). In agreement with our
previous notation we define the following.

Definition. F2(x1, x2) := V∞,∞
1 (x1, x2).

By taking the limit as λ, λ′ → ∞ in (3.18) (and in (3.2) with φ = λδx1 + λ′δx2) we obtain that

(3.20) V∞,∞
t (x1, x2) = N0({X(t, x1) > 0} ∪ {X(t, x2) > 0}) = − logPXδ0 ({X(t, x1) = X(t, x2) = 0}).

We conclude by stating a version of (3.14) for the functions V λ,λ
′

t .

Lemma 3.2. There is a positive constant C such that for all t, λ, λ′ > 0,

sup
x1,x2∈R

[

V∞,∞
t (x1, x2) − V λ,λ

′

t (x1, x2)
]

≤ Ct−1/2−λ0
[

λ1−2λ0 + λ′1−2λ0
]

.

Proof. Let x1, x2 ∈ R and t, λ, λ′ > 0. We write

V∞,∞
t (x1, x2) − V λ,λ

′

t (x1, x2)

=
[

V∞,∞
t (x1, x2) − V λ,∞t (x1, x2)

]

+
[

V λ,∞t (x1, x2) − V λ,λ
′

t (x1, x2)
]

.(3.21)

By (3.20) and (3.3), the first term is equal to

N0 (1 − 1(X(t, x1) = X(t, x2) = 0)) − N0

(

1 − e−λX(t,x1)1(X(t, x2) = 0)
)

= N0

(

1(X(t, x2) = 0)
(

e−λX(t,x1) − 1(X(t, x1) = 0)
))

≤ N0

(

e−λX(t,x1) − 1(X(t, x1) = 0)
)

= V∞
t (x1) − V λt (x1)

≤ Ct−1/2−λ0λ1−2λ0 ,

where the second last line follows from (3.10) and (3.3), and the final inequality is by (3.14). We use similar reasoning
to bound the second term of (3.21) by the same expression with λ′ replacing λ, which gives the desired result.
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4. Existence and Properties of Lt

As stated in the introduction, our method first establishes the existence and properties of Lt under N0 and then
uses the cluster decomposition to establish them under PXX0

. The main ingredient in the proof of Theorem 1.1 is

the convergence of second moments of Lλt (φ) as λ→ ∞. For a bounded Borel function φ, we show that N0(Lλt (φ)2)
converges as λ → ∞. In fact, we prove convergence of second moments of general functions of two variables. For
h : R2 → R we recall the notation

(Lλt × Lλt )(h) =

∫

h(x, y) dLλt (x) dLλt (y).

Lλt (φ)2 is easily recovered by taking h(x, y) = φ(x)φ(y). The following result is the workhorse of this paper.

Theorem 1.4. There is a constant C1.4 > 0 and continuous function ρ : R × R → (0, 1] such that for bounded
Borel h : R2 → R,

lim
λ,λ′→∞

N0((Lλt × Lλ
′

t )(h))

= C2
1.4

∫ t

0

(t− s)−2λ0

[
∫∫

EB0

(

exp

(

−
∫ s

0

V∞,∞
t−u (

√
t− s z1 +Bs −Bu,

√
t− s z2 +Bs −Bu) du

)

× h(
√
t− s z1 +Bs,

√
t− s z2 +Bs)

)

ρ(z1, z2)ψ0(z1)ψ0(z2) dm(z1) dm(z2)

]

ds.

Corollary 4.1. For a bounded Borel function φ, Lλt (φ) converges in L2(N0) as λ→ ∞.

Proof. Since L2(N0) is complete, it is enough to show that {Lλt (φ)}λ>0 is Cauchy in L2(N0). For λ, λ′ > 0, we have

N0((Lλt (φ) − Lλ
′

t (φ))2) = N0((Lλt (φ)2) + N0((Lλ
′

t (φ)2) − 2N0(Lλt (φ)Lλ
′

t (φ)).

By Theorem 1.4, this converges to 0 as λ, λ′ → ∞.

The proof of Theorem 1.4 is long and technical. We defer it to Section 5, which is devoted to its proof. For now, we
take it as a given and use it to establish our other main results, the first being the existence of Lt under N0.

Proof of Theorem 1.1 for N0. Fix t > 0. Because Xt = 0 implies that Lλt = 0 for all λ > 0, without loss of generality
we can work under the finite measure N0(·∩{Xt > 0}). By Corollary 4.1, for a bounded continuous function φ, there
exists a random variable l(t, φ) such that Lλt (φ) → l(t, φ) in L2(N0) as λ → ∞. It follows that Lλt (φ) → l(t, φ) in
measure. We will now establish that there exists a unique random measure Lt such that the random variable l(t, φ) is
the integral of φ with respect to a random measure Lt, ie. l(t, φ) = Lt(φ) for all continuous and bounded functions φ.

We need to establish that the measures {Lλt : λ > 0} are tight N0-almost surely. To see that this is true, we recall
that X(t, ·) is compactly supported N0-a.s., (see Corollary III.1.4 of [17] for the result under PXδ0 ; condition the
cluster representation on N = 1 to get it for N0) and hence the mass of Xt is contained in a ball B(0, R) for some
R = R(ω) > 0. Since Lλt (A) = λ2λ0

∫

A
X(t, x)e−λX(t,x) dx, this implies that the mass of Lλt is contained in B(0, R)

for all λ > 0, which implies that {Lλt (ω) : λ > 0} is tight.

Let {φn}∞n=1 be a countable determining class for MF (R) consisting of bounded, continuous functions. We choose
φ1 = 1. L1-boundedness of the total mass and tightness are sufficient conditions for a family in MF (R) (with
the weak topology) to be relatively compact. By Corollary 4.1, {Lλt (1) : λ > 0} is L2(N0)-bounded, and hence
L1(N0)-bounded, and so from the above we see that

{Lλt : λ > 0} is relatively compact N0-a.s.

As we have noted, Lλt (φn) → l(t, φn) in measure as λ → ∞. Using the fact that convergence in measure implies
almost sure convergence along a subsequence, we can iteratively define subsequences and take a diagonal subsequence
{λm}∞m=1 which satisfies

(4.1) Lλm
t (φn) → l(t, φn) as m→ ∞ for all n ≥ 1 N0-a.s.
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As we have noted, {Lλm
t }∞m=1 is relatively compact N0-almost surely. Combined with the above, this means that

for N0-a.a. ω we have the above convergence for all n and relative compactness of the measures {Lλm
t }∞m=1. Choose

such an ω. By relative compactness of {Lλt }λ>0, any subsequence of {λm}∞m=1 admits a further sequence along
which the measures converge in the weak topology. It remains to show that all subsequential limits coincide. Sup-
pose Lt(ω) and L′

t(ω) are two such limit measures. Since ω has been chosen so that (4.1) holds, we have that
Lt(ω)(φn) = L′

t(ω)(φn) for all n. Since the family {φn}n≥1 are a determining class, this implies that Lt(ω) = L′
t(ω).

Hence all subsequences admit a further subsequence with the same limit Lt(ω) in the weak topology. Since the
weak topology on MF (R) is metrizable, the “every subsequence admits a further converging subsequence” criterion
for convergence applies, and we have Lλm

t (ω) converges to Lt(ω) ∈ MF (R) as m → ∞. This gives the almost sure
convergence along {λm}∞m=1. As the weak topology is metrizable we also have Lλt → Lt in measure. Furthermore,
we observe that for continuous and bounded φ, Lt(φ) = l(t, φ). To see this, recall that Lλm

t (φ) converges to l(t, φ)
in L2(N0). As we have just shown that limm→∞ Lλm

t (φ) = Lt(φ) N0-a.s, it must hold that Lt(φ) = l(t, φ). This
implies that Lλt (φ) → Lt(φ) in L2(N0).

Finally, we verify that Lt is supported on BZt. We fix ω outside of a null set such that Lλm
t → Lt in MF (R) as

m → ∞. For an open set U , Lt(U) ≤ lim infm→∞ Lλm
t (U) (a consequence of the Portmanteau theorem). From

(1.6), we have Lλm
t (Zt) = 0 for all m ≥ 1, which implies that Lt(int(Zt)) = 0. Moreover, X(t, x) > 0 implies that

λ2λ0
m X(t, x)e−λmX(t,x) → 0 as m → ∞, so for ǫ > 0, Lt({x : X(t, x) > ǫ}) = 0, and hence Lt(Z

c
t ) = 0. Since

Lt(int(Zt) ∪ Zct ) = 0, we must have supp(Lt) ⊆ BZt.

Proof of Theorem 1.5. To prove (b), by Theorem 1.4 it is enough to show that N0((Lt×Lt)(h)) = limn→∞ N0((Lλn
t ×

Lλn
t )(h)) for a sequence λn → ∞, which we choose to be the sequence from Theorem 1.1 on which Lλn

t → Lt almost
surely. Because Lt = 0 when Xt = 0, we can work on the probability measure N0(· |Xt > 0). For bounded and
continuous h : R2 → R, |(Lt × Lt)(h)| ≤ ‖h‖∞Lλn

t (1)2. By Theorem 1.1, Lλn
t (1) converges in probability and in

L2(N0(· |Xt > 0)) to Lt(1), which implies that Lλn
t (1)2 and hence (Lλn

t × Lλn)(h) are uniformly integrable (see,
e.g. Theorem 4.6.3 of [5]). We can therefore exchange limit and expectation, giving

N0( lim
n→∞

(Lλn
t × Lλn

t )(h)) = lim
n→∞

N0((Lλn
t × Lλn

t )(h)).

Since Lλn
t → Lt in MF (R) and h is bounded and continuous, the integrand on the left hand side is equal to

(Lt × Lt)(h), which gives the result. By a Monotone Class Theorem (e.g. Corollary 4.4 in the Appendix of Ethier
and Kurtz [6]), the same holds for all bounded and measurable h.

We now turn to part (a). Let φ : R → R be bounded and Borel. We recall from the Introduction (see (1.5)) that
Proposition 4.5 of [14] states that

lim
λ→∞

EXX0
(Lλt (φ))

= C1.4 t
−λ0

∫∫

φ(x0 +
√
tz) exp

(

−1

t

∫

F (z + t−1/2(x0 − y0) dX0(y0)

)

ψ0(z) dm(z) dX0(x0).(4.2)

(The fact that the constant appearing in Proposition 4.5 of [14] equals C1.4 is implicit in the proof.) The proof uses
the Palm measure formula for Xt under PXX0

; see Theorem 4.1.3 of Dawson-Perkins [4]. The corresponding Palm
measure formula for the superprocess under N0 is in fact simpler, and the same proof shows that

lim
λ→∞

N0(Lλt (φ)) = C1.4 t
−λ0

∫

φ(
√
tz)ψ0(z) dm(z).(4.3)

Consider now a bounded and continuous function φ; we can also clearly assume that φ ≥ 0. By Theorem 1.1 (under
N0), Lλt (φ) converges in L2 with respect to the probability measure N0(Xt ∈ · |Xt > 0), which implies that it also
converges in L1, allowing us to exchange limit and expectation in (4.3), which gives part (a) for bounded and contin-
uous φ. This extends to all bounded and measurable φ by a monotone class argument (as above for part (b)). Finally,
it is clear that both (a) and (b) hold for general non-negative functions by the Monotone Convergence Theorem.

We now describe how to ascertain the existence of Lt when Xt is a super-Brownian motion under PXX0
via the

cluster representation. In particular, we recall (1.15) and (1.16). Let X0 ∈ MF (R) and t > 0.
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Proof of Theorem 1.1 for PXX0
and Theorem 1.8. Let N, x1, . . . , xN , X

1
t , . . . X

N
t be as in the cluster decomposition

(1.16). For λ > 0, define the measure Lλt via (1.6) using Xt. For i = 1, . . . , N , let Li,λt denote the measure defined in
(1.6) corresponding to X i

t . By Theorem 1.1 for N0 and translation invariance, Nxi(X
i
t ∈ · |X i

t > 0)-a.s. there exists

Lit such that Li,λt → Lt in MF (R) in measure. Define Lt ∈ MF (R) by (1.17). That is,

dLt(x) =

N
∑

i=1

1
(

∑

j 6=i
Xj(t, x) = 0

)

dLit(x).

Let φ : R → R be bounded and continuous. We will show that

(4.4) Lλt (φ) → Lt(φ) in probability as λ→ ∞.

Once we establish (4.4), the proof of Theorem 1.1 for N0 applies and shows that Lλt → Lt in probability in MF (R)
as λ → ∞. With the exception of L2 convergence, which we show afterward, this proves Theorem 1.1 for PXX0

.
Furthermore, since Lt is defined by (1.17), this also proves Theorem 1.8.

Turning to (4.4), we will argue conditionally on (N, x1, . . . , xN ). That is, we argue under the regular conditional
distribution for (X1

t , . . . , X
N
t ) given (N, x1, . . . , xN ). As such, we treat N ≥ 1 and x1, . . . , xN ∈ R as fixed, and

X1
t , . . . , X

N
t are independent random measures with respective laws Nxi(Xt ∈ · |Xt > 0) for i = 1, . . . , N . Let E

denote the expectation of a probability realizing this conditional representation for Xt. Expanding Lλt (φ) in terms
of the clusters, we have

Lλt (φ) =

∫

λ2λ0X(t, x)e−λX(t,x) φ(x) dx

=

∫

λ2λ0

[

N
∑

i=1

X i(t, x)

]

e−λ
∑N

i=1X
i(t,x)φ(x) dx

=

N
∑

i=1

∫

λ2λ0X i(t, x)e−λX
i(t,x)

[

e−λ
∑

j 6=iX
j(t,x)φ(x)

]

dx

=

N
∑

i=1

Li,λt
(

φ · e−λZi
N (t,·)),(4.5)

where we define ZiN (t, x) =
∑

j 6=iX
j(t, x), in which the indices are understood to sum from 1 to N . Using this

notation, Lt(φ) =
∑N
i=1 L

i
t(φ · 1(ZiN(t, ·) = 0)). Thus by (4.5), to prove (4.4) it is clearly enough to show that for

any 1 ≤ i ≤ N ,

(4.6) Li,λt
(

φ · e−λZi
N (t,·))→ Lit(φ · 1(ZiN(t, ·) = 0)) in probability as λ→ ∞.

Without loss of generality, assume that λ > 1. Let 1 ≤ λ′ ≤ λ. Then

|Li,λt (φ · e−λZi
N (t,·)) − Lit(φ · 1

(

ZiN (t, ·) = 0))|
≤ |Li,λt (φ · (e−λZ

i
N (t,·) − e−λ

′Zi
N (t,·)))| + |Li,λt (φ · e−λ′Zi

N (t,·)) − Lit(φ · e−λ′Zi
N (t,·))|

+ |Lit(φ · (e−λ
′Zi

N (t,·) − 1(ZiN (t, ·) = 0)))|
≤ ‖φ‖∞|Li,λt (e−λ

′Zi
N (t,·)1(ZiN (t, ·) > 0))| + |Li,λt (φ · e−λ′Zi

N (t,·)) − Lit(φ · e−λ′Zi
N (t,·))|

+ ‖φ‖∞Lit(e−λ
′Zi

N (t,·)1(ZiN (t, ·) > 0))

=:‖φ‖∞R1(λ′, λ) +R2(φ, λ′) + ‖φ‖∞R3(λ′, λ).(4.7)

We first consider R1. Since X i
t and ZiN (t, ·) are independent and Lλt is a measurable function of X i

t , conditional on
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X i
t we have, for all λ > 1 and 1 ≤ λ′ < λ,

E(R1(λ′, λ) |X i
t) =

∫

E(e−λ
′Zi

N (t,x)1(ZiN(t, x) > 0)) |X i
t) dL

i,λ
t (x)

=

∫

E(e−λ
′ ∑

j 6=iX
j(t,x)1(

∑

j 6=i
Xj(t, x) > 0)) dLi,λt (x)

≤
∑

j 6=i

∫

Nxj(e−λ
′Xj(t,x)1(Xj(t, x) > 0) |Xj

t > 0) dLi,λt (x)

=
∑

j 6=i
Nxj (Xj

t > 0)−1

∫

Nxj (e−λ
′Xj(t,x) − 1(Xj(t, x) = 0)) dLi,λt (x)

= (t/2)
∑

j 6=i

∫

Nxj (1 − 1(Xj(t, x) = 0)) − Nxj (1 − e−λ
′Xj(t,x)) dLi,λt (x)

= (t/2)
∑

j 6=i

∫

V∞
t (x− xj) − V λ

′

t (x− xj) dL
i,λ
t (x),(4.8)

where in the second last line we have used (3.11), and the last follows from (3.8), (3.10), and translation invariance.
We apply (3.14) to the integrand and take the expectation of the above to obtain that

E(R1(λ′, λ)) ≤ N − 1

2
t1/2−λ0λ′−(2λ0−1)

Nxi(L
i,λ
t (1) |X i

t > 0)

=
N − 1

4
t3/2−λ0λ′−(2λ0−1)

Nxi(L
i,λ
t (1)) (by (3.11))

≤ C(t, N)λ′−(2λ0−1),(4.9)

for all λ > 1 and 1 ≤ λ′ < λ, where the last inequality is by Theorem 1.5(a) and the fact that Li,λt (1) → Lit(1) in
L2(Nxi) (from Theorem 1.1). Next we consider R3. Note that we can expand and bound this term in exactly the

same way as we did R1 in (4.7) but with Lit replacing Li,λt . Taking the expectation and proceeding as above then
gives

(4.10) E(R3) ≤ N − 1

4
t3/2−λ0Nxi(L

i
t(1))λ′−(2λ0−1).

Fix δ > 0. By (4.9) and (4.10) and Markov’s inequality there exists λ̄(δ) such that for λ′ ≥ λ̄(δ),

(4.11) P (R1(λ′, λ) > δ) + P (R3(λ′, λ) > δ) < C′(t, N)λ′−(2λ0−1)/δ.

Now consider R2(φ). Since φ · e−λ′Zi
N (t,·) is a bounded, continuous function for all λ′ ≥ 1, by Theorem 1.1 for Nxi ,

R2(φ, λ′) → 0 in probability as λ → ∞ for all λ′ ≥ 1. From this and (4.11) we conclude, by choosing λ′ ≤ λ
sufficiently large, that (4.7) converges to 0 in probability as λ→ ∞. As we noted in (4.6), this is sufficient to prove
the result.

It remains to show that Lλt (φ) → Lt(φ) in L2(PXX0
) for all continuous and bounded functions φ. Let φ be such a

function, and suppose that Xt is realized as in (1.16) under a probability PXX0
. Under PXX0

(· |N), from (4.5) and
(1.17) we have

(Lλt (φ) − Lt(φ))2 =

( N
∑

i=1

Li,λt (e−λZ
i
N (t,·) · φ) − Lit(1(ZiN (t, ·) = 0) · φ)

)2

≤ N

N
∑

i=1

[

Li,λt (e−λZ
i
N (t,·) · φ) − Lit(1(ZiN (t, ·) = 0) · φ)

]2
.(4.12)

We recall that X1
t , . . . , X

N
t are iid with distribution NX̄0

(Xt ∈ · |Xt > 0), where X̄0 = X0(·)/X0(1) and NX0(·) =
∫

Nx(·)dX0(x). This implies that the N summands in (4.12) are identically distributed; in particular, conditional

on N we define identically distributed random variables eN,λi ≥ 0, for i = 1, . . . , N , by

(4.13) eN,λi =
[

Li,λt (e−λZ
i
N (t,·) · φ) − Lit(1(ZiN (t, ·) = 0) · φ)

]2
.
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By (4.6), eN,λi converges to 0 in probability as λ→ ∞ when conditioned on (x1, . . . , xN ). However, one can integrate
the conditional probabilities over (x1, . . . , xN ) ∈ R

N to determine that

(4.14) eN,λi → 0 in probability under PXX0
(· |N) as λ→ ∞.

It is clear from (4.13) that for all λ > 0,

(4.15) eN,λi ≤ 2‖φ‖2∞(Li,λt (1)2 + Lit(1)2) ∀ i = 1, . . . , N, ∀N ≥ 1.

By Theorem 1.1 for N0, Li,λt (1)2 → Lit(1)2 in probability under NX̄0
(Xt ∈ · |Xt > 0) and hence under PXX0

(· |N).

Furthermore, since Li,λt (1) → Lit(1) in L2(NX̄0
(· |Xt > 0)) (by Theorem 1.1 for N0), it follows from Cauchy-Schwarz

that Li,λt (1)2 → Lit(1)2 in L1(NX̄0
(· |Xt > 0)); since X i

t has distribution NX̄0
(Xt ∈ · |Xt > 0) under PXX0

(· |N),

this implies Li,λt (1)2 → Lit(1)2 in L1(PXX0
(· |N)). Hence {2‖φ‖∞(Li,λt (1)2 +Lit(1)2) : λ ≥ 1} is uniformly integrable.

Thus by (4.15), {eN,λi : λ ≥ 1} is uniformly integrable, and by (4.14) we have L1 convergence. That is,

(4.16) EXX0
(eN,λi |N) → 0 as λ→ ∞.

Conditioning on N = n and summing over n ∈ N, by (4.12) and Fubini’s Theorem we have

EXX0
((Lλt (φ) −  Lt(φ))2) ≤

∞
∑

n=1

PXX0
(N = n)n

n
∑

i=1

EXX0
(en,λi |N = n).

Since EXX0
(eN,λi |N) ≤ 2‖φ‖∞EXX0

(Li,λt (1)2 +Lt(1)2) ≤ C(t, φ) for all λ ≥ 1, for some constant C(t, φ) > 0 (by uni-

form integrability), the nth term in the above is bounded above by C(t, φ)PXX0
(N = n)n2. Dominated Convergence

therefore allows us to exchange limit and summation in the above, which by (4.16) gives the result.

Proof of Theorem 1.9. This is virtually identical to the above proof of Theorem 1.8 and is omitted.

As we have commented on, the expression in Theorem 1.4, which is the same as (1.9) in Theorem 1.5(b), is finite
for all bounded h, despite the appearance of non-integrability (since λ0 > 1/2). Proposition 1.6, which we restate
here for convenience, provides a useful upper bound on second moments which is our main tool for studying Lt.
The bound is not difficult to obtain. Its derivation relies only on applying trivial upper bounds to several terms
and making a few changes of variables. Recall that EYz denotes the expectation of a standard Ornstein-Uhlenbeck
process Y with Y0 = z.

Proposition 1.6. For measurable, non-negative function h : R2 → R,

N0((Lt × Lt)(h)) ≤ C2
1.4

∫ t

0

w−2λ0

[
∫∫

EYz1

(

exp

(

−
∫ log(t/w)

0

F (Yu) du

)

× h(
√
tYlog(t/w),

√
tYlog(t/w) +

√
w(z2 − z1))

)

ψ0(z1)ψ0(z2) dm(z1) dm(z2)

]

dw.(1.10)

Moreover,

(1.11) N0(Lt(1)2) ≤
C2

1.4θ
2

1 − λ0
t1−2λ0 .

Proof. Let h : R2 → R be Borel measurable and non-negative. We use the formula for N0((Lt × Lt)(h)) given by
(1.9). We recall that ρ(z1, z2) ≤ 1 and use this bound, and we bound above by using V∞,∞

u (x, y) ≥ V∞
u (x) in the

exponential. This gives

N0((Lt × Lt)(h)) ≤ C2
1.4

∫ t

0

(t− s)−2λ0

[
∫∫

EB0

(

exp

(

−
∫ s

0

V∞
t−u(

√
t− s z1 +Bs −Bu) du

))

× h(
√
t− s z1 +Bs,

√
t− s z2 +Bs)ψ0(z1)ψ0(z2) dm(z1) dm(z2)

]

ds.
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Since z1 ∼ m,
√
t− s z1 has a normal distribution with variance t−s, and we interpret it as the Brownian increment

Bt −Bs. Hence the above is equal to

C2
1.4

∫ t

0

(t− s)−2λ0

[
∫

EB0

(

exp

(

−
∫ s

0

V∞
t−u(Bt −Bu) du

)

× h(Bt,
√
t− s z2 +Bs)

ψ0

(

Bt −Bs√
t− s

))

ψ0(z2) dm(z2)

]

ds

= C2
1.4θ

∫ t

0

w−2λ0

[
∫

EW0

(

exp

(

−
∫ t

w

V∞
u (Wu) du

)

h(Wt,
√
w z2 +Wt −Ww)

× ψ0

(

Ww√
w

)

ψ0(z2) dm(z2)

)]

dw,

where in the second line we have used w = t− s and defined Wu = Bt − Bt−u. Hence Wu is a standard Brownian
motion under PW0 . Recall that V∞

u (x) = u−1F (u−1/2x). Applying this and letting u = er in the integral, we obtain
that the above is equal to

C2
1.4θ

∫ t

0

w−2λ0

[
∫

EW0

(

exp

(

−
∫ log t

logw

F (e−r/2Wer ) dr

)

h(Wt,
√
w z2 +Wt −Ww)

× ψ0

(

Ww√
w

)

ψ0(z2) dm(z2)

)]

dw.

We now define a stationary Ornstein-Uhlenbeck process Y (with stationary measure m) by Yr = e−r/2Wer for
r ∈ R. Recall that we denote its law by EY . The above is therefore equal to

C2
1.4θ

∫ t

0

w−2λ0

[
∫

EY
(

exp

(

−
∫ log t

logw

F (Yr) du

)

h(
√
t Ylog t,

√
w z2 +

√
t Ylog t −

√
w Ylogw)

× ψ0(Ylogw)ψ0(z2) dm(z2)

)]

dw.

By stationarity of Y , we can shift time by logw to obtain that the above is equal to

C2
1.4θ

∫ t

0

w−2λ0

[
∫

EY
(

exp

(

−
∫ log(t/w)

0

F (Yr) du

)

h(
√
t Ylog(t/w),

√
w z2 +

√
t Ylog(t/w) −

√
wY0)

× ψ0(Y0)ψ0(z2) dm(z2)

)]

dw.

Y0 has distribution m, so we condition on the value of Y0 and call it z1. This gives the desired expression and proves
that (1.10) holds. The proof of (1.11) is a consequence of the following lemma.

Lemma 4.2. For t > 0,
∫

P Yz (ρF > t)ψ0(z) dm(z) = θe−λ0t.

Returning to (1.11), we apply (1.10) with h = 1. Separating the integrals, we obtain that

N0(Lt(1)2) ≤ C2
1.4 θ

∫ t

0

w−2λ0

(
∫

P Yz
(

ρF > log(t/w)
)

ψ0(z) dm(z)

)

dw,

where we have used
∫

ψ0dm = θ. The inequality (1.11) now readily follows from Lemma 4.2, which completes the
proof of Proposition 1.6.

Proof of Lemma 4.2. Expanding in terms of the transition densities, we have

∫

P Yz
(

ρF > t
)

ψ0(z) dm(z) =

∫
(
∫

qt(z, y) dm(y)

)

ψ0(z) dm(z)

= 〈qt, 1 ⊗ ψ0〉L2(m×m),(4.17)
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where 〈· , ·〉L2(m×m) denotes the inner product on L2(m × m) and ⊗ is the tensor product of functions. Recall
from that Theorem 2.1(a) that the eigenfunction expansion (2.1) converges in L2(m × m) to qt(·, ·), and that
‖ψ0‖L2(m) = 1. Thus by the above and Fubini’s theorem, (4.17) is equal to

∞
∑

n=0

e−λnt〈ψn ⊗ ψn, 1 ⊗ ψ0〉L2(m×m) = e−λ0t〈ψ0 ⊗ ψ0, 1 ⊗ ψ0〉L2(m×m)

= e−λ0t

∫

ψ2
0 dm

∫

ψ0 dm = θe−λ0t,

where the first equality follows from orthogonality of the eigenfunctions, which implies that
∫

ψnψ0 dm = 0 for all
n ≥ 1, and the last line has used

∫

ψ0 dm = θ and
∫

ψ2
0 dm = 1.

We now use the bounds in Proposition 1.6 to derive prove the remaining properties of Lt.

Proof of Theorem 1.2(a). Via the second moment method, we have

N0 (Lt(1) > 0) ≥ N0(Lt(1))2

N0(Lt(1)2)
≥

C2
1.4θ

2t−2λ0

C2
1.4θ

2t1−2λ0(1 − λ0)−1
=

1 − λ0
t

,

where we recall that
∫

ψ0 dm = θ and we have used Theorem 1.5(a) and (1.11). We recall that N0 (Xt > 0) = 2/t,

which implies that N0

(

Lt > 0
∣

∣Xt > 0
)

≥ 1−λ0

2 .

Proof of Theorem 1.3. Recall that for p > 0, hp(x, y) = |x− y|−p. We first establish that

(4.18) N0((Lt × Lt)(hp)) <∞

for all p < 2 − 2λ0. Applying (1.10) with hp, we have

N0((Lt × Lt)(hp)) ≤C2
1.4

∫ t

0

w−2λ0

[
∫∫

EYz1

(

exp

(

−
∫ log(t/w)

0

F (Yu) du

))

× |√w(z2 − z1)|−p ψ0(z1)ψ0(z2) dm(z1) dm(z2)

]

dw

=C2
1.4

∫ t

0

w−2λ0−p/2
[
∫∫

EYz1

(

exp

(

−
∫ log(t/w)

0

F (Yu) du

))

× |z1 − z1|−pψ0(z1)ψ0(z2) dm(z1) dm(z2)

]

dw.

Recalling (1.4), the expectation is equal to the survival probability PYz1(ρF > log(t/w)), so the above equals

C2
1.4

∫ t

0

w−2λ0−p/2
[
∫∫

P Yz1
(

ρF > log(t/w)
)
∣

∣z1 − z2
∣

∣

−p
ψ0(z1)ψ0(z2) dm(z1) dm(z2)

]

dw.

Applying (2.5) and (2.9), both with δ = 1/8, this is bounded above by

C

∫ t

0

w−2λ0−p/2
[
∫∫

∣

∣z1 − z2
∣

∣

−p
t−λ0 wλ0 ez

2
1/4 ez

2
2/8 dm(z1) dm(z2)

]

dw

= C(p) t−λ0

∫ t

0

w−λ0−p/2dw.

The second line follows because the integrand has Gaussian tails in z1 and z2 and p < 2 − 2λ0 < 1. Finally, the
integral in the final line is finite because −λ0 − p/2 > −λ0 − λ0 + 1 > −1, which proves (4.18). In fact, we have
shown that

(4.19) N0((Lt × Lt)(hp)) ≤ C(p)t1−2λ0−p/2.
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Next, we establish the same under PXX0
. That is, we will show that

(4.20) EXX0
((Lt × Lt)(hp)) <∞

for p < 2− 2λ0. We use the cluster decomposition and argue conditionally as in the proof of Theorem 1.1 (for PXX0
)

above. Suppose that PXX0
is a probability under which Xt is realized as in (1.16). Conditioning on N, x1, . . . , xN , by

(1.17) we have

dLt(x) ≤
N
∑

i=1

dLit(x).

Thus we obtain that
∫∫

|x− y|−pdLt(x) dLt(y)

≤
∫∫

|x− y|−p
( N
∑

i=1

dLit(x)

)( N
∑

i=j

dLjt (y)

)

=
N
∑

i=1

∫∫

|x− y|−pdLit(x) dLit(y) +
N
∑

i=1

∑

j 6=i

∫∫

|x− y|−pdLit(x) dLjt (y).(4.21)

Recall that the X i
t are independent with distributions Nxi(Xt ∈ · |Xt > 0). By (3.11) and (4.19), we therefore have

(4.22) Nxi

(
∫∫

|x− y|−pdLit(x) dLit(y)

∣

∣

∣

∣

X i
t > 0

)

= C(p)t1−2λ0−p/2 (2/t)−1 =: C1(p) t2−2λ0−p/2,

which provides a bound for the summands in the first term of (4.21). We now consider the mixed integrals in
(4.21), that is, the summands in the second term. Without loss of generality, let i = 1 and j = 2, and denote their
(independent) laws N

1
x1

(X1
t ∈ · |X1

t > 0),N2
x2

(X2
t ∈ · |X2

t > 0). Because the integrands are non-negative, we can
change the order of integration and obtain

N
1
x1

⊗ N
2
x2

(
∫∫

|x− y|−pdL1
t (x) dL2

t (y)

∣

∣

∣

∣

X1
t > 0, X2

t > 0

)

= N
1
x1

(
∫

N
2
x2

(
∫

|x− y|−pdL2
t (y)

∣

∣

∣

∣

X2
t > 0

)

dL1
t (x)

∣

∣

∣

∣

X1
t > 0

)

(4.23)

To compute the inner expectation we apply translation invariance and (3.11), which gives

N
2
x2

(
∫

|y − x|−pdL2
t (y)

∣

∣

∣

∣

X2
t > 0

)

= (t/2)N0

(
∫

|y − x|−pdLt(y − x2)

)

= (t/2)N0

(
∫

|y − x+ x2|−pdLt(y)

)

= C1.4(t/2)t−λ0

∫

|
√
tz − (x− x2)|−pψ0(z) dm(z),

where the last line follows from the mean measure formula (1.8). By (2.5) with δ = 1/4, we have that ψ0(z2) dm(z2) ≤
c e−z

2
2/4dz2. Thus the above is bounded above by

Ct1−λ0

∫

(|
√
tz − (x− x2)|−p ∨ 1)e−z

2/4 dz

= Ct1−λ0

∫

(|w − (x− x2)|−p ∨ 1)t−1/2e−w
2/4t dw

≤ C t1−λ0t−1/2

∫

|w − (x − x2)|−p 1|w−(x−x2)|≤1 dw + C t1−λ0

∫

t−1/2e−w
2/4t dw

= C′(p)t1/2−λ0 + Ct1−λ0 <∞.
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By the above bound and another application of (1.8), (4.23) is bounded above by

[

C′(p)t1/2−λ0 + Ct1−λ0

]

N
1
x1

(L1
t (1) |X1

t > 0) =: C2(p)
[

t3/2−2λ0 + t2−2λ0

]

.(4.24)

We note that both (4.22) and (4.24) are independent of the points x1, . . . , xN . Therefore by these bounds and (4.21)
we have shown that

EXX0
((Lt × Lt)(hp) |N) ≤ C1(p)Nt2−2λ0−p/2 + C2(p)(N2 −N)

[

t3/2−2λ0 + t2−2λ0

]

.

Taking the expectation above with respect to N , which we recall is Poisson with mean 2X0(1)/t, gives

(4.25) EXX0
((Lt × Lt)(hp)) ≤ C1(p)X0(1) t1−2λ0−p/2 + C2(p)X0(1)2

[

t−1/2−2λ0 + t−2λ0

]

<∞,

which proves (4.20).

Under both PXX0
and N0, we have shown that the p-energy of Lt has finite expectation, and hence Lt has finite

p-energy almost surely, for all p < 2 − 2λ0. By the energy method (see, for example, Theorem 4.27 of Mörters and
Peres [13]), this implies that dim(BZt) ≥ 2 − 2λ0 a.s. on {Lt > 0} under PXX0

and N0. Combined with Theorem

A, this completes the proof of Theorem 1.3 for PXX0
. To see that the upper bound on the dimension holds for N0

follows from the cluster decomposition. Consider Xt under PXδ0 . In the cluster decomposition of Xt, the probability
that N = 1 is positive. Conditioning on this event, Xt is equal to X1

t , which has law N0(X1
t ∈ · |Xt > 0). Because

dim(BZt) ≤ 2 − 2λ0 a.s. on this event, we therefore have N0

(

{dim(BZt) ≤ 2 − 2λ0}
∣

∣Xt > 0
)

= 1. This completes
the proof.

Proof of Theorem 1.7. To see part (a), we note that (4.2) gives an expression for limλ→∞ EXX0
(Lλt (φ)). On the sub-

sequence {λn}∞n=1 from Theorem 1.1, Lλn
t (φ) → Lt(φ) a.s. for bounded and continuous φ, so it is enough to show

that limn→∞ EXX0
(Lλn

t (φ)) = EXX0
(limn→∞ Lλn

t (φ)). By Theorem 1.1, Lλt (φ) converges in and hence is bounded

in L2(PXX0
). It is therefore uniformly integrable, which justifies the above exchange of limit and integration. This

proves the result for bounded and continuous φ. We extend the moment formula to bounded measurable functions
by a Monotone Class Lemma and to non-negative measurable functions by Monotone convergence.

We now prove part (b). Suppose we realize Xt under a probability PXX0
such that (1.16) holds. Conditionally on N ,

by (1.17) we have

Lt(1)2 ≤
( N
∑

i=1

Lit(1)

)2

=
N
∑

i=1

Lit(1)2 +
N
∑

i=1

∑

j 6=i
Lit(1)Ljt (1).

The clusters are independent with laws NX̄0
(X i

t ∈ · |X i
t > 0) = (t/2)NX̄0

({X i
t > 0, X i

t ∈ ·}), the equality by (3.11).
Thus, applying Theorem 1.5(a) and Proposition 1.6(b) to the above and using independence, we obtain

EXX0
(Lt(1)2 |N) ≤ CN(t/2)t1−2λ0 + C(N2 −N)(t/2)2t−2λ0 .(4.26)

As in the proof of Theorem 1.3, we take the expectation with respect to N , which has a Poisson(2X0(1)/t) distri-
bution. This proves part (b).

Finally we consider the atomless property of Lt (see Theorem 1.2(b)). Once again we carry out the necessary
moment calculations under canonical measure. Lt has an atom of mass c > 0 at x if Lt({x}) = c. We decompose
Lt as

Lt = L̃t + νt,

where L̃t is atomless and νt is strictly atomic. We begin with an elementary observation which provides an upper
bound for the mass of the atoms of a measure. Let M ∈ N. Let In1 = [−M,−M + 2−n], and for k = 2, 3 . . . , 2M2n,
define the dyadic interval Ink = (−M + (k − 1)2−n,−M + k2−n]. Then {Ink : k ≤ 2M2n} is a partition of [−M,M ]
into disjoint intervals of length 2−n. The following lemma is elementary.
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Lemma 4.3. FixM ∈ N and suppose that µ is a finite measure supported on [−M,M ] with decomposition µ = ρ+ν,
where ρ is atomless and ν =

∑

i∈I ciδxi is strictly atomic. Then for every n ≥ 1,

2M2n
∑

k=1

µ(Ikn)2 ≥
∑

i∈I
c2i .

The next lemma gives an upper bound for the second moment of Lt on a ball. We denote by B(x, r) the ball of
radius r > 0 centred at x ∈ R. We recall s∗(δ) from Theorem 2.1(c); in what follows we use δ = 1/8, and s∗ denotes
s∗(1/8).

Lemma 4.4. There is a constant C4.4 > 0 and t-dependent constant C4.4(t) > 0 such that for all x ∈ R and
r < e−s

∗

t,

N0(Lt(B(x, r))2) ≤ C4.4

[

t−λ0 r2−2λ0 PW0 (W4t/3 ∈ B(x, r)) + t−3λ0+1/2 r PW0 (Wt ∈ B(x, r))
]

≤ C4.4(t)
[

r3−2λ0 + r2
]

,

where W is a standard Brownian motion under PW0 .

Proof. We apply (1.10) with h(z1, z2) = 1B(x,r)(z1) 1B(x,r)(z2). This gives

N0(Lt(B(x, r))2)

= C

∫ t

0

w−2λ0

[
∫∫

EYz1

(

exp

(

−
∫ log(t/w)

0

F (Yu) du

)

× 1B(x,r)(
√
tYlog(t/w)) 1B(x,r)(

√
tYlog(t/w) +

√
w(z2 − z1))

)

ψ0(z1)ψ0(z2) dm(z1) dm(z2)

]

dw.(4.27)

We now divide the above into two cases depending on the size of w. We first consider the singular case, where w is
small.

Case 1: w < e−s
∗

t.

We interpret the exponential in (4.27) as the probability that Y survives until time log(t/w) when it is subject to
Markovian killing with rate F (Yu). Because this probability is equal to the integral of the transition density over
all of R, the portion of the integral corresponding to w ∈ [0, e−s

∗

t] equals

C

∫ e−s∗ t

0

w−2λ0

[
∫∫∫

qlog(t/w)(z1, y) 1B(x,r)(
√
ty) 1B(x,r)(

√
ty +

√
w(z2 − z1))

× ψ0(z1)ψ0(z2) dm(z1) dm(z2) dm(y)

]

dw.

≤ C

∫ e−s∗ t

0

w−2λ0

[
∫∫∫

e−λ0 log(t/w) ez
2
1/8ey

2/8 1B(x,r)(
√
ty) 1B(x,r)(

√
ty +

√
w(z2 − z1))

× ψ0(z1)ψ0(z2) dm(z1)dm(z2) dm(y)

]

dw.

≤ Ct−λ0

∫ e−s∗ t

0

w−λ0

∫

ey
2/81B(x,r)(

√
ty)

[
∫∫

ez
2
1/4ez

2
2/8 1B(x,r)(

√
ty +

√
w(z2 − z1)) dm(z1) dm(z2)

]

dm(y) dw.(4.28)

The first inequality uses (2.2) with δ = 1/8, which applies because log(t/w) > s∗ for all w in the above integral,
and the second uses (2.5), both with δ = 1/8. In the integral in the last line we collect all the Gaussian terms. The
square-bracketed term is equal to

C

∫∫

1B(x,r)(
√
ty +

√
w(z2 − z1)) e

−z21/4e−3z22/8 dz1 dz2

= C′
∫

1B(x,r)(
√
ty +

√
wz) e−3z2/20 dz.
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We have used the convolution property for independent Gaussians. We define Gaussian random variables g1 ∼
N (0, 4t/3) and g2 ∼ N (0, 10/3). Substituting the last expression into (4.28), we obtain

Ct−λ0

∫ e−s∗ t

0

w−λ0

[
∫∫

1B(x,r)(
√
ty) 1B(x,r)(

√
ty +

√
wz) e−3z2/20 e−3y2/8dz dy

]

dw

= C′t−λ0

∫ e−s∗ t

0

w−λ0

[

P
(

g1 ∈ B(x, r), g1 +
√
wg2 ∈ B(x, r)

)

]

dw

≤ Ct−λ0

∫ e−s∗ t

0

w−λ0

[

P
(

g1 ∈ B(x, r)
)

P
(√
wg2 ∈ B(0, 2r)

)

]

dw

= Ct−λ0P
(

g1 ∈ B(x, r)
)

∫ e−s∗ t

0

w−λ0P
(

g2 ∈ B(0, 2rw−1/2)
)

dw.(4.29)

Suppose that 4r2 < e−s
∗

t. If 2rw−1/2 > 1, we bound the probability in the integral above by 1. If 2rw−1/2 ≤ 1,
the probability is simply bounded by the diameter of the ball, 4rw−1/2. Thus (4.29), and hence (4.28), is bounded
above by

Ct−λ0P (g1 ∈ B(x, r))

[
∫ 4r2

0

w−λ0dw + 4r

∫ e−s∗ t

4r2
w−λ0−1/2dw

]

= Ct−λ0P (g1 ∈ B(x, r))

[

41−λ0
r2−2λ0

1 − λ0
+

4r

λ0 − 1/2

(

(4r2)−(λ0−1/2) − (te−s
∗

)−(λ0−1/2)

)]

≤ Ct−λ0P (g1 ∈ B(x, r)) r2−2λ0 .(4.30)

Finally, note that if 4r2 ≥ e−s
∗

t, then (4.29) is bounded above by

Ct−λ0P (g1 ∈ B(x, r))

∫ e−s∗ t

0

w−λ0dw ≤ Ct−λ0P (g1 ∈ B(x, r))(e−s
∗

t)1−λ0 ≤ Ct−λ0P (g1 ∈ B(x, r))r2−2λ0 ,

so the upper bound for (4.28) obtained in (4.30) holds in this case as well.

Case 2: w ∈ (e−s
∗

t, t].

In this case we simply bound the exponential term in (4.27) above by 1, effectively ignoring the killing, in which
case Ylog(t/w) ∼ m. We also use (2.5) with δ = 1

4 . Hence the contribution to (4.27) from the w ∈ (e−s
∗

t, t] case is
bounded above by

C

∫ t

e−s∗ t

w−2λ0

[
∫∫∫

1B(x,r)(
√
ty) 1B(x,r)(

√
ty +

√
w(z2 − z1)) ez

2
1/4 ez

2
2/4 dm(z1) dm(z2) dm(y)

]

dw

≤ C

∫ t

e−s∗ t

w−2λ0

[
∫∫∫

1B(x,r)(
√
ty) 1B(x,r)(

√
ty +

√
w(z2 − z1)) e−z

2
1/4 e−z

2
2/4 dz1 dz2 dm(y)

]

dw

= C

∫ t

e−s∗ t

w−2λ0

[
∫∫

1B(x,r)(
√
ty) 1B(x,r)(

√
ty +

√
wz) e−z

2/2 dz dm(y)

]

dw

≤ Ct−λ0P (g3 ∈ B(x, r))

∫ t

e−s∗ t

w−2λ0P (g4 ∈ B(0, 2rw−1/2)) dw.

In the above, g3 ∼ N (0, t) and g4 ∼ N (0, 1). The third line follows by the convolution property of Gaussians. We
again bound the probability in the integral by the size diameter of the ball, which gives the following upper bound
for the above:

Ct−λ0P (g3 ∈ B(x, r)) 4r

∫ t

e−s∗ t

w−2λ0−1/2 dw.

≤ Ct−λ0P (g3 ∈ B(x, r)) 4r (e−s
∗

t)−2λ0+1/2

= Ct−3λ0+1/2P (g3 ∈ B(x, r)) r.(4.31)
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By combining (4.30) and (4.31) and interpreting the Gaussian probabilities in terms of Brownian motion, we obtain
the first inequality of the result. The second bound is obtained by bounding the Brownian density above by its
maximum value.

Proof of Theorem 1.2(b). First consider Lt under N0 and recall the decomposition (4.27), ie. Lt = L̃t+νt, the latter

strictly atomic. Fix M ∈ N and consider the restriction of Lt to [−M,M ], ie. dL
(M)
t (x) := 1[−M,M ](x) dLt(x), with

decomposition L
(N)
t = L̃

(M)
t + ν

(M)
t . Note that the radius of the dyadic intervals is r(Ikn) = r = 2−(n+1). By Lemma

4.4, we have

N0

(

2M2n
∑

k=1

L
(M)
t (Ikn)2

)

=

2M2n
∑

k=1

N0

(

L
(M)
t (Ikn)2

)

≤ C(t) 2M2n
[

(2−(n+1))3−2λ0 + (2−(n+1))2
]

≤ C(t) 2M
[

(2−n)2−2λ0 + 2−n
]

→ 0 as n→ ∞

because 2 − 2λ0 > 0. Moreover, by Lemma 4.3, the first expression is greater than or equal to the expectation

(under N0) of the sum of the squares of the atoms of L
(M)
t . The above implies that this expectation must in fact be

zero, so ν
(M)
t = 0 N0-a.s. As this holds for all M , νt = 0 and Lt is atomless under N0. To obtain the result under

PXX0
, we note from the cluster decomposition and (1.17) that (conditionally) Lt is a sum of N measures which are

atomless by the above, and hence is atomless.

5. Proof of Theorem 1.4

We begin by obtaining an expression for second moments of Lλt under the canonical measure. In particular, we
study N0(Lλt (φ1)Lλ

′

t (φ2)) for λ, λ′ > 0. The moment representation formula is naturally suggested by a branching
particle heuristic. Its proof uses PDE methods and the Laplace functional. Let EBx denote the expectation of a

Brownian motion started at x. EB
1,B2

(x,y) denotes the law of two independent Brownian motions B1 and B2 started

from points x and y respectively. We recall that pδ(·) denotes the Gaussian density with variance δ.

Proposition 5.1. Let h : R2 → R be a bounded Borel function and λ, λ′, t > 0. Then

N0((Lλt × Lλ
′

t )(h)) = (λλ′)2λ0

∫ t

0

EB0

(

EB
1, B2

(0,0)

[

h(Bs +B1
t−s, Bs +B2

t−s)

× exp

(

−
∫ s

0

V λ,λ
′

t−u (B1
t−s +Bs −Bu, B

2
t−s +Bs −Bu) du

)

× exp

(

−
∫ t−s

0

V λ,λ
′

r (B1
r , B

1
r +B2

t−s −B1
t−s) dr

)

× exp

(

−
∫ t−s

0

V λ,λ
′

r (B2
r +B1

t−s −B2
t−s, B

2
r ) dr

)])

ds.

The proof of Proposition 5.1 requires the following lemma.

Lemma 5.2. Let ϕ ∈ MF (R) and ϕ1, ϕ2 ∈ L1(R) be non-negative and continuous. Then

N0

(

Xt(ϕ1)Xt(ϕ2)e−Xt(ϕ)
)

=

∫ t

0

EB0

(

exp

(

−
∫ s

0

V ϕt−u(Bu) ds

)

×
∏

i=1,2

EB
i

0

[

exp

(

−
∫ t−s

0

V ϕt−s−r(Bs +Bir) dr

)

ϕi(Bs +Bit−s)

])

ds.

Proof. Let ǫ1, ǫ2 > 0 and ϕ, ϕ1 and ϕ2 be as in the statement. Viewing ϕ1 and ϕ2 as the density functions of the finite
measures they induce (ie. ϕi(A) =

∫

A
ϕi(x) dx), let V ϕ,ǫ1,ǫ2t denote the solution to (3.4) when φ = ϕ+ ǫ1ϕ1 + ǫ2ϕ2 ∈

MF (R). By (3.3),
N0(1 − e−Xt(ϕ+ǫ1ϕ1+ǫ2ϕ2)) = V ϕ,ǫ1,ǫ2t (0).
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We differentiate this expression once with respect to ǫ1 and once with respect to ǫ2. The derivatives of the inner
expression of the left hand side are bounded above by integrable quantities (i.e. Xt(ϕ1) and Xt(ϕ1)Xt(ϕ2)) so we
can take the differentiation inside the expectation in the probabilistic representation, and the derivatives of the
right hand side exist. The resulting equation is the following:

(5.1) N0

(

Xt(ϕ1)Xt(ϕ2) e−Xt(ϕ+ǫ1ϕ1+ǫ2ϕ2)
)

= − ∂2

∂ǫ1∂ǫ2
V ϕ,ǫ1,ǫ2t (0).

We note that the limit of the left hand side as ǫ1, ǫ2 ↓ 0 is the desired expression. We now obtain an expression for
the first derivatives of V ϕ,ǫ1,ǫ2t (0) with respect to ǫ1 and ǫ2. Consider the following partial differential equation:

(5.2)
∂ut
∂t

=
∆

2
ut − V ϕ,ǫ1,ǫ2t ut for (t, x) ∈ (0,∞) × R, ut → ϕ1 as t ↓ 0,

where the ut → ϕ1 in the sense of weak convergence of measures. The above can be obtained heuristically by
formally differentiating (3.4) with respect to ǫ1 when the initial conditions are ϕ+ ǫ1ϕ1 + ǫ2ϕ2. By Lemmas 2.3 and
2.5 of [15], (5.2) has a unique solution, which we denote by U1,ǫ1,ǫ2

t , which satisfies

V ϕ,ǫ1,ǫ2t (x) = V ϕ,0,ǫ2t (x) +

∫ ǫ1

0

U1,ǫ,ǫ2
t (x) dǫ.

Thus U1,ǫ1,ǫ2
t = ∂

∂ǫ1
V φ,ǫ1,ǫ2t . We can apply the same argument to obtain a similar representation for ∂

∂ǫ2
V φ,ǫ1,ǫ2t ,

which we denote by U2,ǫ1,ǫ2
t . Both U1,ǫ1,ǫ2

t and U2,ǫ1,ǫ2
t have Feynman-Kac representations; for example, see Theorem

7.6 of Karatzas and Shreve [9] (on p. 366). For i = 1, 2 we have

(5.3) U i,ǫ1,ǫ2t (x) = EBx

(

ϕi(Bt) exp

(

−
∫ t

0

V ϕ,ǫ1,ǫ2t−s (Bs) ds

))

.

We take the expression for i = 1 and differentiate it with respect to ǫ2. We obtain

− ∂2

∂ǫ2∂ǫ1
V ϕ,ǫ1,ǫ2t (x)

= EBx

(

ϕ1(Bt) exp

(

−
∫ t

0

V ϕ,ǫ1,ǫ2t−s (Bs) ds

)
∫ t

0

U2,ǫ1,ǫ2
t−s (Bs) ds

)

= EBx

(

ϕ1(Bt) exp

(

−
∫ t

0

V ϕ,ǫ1,ǫ2t−s (Bs) ds

)

×
∫ t

0

EB
2

0

(

ϕ2(Bs +B2
t−s) exp

(

−
∫ t−s

0

V ϕ,ǫ1,ǫ2t−s−r (Bs +B2
r ) dr

)

ds

))

,

where the final line follows from another application of (5.3), this time with i = 2. First we note that all the terms
are non-negative, so we can take the internal integral over time outside the expectation. For s < t, the integrand
then describes one Brownian motion started at 0 and run to time t, and a second which branches from the first
at time s and evolves independently. By applying the Markov property at time s we equivalently view it as a
Brownian path that branches at time s into two independent Brownian motions B1 and B2 which themselves run
for a duration of t− s. This formulation combined with the independence of the Brownian motions gives us

∂2

∂ǫ2∂ǫ1
V ϕ,ǫ1,ǫ2t (x) = −

∫ t

0

EBx

(

exp

(

−
∫ s

0

V ϕ,ǫ1,ǫ2t−u (Bu) ds

)

×
∏

i=1,2

EB
i

0

[

ϕi(Bs +Bit−s) exp

(

−
∫ t−s

0

V ϕ,ǫ1,ǫ2t−s−r (Bs +Bir) dr

)]

ds

)

.

The derivatives in ǫ1 and ǫ2 are one-sided at 0 so we cannot exactly evaluate at ǫ1 = ǫ2 = 0. However, V φ,ǫ1,ǫ2t (x) is
continuous in ǫ1 and ǫ2 and the integrand is bounded above by ‖ϕ1‖∞‖ϕ2‖∞ so we can apply bounded convergence.

As ǫ1, ǫ2 ↓ 0, V ϕ,ǫ1,ǫ2t → V φt by Lemma 2.1(d) of [15]. We also take ǫ1, ǫ2 ↓ 0 in the left hand side of (5.1) and apply
Dominated Convergence. Evaluating at x = 0 gives the result.
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Proof of Proposition 5.1. We will prove the result for functions of product form, ie. h(x, y) = φ1(x)φ2(y), and
then use a monotone class theorem. Let x1, x2 ∈ R and λ, λ′ > 0. Consider the expression from Lemma 5.2 with
ϕ = λδx1 + λ′δx2 . For now we simply let ϕ1 and ϕ2 be functions satisfying the assumptions of Lemma 5.2, but we
will shortly choose them to be approximate identities at x1 and x2. Applying Lemma 5.2, we have

N0

(

Xt(ϕ1)Xt(ϕ2)e−λX(t,x1)−λ′X(t,x2)
)

=

∫ t

0

EB0

(

exp

(

−
∫ s

0

V λ,λ
′

t−u (Bu − x1, Bu − x2) du

)

×
∏

i=1,2

EB
i

0

[

exp

(

−
∫ t−s

0

V λ,λ
′

t−s−r(Bs +Bir − x1, Bs +Bir − x2) dr

)

ϕi(Bs +Bit−s)

])

ds,(5.4)

where we have used translation invariance of V λ,λ
′

(x1, x2). Now let ϕi = pδ(· − xi), and let φ1, φ2 be bounded,
continuous functions and integrate φ1(x1)φ1(x2) multiplied by the above over x1 and x2. The left hand side is then

∫∫

φ1(x1)φ2(x2)N0

(

Xt(pδ(· − x1))Xt(pδ(· − x2))e−λX(t,x1)−λ′X(t,x2)
)

dx1 dx2.(5.5)

The above is absolutely bounded by

‖φ1‖∞‖φ2‖∞N0

(
∫

Xt(pδ(· − x1))dx1

∫

Xt(pδ(· − x2)) dx2

)

,(5.6)

where the change of order of integration follows because all the terms are non-negative once we bound |φi(xi)| by
‖φi‖∞. Now we note that

∫

Xt(pδ(· − xi))dxi =

∫∫

X(t, y)pδ(xi − y) dy dxi =

∫

X(t, y)

∫
(

pδ(xi − y) dxi

)

dy = Xt(1).(5.7)

Combined with (5.6), this implies that (5.5) is absolutely integrable and absolutely bounded above by
‖φ1‖∞‖φ2‖∞N0(Xt(1)2). Thus we can apply Fubini and rewrite (5.5) as

N0

(
∫∫

φ1(x1)φ2(x2)Xt(pδ(· − x1))Xt(pδ(· − x2))e−λX(t,x1)−λ′X(t,x2)dx1 dx2

)

.(5.8)

As noted, the expression inside N0 is absolutely bounded above by ‖φ1‖∞‖φ2‖∞Xt(1)2, which is integrable under
N0, for all δ. We take δ ↓ 0 and apply Dominated Convergence to obtain that the limit of (5.8) as δ ↓ 0 is equal to

N0

(

lim
δ→0+

∫∫

φ1(x1)φ2(x2)N0

(

Xt(pδ(· − x1))Xt(pδ(· − x2))e−λX(t,x1)−λ′X(t,x2)
)

dx1 dx2

)

= N0

(

lim
δ→0+

(
∫

φ1(x1)Xt(pδ(· − x1))e−λX(t,x1)dx1

)(
∫

φ2(x2)Xt(pδ(· − x2))e−λX(t,x2)dx2

))

.(5.9)

We know that

Xt(pδ(· − xi)) =

∫

X(t, y)pδ(y − xi) dy = Xt ∗ pδ(xi).

Moreover, X(t, ·) ∈ Cc(R) (ie. X(t, ·) is continuous with compact support) N0-a.s. and {pδ}δ>0 are an approximate
identity family, which together with the above imply that Xt(pδ(· − xi)) → X(t, xi) as δ ↓ 0. Applying (5.7) shows
that the integrals in (5.9) are absolutely bounded by ‖φi‖∞Xt(1) for i = 1, 2 uniformly in δ > 0, so by another
application of Dominated Convergence in (5.9), the limit of (5.5) as δ ↓ 0 equals

N0

((
∫

φ1(x1)X(t, x) e−λX(t,x1)dx1

)(
∫

φ2(x2)X(t, x2)e−λX(t,x2)dx2

))

.

When rescaled by (λλ′)2λ0 this is equal to N0(Lλt (φ1)Lλ
′

t (φ2)). We now turn our attention to the right hand side
of (5.4). With ϕi = pδ(· − xi), integrating against φ(x1)φ(x2)dx1dx2, we have

∫∫

φ1(x1)φ2(x2)

(
∫ t

0

EB0

(

EB
1,B2

(0,0)

[

exp

(

−
∫ s

0

V λ,λ
′

t−u (Bu − x1, Bu − x2) du

)

× exp

(

−
∫ t−s

0

V λ,λ
′

t−s−r(Bs +B1
r − x1, Bs +B1

r − x2) dr

)

pδ(Bs +B1
t−s − x1)

× exp

(

−
∫ t−s

0

V λ,λ
′

t−s−r(Bs +B2
r − x1, Bs +B2

r − x2) dr

)

pδ(Bs +B2
t−s − x2)

])

ds

)

dx1 dx2.
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Since the above is equal to (5.5), which we have shown is absolutely integrable, we can take the spatial integrals
inside the expectations. At this point we note that we are integrating a bounded function of x1 and x2 with respect
to the densities pδ(Bs + B1

t−s − xi), which, because pδ is the kernel of the Brownian semigroup, is the same as
viewing xi as Bs +Bit−s+δ. Hence the above is equal to

∫ t

0

EB0

(

EB
1,B2

(0,0)

[

φ1(Bs +B1
t−s+δ)φ2(Bs +B2

t−s+δ)

× exp

(

−
∫ s

0

V λ,λ
′

t−u (Bu −Bs −B1
t−s+δ, Bu −Bs −B2

t−s+δ) du

)

× exp

(

−
∫ t−s

0

V λ,λ
′

t−s−r(B
1
r −B1

t−s+δ, B
1
r −B2

t−s+δ) dr

)

× exp

(

−
∫ t−s

0

V λ,λ
′

t−s−r(B
2
r −B1

t−s+δ, B
2
r −B2

t−s+δ) dr

)])

ds.(5.10)

Taking δ ↓ 0 and applying Dominated Convergence, we note that because Bit−s+δ → Bit−s and φ1, φ2 and V λ,λ
′

s

are continuous, the limit is equal to the above with δ = 0. To obtain the desired form we make a time reversal of
the Brownian motions. Let B̂iu = Bit−s − Bit−s−u. We note that the B̂i are standard Brownian motions and that

B̂it−s = Bit−s, B̂
i
0 = 0 and Bir −Bit−s = −B̂it−s−r. Making this substitution shows that (5.10) with δ = 0 is equal to

∫ t

0

EB0

(

EB̂
1,B̂2

(0,0)

[

φ1(Bs + B̂1
t−s)φ2(Bs + B̂2

t−s)

× exp

(

−
∫ s

0

V λ,λ
′

t−u (Bu −Bs − B̂1
t−s, Bu −Bs − B̂2

t−s) du

)

× exp

(

−
∫ t−s

0

V λ,λ
′

t−s−r(−B̂1
t−s−r,−B̂1

t−s−r + B̂1
t−s −B2

t−s) dr

)

× exp

(

−
∫ t−s

0

V λ,λ
′

t−s−r(−B̂2
t−s−r + B̂2

t−s −B1
t−s,−B̂2

t−s−r) dr

)])

ds.

The time index of the Brownian motions now matches the time index of the function V λ,λ
′

in the last two lines,
allowing us to reverse the time of the integrals for a simpler expression. To obtain the desired expression we

now apply the fact that V λ,λ
′

t (a, b) = V λ,λ
′

t (−a,−b) and relabel B̂i to be simply Bi. This proves the result for
h(x1, x2) = φ1(x1)φ2(x2) when φ1, φ2 are bounded and continuous. The result for general bounded measurable
h : R2 → R now follows from a standard monotone class argument such as Corollary 4.4 in the Appendix of Ethier
and Kurtz [6].

Definition. Let Γλ,λ
′

(s) denote the integrand in Proposition 5.1, so that the proposition states that

(5.11) N0((Lλt × Lλ
′

t )(h)) = (λλ′)2λ0

∫ t

0

Γλ,λ
′

(s)ds.

Γλ,λ
′

(s) also depends on h, but we omit this. The next lemma changes variables to obtain an expression involving
Ornstein-Uhlenbeck processes. We first introduce some notation. For bounded and measurable h : R2 → R and a

(continuous) path (Bu : u ∈ [0, s]), define Ψλ,λ′

B,s (·, ·) by

(5.12) Ψλ,λ′

B,s (x, y) = h(x+Bs, y +Bs) exp

(

−
∫ s

0

V λ,λ
′

t−u (x +Bs −Bu, y +Bs −Bu) du

)

.

We define Hc
u as a scaling of V λ,λ

′

t :

(5.13) Hc
u(x, y) = uV 1,c

u (
√
ux,

√
uy) = V

√
u,

√
uc

1 (x, y).

The scaling in the following lemma cannot be done uniformly for all s ∈ [0, t] because it requires λ2 > (t − s)−1

and λ′2 > (t− s)−1. We derive an expression for Γλ,λ
′

(s) in terms of two independent Ornstein-Uhlenbeck processes

which we denote Y 1 and Y 2, for which we denote the joint (independent) expectation EY
1,Y 2

(x,y) .
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Lemma 5.3. Let 0 < s < t, T1 = T1(s) = log(λ2(t− s)), T2 = T2(s) = log(λ′2(t− s)). Then for all λ > (t− s)−1/2

and λ′ > (t− s)−1/2, we have

Γλ,λ
′

(s) =EB0

(

EB
1, B2

(0,0)

[

EY
1,Y 2

(B1
1 ,B

2
1)

(

Ψλ,λ′

B,s (
√
t− s Y 1

T1
,
√
t− s Y 2

T2
)

× exp

(

−
∫ 1

0

V 1,λ′/λ
u (B1

u, B
1
u + eT1/2(Y 2

T2
− Y 1

T1
)) + V 1,λ/λ′

u (B2
u, B

2
u + eT2/2(Y 1

T1
− Y 2

T2
)) du

)

× exp

(

−
∫ T1

0

H
λ′/λ
eu (Y 1

u , Y
1
u + e(T1−u)/2(Y 2

T2
− Y 1

T1
)) du

)

× exp

(

−
∫ T2

0

H
λ/λ′

eu (Y 2
u , Y

2
u + e(T2−u)/2(Y 1

T1
− Y 2

T2
)) du

))])

.

Proof. We begin with the expression from Proposition 5.1. We observe that Ψλ,λ′

B,s appears and we may write the

quantities in the first two lines as Ψλ,λ′

B,s (B1
t−s, B

2
t−s). In the third and fourth lines we apply (3.19) to obtain

Γλ,λ
′

(s) = EB0

(

EB
1, B2

(0,0)

[

Ψλ,λ′

B,s (B1
t−s, B

2
t−s)

× exp

(

−
∫ t−s

0

λ2V
1,λ′/λ
λ2r (λB1

r , λ(B1
r +B2

t−s −B1
t−s)) dr

)

× exp

(

−
∫ t−s

0

λ′2V λ/λ
′,1

λ′2r (λ′(B2
r +B1

t−s −B2
t−s), λ

′B2
r ) dr

)])

.

We define B̂1
u = λB1

λ−2u and B̂2
u = λ′B2

λ′−2u, which are both standard Brownian motions. Making a time change in
the integrals (ie. letting u = λ2r or λ′2r) gives

Γλ,λ
′

(s) = EB0

(

EB̂
1, B̂2

(0,0)

[

Ψλ,λ′

B,s (λ−1B̂1
λ2(t−s), λ

′−1B̂2
λ′2(t−s))

× exp

(

−
∫ λ2(t−s)

0

V 1,λ′/λ
u (B̂1

u, B̂
1
u +

λ

λ′
B̂2
λ′2(t−s) − B̂1

λ2(t−s)) du

)

× exp

(

−
∫ λ′2(t−s)

0

V λ/λ
′,1

u (B̂2
u +

λ′

λ
B̂1
λ2(t−s) − B̂2

λ′2(t−s), B̂
2
u) du

)

])

.

Because we have assumed λ, λ′ > (t − s)−1/2, the upper bounds of integration in the integrals are greater than 1.
We now apply the Markov property for B̂i at time u = 1. We collect the portions of the integrals from the second
and third lines on the interval [0, 1], leaving the integrals from 1 to λ2(t− s) and λ′2(t− s). Conditional on B̂i1, the
Brownian motions in the integrands’ arguments are Brownian motions with initial position B̂i1. If we denote these
by B̃iu (in which case, essentially, B̃iu = B̂iu+1), we obtain

Γλ,λ
′

(s) =EB0

(

EB̂
1, B̂2

(0,0)

[

EB̃
1,B̃2

(B̂1
1 ,B̂

2
1)

(

Ψλ,λ′

B,s (λ−1B̃1
λ2(t−s)−1, λ

′−1B̃2
λ′2(t−s)−1)

× exp

(

−
∫ 1

0

V 1,λ′/λ
u (B̂1

u, B̂
1
u +

λ

λ′
B̃2
λ′2(t−s)−1 − B̃1

λ2(t−s)−1)

+ V λ/λ
′,1

u (B̂2
u +

λ′

λ
B̃1
λ2(t−s)−1 − B̃2

λ′2(t−s)−1, B̂
2
u) du

)

× exp

(

−
∫ λ2(t−s)−1

0

V
1,λ′/λ
u+1 (B̃1

u, B̃
1
u +

λ

λ′
B̃2
λ′2(t−s)−1 − B̃1

λ2(t−s)−1) du

)

× exp

(

−
∫ λ′2(t−s)−1

0

V
λ/λ′,1
u+1 (B̃2

u +
λ′

λ
B̃1
λ2(t−s)−1 − B̃2

λ′2(t−s)−1, B̃
2
u) du

))])

.(5.14)

Recall that if a process Y is defined by
Yr = e−r/2Ber−1
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where B is a standard Brownian motion, then Y is a standard one-dimensional Ornstein-Uhlenbeck process with
Y0 = B0. For i = 1, 2 we let Y ir = e−r/2B̃ier−1. Recall that T1 = log(λ2(t− s)) and T2 = log(λ′2(t− s)). We therefore
have that

B̃1
λ2(t−s)−1 = eT1/2Y 1

T1
, B̃2

λ′2(t−s)−1 = eT2/2Y 2
T2
.

Expressing λ and λ′ in terms of T1, T2 shows that

λ

λ′
B̃2
λ2(t−s)−1 = eT1/2Y 2

T2
,

λ′

λ
B̃1
λ′2(t−s)−1 = eT2/2Y 1

T1
.

Likewise, we express the argument of Ψλ,λ′

B,s in terms of Y i and Ti. We substitute u = er − 1 and apply the above
in (5.14) to obtain

Γλ,λ
′

(s) =EB0

(

EB̂
1, B̂2

(0,0)

[

EY
1,Y 2

(B̂1
1 ,B̂

2
1)

(

Ψλ,λ′

B,s (
√
t− s Y 1

T1
,
√
t− s Y 2

T2
)

× exp

(

−
∫ 1

0

V 1,λ′/λ
u (B̂1

u, B̂
1
u + eT1/2(Y 2

T2
− Y 1

T1
)) + V λ/λ

′,1
u (B̂2

u + eT2/2(Y 1
T1

− Y 2
T2

), B̂2
u) du

)

× exp

(

−
∫ T1

0

erV
1,λ′/λ
er (er/2Y 1

r , e
r/2Y 1

r + eT1/2(Y 2
T2

− Y 1
T1

)) dr

)

× exp

(

−
∫ T2

0

erV
λ/λ′,1
er (er/2Y 2

r + eT2/2(Y 1
T1

− Y 2
T2

)), er/2Y 2
r ) dr

))])

.

We now apply (3.19) and (5.13) in the third and fourth lines. In the third line this gives

erV
1,λ′/λ
er (er/2Y 1

r , e
r/2Y 1

r + eT1/2(Y 2
T2

− Y 1
T1

))

= V
er/2,er/2λ′/λ
1 (Y 1

r , Y
1
r + e(T1−r)/2(Y 2

T2
− Y 1

T1
))

= H
λ′/λ
er (Y 1

r , Y
1
r + e(T1−r)/2(Y 2

T2
− Y 1

T1
)),

and similar in the fourth. Noting that V c,dt (a, b) = V d,ct (b, a), we have obtained the desired expression.

We now obtain an upper bound for Γλ,λ
′

(s) and show that the contribution to N0((Lλt ×Lλ
′

t )(h)) from the integral
over [t− ǫ, t] vanishes as (ǫ, λ′) → (0,∞).

Lemma 5.4. Suppose λ2t ≥ 1, and let h : R2 → R be bounded. There is a constant C5.4 > 0 such that the following
hold.
(a) For all λ′ > (t− s)−1/2,

(λλ′)2λ0
∣

∣Γλ,λ
′

(s)
∣

∣ ≤ C5.4‖h‖∞t−λ0(t− s)−λ0 .

(b) For 0 < ǫ < t,

(λλ′)2λ0

∫ t

t−ǫ

∣

∣Γλ,λ
′

(s)
∣

∣ ds ≤ C5.4‖h‖∞t−λ0(ǫ1−λ0 + λ′−2(1−λ0)).

Proof. To begin we use |h| ≤ ‖h‖∞ and apply monotonicity (Proposition 3.1(a)), ie. V λ(x), V λ
′

(y) ≤ V λ,λ
′

(x, y),
to obtain

(λλ′)2λ0
∣

∣Γλ,λ
′

(s)
∣

∣

≤ ‖h‖∞(λλ′)2λ0EB0

(

EB
1, B2

(0,0)

[

exp

(

−
∫ s

0

V λt−u(B1
t−s +Bs −Bu) du

)

× exp

(

−
∫ t−s

0

V λr (B1
r ) dr

)

exp

(

−
∫ t−s

0

V λ
′

r (B2
r ) dr

)])

= ‖h‖∞(λλ′)2λ0EB
1

0

(

exp

(

−
∫ t

0

V λu (B1
u) du

))

EB
2

0

(

exp

(

−
∫ t−s

0

V λ
′

r (B2
r ) dr

))

,
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where the final line follows from a time reversal of B and concatenating the time-reversed B with B1. Applying
(3.6) twice and changing the time variable, the above is equal to

‖h‖∞(λλ′)2λ0EB
1

0

(

exp

(

−
∫ λ2t

0

V 1
u (λB1

λ−2u) du

))

EB
2

0

(

exp

(

−
∫ λ′2(t−s)

0

V 1
u (λ′B2

λ′−2u) du

))

.

The rescaled Brownian motions in the above are themselves standard Brownian motions which we will denote by
B̂1, B̂2. We next let er = u in both integrals and apply (3.6) to see that the above equals

‖h‖∞(λλ′)2λ0EB̂
1

0

(

exp

(

−
∫ log(λ2t)

−∞
V e

r/2

1 (e−r/2B̂1
er ) dr

))

EB̂
2

0

(

exp

(

−
∫ log(λ′2(t−s))

−∞
V e

r/2

1 (e−r/2B̂2
er ) dr

))

ds

≤ ‖h‖∞(λλ′)2λ0EY
1

m

(

exp

(

−
∫ log(λ2t)

0

V e
r/2

1 (Y 1
r ) dr

))

EY
2

(

exp

(

−
∫ log(λ′2(t−s))

−∞
V e

r/2

1 (Y 2
r ) dr

))

,(5.15)

where Y ir = e−r/2B̂ier , which makes Y iu a stationary Ornstein-Uhlenbeck process for u ∈ R, and we recall our
assumption that λ2t > 1. We condition on the value of Y 1

0 , which has distribution m.

We first use the above to prove (a). Assuming that λ′ > (t − s)−1/2, the upper endpoint of the second integral is
positive, so by (5.15) we have

(λλ′)2λ0
∣

∣Γλ,λ
′

(s)
∣

∣

≤ ‖h‖∞(λλ′)2λ0EY
1

m

(

exp

(

−
∫ log(λ2t)

0

V e
r/2

1 (Y 1
r ) dr

))

EY
2

m

(

exp

(

−
∫ log(λ′2(t−s))

0

V e
r/2

1 (Y 2
r ) dr

))

,(5.16)

where we have also conditioned on Y 2
0 . In order to approximate the expectations above with survival probabilities

for killed Ornstein-Uhlenbeck processes, we add and subtract F (Y iu) in the integrals. Recalling the definition of
ZT (Y ) from (3.15), we define Z1

T (Y 1), Z2
T (Y 2) in the same way. Thus (5.16) is equal to

‖h‖∞(λλ′)2λ0EY
1

m

(

Z1
log(λ2t)(Y

1) exp

(

−
∫ log(λ2t)

0

F (Y 1
r ) du

))

×EY 2

m

(

Z2
log(λ′2(t−s))(Y

2) exp

(

−
∫ log(λ′2(t−s))

0

F (Y 2
r ) dr

))

≤‖h‖∞(λλ′)2λ0CZE
Y 1

m

(

exp

(

−
∫ log(λ2t)

0

F (Y 1
r ) du

))

× CZE
Y 2

m

(

exp

(

−
∫ log(λ′2(t−s))

0

F (Y 2
r ) dr

))

ds

=C‖h‖∞(λλ′)2λ0P Y
1

m (ρF > log(λ2t))PY
2

m (ρF > log(λ′2(t− s)))(5.17)

In the first inequality we have used (3.17) twice, and the second equality follows by recognizing the expectations as
survival probabilities of killed Ornstein-Uhlenbeck processes killed at rate F (Y ir ). By (2.9), we have

P Y
1

m (ρF > log(λ2t)) ≤ Ct−λ0λ−2λ0 , P Y
2

m (ρF > log(λ′2(t− s))) ≤ C(t− s)−λ0λ′−2λ0 .

Using the above in (5.17), which is an upper bound for (λλ′)2λ0
∣

∣Γλ,λ
′

(s)
∣

∣, proves (a).

We now show (b). Let 0 < ǫ < t. Using (5.15) we obtain that

(λλ′)2λ0

∫ t

t−ǫ

∣

∣Γλ,λ
′

(s)
∣

∣ ds ≤ ‖h‖∞(λλ′)2λ0EY
1

m

(

exp

(

−
∫ log(λ2t)

0

V e
r/2

1 (Y 1
r ) dr

))

×
∫ t

t−ǫ
EY

2

(

exp

(

−
∫ log(λ′2(t−s))

−∞
V e

r/2

1 (Y 2
r ) dr

))

ds.(5.18)
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We can approximate the first expectation with the survival probability of Y 1, just as we did in the proof of (a),
and bound it above by Cλ−2λ0t−λ0 . Furthermore, by the proof of part (a), we know that when λ′ > (t− s)−1/2 the
expectation in the integral above is bounded above by C(λ′)−2λ0(t− s)−λ0 . When this is not the case we bound it
above by 1. Thus (5.18) is bounded above by

C‖h‖∞t−λ0

[

1(λ′ ≥ ǫ−1/2)

∫ t−λ′−2

t−ǫ
(t− s)−λ0 ds+ (λ′)2λ0

∫ t

t−λ′−2

EY
2

(

exp

(

−
∫ log(λ′2(t−s))

−∞
V e

r/2

1 (Y 2
r ) dr

))

ds

]

≤ C‖h‖∞t−λ0

[

ǫ1−λ0 + λ′−2(1−λ0)
]

.

The result now follows.

Proof of Theorem 1.4. Let h : R2 → R be bounded and measurable. Clearly we may assume without loss of generality
that h ≥ 0. We recall from (5.11) and Proposition 5.1 that

N0((Lλt × Lλ
′

t (h)) =

∫ t

0

(λλ′)2λ0Γλ,λ
′

(s) ds,

where h ≥ 0 implies that Γλ,λ
′

(s) ≥ 0. Our strategy is to compute the limit of (λλ′)2λ0Γλ,λ
′

(s) as λ, λ′ → ∞ and
pass the limit through the integral. However, the scaling we use cannot be done uniformly in s. In order to handle
this and the singularity at s = t, we fix ǫ > 0 and analyse the integral on [t− ǫ, t] separately. We have

(5.19) N0((Lλt × Lλ
′

t (h)) =

∫ t−ǫ

0

(λλ′)2λ0Γλ,λ
′

(s) ds+ (λλ′)2λ0

∫ t

t−ǫ
Γλ,λ

′

(s) ds.

By Lemma 5.4(b), the limit superior of the absolute value of the second term as λ′ → ∞ is bounded above by
C‖h‖∞t−λ0ǫ1−λ0 . Hence, if

lim
λ,λ′→∞

∫ t−ǫ

0

(λλ′)2λ0Γλ,λ
′

(s) ds

exists for all ǫ > 0, then by the Cauchy condition limλ,λ′→∞ N0((Lλt × Lλ
′

t (h)) exists and is the limit of the above
as ǫ ↓ 0. Thus it suffices to fix ǫ > 0 and establish the convergence of, and find the limit of, the first term of (5.19),
first as λ, λ′ → ∞ and then as ǫ ↓ 0. By Lemma 5.4(a), we have

(λλ′)2λ0 |Γλ,λ′

(s)| ≤ g(s) for all s ∈ [0, t− ǫ]

for all λ, λ′ > ǫ−1/2 for a function g(s) ≥ 0 satisfying
∫ t−ǫ
0

g(s)ds < ∞. Thus if (λλ′)2λ0Γλ,λ
′

(s) converges as
λ, λ′ → ∞, Dominated Convergence implies

lim
λ,λ′→∞

N0((Lλ × Lλ
′

t )(h)) = lim
ǫ→0+

lim
λ,λ′→∞

∫ t−ǫ

0

(λλ′)2λ0Γλ,λ
′

(s) ds

= lim
ǫ→0+

∫ t−ǫ

0

lim
λ,λ′→∞

(λλ′)2λ0Γλ,λ
′

(s) ds,(5.20)

and so it suffices to find the limit of (λλ′)2λ0Γλ,λ
′

(s) as λ, λ′ → ∞.

Let s ∈ (0, t) and assume λ, λ′ > (t− s)−1/2. By Lemma 5.3,

(λλ′)2λ0Γλ,λ
′

(s) = (λλ′)2λ0EB0

(

EB
1,B2

(0,0)

(

EY
1,Y 2

B1
1 ,B

2
1

[

Ψλ,λ′

B,s (
√
t− s Y 1

T1
,
√
t− s Y 2

T2
)

× exp

(

−
∫ 1

0

V 1,λ′/λ
u (B1

u, B
1
u + eT1/2(Y 2

T2
− Y 1

T1
)) + V 1,λ/λ′

u (B2
u, B

2
u + eT2/2(Y 1

T1
− Y 2

T2
)) du

)

× exp

(

−
∫ T1

0

H
λ′/λ
eu (Y 1

u , Y
1
u + e

T1−u
2 (Y 2

T2
− Y 1

T1
)) du

)

× exp

(

−
∫ T2

0

H
λ/λ′

eu (Y 2
u , Y

2
u + e

T2−u

2 (Y 1
T1

− Y 2
T2

)) du

)))]

,(5.21)
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where T1 = T1(s) = log(λ2(t − s)), T2 = T2(s) = log(λ′2(t − s)). Inside the integral in the third term we add and
subtract F (Y iu) and decompose as follows

exp

(

−
∫ T1

0

H1
eu(Y 1

u , Y
1
u + e

T−u
2 (Y 2

T2
− Y 1

T1
)) du

)

= exp

(

−
∫ T1

0

F (Y 1
u ) du

)

exp

(
∫ T1

0

F (Y 1
u ) −H

λ′/λ
eu (Y 1

u , Y
1
u + e

T1−u
2 (Y 2

T2
− Y 1

T1
)) du

)

.

We do the same to the fourth term with the obvious changes of indices. The first term in the above is the probability
that the Ornstein-Uhlenbeck process Y 1 with killing function F survives until time T1. We extract a similar term
from the symmetric term corresponding to Y 2 and T2. Weighting the expectation of a functional with this survival
probability is equivalent to restricting the expectation to the event that the process survives; in our case, we restrict
to the event that Y 1 and Y 2 survive until T1 and T2, respectively. Thus (5.21) is equal to

(λλ′)2λ0EB0

(

EB
1,B2

(0,0)

(

EY
1,Y 2

B1
1 ,B

2
1

[

Ψλ,λ′

B,s (
√
t− s Y 1

T1
,
√
t− s Y 2

T2
)

× exp

(

−
∫ 1

0

V 1,λ′/λ
u (B1

u, B
1
u + eT1/2(Y 2

T2
− Y 1

T1
)) + V 1,λ/λ′

u (B2
u, B

2
u + eT2/2(Y 1

T1
− Y 2

T2
)) du

)

× exp

(
∫ T1

0

F (Y 1
u ) −H

λ′/λ
eu (Y 1

u , Y
1
u + e

T1−u
2 (Y 2

T2
− Y 1

T1
)) du

)

× exp

(
∫ T2

0

F (Y 2
u ) −H

λ/λ′

eu (Y 2
u , Y

2
u + e

T2−u
2 (Y 1

T1
− Y 2

T2
)) du

)

1(ρ1 > T1)1(ρ2 > T2)

]))

,(5.22)

where ρi = ρFi is the lifetime of the killed process Y i. Recall the transition density qt(·, ·) (with respect to m) of the
killed diffusion . We condition on the endpoints Y iTi

= zi (recall from Lemma 2.3(a) that the regular conditional
distributions exist for all zi ∈ R) and integrate against qTi(·, zi) dm(zi) to obtain that (5.22) is equal to

(λλ′)2λ0EB0

(

EB
1,B2

(0,0)

(
∫∫

Ψλ,λ′

B,s (
√
t− sz1,

√
t− sz2)

× exp

(

−
∫ 1

0

V 1,λ′/λ
u (B1

u, B
1
u + eT1/2(z2 − z1)) + V 1,λ/λ′

u (B2
u, B

2
u + eT2/2(z1 − z2)) du

)

× EY
1

B1
1

(

exp

(
∫ T1

0

F (Y 1
u ) −H

λ′/λ
eu (Y 1

u , Y
1
u + e

T1−u
2 (z2 − z1)) du

)∣

∣

∣

∣

ρ1 > T1, Y
1
T1

= z1

)

× EY
2

B2
1

(

exp

(
∫ T2

0

F (Y 2
u ) −H

λ/λ′

eu (Y 2
u , Y

2
u + e

T2−u
2 (z1 − z2)) du

)
∣

∣

∣

∣

ρ2 > T2, Y
2
T2

= z2

)

× qT1(B1
1 , z1) qT2(B2

1 , z2) dm(z1) dm(z2)

))

(5.23)

=:

∫∫

(λλ′)2λ0

[

EB0

(

EB
1,B2

(0,0)

(

G(λ, λ′, s, B,B1, B2, z1, z2) qT1(B1
1 , z1) qT2(B2

1 , z2)

))]

dm(z1) dm(z2).

The conditional probabilities that appear are the same that are defined in Section 2, in particular Lemma 2.3. We
have used that the terms in the third and fourth lines are independent conditional on the endpoints. Hereafter, Y 1

and Y 2, and their respective laws, refer to killed Ornstein-Uhlenbeck processes with killing function F . Furthermore,
after this point we will suppress the conditioning on ρi > Ti, as it is implicit in the conditioning Y iTi

= zi that ρi > Ti.

We introduce notation for the terms appearing in G(λ, λ′, s, B,B1, B2, z1, z2). We define

Q(λ, λ′, B1, B2, z1, z2)(5.24)

:= exp

(

−
∫ 1

0

V 1,λ′/λ
u (B1

u, B
1
u + eT1/2(z2 − z1)) + V 1,λ/λ′

u (B2
u, B

2
u + eT2/2(z1 − z2)) du

)

,

Z̃1
T1

= Z̃1
T1

(Y 1, z1, z2, λ
′/λ) := exp

(
∫ T1

0

F (Y 1
u ) −H

λ′/λ
eu (Y 1

u , Y
1
u + e

T1−u
2 (z2 − z1)) du

)

,(5.25)

Z̃2
T2

= Z̃2
T2

(Y 2, z2, z1, λ/λ
′) := exp

(
∫ T2

0

F (Y 2
u ) −H

λ/λ′

eu (Y 2
u , Y

2
u + e

T2−u

2 (z1 − z2)) du

)

.(5.26)

35



We recall that Ψλ,λ′

B,s (
√
t− sz1,

√
t− sz2) was defined in (5.12). From (5.23) we have

G(λ, λ′, s, B,B1, B2, z1, z2)

= Ψλ,λ′

B,s (
√
t− sz1,

√
t− sz2)Q(λ, λ′, B1, B2, z1, z2)EY

1

B1
1

(

Z̃1
T1

∣

∣Y 1
T1

= z1

)

EY
2

B2
1

(

Z̃2
T2

∣

∣Y 2
T2

= z2

)

.(5.27)

We note that Z̃1
T1

and Z̃2
T2

are perturbations of the corresponding ZiTi
terms. In particular, we defined ZiTi

by

(5.28) ZiTi
(Y i) = exp

(
∫ Ti

0

F (Y iu) − V e
u/2

1 (Y iu) du

)

.

By Proposition 3.1(a) and (5.13), we have that Hc
eu(x, y) ≥ V e

u/2

1 (x), and hence

(5.29) Z̃iTi
≤ ZiTi

(Y i) ≤ CZ ,

where the second inequality is by (3.17). Using Q(λ, λ′, B1, B2, z1, z2) ≤ 1 and |Ψλ,λ′

B,s | ≤ ‖h‖∞, both of which are
obvious from these terms’ definitions, we therefore obtain that for a constant C1 > 0,

(5.30) |G(λ, λ′, s, B,B1, B2, z1, z2)| ≤ C1

uniformly in its arguments. We now define Θ(λ, λ′, s, B,B1, B2, z1, z2) as the function in the square-bracketed term
in (5.23) multiplied by the scaling factor (λλ′)2λ0 . That is,

(5.31) Θ(λ, λ′, s, B,B1, B2, z1, z2) := G(λ, λ′, s, B,B1
1 , B

2
1 , z1, z2) (λλ′)2λ0 qT1(B1

1 , z1) qT2(B2
1 , z2).

Note from (5.23) that

(5.32) Γλ,λ
′

(s) =

∫∫

EB0 (EB
1,B2

(0,0) ( Θ(λ, λ′, s, B,B1, B2, z1, z2))) dm(z1) dm(z2).

Recall that T1 = log(λ2(t − s)) and T2 = log(λ′2(t − s)). Taking s∗(1/8) as in Theorem 2.1(c), we note that if
λ, λ′ > es

∗/2(t− s)−1/2, then T1, T2 ≥ s∗(1/8). We define λ̄(s) as

(5.33) λ̄(s) :=
[

es
∗(1/8)/2(t− s)−1/2

]

∨ 1

and τ(s) by

(5.34) τ(s) = log(λ̄(s)2(t− s)).

Applying (2.2) with δ = 1/8, we obtain

qT1(b1, z1) qT2(b2, z2) ≤ C(t− s)−2λ0(λλ′)−2λ0e1/8(b
2
1+b

2
2+z

2
1+z

2
2)

for all T1, T2 > τ(s) (equivalently, λ, λ′ > λ̄(s)). Using the above and (5.30), we obtain

|Θ(λ, λ′, s, B,B1, B2, z1, z2)|
≤ C (t− s)−2λ0 exp

([

(B1
1)2 + (B2

1)2 + z21 + z22
]

/8
)

for all λ, λ′ > λ̄(s).(5.35)

Since Bi1 ∼ m, (5.35) implies that Θ has a (uniform in λ, λ′ > λ̄(s)) upper bound which is integrable with respect

to dPB0 dP
B1

0 dPB
2

0 dm(z1) dm(z2). From (5.32), this implies that (λλ′)2λ0Γλ,λ
′

(s) is bounded for λ, λ′ > λ̄(s) (for

fixed s < t). Moreover, if limλ,λ′→∞ Θ(λ, λ′, s, B,B1, B2, z1, z2) exists for PB0 ⊗ PB
1,B2

(0,0) -a.a. ω and Lebesgue-a.a.

z1, z2 ∈ R, then by (5.32) and Dominated Convergence (using (5.35)), we have

lim
λ,λ′→∞

(λλ′)2λ0Γλ,λ
′

(s) =

∫∫

EB0 (EB
1,B2

(0,0) [ lim
λ,λ′→∞

Θ(λ, λ′, s, B,B1, B2, z1, z2)]) dm(z1) dm(z2).(5.36)

In view of (5.20), the above implies the following:

If lim
λ,λ′→∞

Θ(λ, λ′, s, B,B1, B2, z2, z2) exists PB0 ⊗ PB
1,B2

(0,0) -a.s. for a.e. z1, z2 ∈ R, then

lim
λ,λ′→∞

N0((Lλt × Lλ
′

t )(h)) =

∫ t

0

[
∫∫

EB0 (EB
1,B2

(0,0) [ lim
λ,λ′→∞

Θ(λ, λ′, s, B,B1, B2, z1, z2)]) dm(z1) dm(z2)

]

ds.(5.37)
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As h ≥ 0, and hence Γλ,λ
′

(s) ≥ 0, the right hand side of the above is equal to the last expression of (5.20) (provided
Θ converges) by Monotone Convergence. Thus it suffices to compute the limit of Θ(λ, λ′, s, B,B1, B2, z2, z2) as
λ, λ′ → ∞. As we only need to find the limit a.e. in (z1, z2), we will hereafter assume that z1 6= z2. We also take
this opportunity to reiterate our assumptions about λ and λ′. Originally we assumed λ, λ′ > (t− s)−1/2; in view of
the above, we augment the assumption to λ, λ′ > λ̄(s), or equivalently, T1, T2 > τ(s). This implies that λ, λ′ > 1
and T1, T2 > s∗(1/8).

Θ is the product of the function G and the rescaled transition densities, ie. λ2λ0qT1(B1
1 , z1) and λ′2λ0qT2(B2

1 , z2).
We will show that both of these approach finite limits as λ, λ′ → ∞. First, let us handle the transition densities.
By Lemma 2.2,

lim
Ti→∞

eλ0TiqTi(B
i
1, zi) = ψ0(Bi1)ψ0(zi)

for i = 1, 2. Using the definitions of T1 and T2 (e.g. T1 = log(λ2(t− s))), we readily obtain from the above that

λ2λ0qT1(B1
1 , z1) → (t− s)−λ0ψ0(B1

1)ψ0(z1) as λ→ ∞, and

λ′2λ0qT2(B2
1 , z2) → (t− s)−λ0ψ0(B2

1)ψ0(z2) as λ′ → ∞(5.38)

for all B1
1 , B

2
1 , z1, z2 ∈ R.

We now compute the limit of G. We begin by focussing on the components of G for which the analysis is most
technical, which are the conditional expectations of Z̃iTi

. We will focus on i = 1, but the analysis carries over to the
i = 2 case. For now, we replace B1

1 with a generic point x ∈ R. We will show that

lim
λ,λ′→∞

EY
1

x

(

Z̃1
T1

(Y 1, z1, z2, λ
′/λ)

∣

∣Y 1
T1

= z1
)

= EY,∞x (Z∞(Y ))EY,∞z1 (W∞(Y, z2)),(5.39)

where we recall that EY,∞x is the expectation under the law of the killed process Y with Y0 = x conditioned to
survive for all time, as defined in Theorem 2.1(e). ZT (Y ) is as defined in (3.15) and we recall from (3.16) that
Z∞(Y ) = limT→∞ ZT (Y ) exists and is bounded by CZ . WS(Y, z) is defined as

(5.40) WS(Y, z) = exp

(
∫ S

0

F (Yu) − F2(Yu, Yu − eu/2(z − Y0)) du

)

.

The integrand in WS(Y, z) is negative, which implies that 0 < WS(Y, z) ≤ 1 for all S > 0, and so W∞(Y, z) exists
and is bounded by 1. Heuristically, the Z∞ term comes from the early part of the integral in Z̃iTi

, and the W term
comes from the tail part, and these two contributions are asymptotically independent. Since the time at which we
condition is T and goes to infinity, in the limit the expectations are computed under the measure of the process
conditioned to survive forever. Because z1 and z2 are fixed, we will hereafter suppress the dependence of Z̃1

T1
on

them and simply write Z̃1
T1

(Y 1, λ′/λ). Moreover, we will only be analysing Y 1, T1 and Z̃1
T1

(Y 1, λ′/λ) for the time

being, so we simply denote these by Y, T and Z̃T (Y, λ′/λ).

Let us now proceed more carefully. Let 0 < K < T/2. We apply the Markov property to EYx (Z̃T (Y, λ′/λ)
∣

∣YT = z1)
at times K and T −K and expand in terms of the joint density of (YK , YT−K). As in (2.11), the joint density of
(YK , YT−K) at (w, y) with respect to m×m under P Yx (Y ∈ · |YT = z1) is

qK(x,w)qT−2K (w, y)qK(y, z1)

qT (x, z1)
.
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Thus we obtain the following:

EYx

(

Z̃T (Y, λ′/λ)
∣

∣YT = z1

)

= EYx

(

exp

(
∫ T

0

F (Yu) −H
λ′/λ
eu (Yu, Yu + e

T−u
2 (z2 − z1)) du

)
∣

∣

∣

∣

YT = z1

)

=

∫∫

EYx

(

exp

(
∫ K

0

F (Yu) −H
λ′/λ
eu (Yu, Yu + e

T−u
2 (z2 − z1)) du

)∣

∣

∣

∣

YK = w

)

× EYw

(

exp

(
∫ T−2K

0

F (Yu) −H
λ′/λ

eK+u(Yu, Yu + e
T−K−u

2 (z2 − z1)) du

)∣

∣

∣

∣

YT−2K = y

)

× EYy

(

exp

(
∫ K

0

F (Yu) −H
λ′/λ

eT−K+u(Yu, Yu + e
K−u

2 (z2 − z1)) du

)∣

∣

∣

∣

YK = z1

)

× qK(x,w)qT−2K(w, y)qK(y, z1)

qT (x, z1)
dm(w) dm(y).(5.41)

Denote the three conditional expectations by A1(x,w, λ, λ′,K), A2(w, y, λ, λ′,K) and A3(y, z1, λ, λ
′,K). That is,

A1(x,w, λ, λ′,K) = EYx

(

exp

(
∫ K

0

F (Yu) −H
λ′/λ
eu (Yu, Yu + e

T−u
2 (z2 − z1)) du

)
∣

∣

∣

∣

YK = w

)

(5.42)

A2(w, y, λ, λ′,K) = EYw

(

exp

(
∫ T−2K

0

F (Yu) −H
λ′/λ

eK+u(Yu, Yu + e
T−K−u

2 (z2 − z1)) du

)∣

∣

∣

∣

YT−2K = y

)

(5.43)

A3(y, z1, λ, λ
′,K) = EYy

(

exp

(
∫ K

0

F (Yu) −H
λ′/λ

eT−K+u(Yu, Yu + e
K−u

2 (z2 − z1)) du

)∣

∣

∣

∣

YK = z1

)

.(5.44)

We observe that A1, A2 and A3 all depend on z1 and z2 in addition to their listed arguments, as these values appear
in their integrands. As for the time being we are viewing z1 and z2 as fixed, we omit this additional dependence.

Noting that the integrand is bounded above by F (Yu) − V e
u/2

1 (Yu) in each case, from (3.17) we have Ai ≤ CZ for
i = 1, 2, 3. In terms of the Ai, (5.41) can be rewritten as

EYx

(

Z̃T (Y, λ′/λ)
∣

∣YT = z1

)

=

∫∫

A1(x,w, λ, λ′,K)A2(w, y, λ, λ′,K)A3(y, z1, λ, λ
′,K)

qK(x,w) qT−2K(w, y) qK(y, z1)

qT (x, z1)
dm(w) dm(y).(5.45)

There are two main contributions in the Ai. The first comes from F and the first argument of the H function, and

is approximately equal to F (Yu) − V e
u/2

1 (Yu); the second comes from the second argument of the H function. We
will see that, asymptotically, A1 is only affected by the first contribution and gives the Z∞(Y ) term in (5.39); A3 is
only affected by the second contribution and gives the W∞(z2,∞) term in (5.39). The contribution of A2 is will be
seen to be negligible. We first show that A2 is arbitrarily close to 1 as K is made large, uniformly in T sufficiently
large depending on K. Define ZaT (Y, λ′/λ,K) as Z̃T (Y, λ′/λ,K) with A2 replaced by 1; that is,

ZaT (Y, λ′/λ,K) = exp

(
∫ K

0

F (Yu) −H
λ′/λ
eu (Yu, Yu + e

T−u
2 (z2 − z1)) du

)

× exp

(
∫ T

T−K
F (Yu) −H

λ′/λ
eu (Yu, Yu + e

T−u
2 (z2 − z1)) du

)

.(5.46)

As in (5.41) and (5.45), we therefore have

EYx
(

ZaT (Y, λ′/λ,K)
∣

∣YT = z1
)

=

∫∫

A1(x,w, λ, λ′,K)A3(y, z1, λ, λ
′,K)

qK(x,w) qT−2K (w, y) qK(y, z1)

qT (x, z1)
dm(w) dm(y).(5.47)

By monotonicity (Proposition 3.1(a)) and (3.14) we have

(5.48) F (Yu) −H
λ′/λ
eK+u(Yu, Yu + e

T−K−u
2 (z2 − z1)) ≤ F (Yu) − V e

(K+u)/2

1 (Yu) ≤ Ce−(K+u)(2λ0−1)/2
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uniformly in T > 2K. Integrating this over u shows that the exponent in A2 is bounded above C′e−(2λ0−1)K/2 for
a constant C′, uniformly in T > 2K. We choose K large enough so that exponent in A2 is smaller than 2. Then by
(5.45) and (5.46), applying the mean value theorem, we have

∣

∣EYx
(

Z̃T (Y, λ′/λ) − ZaT (Y, λ′/λ,K)
∣

∣YT = z1
)∣

∣

≤ 1

qT (x, z1)

∫∫

A1(x,w, λ, λ′,K)

∣

∣

∣

∣

A2(w, y, λ, λ′,K) − 1

∣

∣

∣

∣

A3(y, z1, λ, λ
′,K)

× qK(x,w)qT−2K (w, y)qK(y, z1) dm(w) dm(y)

≤ e2C2
Z

qT (x, z1)

∫∫

EYw

(
∫ T−2K

0

|F (Yu) −H
λ′/λ

eK+u(Yu, Yu + e
T−K−u

2 (z2 − z1))| du
∣

∣

∣

∣

YT−2K = y

)

× qK(x,w)qT−2K (w, y)qK(y, z1) dm(w) dm(y),(5.49)

uniformly for all T > 2K, where we have also used A1A3 ≤ C2
Z . The term in the absolute value inside the integral

can be positive or negative; (5.48) provides an upper bound for F − H
λ′/λ

eK+u . To obtain a lower bound, we note

that H
λ′/λ

eK+u(a, b) ≤ F2(a, b) ≤ F (a) + F (b) by Proposition 3.1 (using part (a) and then part (b)). Using this bound
implies that

(5.50) F (Yu) −H
λ′/λ

eK+u(Yu, Yu + e
T−K−u

2 (z2 − z1)) ≥ −F (Yu + e
T−K−u

2 (z2 − z1)).

Together, (5.48) and (5.50) imply that the absolute value appearing in the integral in (5.49) is bounded above by

Ce−(K+u)(2λ0−1)/2 + F (Yu + e
T−K−u

2 (z2 − z1)).

We have already noted that when integrated over u, the first term is bounded by C′e−K(2λ0−1)/2 (uniformly in T ).
The first term has no dependence on the spatial parameters w and y, so in (5.49) the transition densities and can
be integrated and cancelled with the denominator. We get that for all T > 2K, (5.49) is bounded above by

C′e−K(2λ0−1)/2 +
C

qT (x, z1)

∫∫

EYw

(
∫ T−2K

0

F (Yu + e
T−K−u

2 (z2 − z1)) du

∣

∣

∣

∣

YT−2K = y

)

× qK(x,w)qT−2K (w, y)qK(y, z1) dm(w) dm(y).

We consider the time reversed process in the above and apply (2.12), which implies that the above is equal to, and
hence for all T > 2K, (5.49) is bounded above by

C′e−K(2λ0−1)/2 +
C

qT (x, z1)

∫∫

EYy

(
∫ T−2K

0

F (Yu + e
K+u

2 (z2 − z1)) du

∣

∣

∣

∣

YT−2K = w

)

× qK(x,w)qT−2K (w, y)qK(y, z1) dm(w) dm(y).(5.51)

We recall the asymptotic behaviour of F from (3.13)(iii), ie. that F (x) ∼ c1|x|e−x
2/2 as |x| → ∞. This implies there

is a constant c2 > 0 such that

(5.52) F (x) ≤ c2(1 + |x|)e−x2/2 for all x ∈ R.

In order for this to give a useful upper bound in (5.51), we’ll need to show that the argument of F is large in

absolute value. It is enough to show that |Yu| ≪ e
K+u

2 |z2 − z1| with high probability when conditioned on its
endpoint. Recall that we have assumed z1 6= z2. We bound the integrand over the two cases mentioned above and
exchange the integral and expectation, which is justifiable since F is positive. We have

EYy

(
∫ T−2K

0

F (Yu + e
K+u

2 (z2 − z1)) du

∣

∣

∣

∣

YT−2K = w

)

≤ EYy

(
∫ T−2K

0

F (e
K+u

4 |z2 − z1|) + F (0)1(|Yu| ≥ e
K+u

4 |z2 − z1|) du
∣

∣

∣

∣

YT−2K = w

)

≤ c2

∫ ∞

0

(1 + e
K+u

4 |z2 − z1|)e−e
K+u

2 |z2−z1|2/2du + F (0)

∫ T−2K

0

P Yy (|Yu| ≥ e
K+u

4 |z2 − z1|
∣

∣YT−2K = w) du,

(5.53)
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where we have used (5.52) and the fact that F is radially decreasing. A simple substitution shows that

c2

∫ ∞

0

(1 + e
K+u

4 |z2 − z1|)e−e
K+u

2 |z2−z1|2/2du ≤ 4c1

∫ ∞

eK/4|z2−z1|
(1 + a−1)e−a

2/2da

≤ C

∫ ∞

eK/4|z2−z1|
e−a

2/2da+ C1(eK/4|z2 − z1| < 1)

∫ 1

eK/4|z2−z1|
a−1e−a

2/2da

≤ C

∫ ∞

eK/4|z2−z1|
e−a

2/2da− C
[

log(eK/4|z2 − z1|) ∧ 0
]

.(5.54)

To bound the second term in (5.53) we expand the probability of the large excursion in terms of the transition
densities. There are two cases, which we handle in the following lemma. In what follows, s∗ = s∗(1/8) from
Theorem 2.1(c).

Lemma 5.5. Let M > 0 andand w, y ∈ R.
(a) There is a constant C > 0 such that for S, u > 0 satisfying u, S − u ≥ s∗,

P Yy (|Yu| ≥M |YS = w) ≤ C

qS(y, w)
e−λ0Se(y

2+w2)/8

[

e−M
2/4

M
∧ 1

]

.

(b) For fixed u0 > 0 the families

{P Yy (Yu ∈ · |YS = w) : S ≥ u0, 0 ≤ u ≤ u0} and {P Yy (YS−u ∈ · |YS = w) : S ≥ u0, 0 ≤ u ≤ u0}

are tight.

Proof. To see (a), we use (2.11) and (2.2) with δ = 1/8 to obtain that for u, S − u ≥ s∗,

P Yy (Yu ≥M
∣

∣YS = w) =

∫ ∞

M

qu(y, a)qS−u(a, w)

qS(y, w)
dm(a)

≤
c21/8

qS(y, w)
e−λ0S

∫ ∞

M

e(y
2+2a2+w2)/8 dm(a)

≤ C

qS(y, w)
e−λ0Se(y

2+w2)/8

[

e−M
2/4

M
∧ 1

]

,

where the last line uses a standard upper bound on Gaussian tails and bounds the integral above by a constant
when M is small. The bound for Yu < −M is the same. The first family in part (b) is tight as a consequence of
Lemma 2.3(c). To see that the second family is tight we consider the time reversal of Y and use (2.12), from which
tightness now also follows from Lemma 2.3(c).

Applying Lemma 5.5(a), using (5.54) and separating the integrals depending if u, S − u ≥ s∗ or not, we have that
(5.53) is bounded above by

C

∫ ∞

eK/4|z2−z1|
e−a

2/2da− C
[

log(eK/4|z2 − z1|) ∧ 0
]

+
C

qT−2K(y, w)
e−λ0(T−2K)ey

2/8ew
2/8

∫ T−2K−s∗

s∗





e−e
K+u

2 |z2−z1|2/4

e
K+u

4 |z2 − z1|
∧ 1



 du

+ C

(
∫ s∗

0

+

∫ T−2K

T−2K−s∗

)

P Yy (|Yu| ≥ e
K+u

4 |z2 − z1|
∣

∣YT−2K = w) du.(5.55)

As the above is an upper bound for the expectation appearing in the second term of (5.51), and (5.51) is an upper
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bound for (5.49), we have

∣

∣EYx
(

Z̃T (Y, λ′/λ) − ZaT (Y, λ′/λ,K)
∣

∣YT = z1
)
∣

∣

≤ Ce−K(2λ0−1)/2 +
C

qT (x, z1)

∫∫
[
∫ ∞

eK/4|z2−z1|
e−a

2/2da− C
[

log(eK/4|z2 − z1|) ∧ 0
]

+
1

qT−2K(y, w)
e−λ0(T−2K)ey

2/8ew
2/8

∫ T−2K−s∗

s∗





e−e
K+u

2 |z2−z1|2/4

e
K+u

4 |z2 − z1|
∧ 1



 du

+

(
∫ s∗

0

+

∫ T−2K

T−2K−s∗

)

P Yy (|Yu| ≥ e
K+u

4 |z2 − z1|
∣

∣YT−2K = w) du

]

× qK(x,w)qT−2K (w, y)qK(y, z1) dm(w) dm(y).(5.56)

Note that the first two terms in the integral with respect to y and w are independent of these variables. We can
therefore integrate them out; using the fact that

∫∫

qK(x,w)qT−2K (w, y)qK(y, z1) dm(w) dm(y) = qT (x, z1)

(and an obvious cancellation) we obtain that

∣

∣EYx
(

Z̃T (Y, λ′/λ) − ZaT (Y, λ′/λ,K)
∣

∣YT = z1
)
∣

∣

≤ Ce−K(2λ0−1)/2 + C

∫ ∞

eK/4|z2−z1|
e−a

2/2da− C
[

log(eK/4|z2 − z1|) ∧ 0
]

+
C

qT (x, z1)
e−λ0(T−2K)

∫∫

ey
2/8ew

2/8qK(x,w)qK(y, z1) dm(w) dm(y)

(
∫ T−2K−s∗

s∗





e−e
K+u

2 |z2−z1|2/4

e
K+u

4 |z2 − z1|
∧ 1



 du

)

+
C

qT (x, z1)

∫∫
[(
∫ s∗

0

+

∫ T−2K

T−2K−s∗

)

P Yy (|Yu| ≥ e
K+u

4 |z2 − z1|
∣

∣YT−2K = w) du

]

× qK(x,w)qT−2K (w, y)qK(y, z1) dm(w) dm(y)

=: δ1 + δ2 + δ3 + δ4 + δ5,
(5.57)

where δi = δi(T,K, z1, z2). We first note that

δi(T,K, z1, z2) → 0 as K → ∞ (uniformly in T ≥ 2K) for i = 1, 2, 3.

Turning to δ4 and δ5, we observe that by Lemma 2.2, eλ0T qT (x, z1) → ψ0(x)ψ0(z1) as λ→ ∞. Since T → qT (x, z1)
is continuous, qT (x, z1) > 0 for all T ≥ τ(s) and ψ0(x)ψ0(z1) > 0, this implies that there exists β(x, z1) = β > 0
such that

(5.58) qT (x, z1) ≥ βe−λ0Tψ0(x)ψ0(z1) ∀ T ≥ τ(s).

Applying (2.2) twice with δ = 1/8 and using (5.58), we have

|δ4(T,K, z1, z2)|

≤ Cβ−1

ψ0(x)ψ0(z1)
e2λ0Ke−2λ0Ke(x

2+z21)/8

∫∫

ey
2/4ew

2/4dm(w) dm(y)

(
∫ T−2K−s∗

s∗

e−e
K+u

2 |z2−z1|2/4

e
K+u

4 |z2 − z1|
du

)

≤ Ce(x
2+z21)/8

ψ0(x)ψ0(z1)

(
∫ T−2K−s∗

s∗

e−e
K+u

2 |z2−z1|2/4

e
K+u

4 |z2 − z1|
du

)

=
4Ce(x

2+z21)/8

ψ0(x)ψ0(z1)

∫ ∞

es∗/4eK/4|z2−z1|

e−a
2/4

a2
da,(5.59)
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where the last line follows from a simple substitution. Thus we have δ4(T,K, z1, z2) → 0 as K → ∞, and again we
note that convergence is uniform in T > 2K. It remains to handle δ5. By three applications of (2.2) with δ = 1/8
and (5.58), we have

|δ5(T,K, z1, z2)|

≤ C

ψ0(x)ψ0(z1)

∫∫
[(
∫ s∗

0

+

∫ T−2K

T−2K−s∗

)

P Yy (|Yu| ≥ e
K+u

4 |z2 − z1|
∣

∣YT−2K = w) du

]

× ex
2/8ew

2/4ey
2/4ez

2
1/8 dm(w) dm(y).

The square bracketed term vanishes as K → ∞ uniformly in T ≥ 2K+ s∗(1/8) by Lemma 5.5(b). The probabilities
are bounded so the integrand obviously has a uniformly integrable upper bound. By Dominated Convergence,
we have that δ5(T,K, z1, z2) → 0 as K → ∞, uniformly in T ≥ 2K + s∗(1/8). We have therefore shown that
∑5

i=1 δi(T,K, z1, z2) is arbitrarily small as K → ∞, uniformly in T ≥ 2K + s∗(1/8) and in λ′ > λ̄(s), where
we recall that we have assumed λ, λ′ > λ̄(s). From (5.34), λ > λ̄(s) is equivalent to T > τ(s). As τ(s) ≥ s∗(1/8),
T ≥ 2K+τ(s) implies that T ≥ 2K+s∗(1/8). Thus by (5.57) we have proved the following. Recall that Z̃T (Y, λ′/λ) =
Z̃T (Y, z1, z2, λ

′/λ).

Lemma 5.6. For all x, z1, z2 ∈ R such that z1 6= z2, for all K > 0,

δ∼a (K) = sup
T≥2K+τ(s), λ′>λ̄(s)

∣

∣EYx
(

Z̃T (Y, λ′/λ) − ZaT (Y, λ′/λ,K)
∣

∣YT = z1
)∣

∣→ 0 as K → ∞.

Given this Lemma, it suffices to find the limit of (the conditional expectation of) ZaT (Y, λ′/λ,K), and so A2 has
been replaced by 1.

Next we consider A3(y, z1, λ, λ
′,K), which we recall from (5.44) is defined as

EYy

(

exp

(
∫ K

0

F (Yu) −H
λ′/λ

eT−K+u(Yu, Yu + e
K−u

2 (z2 − z1)) du

)∣

∣

∣

∣

YK = z1

)

.

We will show that in the limit as λ, λ′ → ∞, the integrand will be F − F2. Define A∗
3(y, z1,K) by

(5.60) A∗
3(y, z1,K) = EYy

(

exp

(
∫ K

0

F (Yu) − F2(Yu, Yu + e
K−u

2 (z2 − z1)) du

)∣

∣

∣

∣

YK = z1

)

.

The difference between the integrands of A3 and A∗
3 is equal to (F2 −H

λ′/λ

eT−K+u)(Yu, Yu + e
K−u

2 (z2 − z1)), which we
bound below by monotonicity and above via Lemma 3.2. We have

0 ≤ (F2 −H
λ′/λ

eT−K+u)(Yu, Yu + e
K−u

2 (z2 − z1)) ≤ C

[

e−(T−K+u)(2λ0−1)/2 +

(

λ′

λ

)−(2λ0−1)

e−(T−K+u)(2λ0−1)/2

]

≤ Ce(K−u)(2λ0−1)/2(t− s)−(2λ0−1)/2
[

λ−(2λ0−1) + λ′−(2λ0−1)
]

.(5.61)

The first line uses the definition of Hc, which we recall from (5.13), and in the second line we have used that
T = log(λ2(t− s)). Since λ, λ′ > λ̄(s) ≥ 1, the last expression in (5.61) is bounded by CeK/2(t− s)−(2λ0−1)/2 for all
u ∈ [0,K]. Thus by using |ex − ey| ≤ (ex ∨ ey)|x− y| and (5.61), we have

|A∗
3(y,z1,K) −A3(y, z1, λ, λ

′,K)|

≤ exp
(

CKeK/2(t− s)−(2λ0−1)/2
)

EYy

(
∫ K

0

(F2 −H
λ′/λ
eT−K+u)(Yu, Yu + eK/2(z2 − z1)) du

∣

∣

∣

∣

YK = z1

)

≤ exp
(

CKeK/2(t− s)−(2λ0−1)/2
)

(t− s)−(2λ0−1)/2
[

λ−(2λ0−1) + λ′−(2λ0−1)
]

∫ K

0

Ce(K−u)(2λ0−1)/2du

≤ C(K, t− s)
[

λ−(2λ0−1) + λ′−(2λ0−1)
]

(5.62)
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for some constant C(K, t − s) > 0. Define ZbT (Y, λ′/λ,K) as we defined ZaT (Y, λ′/λ,K) in (5.46) but with F − F2

replacing the integrand in the second term. That is,

ZbT (Y, λ′/λ,K) = exp

(
∫ K

0

F (Yu) −H
λ′/λ
eu (Yu, Yu + e

T−u
2 (z2 − z1)) du

)

× exp

(
∫ T

T−K
F (Yu) − F2(Yu, Yu + e

T−u
2 (z2 − z1)) du

)

.(5.63)

In particular, we have

EYx
(

ZbT (Y, λ′/λ,K)
∣

∣YT = z1
)

=

∫∫

A1(x,w, λ, λ′,K)A∗
3(y, z1,K)

qK(x,w) qT−2K(w, y) qK(y, z1)

qT (x, z1)
dm(w) dm(y).(5.64)

Because (5.62) is uniform in y and z1 and |A1| ≤ CZ , we can integrate out the transition densities to obtain the
following.

Lemma 5.7. For K > 0 and s ∈ [0, t), there is a constant C(K, t− s) such that

δab (K,λ, λ′) =
∣

∣EYx
(

ZaT (Y, λ′/λ,K) − ZbT (Y, λ′/λ,K)
∣

∣YT = z1
)∣

∣ ≤ C(K, t− s)
[

λ−(2λ0−1) + λ′−(2λ0−1)
]

for all λ, λ′ > λ̄(s).

We now analyse A∗
3 in greater detail. In particular, we perform a time reversal on the process Y . By (2.12), we have

A∗
3(y, z1,K) = EYz1

(

exp

(
∫ K

0

F (Yu) − F2(Yu, Yu + e
u
2 (z2 − z1)) du

)
∣

∣

∣

∣

YK = y

)

.

This is the term that in (5.39) we claimed converges to EY,∞Z1
(W∞(Y, z2)), defined in (5.40), in the limit. However,

the above expectation is still conditional on the endpoint. We now show that the contribution from the tail of the
integral is vanishing, making the quantity asymptotically independent of the endpoint y. Let 0 < M < K. Define
A∗

3(y, z1,M,K) by truncating the integral in (5.65) at time M . That is,

A∗
3(y, z1,M,K) = EYz1

(

exp

(
∫ M

0

F (Yu) − F2(Yu, Yu + e
u
2 (z2 − z1)) du

)
∣

∣

∣

∣

YK = y

)

.

We now define Zc(Y, λ′/λ,M,K) by truncating the corresponding integral in Zb(Y, λ′/λ,K) (the integral over
[T − K,T ] in (5.63) becomes the integral over [T − M,T ]) so that A∗

3(y, z1,M,K) replaces A∗
3(y, z1,K) in the

conditional expectation.

Lemma 5.8. For all x, z1, z2 ∈ R such that z1 6= z2,

δbc(M) = sup
K≥M+s∗(1/8)

sup
T≥2K+τ(s), λ′>λ̄(s)

∣

∣EYx
(

ZbT (Y, λ′/λ,K) − ZcT (Y, λ′/λ,M,K)
∣

∣YT = z1
)
∣

∣→ 0 as M → ∞.

Proof. Using the inequality |e−x − e−y| ≤ |x− y| for x, y ≥ 0, we have

(5.65) |A∗
3(y, z1,K) −A∗

3(y, z1,M,K)| ≤ EYz1

(
∫ K

M

|F (Yu) − F2(Yu, Yu + eu/2(z2 − z1))| du
∣

∣

∣

∣

YK = y

)

.

By Proposition 3.1(b), the absolute value of the above integrand is at most F (Yu + e
u
2 (z2 − z1)) (for a similar

argument see (5.50)). Exchanging expectation and integration, we proceed as in (5.53), (5.54), and (5.55), and
apply Lemma 5.5 to bound (5.65) above by

c1

∫ K−M

0

(1 + e
M+u

4 |z2 − z1|)e−e
M+u

2 |z2−z1|2/2 + F (0)

∫ K

M

P Yz1(|Yu| ≥ e
u
4 |z2 − z1|

∣

∣YK = y) du

≤ 4c1

∫ ∞

eM/4|z2−z1|
(1 + a−1)e−a

2/2 da+
Ce−λ0K

qK(z1, y)
e(z

2
1+y

2)/8

∫ K−M−s∗

0





e−e
M+u

2 |z2−z1|2

e
M+u

4 |z2 − z1|
∧ 1



 du

+ C

∫ K

K−s∗
P Yz1(|Yu| ≥ e

M+u
4 |z2 − z1|

∣

∣YK = y) du.(5.66)
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Expanding in terms of transition densities and using |A1| ≤ CZ , we have
∣

∣EYx
(

ZbT (Y, λ′/λ,K) − ZcT (Y, λ′/λ,M,K)
∣

∣YT = z1
)
∣

∣

≤ C

qT (x, z1)

∫

|A3(y, z1, λ, λ
′,K) − A∗

3(y, z1,M,K)|qT−K(x, y) qK(y, z1) dm(y).

Using (5.66) as an upper bound for the integrand, we obtain an expression which closely resembles (5.57); in
particular, four terms appear, directly corresponding to δ2, δ3, δ4 and δ5 of that expression. Moreover, they can be
handled using the exact same arguments, as in the proof of Lemma 5.6, but with (M,K) playing the roles of (K,T ).
Because the arguments are the same, we omit them.

We now comment on the limit of A∗
3(w,M,K) as K → ∞. Recalling (5.65) and the definition of WM in (5.40), we

have

A∗
3(y, z1,M,K) = EYz1

(

exp

(
∫ M

0

F (Yu) − F2(Yu, Yu + eu/2(z2 − z1)) du

)
∣

∣

∣

∣

YK = y

)

= EYz1(WM (Y, z2)
∣

∣YK = y).

The functional WM (Y, z2) is a bounded continuous function of Y |[0,M ]
. By Lemma 2.3(b), we have

(5.67) ∀M > 0, lim
K→∞

A∗
3(y, z1,M,K) = EY,∞z1 (WM (Y, z2)) .

We define ZdT (Y, λ′/λ,M,K) by

(5.68) ZdT (Y, λ′/λ,M,K) := exp

(
∫ K

0

F (Yu) −H
λ′/λ

eK+u(Yu, Yu + e
T−u

2 (z2 − z1)) du

)

× EY,∞z1 (WM (Y, z2)) .

Note that the second term is now deterministic; it no longer depends on the original Ornstein-Uhlenbeck process
Y or the spatial variable y. We then have

EYx
(

ZdT (Y, λ′/λ,M,K)
∣

∣ZT = z1
)

=

∫

A1(x,w, λ, λ′,K)
qK(x,w) qT−K (w, z1)

qT (x, z1)
dm(w) × EY,∞z1 (WM (Y, z2)) .

Bounding A1 ≤ CZ and integrating out the transition densities, by (5.67) we obtain the following.

Lemma 5.9. For all x, z1, z2 ∈ R,

δcd(M,K) = sup
T≥2K+τ(s), λ′>λ̄(s)

∣

∣EYx
(

ZcT (Y, λ′/λ,M,K) − ZdT (Y, λ′/λ,M,K)
∣

∣YT = z1
)∣

∣→ 0 as K → ∞

for each fixed M > 0.

From our starting expression for Z̃T (Y, λ′/λ) in (5.45), all that remains to be handled in ZdT (Y, λ′/λ,M,K) is the
A1 term, whose definition we recall from (5.42) is

A1(x,w, λ, λ′,K) = EYx

(

exp

(
∫ K

0

F (Yu) −H
λ′/λ
eu (Yu, Yu + e

T−u
2 (z2 − z1)) du

)∣

∣

∣

∣

YK = w

)

.

The dominant contribution to the integral in A1 resembles F (Yu) − V e
u/2

1 (Yu). By Proposition 3.1 we have the
following upper and lower bounds for the difference of the integrand and this term:

(5.69) − F (Yu + e
T−u

2 (z2 − z1)) ≤
[

F (Yu) −H
λ′/λ
eu (Yu, Yu + e

T−u
2 (z2 − z1))

]

−
[

F (Yu) − V e
u/2

1 (Yu)
]

≤ 0.

Recall from (3.15) that ZK(Y ) is defined as

ZK(Y ) = exp

(
∫ K

0

F (Yu) − V e
u/2

1 (Yu) du

)

.

Because both the exponential in A1 and ZK(Y ) are bounded above by CZ , by (5.69) we have

∣

∣A1(x,w, λ, λ′,K) − EYx (ZK(Y ) |YK = w)
∣

∣ ≤ CZ E
Y
x

(
∫ K

0

F (Yu + e
T−u

2 (z2 − z1)) du

∣

∣

∣

∣

YK = w

)

.(5.70)
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We define Ze(Y,M,K) by

(5.71) Ze(Y,M,K) = ZK(Y ) × EY,∞z1 (WM (Y, z2)) .

Using (5.70) and proceeding as in the proofs of Lemmas 5.6 and 5.8, we obtain the following.

Lemma 5.10. For all x, z1, z2 ∈ R such that z1 6= z2, we have

δde(M,K) = sup
λ′>λ̄(s)

∣

∣EYx
(

ZdT (Y, λ′/λ,M,K) − Ze(Y,M,K)
∣

∣YT = z1
)∣

∣→ 0 as T → ∞

for all fixed M and K satisfying 0 < M < K.

From (5.71), we have

EYx (Ze(Y,M,K) |YT = z1) = EYx (ZK(Y ) |YT = z1) × EY,∞z1 (WM (Y, z2)) .

Thus by Lemma 2.3(b) and the fact that ZK(Y ) ≤ CZ (and is a continuous function of Y ) we have the following.

Lemma 5.11. For all x, z1, z2 ∈ R,

δef (T,M,K) =
∣

∣EYx (Ze(Y,M,K) |YT = z1) − EY,∞x (ZK(Y ))EY,∞z1 (WM (Y, z2))
∣

∣→ 0 as T → ∞

for each fixed 0 < M < K.

We are now ready to establish the limiting form of EYx (Z̃T (Y, λ′/λ) |YT = z1) (provided z1 6= z2). Let M > 0,
K > M , T ≥ 2K + τ(s) and λ′ > λ̄(s). Bounding above by the sum of the δ terms in Lemmas 5.6-5.11, we have
that

∣

∣EYx (Z̃T (Y, λ′/λ) |YT = z1) − EY,∞x (ZK(Y ))EY,∞z1 (WM (Y, z2))
∣

∣

≤ δ∼a (K) + δab (K,λ, λ′) + δbc(M) + δcd(M,K) + δde(M,K) + δef (T,M,K).(5.72)

Let ǫ > 0. By Lemma 5.8, we can choose M0 > 0 to be sufficiently large such that δbc(M) < ǫ/4 for all M ≥ M0,
and choose some M ≥ M0. By Lemma 5.6 and Lemma 5.9, we can then choose K0 to be large enough such that
δ∼a (K)+δcd(M,K) < ǫ/4 for all K ≥ K0. Fix K > K0. Next, by Lemmas 5.10 and 5.11 we can choose T0 > 2K+τ(s)
such that for all T ≥ T0, δ

d
e (T,M,K) + δef(T,M,K) < ǫ/4. Finally, Lemma 5.7 allows us to choose λ(ǫ) > λ̄(s) such

that T = log(λ2(t− s)) ≥ T0 and δab (K,λ, λ′) < ǫ/4 for all λ, λ′ ≥ λ(ǫ). We therefore obtain from (5.72) that

lim sup
λ,λ′→∞

∣

∣EYx (Z̃T (Y, λ′/λ) |YT = z1) − EY,∞x (ZK(Y ))EY,∞z1 (WM (Y, z2))
∣

∣ < ǫ

for the M and K chosen above. This holds for all ǫ > 0 for sufficiently large M and K (with M < K). It therefore
holds that if limM,K→∞,K>M EY,∞x (ZK(Y ))EY,∞z1 (WM (Y, z2)) exists, then limλ,λ′→∞EYx (Z̃T (Y, λ′/λ) |YT = z1)
exists and is equal to it. Thus it suffices to find the limit of EY,∞x (ZK(Y ))EY,∞z1 (WM (Y, z2)) as M,K → ∞ with
M < K. As the first term depends only on K and the second depends only on M , we can consider the limits
independently. First consider EY,∞x (ZK(Y )). By (3.17), ZK ↑ Z∞ ≤ CZ , so the limit of the first term as K → ∞
is EY,∞x (Z∞(Y )) by Monotone Convergence. We recall the definition of WM from (5.40). The integral in WM is
monotone in M and hence converges to the integral on [0,∞] as M → ∞. Using the fact that |WM (Y, z2)| ≤ 1 for
all M and continuity of the exponential, we can bring the limit inside, and EY,∞z1 (WM (Y, z2)) → EY,∞z1 (W∞(Y, z2))
as M → ∞. Thus we have shown that

(5.73) lim
λ,λ′→∞

EYx (Z̃T (Y, λ′/λ) |YT = z1) = EY,∞x (Z∞(Y ))EY,∞z1 (W∞(Y, z2)) .

Finally, recall that Z̃T (Y, λ′/λ) was in fact Z̃1
T1

(Y 1, λ′/λ). The analysis for Z̃2
T2

(Y 2, λ/λ′) (under its respective
conditional expectation) carries through unchanged. Since (5.73) holds for all x ∈ R, we have therefore shown the
following:

For all B1
1 , B

2
1 ∈ R and all z1, z2 ∈ R such that z1 6= z2

lim
λ,λ′→∞

EY
1

B1
1

(

Z̃1
T1

(Y 1, λ′/λ)
∣

∣Y 1
T1

= z1
)

= EY,∞
B1

1
(Z∞(Y ))EY,∞z1 (W∞(Y, z2)), and(5.74)

lim
λ,λ′→∞

EY
2

B2
1

(

Z̃2
T2

(Y 2, λ/λ′)
∣

∣Y 2
T2

= z2
)

= EY,∞
B2

1
(Z∞(Y ))EY,∞z2 (W∞(Y, z1)).
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To find the limit of G it remains to identify the limits of Ψλ,λ′

B,s (
√
t− sz1,

√
t− sz2) and Q(λ1, λ2, B

1, B2, z1, z2).
From (5.12) we recall that the former prelimit is defined as

Ψλ,λ′

B,s (
√
t− sz1,

√
t− sz2)

= h(
√
t− sz1 +Bs,

√
t− sz2 +Bs) exp

(

−
∫ s

0

V λ,λ
′

t−u (
√
t− sz1 +Bs −Bu,

√
t− sz2 +Bs −Bu) du

)

.

For all z1, z2 ∈ R and all Brownian paths (Bu, u ∈ [0, s]), the obvious limit of the above as λ, λ′ → ∞ is obtained

by replacing V λ,λ
′

t−u with V∞,∞
t−u . By monotonicity (in λ, λ′) of the integral and continuity of the exponential we can

take the limit inside. Denoting the limit by Ψ∞,∞
B,s (

√
t− sz1,

√
t− sz2), we have

(5.75) lim
λ,λ′→∞

Ψλ,λ′

B,s (
√
t− sz1,

√
t− sz2) = Ψ∞,∞

B,s (
√
t− sz1,

√
t− sz2).

This leaves Q(λ, λ′, B1, B2, z1, z2), which we recall from (5.24) is defined by

Q(λ, λ′, B1, B2, z1, z2) = exp

(

−
∫ 1

0

V 1,λ′/λ
u (B1

u, B
1
u + eT1/2(z2 − z1)) + V 1,λ/λ′

(B2
u, B

2
u + eT2/2(z1 − z2)) du

)

.

The integrand is the sum of two terms that are very similar; for now we restrict our attention to the first. In
particular, we will show that

(5.76) lim
T1→∞

sup
λ′>(t−s)−1/2

∣

∣

∣

∣

exp

(

−
∫ 1

0

V 1,λ′/λ
u (B1

u, B
1
u + eT1/2(z2 − z1)) du

)

− exp

(

−
∫ 1

0

V 1
u (B1

u) du

)∣

∣

∣

∣

= 0.

We claim that since the second argument of the integrand goes to infinity, asymptotically the function resembles
V 1
u (B1

u). To see this use both parts of Proposition 3.1 to conclude that

0 ≤
[

V 1,c
u (B1

u, B
1
u + eT1/2(z2 − z1)) − V 1

u (B1
u)
]

≤ V∞
u (B1

u + eT1/2(z2 − z1))

for all c > 0. PB0 -a.s., there is a constant R(ω) > 0 such that |B1
u(ω)| ≤ R(ω) for all u ∈ [0, s]. Provided z1 6= z2,

for λ sufficiently large, eT1/2|z2 − z1| ≥ 2R. Then for λ sufficiently large and λ, λ′ > λ̄(s),

∣

∣

∣

∣

exp

(

−
∫ 1

0

V 1,λ′/λ
u (B1

u, B
1
u + eT1/2(z2 − z1)) du

)

− exp

(

−
∫ 1

0

V 1
u (B1

u) du

)∣

∣

∣

∣

≤
∫ 1

0

V∞
u (eT1/2(z2 − z1) −R) du.

The integrand is bounded above by V∞
u (R), which is integrable on [0, 1]. We take λ → ∞ and apply Dominated

Convergence; since V∞
u (y) = u−1F (u−1/2y) and by (3.13)(iii), we have lim|y|→∞ V∞

u (y) = 0, and hence limit of
the above as λ → ∞ (ie. as T1 → ∞) is zero. Thus (5.76) holds. We handle the second term the integral in
Q(λ, λ′, B1, B2, z1, z2) in an identical fashion, now with the roles of λ and λ′ reversed, thereby establishing that

For all z1, z2 ∈ R such that z1 6= z2, dP
B1

0 dPB
2

0 -a.s.,(5.77)

lim
λ,λ′→∞

Q(λ, λ′, B1, B2, z1, z2) = exp

(

−
∫ 1

0

V 1
u (B1

u) du

)

exp

(

−
∫ 1

0

V 1
u (B2

u) du

)

.

We have therefore found the limit of G(λ, λ′, s, B,B1, B2, z1, z2) and hence of Θ(λ, λ′, s, B,B1, B2, z1, z2). In particu-

lar, recall the definitions (5.27) and (5.31). From (5.38), (5.74), (5.75) and (5.77), we have shown that dPB0 dP
B1

0 dPB
2

0 -
a.s., for all z1, z2 ∈ R such that z1 6= z2,

lim
λ,λ′→∞

Θ(λ, λ′, s, B,B1, B2, z1, z2) = (t− s)−2λ0Ψ∞,∞
B,s (

√
t− sz1,

√
t− sz2) exp

(
∫ 1

0

−V 1
u (B1

u) − V 1
u (B2

u) du

)

× EY,∞z1 (W∞(Y, z2))EY,∞z2 (W∞(Y, z1))E
Y,∞
B1

1
(Z∞(Y ))EY,∞

B2
1

(Z∞(Y ))ψ0(B1
1)ψ0(B2

1)ψ0(z1)ψ0(z2).

(5.78)
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Thus by (5.37), limλ,λ′→∞ N0((Lλt × Lλ
′

t )(h)) exists and satisfies

(5.79) lim
λ,λ′→∞

N0((Lλt × Lλ
′

t )(h)) =

∫ t

0

[
∫∫

EB0 (EB
1,B2

(0,0) [ lim
λ,λ′→∞

Θ(λ, λ′, s, B,B1, B2, z1, z2)]) dm(z1) dm(z2)

]

ds.

To obtain the desired expression, we note that the terms in (5.78) that depend on B1 and B2 can be collected in a
constant. In particular, we define a constant C1.4 > 0 by

C2
1.4 = EB

1,B2

(0,0)

(

exp

(

−
∫ 1

0

V 1
u (B1

u) + V 1
u (B2

u) du

)

EY,∞
B1

1
(Z(∞))EY,∞

B2
1

(Z(∞))ψ0(B1
1)ψ0(B2

1)

)

=

[

EB0

(

exp

(

−
∫ 1

0

V 1
u (Bu) du

)

EY,∞B1 (Z∞(Y ))ψ0(B1)

)]2

.(5.80)

We also define a function ρ(·, ·) by

(5.81) ρ(z1, z2) = EY,∞z1 (W∞(Y, z2))EY,∞z2 (W∞(Y, z1)).

It is clear that ρ(·, ·) is jointly continuous and bounded by 1 from the definition of W∞(Y, z). Thus by (5.78),

EB
1,B2

(0,0)

[

lim
λ,λ′→∞

Θ(λ, λ′, s, B,B1, B2, z1, z2)

]

= C2
1.4(t− s)−2λ0Ψ∞,∞

B,s (
√
t− sz1,

√
t− sz2)ρ(z1, z2)ψ0(z1)ψ0(z2).

Substituting the above into (5.79) completes the proof.
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